1
|
Rahman MA, Shaikh MH, Gupta RD, Siddika N, Shaikh MS, Zafar MS, Kim B, Hoque Apu E. Advancements in Autophagy Modulation for the Management of Oral Disease: A Focus on Drug Targets and Therapeutics. Biomedicines 2024; 12:2645. [PMID: 39595208 PMCID: PMC11591969 DOI: 10.3390/biomedicines12112645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy is an intrinsic breakdown system that recycles organelles and macromolecules, which influences metabolic pathways, differentiation, and thereby cell survival. Oral health is an essential component of integrated well-being, and it is critical for developing therapeutic interventions to understand the molecular mechanisms underlying the maintenance of oral homeostasis. However, because of the complex dynamic relationship between autophagy and oral health, associated treatment modalities have not yet been well elucidated. Determining how autophagy affects oral health at the molecular level may enhance the understanding of prevention and treatment of targeted oral diseases. At the molecular level, hard and soft oral tissues develop because of complex interactions between epithelial and mesenchymal cells. Aging contributes to the progression of various oral disorders including periodontitis, oral cancer, and periapical lesions during aging. Autophagy levels decrease with age, thus indicating a possible association between autophagy and oral disorders with aging. In this review, we critically review various aspects of autophagy and their significance in the context of various oral diseases including oral cancer, periapical lesions, periodontal conditions, and candidiasis. A better understanding of autophagy and its underlying mechanisms can guide us to develop new preventative and therapeutic strategies for the management of oral diseases.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Mushfiq Hassan Shaikh
- Department of Otolaryngology-Head and Neck Surgery, Western University, London, ON N6A 4V2, Canada;
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Rajat Das Gupta
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Nazeeba Siddika
- Oral Health Sciences Division, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA;
| | - Muhammad Saad Shaikh
- Department of Oral Biology, Sindh Institute of Oral Health Sciences, Jinnah Sindh Medical University, Karachi 75510, Pakistan;
| | - Muhammad Sohail Zafar
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates;
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- School of Dentistry, Jordan University, Amman 19328, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, 1-5 Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ehsanul Hoque Apu
- Department of Biomedical Sciences, College of Dental Medicine, Lincoln Memorial University, Knoxville, TN 37923, USA
- Centre for International Public Health and Environmental Research, Bangladesh (CIPHER,B), Dhaka 1207, Bangladesh
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
2
|
Inchingolo AM, Inchingolo AD, Nardelli P, Latini G, Trilli I, Ferrante L, Malcangi G, Palermo A, Inchingolo F, Dipalma G. Stem Cells: Present Understanding and Prospects for Regenerative Dentistry. J Funct Biomater 2024; 15:308. [PMID: 39452606 PMCID: PMC11508604 DOI: 10.3390/jfb15100308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
Regenerative medicine in dentistry focuses on repairing damaged oral tissues using advanced tools like stem cells, biomaterials, and tissue engineering (TE). Mesenchymal stem cells (MSCs) from dental sources, such as dental pulp and periodontal ligament, show significant potential for tissue regeneration due to their proliferative and differentiative abilities. This systematic review, following PRISMA guidelines, evaluated fifteen studies and identified effective strategies for improving dental, periodontal, and bone tissue regeneration through scaffolds, secretomes, and bioengineering methods. Key advancements include the use of dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) to boost cell viability and manage inflammation. Additionally, pharmacological agents like matrine and surface modifications on biomaterials improve stem cell adhesion and promote osteogenic differentiation. By integrating these approaches, regenerative medicine and TE can optimize dental therapies and enhance patient outcomes. This review highlights the potential and challenges in this field, providing a critical assessment of current research and future directions.
Collapse
Affiliation(s)
- Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Paola Nardelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Giulia Latini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Irma Trilli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Laura Ferrante
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (A.D.I.); (P.N.); (G.L.); (I.T.); (L.F.); (G.D.)
| |
Collapse
|
3
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
4
|
Altrieth A, Kenney J, Nelson D, Suarez E, Gellatly V, Gabunia S, Larsen M. Single-Cell Transcriptomic Analysis of Salivary Gland Endothelial Cells. J Dent Res 2024; 103:269-278. [PMID: 38411696 PMCID: PMC10985389 DOI: 10.1177/00220345231219987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Vascular endothelial cells have important tissue-specific functions in fibrosis and regeneration. In the salivary gland, endothelial cells are required for proper development, but their roles within adult glands are largely unknown. To identify ligand-receptor interactions between endothelial cells and other cell types that may be important during fibrosis and regeneration, we used a reversible ductal ligation injury. To induce injury, a clip was applied to the primary ducts for 14 d, and to induce a regenerative response, the clip was subsequently removed for 5 d. To identify endothelial cell-produced factors, we used single-cell RNA sequencing of stromal-enriched cells from adult female submandibular and sublingual salivary glands. Transcriptional profiles of homeostatic salivary gland endothelial cells were compared to endothelial cells of other organs. Salivary gland endothelial cells expressed many unique genes and displayed the highest overlap in gene expression with other fenestrated endothelial cells from the colon, small intestine, and kidney. Comparison of the 14-d ligated, mock-ligated, and 5-d deligated stromal-enriched transcripts and lineage tracing revealed that endothelial cells retain their identity following ligation and recovery from injury. CellChat and NATMI were used to predict changes in ligand-receptor interactions from endothelial cells to other cells in response to ligation and deligation. CellChat and NATMI predicted that after ligation, interactions with fibroblasts, epithelial cells, and glial cells were increased, and following deligation, interactions with pericyte, glia, fibroblasts, and immune cells were increased. Some of the highest-ranked interactions predicted in ligated compared to mock endothelial cells were between glial cells via Col4a2-Cd93 and Jag2-Notch1, as well as epithelial cells via Pecam1-Cd38, while in deligated compared to ligated endothelial cells, the top interactions were between fibroblasts via Ntf3-Ntrk2, glial cells via Hspg2-Itgb1, and pericytes via Jam2-F11r. Understanding salivary gland endothelial cell signaling will inform future endothelial cell-based regenerative therapies.
Collapse
Affiliation(s)
- A.L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - J. Kenney
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - D.A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - E.G. Suarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - V. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - S. Gabunia
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - M. Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
5
|
Song W, Wang H, Wang X. Research hotspots and emerging trends in the treatment of Sjogren's syndrome: A bibliometric analysis from 1900 to 2022. Heliyon 2024; 10:e23216. [PMID: 38187243 PMCID: PMC10767134 DOI: 10.1016/j.heliyon.2023.e23216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Sjogren's syndrome (SS) is an autoimmune disease that mainly affects the salivary and lacrimal glands and further leads to dry mouth and eyes. In recent years, knowledge about the treatment of SS is developing rapidly. This study aims to assess research progress on SS treatment using a bibliometric approach and to identify research hotspots and emerging trends in this area. Methods The publications related to the treatment of SS were retrieved from the Science Citation Index Expanded (SCI-E) database. The following search terms were used to extract document data: TS=(Sjogren* OR Sicca*) AND TS= (Treat* OR Therap* OR Disease Management). Articles and review articles published in English from 1900 to 2022 were selected. After the manual screening, the publication data were exported to a plain text file and applied for cooperative network analysis, keyword analysis, and reference co-citation analysis by using CiteSpace. Results A total of 2038 publications were included in the analysis from 571 journals by 9063 authors. The annual number of published studies and times cited showed an overall upward trend since 1992. There was a degree of national/regional collaboration in this area, but direct collaboration between institutions and authors was still lacking. The country with the highest number of publications was in the United States, followed by China and Japan. Five SS-related treatments as the research hotspots were summarized by analyzing keywords and references, including immunosuppressive and anti-inflammatory therapy, regenerative therapy, gene therapy, surgical treatment, and symptomatic treatment. Among them, B cells, T cells, mucosal-associated invariant T (MAIT) cells, mesenchymal stem cells (MSCs), rituximab, belimumab, cell-target therapy, and immunosuppressive and anti-inflammatory therapy were emerging trends in this field. Conclusions This study conducted a data-based and objective introduction to the treatment of SS from a fresh perspective. An analysis of the intellectual bases, research hotspots, and emerging trends in the field will contribute to future research and treatment decisions, which will ultimately benefit SS patients.
Collapse
Affiliation(s)
- Wenpeng Song
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Wang
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Tan L, Wang Y, Hu X, Du G, Tang X, Min L. Advances of Osteosarcoma Models for Drug Discovery and Precision Medicine. Biomolecules 2023; 13:1362. [PMID: 37759763 PMCID: PMC10527053 DOI: 10.3390/biom13091362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The management of osteosarcoma (OS) patients presents a significant clinical challenge. Despite progress in conventional and targeted therapies, the survival rate of OS patients remains limited largely due to therapy resistance and the high metastatic potential of the disease. OS models that accurately reflect the fundamental characteristics are vital to the innovation and validation of effective therapies. This review provides an insight into the advances and challenges in OS drug development, focusing on various preclinical models, including cell lines, 3D culture models, murine models, and canine models. The relevance, strengths, and limitations of each model in OS research are explored. In particular, we highlight a range of potential therapeutics identified through these models. These instances of successful drug development represent promising pathways for personalized OS treatment.
Collapse
Affiliation(s)
- Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yitian Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xin Hu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Guifeng Du
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Xiaodi Tang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (L.T.); (Y.W.); (X.H.); (G.D.); (X.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Cabaña-Muñoz ME, Pelaz Fernández MJ, Parmigiani-Cabaña JM, Parmigiani-Izquierdo JM, Merino JJ. Adult Mesenchymal Stem Cells from Oral Cavity and Surrounding Areas: Types and Biomedical Applications. Pharmaceutics 2023; 15:2109. [PMID: 37631323 PMCID: PMC10459416 DOI: 10.3390/pharmaceutics15082109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adult mesenchymal stem cells are those obtained from the conformation of dental structures (DMSC), such as deciduous and permanent teeth and other surrounding tissues. Background: The self-renewal and differentiation capacities of these adult stem cells allow for great clinical potential. Because DMSC are cells of ectomesenchymal origin, they reveal a high capacity for complete regeneration of dental pulp, periodontal tissue, and other biomedical applications; their differentiation into other types of cells promotes repair in muscle tissue, cardiac, pancreatic, nervous, bone, cartilage, skin, and corneal tissues, among others, with a high predictability of success. Therefore, stem and progenitor cells, with their exosomes of dental origin and surrounding areas in the oral cavity due to their plasticity, are considered a fundamental pillar in medicine and regenerative dentistry. Tissue engineering (MSCs, scaffolds, and bioactive molecules) sustains and induces its multipotent and immunomodulatory effects. It is of vital importance to guarantee the safety and efficacy of the procedures designed for patients, and for this purpose, more clinical trials are needed to increase the efficacy of several pathologies. Conclusion: From a bioethical and transcendental anthropological point of view, the human person as a unique being facilitates better clinical and personalized therapy, given the higher prevalence of dental and chronic systemic diseases.
Collapse
Affiliation(s)
- María Eugenia Cabaña-Muñoz
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José María Parmigiani-Cabaña
- CIROM—Centro de Rehabilitación Oral Multidisciplinaria, 30001 Murcia, Spain; (M.E.C.-M.); (J.M.P.-C.); (J.M.P.-I.)
| | | | - José Joaquín Merino
- Departamento de Farmacología, Farmacognosia y Botánica, Facultad de Farmacia, Universidad Complutense de Madrid (U.C.M), 28040 Madrid, Spain
| |
Collapse
|
8
|
Metkari AS, Fowler EW, Witt RL, Jia X. Matrix Degradability Contributes to the Development of Salivary Gland Progenitor Cells with Secretory Functions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:32148-32161. [PMID: 37364369 PMCID: PMC10529452 DOI: 10.1021/acsami.3c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Synthetic matrices that are cytocompatible, cell adhesive, and cell responsive are needed for the engineering of implantable, secretory salivary gland constructs to treat radiation induced xerostomia or dry mouth. Here, taking advantage of the bioorthogonality of the Michael-type addition reaction, hydrogels with comparable stiffness but varying degrees of degradability (100% degradable, 100DEG; 50% degradable, 50DEG; and nondegradable, 0DEG) by cell-secreted matrix metalloproteases (MMPs) were synthesized using thiolated HA (HA-SH), maleimide (MI)-conjugated integrin-binding peptide (RGD-MI), and MI-functionalized peptide cross-linkers that are protease degradable (GIW-bisMI) or nondegradable (GIQ-bisMI). Organized multicellular structures developed readily in all hydrogels from dispersed primary human salivary gland stem cells (hS/PCs). As the matrix became progressively degradable, cells proliferated more readily, and the multicellular structures became larger, less spherical, and more lobular. Immunocytochemical analysis showed positive staining for stem/progenitor cell markers CD44 and keratin 5 (K5) in all three types of cultures and positive staining for the acinar marker α-amylase under 50DEG and 100DEG conditions. Quantitatively at the mRNA level, the expression levels of key stem/progenitor markers KIT, KRT5, and ETV4/5 were significantly increased in the degradable gels as compared to the nondegradable counterparts. Western blot analyses revealed that imparting matrix degradation led to >3.8-fold increase in KIT expression by day 15. The MMP-degradable hydrogels also promoted the development of a secretary phenotype, as evidenced by the upregulation of acinar markers α-amylase (AMY), aquaporin-5 (AQP5), and sodium-potassium chloride cotransporter 1 (SLC12A2). Collectively, we show that cell-mediated matrix remodeling is necessary for the development of regenerative pro-acinar progenitor cells from hS/PCs.
Collapse
Affiliation(s)
- Apoorva S. Metkari
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Eric W. Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Robert L. Witt
- Helen F. Graham Cancer Center and Research Institute, Newark, Delaware, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware, USA
| |
Collapse
|
9
|
Altrieth AL, Suarez E, Nelson DA, Gabunia S, Larsen M. Single-cell Transcriptomic Analysis of Salivary Gland Endothelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.545817. [PMID: 37425911 PMCID: PMC10327062 DOI: 10.1101/2023.06.22.545817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Vascular endothelial cells have important functions in fibrosis via direct and indirect methods and in regeneration through secretion of tissue-specific, paracrineacting angiocrine factors. In the salivary gland, endothelial cells are required for proper development, but their roles within adult glands are largely unknown. The goal of this work was to identify ligand-receptor interactions between endothelial cells and other cell types that are important during homeostasis, fibrosis, and regeneration. To model salivary gland fibrosis and regeneration, we utilized a reversible ductal ligation. To induce injury, a clip was applied to the primary ducts for 14 days, and to induce a regenerative response, the clip was subsequently removed for 5 days. To identify endothelial cell-produced factors, we used single-cell RNA-sequencing of stromal-enriched cells from adult submandibular and sublingual salivary glands. Transcriptional profiles of homeostatic salivary gland endothelial cells were compared to endothelial cells of other organs. Salivary gland endothelial cells were found to express unique genes and displayed the highest overlap in gene expression with other fenestrated endothelial cells from the colon, small intestine, and kidney. Comparison of the 14-day ligated, mock ligated, and 5-day deligated stromal-enriched transcripts and lineage tracing were used to identify evidence for a partial endoMT phenotype, which was observed in a small number of endothelial cell subsets with ligation. CellChat was used to predict changes in ligand-receptor interactions in response to ligation and deligation. CellChat predicted that after ligation, endothelial cells are sources of protein tyrosine phosphatase receptor type m, tumor necrosis factor ligand superfamily member 13, and myelin protein zero signaling and targets for tumor necrosis factor signaling. Following deligation, CellChat predicted that endothelial cells are sources of chemokine (C-X-C motif) and EPH signaling to promote regenerative responses. These studies will inform future endothelial cell-based regenerative therapies.
Collapse
Affiliation(s)
- Amber L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Emily Suarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Sergo Gabunia
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
| | - Melinda Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
10
|
Ha P, Liu TP, Li C, Zheng Z. Novel Strategies for Orofacial Soft Tissue Regeneration. Adv Wound Care (New Rochelle) 2023; 12:339-360. [PMID: 35651274 DOI: 10.1089/wound.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Significance: Orofacial structures are indispensable for speech and eating, and impairment disrupts whole-body health through malnutrition and poor quality of life. However, due to the unique and highly specialized cell populations, tissue architecture, and healing microenvironments, regeneration in this region is challenging and inadequately addressed to date. Recent Advances: With increasing understanding of the nuanced physiology and cellular responses of orofacial soft tissue, novel scaffolds, seeded cells, and bioactive molecules were developed in the past 5 years to specifically target orofacial soft tissue regeneration, particularly for tissues primarily found within the orofacial region such as oral mucosa, taste buds, salivary glands, and masseter muscles. Critical Issues: Due to the tightly packed and complex anatomy, orofacial soft tissue injury commonly implicates multiple tissue types, and thus functional unit reconstruction in the orofacial region is more important than single tissue regeneration. Future Directions: This article reviews the up-to-date knowledge in this highly translational topic, which provides insights into novel biologically inspired and engineered strategies for regenerating orofacial component tissues and functional units.
Collapse
Affiliation(s)
- Pin Ha
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Timothy P Liu
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
- School of Dentistry, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
11
|
Honma R, I T, Seki M, Iwatake M, Ogaeri T, Hasegawa K, Ohba S, Tran SD, Asahina I, Sumita Y. Immunomodulatory Macrophages Enable E-MNC Therapy for Radiation-Induced Salivary Gland Hypofunction. Cells 2023; 12:1417. [PMID: 37408251 DOI: 10.3390/cells12101417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
A newly developed therapy using effective-mononuclear cells (E-MNCs) is reportedly effective against radiation-damaged salivary glands (SGs) due to anti-inflammatory and revascularization effects. However, the cellular working mechanism of E-MNC therapy in SGs remains to be elucidated. In this study, E-MNCs were induced from peripheral blood mononuclear cells (PBMNCs) by culture for 5-7 days in medium supplemented with five specific recombinant proteins (5G-culture). We analyzed the anti-inflammatory characteristics of macrophage fraction of E-MNCs using a co-culture model with CD3/CD28-stimulated PBMNCs. To test therapeutic efficacy in vivo, either E-MNCs or E-MNCs depleted of CD11b-positive cells were transplanted intraglandularly into mice with radiation-damaged SGs. Following transplantation, SG function recovery and immunohistochemical analyses of harvested SGs were assessed to determine if CD11b-positive macrophages contributed to tissue regeneration. The results indicated that CD11b/CD206-positive (M2-like) macrophages were specifically induced in E-MNCs during 5G-culture, and Msr1- and galectin3-positive cells (immunomodulatory macrophages) were predominant. CD11b-positive fraction of E-MNCs significantly inhibited the expression of inflammation-related genes in CD3/CD28-stimulated PBMNCs. Transplanted E-MNCs exhibited a therapeutic effect on saliva secretion and reduced tissue fibrosis in radiation-damaged SGs, whereas E-MNCs depleted of CD11b-positive cells and radiated controls did not. Immunohistochemical analyses revealed HMGB1 phagocytosis and IGF1 secretion by CD11b/Msr1-positive macrophages from both transplanted E-MNCs and host M2-macrophages. Thus, the anti-inflammatory and tissue-regenerative effects observed in E-MNC therapy against radiation-damaged SGs can be partly explained by the immunomodulatory effect of M2-dominant macrophage fraction.
Collapse
Affiliation(s)
- Ryo Honma
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takashi I
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | | | - Mayumi Iwatake
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
- Department of Surgical Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Takunori Ogaeri
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Kayo Hasegawa
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Simon D Tran
- Laboratory of Craniofacial Tissue Engineering and Stem Cells, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| | - Yoshinori Sumita
- Department of Medical Research and Development for Oral Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8588, Japan
| |
Collapse
|
12
|
Marinkovic M, Tran ON, Wang H, Abdul-Azees P, Dean DD, Chen XD, Yeh CK. Autologous mesenchymal stem cells offer a new paradigm for salivary gland regeneration. Int J Oral Sci 2023; 15:18. [PMID: 37165024 PMCID: PMC10172302 DOI: 10.1038/s41368-023-00224-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/20/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023] Open
Abstract
Salivary gland (SG) dysfunction, due to radiotherapy, disease, or aging, is a clinical manifestation that has the potential to cause severe oral and/or systemic diseases and compromise quality of life. Currently, the standard-of-care for this condition remains palliative. A variety of approaches have been employed to restore saliva production, but they have largely failed due to damage to both secretory cells and the extracellular matrix (niche). Transplantation of allogeneic cells from healthy donors has been suggested as a potential solution, but no definitive population of SG stem cells, capable of regenerating the gland, has been identified. Alternatively, mesenchymal stem cells (MSCs) are abundant, well characterized, and during SG development/homeostasis engage in signaling crosstalk with the SG epithelium. Further, the trans-differentiation potential of these cells and their ability to regenerate SG tissues have been demonstrated. However, recent findings suggest that the "immuno-privileged" status of allogeneic adult MSCs may not reflect their status post-transplantation. In contrast, autologous MSCs can be recovered from healthy tissues and do not present a challenge to the recipient's immune system. With recent advances in our ability to expand MSCs in vitro on tissue-specific matrices, autologous MSCs may offer a new therapeutic paradigm for restoration of SG function.
Collapse
Affiliation(s)
- Milos Marinkovic
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Olivia N Tran
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Hanzhou Wang
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Parveez Abdul-Azees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - David D Dean
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA
| | - Xiao-Dong Chen
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Research Service, South Texas Veterans Health Care System, San Antonio, TX, USA.
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX, USA.
| | - Chih-Ko Yeh
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
13
|
Zhang C, Xiang B. The underlying mechanisms and strategies of DNA damage and repair in radiation sialadenitis. Oral Dis 2023; 29:990-995. [PMID: 34773326 DOI: 10.1111/odi.14078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Radiation therapy is a critical strategy for the treatment of malignant tumors. X-ray external radiation has been successfully used to treat head and neck cancer. On the other hand, 131 I internal radiation has been effective in managing differentiated thyroid cancer. However, these therapies cause radiation damage to salivary glands. Radiation sialadenitis is the most common complication associated with radiotherapy applied to the head and neck and it severely affects patients' quality of life. Since DNA is the main intracellular target of radiation, and the integrity of the DNA structure is critical to genomic stability and the cellular survival of salivary glands, regulating radiation-induced DNA damage offers great promise in preventing and managing radiation sialadenitis. In this review, we summarize recent progress in DNA damage and repair in irradiated salivary glands.
Collapse
Affiliation(s)
- Chong Zhang
- Laboratory of Oral and Maxillofacial Disease, The Second Hospital of Dalian Medical University, Dalian, China
| | - Bin Xiang
- Laboratory of Oral and Maxillofacial Disease, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
14
|
Sheykhbahaei N, Bayramzadeh F, Koopaie M. Transdifferentiation of periodontal ligament stem cells into acinar cells using an indirect co-culture system. Cell Tissue Bank 2023; 24:241-251. [PMID: 35982342 DOI: 10.1007/s10561-022-10029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
Serous Acinar Cells (ACs) are mature and functional secretory epithelial cells that develop and complete through other stem cells at the end of the ductal system. So, the regeneration of the salivary gland damaged by radiation does not occur without cell therapy. Todays, an accessible tissue like the Periodontal Ligament (PDL) of the tooth was considered to easily extract the Mesenchymal Stem Cells (MSCs). In-vitro differentiation of stem cells before transplantation to damaged tissue reduces the risk of tumorigenesis. This study was conducted to evaluate the feasibility of differentiation of PDLSCs into salivary acinar cells by a co-culture system. PDLSCs were isolated from adult human PDL tissue and co-cultured with rat parotid ACs using an indirect co-culture system. The transdifferentiation of PDLSCs was evaluated by PCR of Aquaporin 5 (AQP5) and Carbonic anhydrase 6 (CA6) genes, then quantitative real-time PCR was used to measure the gene expression levels. The data were analyzed by ANOVA. Specific bond with the correct size on 6% acrylamide gel and TBE5X buffer showed the expression of AQP5 and CA6 in PDLSCs co-cultured with acinar cells. RT-PCR revealed co-cultured PDLSCs with or without KGF (Keratinocyte Growth Factor) showed significantly increased expression of AQP5 genes in compared to the initial PDLSCs. Expression of AQP5 and CA6, indicating successful transdifferentiation of PDLSCs into ACs, in co-culture system for 3 weeks.
Collapse
Affiliation(s)
- Nafiseh Sheykhbahaei
- Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran
| | | | - Maryam Koopaie
- Oral and Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Science, North Kargar St, P.O. BOX: 14395-433, Tehran, 14399-55991, Iran.
| |
Collapse
|
15
|
Saleem R, Carpenter G. The Role of mTOR and Injury in Developing Salispheres. Biomedicines 2023; 11:604. [PMID: 36831139 PMCID: PMC9953188 DOI: 10.3390/biomedicines11020604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Salispheres are the representative primitive cells of salivary glands grown in vitro in a nonadherent system. In this study, we used the ligation model for salisphere isolation after seven days of obstruction of the main excretory duct of the submandibular gland. The mammalian target of rapamycin (mTOR) is a critical signalling pathway involved in many cellular functions and is suggested to play a role in atrophy. We determined the role of mTOR and injury in the formation and development of salispheres. Morphological assessments and Western blot analysis illustrated how mTOR inhibition by rapamycin impaired the assembly of salispheres and how indirect stimulation of mTOR by lithium chloride (LiCl) assisted in the expansion of the salispheres. The use of rapamycin highlighted the necessity of mTOR for the development of salispheres as it affected the morphology and inhibited the phosphorylation of the eukaryotic translation initiation factor 4E-binding protein (4e-bp1). mTOR activity also appeared to be a crucial regulator for growing salispheres, even from the ligated gland. However, atrophy induced by ductal ligation resulted in a morphological alteration. The phosphorylation of 4e-bp1 and S6 ribosomal protein in cultured salispheres from ligated glands suggests that mTOR was not responsible for the morphological modification, but other unexplored factors were involved. This exploratory study indicates that active mTOR is essential for growing healthy salispheres. In addition, mTOR stimulation by LiCl could effectively play a role in the expansion of salispheres. The impact of atrophy on salispheres suggests a complex mechanism behind the morphological alteration, which requires further investigation.
Collapse
Affiliation(s)
- Rimah Saleem
- College of Medicine, Alfaisal University, Al Takhassousi, Riyadh 11533, Saudi Arabia
| | - Guy Carpenter
- Salivary Research, Centre for Host Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
16
|
Redman RS, Alvarez-Martinez JC. Identifying stem cells in the main excretory ducts of rat major salivary glands: adventures with commercial antibodies. Biotech Histochem 2023; 98:280-290. [PMID: 36779267 DOI: 10.1080/10520295.2023.2177348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
We investigated the entire length of the main excretory ducts (MED) of the major sublingual, parotid and submandibular salivary glands of mature laboratory rats for mucous (goblet) and luminal ciliated cells, biomarkers of cell proliferation, apoptosis, and five biomarkers of stem cells. Spleen and testis were used as positive controls. We used formalin fixed, paraffin embedded tissues. No mucous cells or cells with luminal cilia were observed in hematoxylin and eosin, alcian blue or periodic acid-Schiff stained sections. Immunohistochemistry using rabbit anti-rat antibodies produced anomalous reactions with cleaved caspase-3 for apoptosis, Ki-67 for proliferative activity and Sox 2. Following antigen retrieval, no primary antibody and all three negative controls, labeled macrophages appeared in the spleen. TUNEL staining revealed a few cells per section undergoing apoptosis. Reactions deemed valid occurred in MED with cytokeratin-5 and c-Kit and stem cell antigen 1 (Sca-1) mostly in the gland and middle segments. Other ducts, but not acini or myoepithelial cells, also were variably stained with c-Kit and Sca-1.
Collapse
Affiliation(s)
- Robert S Redman
- Oral Pathology Research Laboratory, Department of Veterans Affairs Medical Center, Washington, DC, USA.,Dental Service, Department of Veterans Affairs Medical Center, Washington, DC, USA
| | | |
Collapse
|
17
|
Schaafsma P, Kracht L, Baanstra M, Jellema-de Bruin AL, Coppes RP. Role of immediate early genes in the development of salivary gland organoids in polyisocyanopeptide hydrogels. Front Mol Biosci 2023; 10:1100541. [PMID: 36818041 PMCID: PMC9932530 DOI: 10.3389/fmolb.2023.1100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Human salivary gland organoids have opened tremendous possibilities for regenerative medicine in patients undergoing radiotherapy for the treatment of head and neck cancer. However, their clinical translation is greatly limited by the current use of Matrigel for organoid derivation and expansion. Here, we envisage that the use of a fully, synthetic hydrogel based on the oligo (-ethylene glycol) functionalized polymer polyisocyanopeptides (PICs) can provide an environment suitable for the generation and expansion of salivary gland organoids (SGOs) after optimization of PIC polymer properties. We demonstrate that PIC hydrogels decorated with the cell-binding peptide RGD allow SGO formation from salivary gland (SG)-derived stem cells. This self-renewal potential is preserved for only 4 passages. It was found that SGOs differentiated prematurely in PIC hydrogels affecting their self-renewal capacity. Similarly, SGOs show decreased expression of immediate early genes (IEGs) after culture in PIC hydrogels. Activation of multiple signalling pathways involved in IEG expression by β-adrenergic agonist isoproterenol, led to increased stem cell self-renewal capacity as measured by organoid forming efficiency (OFE). These results indicate that PIC hydrogels are promising 3D matrices for SGOs, with the option to be used clinically, after further optimization of the hydrogel and culture conditions.
Collapse
Affiliation(s)
- Paulien Schaafsma
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Laura Kracht
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Anne L. Jellema-de Bruin
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert P. Coppes
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands,*Correspondence: Robert P. Coppes,
| |
Collapse
|
18
|
Wang B, Gan J, Liu Z, Hui Z, Wei J, Gu X, Mu Y, Zang G. An organoid library of salivary gland tumors reveals subtype-specific characteristics and biomarkers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:350. [PMID: 36527158 PMCID: PMC9758872 DOI: 10.1186/s13046-022-02561-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Salivary gland tumors (SGTs) include a large group of rare neoplasms in the head and neck region, and the heterogeneous and overlapping features among the subtypes frequently make diagnostic difficulties. There is an urgent need to understand the cellular mechanisms underlying the heterogeneity and overlap among the subtypes, and explore the subtype-specific diagnostic biomarkers. METHODS The tumor tissue and the adjacent normal tissue from the 6 most common types of SGTs were processed for organoid culture which only maintained tumor epithelial cells. Organoids were histologically evaluated based on phenotype markers, followed by transcriptional profiling using RNA-sequencing. The transcriptomic similarities and differences among the subtypes were analyzed by subtype consensus clustering and hierarchical clustering. Furthermore, by comparative transcriptional analysis for these 6 types of SGTs and the matched organoids, the potential diagnostic biomarkers from tumor epithelium were identified, in which two selected biomarkers were evaluated by qPCR and confirmed by immunohistochemistry staining using a tissue microarray. RESULTS We generated a biobank of patient-derived organoids (PDOs) with 6 subtypes of SGTs, including 21 benign and 24 malignant SGTs. The PDOs recapitulated the morphological and transcriptional characteristics of the parental tumors. The overlap in the cell types and the heterogenous growth patterns were observed in the different subtypes of organoids. Comparing the bulk tissues, the cluster analysis of the PDOs remarkably revealed the epithelial characteristics, and visualized the intrinsic relationship among these subtypes. Finally, the exclusive biomarkers for the 6 most common types of SGTs were uncovered by comparative analysis, and PTP4A1 was demonstrated as a useful diagnostic biomarker for mucoepidermoid carcinoma. CONCLUSIONS We established the first organoid biobank with multiple subtypes of SGTs. PDOs of SGTs recapitulate the morphological and transcriptional characteristics of the original tumors, which uncovers subtype-specific biomarkers and reveals the molecular distance among the subtype of SGTs.
Collapse
Affiliation(s)
- Bo Wang
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Jiaxing Gan
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Zhengyan Liu
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Zhixuan Hui
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Jinhui Wei
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| | - Xiaolian Gu
- grid.12650.300000 0001 1034 3451Department of Medical Bioscience, Building 6M, Umeå University, 90185 Umeå, SE Sweden
| | - Yabing Mu
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China ,grid.12650.300000 0001 1034 3451Department of Medical Bioscience, Building 6M, Umeå University, 90185 Umeå, SE Sweden
| | - Guangxiang Zang
- grid.412449.e0000 0000 9678 1884Liaoning Provincial Key Laboratory of Oral Disease, School and Hospital of Stomatology, China Medical University, Nanjingbeijie 117, Shenyang City, 110051 People’s Republic of China
| |
Collapse
|
19
|
Hofauer B, Roth A, Heiser C, Schukraft J, Johnson F, Zhu Z, Knopf A. Point Shear Wave Elastography in Diagnosis and Follow-Up of Salivary Gland Affection after Head and Neck Cancer Treatment. J Clin Med 2022; 11:jcm11216285. [PMID: 36362513 PMCID: PMC9654639 DOI: 10.3390/jcm11216285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 11/16/2022] Open
Abstract
Therapies of head and neck squamous cell carcinoma (HNSCC), particularly irradiation and chemotherapy (C/RT), can affect salivary glands to some extent. Recent studies suggest that point shear wave elastography (pSWE) is well suited for the diagnosis and rating of homogenous damage to parenchymatous organs. The purpose of this study was to assess the value of this sonographic modality as a tool for the evaluation both of salivary gland affection after HNSCC therapy and the effect of a salivary replacement therapy based on liposomes. A total of 69 HNSCC patients were included in this study. All patients had finished cancer treatment and attended regular follow-up. pSWE values of ipsi- and contralateral parotid (PG) and submandibular glands (SMG) were obtained in a standardized manner and compared to those of a healthy control (HC) group. After a two months treatment with a liposomal saliva replacement therapy pSWE quantification was performed again. Ipsi- and contralateral salivary glands suffer under standard HNSCC tumor therapy. Here, the ipsilateral parotid gland (PG) is primarily affected. Therefore, a sequence of manifestation (surgery < surgery plus adjuvant C/RT < primary C/RT) is comprehensible, evaluated by pSWE measurements. The examination of all glands and statistical analysis of the values compared to controls resulted in an pSWE cutoff value for affected glandular tissue of >2 m/s. Using a liposomal saliva replacement therapy, pSWE values of the ipsilateral PG can be improved, although the level of HC could not be restored.
Collapse
Affiliation(s)
- Benedikt Hofauer
- Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence:
| | - Andreas Roth
- Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Clemens Heiser
- Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Johannes Schukraft
- Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Felix Johnson
- Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Zhaojun Zhu
- Department of Otorhinolaryngology/Head and Neck Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Andreas Knopf
- Department of Otorhinolaryngology, University Medical Center Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
20
|
Guan X, Huang S. Advances in the application of 3D tumor models in precision oncology and drug screening. Front Bioeng Biotechnol 2022; 10:1021966. [PMID: 36246388 PMCID: PMC9555934 DOI: 10.3389/fbioe.2022.1021966] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Traditional tumor models cannot perfectly simulate the real state of tumors in vivo, resulting in the termination of many clinical trials. 3D tumor models’ technology provides new in vitro models that bridge the gap between in vitro and in vivo findings, and organoids maintain the properties of the original tissue over a long period of culture, which enables extensive research in this area. In addition, they can be used as a substitute for animal and in vitro models, and organoids can be established from patients’ normal and malignant tissues, with unique advantages in clinical drug development and in guiding individualized therapies. 3D tumor models also provide a promising platform for high-throughput research, drug and toxicity testing, disease modeling, and regenerative medicine. This report summarizes the 3D tumor model, including evidence regarding the 3D tumor cell culture model, 3D tumor slice model, and organoid culture model. In addition, it provides evidence regarding the application of 3D tumor organoid models in precision oncology and drug screening. The aim of this report is to elucidate the value of 3D tumor models in cancer research and provide a preclinical reference for the precise treatment of cancer patients.
Collapse
Affiliation(s)
- Xiaoyong Guan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi, China
| | - Shigao Huang
- Department of Radiation Oncology, The First Affiliated Hospital, Air Force Medical University, Xi’an, China
- *Correspondence: Shigao Huang,
| |
Collapse
|
21
|
Fowler EW, van Venrooy EJ, Witt RL, Jia X. A TGFβR inhibitor represses keratin-7 expression in 3D cultures of human salivary gland progenitor cells. Sci Rep 2022; 12:15008. [PMID: 36056161 PMCID: PMC9440137 DOI: 10.1038/s41598-022-19253-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Salivary gland tissue engineering offers an attractive alternative for the treatment of radiation-induced xerostomia. Key to the success of this approach is the maintenance and expansion of secretory acinar cells in vitro. However, recent studies revealed that in vitro culture of primary salivary gland epithelial cells led to undesirable upregulation of the expression of keratin-7 (K7), a marker of ductal phenotype and frequently associated with cellular stress. We have previously shown that hyaluronic acid (HA)-based, RGDSP-decorated hydrogels support the 3D growth and assembly of primary human salivary gland stem/progenitor cells (hS/PCs). Here, we investigate whether the RGDSP culture also promotes K7 expression, and if so, what factors govern the K7 expression. Compared to hS/PCs maintained in blank HA gels, those grown in RGDSP cultures expressed a significantly higher level of K7. In other tissues, various transforming growth factor-β (TGF-β) superfamily members are reported to regulate K7 expression. Similarly, our immunoblot array and ELISA experiments confirmed the increased expression of TGF-β1 and growth/differentiation factor-15 (GDF-15) in RGDSP cultures. However, 2D model studies show that only TGF-β1 is required to induce K7 expression in hS/PCs. Immunocytochemical analysis of the intracellular effectors of TGF-β signaling, SMAD 2/3, further confirmed the elevated TGF-β signaling in RGDSP cultures. To maximize the regenerative potential of h/SPCs, cultures were treated with a pharmacological inhibitor of TGF-β receptor, A83-01. Our results show that A83-01 treatment can repress K7 expression not only in 3D RGDSP cultures but also under 2D conditions with exogenous TGF-β1. Collectively, we provide a link between TGF-β signaling and K7 expression in hS/PC cultures and demonstrate the effectiveness of TGF-β inhibition to repress K7 expression while maintaining the ability of RGDSP-conjugated HA gels to facilitate the rapid development of amylase expressing spheroids. These findings represent an important step towards regenerating salivary function with a tissue-engineered salivary gland.
Collapse
Affiliation(s)
- Eric W Fowler
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Emmett J van Venrooy
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Robert L Witt
- Helen F. Graham Cancer Center and Research Institute, Christiana Care, Newark, DE, 19713, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
- Department of Biomedical Engineering, University of Delaware, Newark, DE, 19716, USA.
- Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE, 19713, USA.
| |
Collapse
|
22
|
Diagnosis, Prevention, and Treatment of Radiotherapy-Induced Xerostomia: A Review. JOURNAL OF ONCOLOGY 2022; 2022:7802334. [PMID: 36065305 PMCID: PMC9440825 DOI: 10.1155/2022/7802334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/08/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022]
Abstract
In patients with head and neck cancer, irradiation (IR)-sensitive salivary gland (SG) tissue is highly prone to damage during radiotherapy (RT). This leads to SG hypofunction and xerostomia. Xerostomia is defined as the subjective complaint of dry mouth, which can cause other symptoms and adversely affect the quality of life. In recent years, diagnostic techniques have constantly improved with the emergence of more reliable and valid questionnaires as well as more accurate equipment for saliva flow rate measurement and imaging methods. Preventive measures such as the antioxidant MitoTEMPO, botulinum toxin (BoNT), and growth factors have been successfully applied in animal experiments, resulting in positive outcomes. Interventions, such as the new delivery methods of pilocarpine, edible saliva substitutes, acupuncture and electrical stimulation, gene transfer, and stem cell transplantation, have shown potential to alleviate or restore xerostomia in patients. The review summarizes the existing and new diagnostic methods for xerostomia, along with current and potential strategies for reducing IR-induced damage to SG function. We also aim to provide guidance on the advantages and disadvantages of the diagnostic methods. Additionally, most prevention and treatment methods remain in the stage of animal experiments, suggesting a need for further clinical research, among which we believe that antioxidants, gene transfer, and stem cell transplantation have broad prospects.
Collapse
|
23
|
Changes in salivary biomarkers associated with periodontitis and diabetic neuropathy in individuals with type 1 diabetes. Sci Rep 2022; 12:11284. [PMID: 35788667 PMCID: PMC9253002 DOI: 10.1038/s41598-022-15430-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/23/2022] [Indexed: 11/08/2022] Open
Abstract
The objective of this pilot clinical study was to identify salivary biomarkers that are associated with periodontal disease and measures of diabetic autonomic dysfunction. Saliva samples from 32 participants were obtained from 3 groups: healthy (H), type 1 diabetes mellitus (DM), and type 1 diabetes mellitus with neuropathy (DMN). Based on the periodontal examination, individuals’ mean Periodontal Screening and Recording scores were categorized into two groups (periodontally healthy and gingivitis), and correlated to specific salivary inflammatory biomarkers assessed by a customized protein array and enzyme assay. The mean salivary IgA level in DM was 9211.5 ± 4776.4 pg/ml, which was significantly lower than H (17,182.2 ± 8899.3 pg/ml). IgA in DMN with healthy periodontium was significantly lower (5905.5 ± 3124.8 pg/ml) compared to H, although IgA levels in DMN patients with gingivitis (16,894. 6 ± 7084.3) were not. According to the result of a logistic regression model, IgA and periodontal condition were the indicators of the binary response given by H versus DM, and H versus DMN, respectively. These data suggest that selected salivary biomarkers, such as IgA, combined with a periodontal examination prior to obtaining salivary samples can offer a non-invasive method to assess risk for developing diabetic neuropathy.
Collapse
|
24
|
Hajiabbas M, D'Agostino C, Simińska-Stanny J, Tran SD, Shavandi A, Delporte C. Bioengineering in salivary gland regeneration. J Biomed Sci 2022; 29:35. [PMID: 35668440 PMCID: PMC9172163 DOI: 10.1186/s12929-022-00819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
Salivary gland (SG) dysfunction impairs the life quality of many patients, such as patients with radiation therapy for head and neck cancer and patients with Sjögren’s syndrome. Multiple SG engineering strategies have been considered for SG regeneration, repair, or whole organ replacement. An in-depth understanding of the development and differentiation of epithelial stem and progenitor cells niche during SG branching morphogenesis and signaling pathways involved in cell–cell communication constitute a prerequisite to the development of suitable bioengineering solutions. This review summarizes the essential bioengineering features to be considered to fabricate an engineered functional SG model using various cell types, biomaterials, active agents, and matrix fabrication methods. Furthermore, recent innovative and promising approaches to engineering SG models are described. Finally, this review discusses the different challenges and future perspectives in SG bioengineering.
Collapse
Affiliation(s)
- Maryam Hajiabbas
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Claudia D'Agostino
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium
| | - Julia Simińska-Stanny
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373, Wroclaw, Poland.,3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, H3A 0C7, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, Blg G/E CP 611, B-1070, Brussels, Belgium.
| |
Collapse
|
25
|
Thiemann RF, Varney S, Moskwa N, Lamar J, Larsen M, LaFlamme SE. Regulation of myoepithelial differentiation. PLoS One 2022; 17:e0268668. [PMID: 35617216 PMCID: PMC9135247 DOI: 10.1371/journal.pone.0268668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/04/2022] [Indexed: 12/30/2022] Open
Abstract
The salivary gland can be permanently impaired by radiation treatment for head and neck cancers. Efforts at tissue regeneration have focused on saliva-producing acinar cells. However, myoepithelial cells are also critical to gland function, but mechanisms that regulate their differentiation are poorly defined. To study myoepithelial differentiation, we employed mSG-PAC1 murine salivary gland epithelial cells. We demonstrate that mSG-PAC1 spheroids exhibit phenotypic plasticity between pro-acinar and myoepithelial cell fates. Increased expression of pro-acinar/acinar or myoepithelial RNAs was identified from spheroids cultured under different media conditions by microarray followed by gene-set enrichment analysis. Spheroids cultured with different medium components expressed proteins typical of either acinar or myoepithelial cells, as detected by immunocytochemistry. We demonstrate that the pattern of TAZ expression in the epithelial compartment of the differentiating murine salivary gland correlates with the expression of the myoepithelial marker alpha-SMA, as is the case for TAZ expression in mSG-PAC1 spheroids. Our analysis also indicates that YAP/TAZ target genes are upregulated together with myoepithelial markers. Importantly, siRNA targeting of TAZ expression in mSG-PAC1 spheroids diminished the expression of myoepithelial markers. Our results in this in vitro cell model implicate TAZ signaling in myoepithelial differentiation.
Collapse
Affiliation(s)
- Renee F. Thiemann
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
| | - Scott Varney
- Department of Surgery, Albany Medical College, Albany, New York, United States of America
| | - Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States of America
| | - John Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York, United States of America
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, United States of America
| | - Susan E. LaFlamme
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
26
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
27
|
Alginate Hydrogel Microtubes for Salivary Gland Cell Organization and Cavitation. Bioengineering (Basel) 2022; 9:bioengineering9010038. [PMID: 35049747 PMCID: PMC8773299 DOI: 10.3390/bioengineering9010038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 12/14/2022] Open
Abstract
Understanding the different regulatory functions of epithelial and mesenchymal cell types in salivary gland development and cellular organization is essential for proper organoid formation and salivary gland tissue regeneration. Here, we demonstrate a biocompatible platform using pre-formed alginate hydrogel microtubes to facilitate direct epithelial–mesenchymal cell interaction for 3D salivary gland cell organization, which allows for monitoring cellular organization while providing a protective barrier from cell-cluster loss during medium changes. Using mouse salivary gland ductal epithelial SIMS cells as the epithelial model cell type and NIH 3T3 fibroblasts or primary E16 salivary mesenchyme cells as the stromal model cell types, self-organization from epithelial–mesenchymal interaction was examined. We observed that epithelial and mesenchymal cells undergo aggregation on day 1, cavitation by day 4, and generation of an EpCAM-expressing epithelial cell layer as early as day 7 of the co-culture in hydrogel microtubes, demonstrating the utility of hydrogel microtubes to facilitate heterotypic cell–cell interactions to form cavitated organoids. Thus, pre-formed alginate microtubes are a promising co-culture method for further understanding epithelial and mesenchymal interaction during tissue morphogenesis and for future practical applications in regenerative medicine.
Collapse
|
28
|
Fowler EW, Ravikrishnan A, Witt RL, Pradhan-Bhatt S, Jia X. RGDSP-Decorated Hyaluronate Hydrogels Facilitate Rapid 3D Expansion of Amylase-Expressing Salivary Gland Progenitor Cells. ACS Biomater Sci Eng 2021; 7:5749-5761. [PMID: 34781679 PMCID: PMC8680203 DOI: 10.1021/acsbiomaterials.1c00745] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In vitro engineering of salivary glands relies on the availability of synthetic matrices presenting essential cell-instructive signals to guide tissue growth. Here, we describe a biomimetic, hyaluronic acid (HA)-based hydrogel platform containing covalently immobilized bioactive peptides derived from perlecan domain IV (TWSKV), laminin-111 (YIGSR, IKVAV), and fibronectin (RGDSP). The HA network was established by the thiol/acrylate reaction, and bioactive peptides were conjugated to the network with high efficiency without significantly altering the mechanical property of the matrix. When encapsulated as single cells in peptide-modified HA hydrogels, human salivary gland stem/progenitor cells (hS/PCs) spontaneously organized into multicellular spheroids with close cell-cell contacts. Conjugation of RGDSP and TWSKV signals in HA gels significantly accelerated cell proliferation, with the largest spheroids observed in RGDSP-tagged gels. Peptide conjugation did not significantly alter the expression of acinar (AMY1), ductal (TFCP2L1), and progenitor (KRT14) markers at the mRNA level. Characterization of three-dimensional (3D) cultures by immunocytochemistry showed positive staining for keratin-5 (K5), keratin-14 (K14), integrin-β1, and α-amylase under all culture conditions, confirming the maintenance of the secretory progenitor cell population. Two-dimensional (2D) adhesion studies revealed that integrin-β1 played a key role in facilitating cell-matrix interaction in gels with RGDSP, IKVAV, and TWSKV signals. Overall, conjugation of the RGDSP peptide to HA gels improved cell viability, accelerated the formation of epithelial spheroids, and promoted the expansion of the progenitor cell population in 3D. This work represents an essential first step toward the development of an engineered salivary gland.
Collapse
Affiliation(s)
- Eric W. Fowler
- Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA
| | - Anitha Ravikrishnan
- Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA
| | - Robert L. Witt
- Department of Otolaryngology–Head & Neck Surgery, 1020 Walnut St., Thomas Jefferson University, Philadelphia, Pennsylvania, USA,Center for Translational Cancer Research, 4701 Ogletown Stanton Rd., Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
| | - Swati Pradhan-Bhatt
- Center for Translational Cancer Research, 4701 Ogletown Stanton Rd., Helen F. Graham Cancer Center & Research Institute, Newark, Delaware, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA,Department of Biomedical Engineering, 210 South College Ave., University of Delaware, Newark, Delaware, USA,Delaware Biotechnology Institute, 590 Avenue 1743, Newark, Delaware, USA,To whom correspondence should be addressed: Xinqiao Jia, Department of Materials Science and Engineering, 210 South College Ave., University of Delaware, Newark, DE, 19716, USA. Phone: 302-831-6553, Fax: 302-831-4545,
| |
Collapse
|
29
|
Ahamad N, Sun Y, Nascimento Da Conceicao V, Xavier Paul Ezhilan CRD, Natarajan M, Singh BB. Differential activation of Ca 2+ influx channels modulate stem cell potency, their proliferation/viability and tissue regeneration. NPJ Regen Med 2021; 6:67. [PMID: 34671058 PMCID: PMC8528841 DOI: 10.1038/s41536-021-00180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/29/2021] [Indexed: 11/10/2022] Open
Abstract
Stem cells have indefinite self-renewable capability; however, factors that modulate their pluripotency/function are not fully identified. Here we show that store-dependent Ca2+ entry is essential for modulating the function of bone marrow-derived mesenchymal stem cells (MSCs). Increasing external Ca2+ modulated cell cycle progression that was critical for MSCs survival. Additionally, Ca2+ was critical for stem proliferation, its differentiation, and maintaining stem cell potential. Ca2+ channel characterization, including gene silencing, showed two distinct Ca2+ entry channels (through Orai1/TRPC1 or via Orai3) that differentially regulate the proliferation and viability of MSCs. Importantly, NFκB translocation, but not JNK/ERK into the nucleus, was observed upon store depletion, which was blocked by the addition of Ca2+ channel inhibitors. Radiation lead to a decrease in saliva secretion, decrease in acinar cell number, and enlarged ducts were observed, which were restored by the transplantation of stem cells that were propagated in higher Ca2+. Finally radiation showed a decrese in TRPC1 expression along with a decrese in AQP5, which was again restored upon MSC tranplantation. Together these results suggest that Ca2+ entry is essential for stem cell function that could be critical for regenerative medicine.
Collapse
Affiliation(s)
- Naseem Ahamad
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yuyang Sun
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Caroline R D Xavier Paul Ezhilan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Mohan Natarajan
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, School of Dentistry, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
30
|
Heynickx N, Herrmann K, Vermeulen K, Baatout S, Aerts A. The salivary glands as a dose limiting organ of PSMA- targeted radionuclide therapy: A review of the lessons learnt so far. Nucl Med Biol 2021; 98-99:30-39. [PMID: 34020337 DOI: 10.1016/j.nucmedbio.2021.04.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
At present, prostate cancer remains the second most occurring cancer in men, in Europe. Treatment efficacy for therapy of advanced metastatic disease, and metastatic castration-resistant prostate cancer in particular is limited. Prostate-specific membrane antigen (PSMA) is a promising therapeutic target in prostate cancer, seeing the high amount of overexpression on prostate cancer cells. Clinical investigation of PSMA-targeted radionuclide therapy has shown good clinical efficacy. However, adverse effects are observed of which salivary gland hypofunction and xerostomia are among the most prominent. Salivary gland toxicity is currently the dose-limiting side effect for PSMA-targeted radionuclide therapy, and more specifically for PSMA-targeted alpha therapy. To date, mechanisms underlying the salivary gland uptake of PSMA-targeting compounds and the subsequent damage to the salivary glands remain largely unknown. Furthermore, preventive strategies for salivary gland uptake or strategies for treatment of salivary gland toxicity are needed. This review focuses on the current knowledge on uptake mechanisms of PSMA-targeting compounds in the salivary glands and the research performed to investigate different strategies to prevent or treat salivary gland toxicity.
Collapse
Affiliation(s)
- Nathalie Heynickx
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Ken Herrmann
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America; Department of Nuclear Medicine, Medical Faculty, University Hospital Essen, Essen, Germany
| | - Koen Vermeulen
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Sarah Baatout
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium; Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.
| | - An Aerts
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| |
Collapse
|
31
|
Orhon I, Rocchi C, Villarejo-Zori B, Serrano Martinez P, Baanstra M, Brouwer U, Boya P, Coppes R, Reggiori F. Autophagy induction during stem cell activation plays a key role in salivary gland self-renewal. Autophagy 2021; 18:293-308. [PMID: 34009100 PMCID: PMC8942426 DOI: 10.1080/15548627.2021.1924036] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Relatively quiescent tissues like salivary glands (SGs) respond to stimuli such as injury to expand, replace and regenerate. Resident stem/progenitor cells are key in this process because, upon activation, they possess the ability to self-renew. Macroautophagy/autophagy contributes to and regulates differentiation in adult tissues, but an important question is whether this pathway promotes stem cell self-renewal in tissues. We took advantage of a 3D organoid system that allows assessing the self-renewal of mouse SGs stem cells (SGSCs). We found that autophagy in dormant SGSCs has slower flux than self-renewing SGSCs. Importantly, autophagy enhancement upon SGSCs activation is a self-renewal feature in 3D organoid cultures and SGs regenerating in vivo. Accordingly, autophagy ablation in SGSCs inhibits self-renewal whereas pharmacological stimulation promotes self-renewal of mouse and human SGSCs. Thus, autophagy is a key pathway for self-renewal activation in low proliferative adult tissues, and its pharmacological manipulation has the potential to promote tissue regeneration.
Collapse
Affiliation(s)
- Idil Orhon
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cecilia Rocchi
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Centro De Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Paola Serrano Martinez
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mirjam Baanstra
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Uilke Brouwer
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro De Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Rob Coppes
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Grawish ME, Saeed MA, Sultan N, Scheven BA. Therapeutic applications of dental pulp stem cells in regenerating dental, periodontal and oral-related structures. World J Meta-Anal 2021; 9:176-192. [DOI: 10.13105/wjma.v9.i2.176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/13/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Dental pulp stem cells (DPSCs) have emerged as a promising tool with great potential for use in tissue regeneration and engineering. Some of the main advantages of these cells are their multifaceted differentiation capacity, along with their high proliferation rate, a relative simplicity of extraction and culture that enables obtaining patient-specific cell lines for their use in autologous cell therapy. PubMed, Scopus and Google Scholar databases were searched for relevant articles related to the use of DPSCs in regeneration of dentin-pulp complex (DPC), periodontal tissues, salivary gland and craniomaxillofacial bone defects. Few studies were found regarding the use of DPSCs for regeneration of DPC. Scaffold-based combined with DPSCs isolated from healthy pulps was the strategy used for DPC regeneration. Studies involved subcutaneous implantation of scaffolds loaded with DPSCs pretreated with odontogenic media, or performed on human tooth root model as a root slice. Most of the studies were related to periodontal tissue regeneration which mainly utilized DPSCs/secretome. For periodontal tissues, DPSCs or their secretome were isolated from healthy or inflamed pulps and they were used either for preclinical or clinical studies. Regarding salivary gland regeneration, the submandibular gland was the only model used for the preclinical studies and DPSCs or their secretome were isolated only from healthy pulps and they were used in preclinical studies. Likewise, DPSCs have been studied for craniomaxillofacial bone defects in the form of mandibular, calvarial and craniofacial bone defects where DPSCs were isolated only from healthy pulps for preclinical and clinical studies. From the previous results, we can conclude that DPSCs is promising candidate for dental and oral tissue regeneration.
Collapse
Affiliation(s)
- Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Mahmoud A Saeed
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt
| | - Nessma Sultan
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt
| | - Ben A Scheven
- School of Dentistry, Oral Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham B5 7EG, United Kingdom
| |
Collapse
|
33
|
|
34
|
Grawish ME, Saeed MA, Sultan N, Scheven BA. Therapeutic applications of dental pulp stem cells in regenerating dental, periodontal and oral-related structures. World J Meta-Anal 2021; 9:175-191. [DOI: 10.13105/wjma.v9.i2.175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Tanaka J, Mishima K. Application of regenerative medicine to salivary gland hypofunction. JAPANESE DENTAL SCIENCE REVIEW 2021; 57:54-59. [PMID: 33995711 PMCID: PMC8102160 DOI: 10.1016/j.jdsr.2021.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 12/29/2022] Open
Abstract
Dry mouth results from hypofunction of the salivary glands due to Sjögren's syndrome (SS), various medications, and radiation therapy for head and neck cancer. In severe cases of salivary gland hypofunction, sialagogues are not always effective due to the loss of salivary parenchyma. Therefore, regenerative medicine using stem cell therapy is a promising treatment for severe cases. Stem cells are classified into three groups: tissue stem cells, embryonic stem cells, and induced pluripotent stem cells. Tissue stem cells, such as hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and salivary stem/progenitor cells, could rescue irradiation-induced salivary gland hypofunction. Both HSCs and MSCs can rescue salivary gland hypofunction through soluble factors in a paracrine manner, while salivary stem/progenitor cells can reconstitute the damaged salivary glands. In fact, we clarified that CD133-positive cells in mouse submandibular glands showed stem cell features, which reconstituted the damaged salivary glands. Furthermore, we focused on the challenge of producing functional salivary glands that are three-dimensionally induced from mouse ES cells.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
36
|
Efficient Surface Immobilization of Chemically Modified Hyaluronans for Enhanced Bioactivity and Survival of In Vitro-Cultured Embryonic Salivary Gland Mesenchymal Cells. Polymers (Basel) 2021; 13:polym13081216. [PMID: 33918722 PMCID: PMC8069509 DOI: 10.3390/polym13081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Embryonic salivary gland mesenchyme (eSGM) secretes various growth factors (bioactives) that support the proper growth and differentiation of salivary gland epithelium. Therefore, eSGM cells can be used as feeder cells for in vitro-cultured artificial salivary gland if their survival and bioactivity are properly maintained. As eSGM is encapsulated in a hyaluronan (HA)-rich developmental milieu, we hypothesized that mimicking this environment in vitro via surface immobilization of HA might enhance survival and bioactivity of eSGM. In this study, various HA derivatives, conjugated with catechol (HA–CA), thiol (HA–SH), or amine (HA–EDA) moieties, respectively, were screened for their efficacy of culturing eSGM-derived feeder cells in vitro. Among these HA derivatives, HA–CA showed the highest surface coating efficiency and growth enhancement effect on the embryonic submandibular gland. In addition, the HA–CA coating enhanced the production of growth factors EGF and FGF7, but not FGF10. These effects were maintained when eSGM cells isolated from the embryonic salivary gland were re-seeded to develop the feeder layer cells. CD44s (a major HA receptor) in eSGM cells were clustered at the cell membrane, and enhanced EGF expression was detected only in CD44 cluster-positive cells, suggesting that membrane clustering of CD44 is the key mechanism for the increased expression of EGF.
Collapse
|
37
|
Chansaenroj A, Yodmuang S, Ferreira JN. Trends in Salivary Gland Tissue Engineering: From Stem Cells to Secretome and Organoid Bioprinting. TISSUE ENGINEERING PART B-REVIEWS 2021; 27:155-165. [DOI: 10.1089/ten.teb.2020.0149] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ajjima Chansaenroj
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Supansa Yodmuang
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - João N. Ferreira
- Exocrine Gland Biology and Regeneration Research Group, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| |
Collapse
|
38
|
Cho JM, Yoon YJ, Lee S, Kim D, Choi D, Kim J, Lim JY. Retroductal Delivery of Epidermal Growth Factor Protects Salivary Progenitors after Irradiation. J Dent Res 2021; 100:883-890. [PMID: 33754871 DOI: 10.1177/0022034521999298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Salivary gland hypofunction after irradiation is associated with a deficit of epithelial stem/progenitors in salivary glands. Although epidermal growth factor (EGF) is known to stimulate the proliferation of epithelial cells, the therapeutic effect of EGF on salivary epithelial stem/progenitors remains undetermined. In this study, we administered EGF to submandibular glands (SMGs) via a retrograde route through the SMG excretory duct before fractionated irradiation and examined whether EGF could protect salivary epithelial progenitor cells from radiation and alleviate radiation-induced salivary hypofunction. EGF-treated mice exhibited greater body and gland weights at 12 wk after irradiation than untreated mice. The retroductal delivery of EGF improved salivary secretory function and increased salivary amylase activity in a dose-dependent manner. Histological examinations highlighted the amelioration of the loss of keratine-14+ (KRT14+) basal ductal and/or MIST1+ acinar cells, as well as induction of fibrosis, following irradiation in EGF-treated mice. An additional in vitro experiment using a salivary gland organoid irradiation model indicated that the radioprotective effects of EGF promoted the growth and inhibited the apoptotic cell death of salivary epithelial cells. Our results suggest that retroductal delivery of EGF may be a promising therapeutic option for preventing radiation-induced salivary gland hypofunction.
Collapse
Affiliation(s)
- J M Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Y J Yoon
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - S Lee
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - D Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - D Choi
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - J Y Lim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
39
|
Soudi A, Yazdanian M, Ranjbar R, Tebyanian H, Yazdanian A, Tahmasebi E, Keshvad A, Seifalian A. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI JOURNAL 2021; 20:454-489. [PMID: 33746673 PMCID: PMC7975587 DOI: 10.17179/excli2021-3335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
Recently, a growing attention has been observed toward potential advantages of stem cell (SC)-based therapies in regenerative treatments. Mesenchymal stem/stromal cells (MSCs) are now considered excellent candidates for tissue replacement therapies and tissue engineering. Autologous MSCs importantly contribute to the state-of-the-art clinical strategies for SC-based alveolar bone regeneration. The donor cells and immune cells play a prominent role in determining the clinical success of MSCs therapy. In line with the promising future that stem cell therapy has shown for tissue engineering applications, dental stem cells have also attracted the attention of the relevant researchers in recent years. The current literature review aims to survey the variety and extension of SC-application in tissue-regenerative dentistry. In this regard, the relevant English written literature was searched using keywords: "tissue engineering", "stem cells", "dental stem cells", and "dentistry strategies". According to the available database, SCs application has become increasingly widespread because of its accessibility, plasticity, and high proliferative ability. Among the growing recognized niches and tissues containing higher SCs, dental tissues are evidenced to be rich sources of MSCs. According to the literature, dental SCs are mostly present in the dental pulp, periodontal ligament, and dental follicle tissues. In this regard, the present review has described the recent findings on the potential of dental stem cells to be used in tissue regeneration.
Collapse
Affiliation(s)
- Armin Soudi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Yazdanian
- Department of Veterinary, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Tahmasebi
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Keshvad
- Research Center for Prevention of Oral and Dental Diseases, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alexander Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Bioscience Innovation Centre, London, UK
| |
Collapse
|
40
|
Tyrosine kinase inhibitors protect the salivary gland from radiation damage by increasing DNA double-strand break repair. J Biol Chem 2021; 296:100401. [PMID: 33571522 PMCID: PMC7973138 DOI: 10.1016/j.jbc.2021.100401] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
We have previously shown that the tyrosine kinase inhibitors (TKIs) dasatinib and imatinib can protect salivary glands from irradiation (IR) damage without impacting tumor therapy. However, how they induce this protection is unknown. Here we show that TKIs mediate radioprotection by increasing the repair of DNA double-stranded breaks. DNA repair in IR-treated parotid cells, but not oral cancer cells, occurs more rapidly following pretreatment with imatinib or dasatinib and is accompanied by faster formation of DNA damage-induced foci. Similar results were observed in the parotid glands of mice pretreated with imatinib prior to IR, suggesting that TKIs "prime" cells for DNA repair. Mechanistically, we observed that TKIs increased IR-induced activation of DNA-PK, but not ATM. Pretreatment of parotid cells with the DNA-PK inhibitor NU7441 reversed the increase in DNA repair induced by TKIs. Reporter assays specific for homologous recombination (HR) or nonhomologous end joining (NHEJ) verified regulatation of both DNA repair pathways by imatinib. Moreover, TKIs also increased basal and IR-induced expression of genes associated with NHEJ (DNA ligase 4, Artemis, XLF) and HR (Rad50, Rad51 and BRCA1); depletion of DNA ligase 4 or BRCA1 reversed the increase in DNA repair mediated by TKIs. In addition, TKIs increased activation of the ERK survival pathway in parotid cells, and ERK was required for the increased survival of TKI-treated cells. Our studies demonstrate a dual mechanism by which TKIs provide radioprotection of the salivary gland tissues and support exploration of TKIs clinically in head and neck cancer patients undergoing IR therapy.
Collapse
|
41
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
42
|
Mona M, Kobeissy F, Park YJ, Miller R, Saleh W, Koh J, Yoo MJ, Chen S, Cha S. Secretome Analysis of Inductive Signals for BM-MSC Transdifferentiation into Salivary Gland Progenitors. Int J Mol Sci 2020; 21:E9055. [PMID: 33260559 PMCID: PMC7730006 DOI: 10.3390/ijms21239055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Severe dry mouth in patients with Sjögren's Syndrome, or radiation therapy for patients with head and neck cancer, significantly compromises their oral health and quality of life. The current clinical management of xerostomia is limited to palliative care as there are no clinically-proven treatments available. Previously, our studies demonstrated that mouse bone marrow-derived mesenchymal stem cells (mMSCs) can differentiate into salivary progenitors when co-cultured with primary salivary epithelial cells. Transcription factors that were upregulated in co-cultured mMSCs were identified concomitantly with morphological changes and the expression of acinar cell markers, such as α-amylase (AMY1), muscarinic-type-3-receptor(M3R), aquaporin-5(AQP5), and a ductal cell marker known as cytokeratin 19(CK19). In the present study, we further explored inductive molecules in the conditioned media that led to mMSC reprogramming by high-throughput liquid chromatography with tandem mass spectrometry and systems biology. Our approach identified ten differentially expressed proteins based on their putative roles in salivary gland embryogenesis and development. Additionally, systems biology analysis revealed six candidate proteins, namely insulin-like growth factor binding protein-7 (IGFBP7), cysteine-rich, angiogenetic inducer, 61(CYR61), agrin(AGRN), laminin, beta 2 (LAMB2), follistatin-like 1(FSTL1), and fibronectin 1(FN1), for their potential contribution to mMSC transdifferentiation during co-culture. To our knowledge, our study is the first in the field to identify soluble inductive molecules that drive mMSC into salivary progenitors, which crosses lineage boundaries.
Collapse
Affiliation(s)
- Mahmoud Mona
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | - Firas Kobeissy
- Department of Emergency Medicine, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Yun-Jong Park
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA;
| | - Rehae Miller
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
| | - Wafaa Saleh
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Mansoura University, Mansoura 35516, Egypt;
| | - Jin Koh
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
| | - Mi-Jeong Yoo
- Department of Biology, Clarkson University, Potsdam, NY 13699, USA;
| | - Sixue Chen
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610, USA; (J.K.); (S.C.)
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Seunghee Cha
- Oral and Maxillofacial Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL 32610, USA; (M.M.); (R.M.)
- Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
- Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| |
Collapse
|
43
|
Experimental Animal Model Systems for Understanding Salivary Secretory Disorders. Int J Mol Sci 2020; 21:ijms21228423. [PMID: 33182571 PMCID: PMC7696548 DOI: 10.3390/ijms21228423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Salivary secretory disorders are life-disrupting pathologic conditions with a high prevalence, especially in the geriatric population. Both patients and clinicians frequently feel helpless and get frustrated by the currently available therapeutic strategies, which consist mainly of palliative managements. Accordingly, to unravel the underlying mechanisms and to develop effective and curative strategies, several animal models have been developed and introduced. Experimental findings from these models have contributed to answer biological and biomedical questions. This review aims to provide various methodological considerations used for the examination of pathological fundamentals in salivary disorders using animal models and to summarize the obtained findings. The information provided in this review could provide plausible solutions for overcoming salivary disorders and also suggest purpose-specific experimental animal systems.
Collapse
|
44
|
Prevention of irradiation-induced damage to salivary glands by local delivery of adipose-derived stem cells via hyaluronic acid-based hydrogels. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Najafi S, Nosrati H, Faraji Z, Mohamadnia A, Shirian S, Mortazavi SM, Bahrami N. Reconstruction of necrotic submandibular salivary gland using mesenchymal stem cells. Heliyon 2020; 6:e05162. [PMID: 33083616 PMCID: PMC7551326 DOI: 10.1016/j.heliyon.2020.e05162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The efficacy of mesnchymal stem cells (MSCs) to treat the necrotic tissue of salivary glands (SGs) has yet investigated. OBJECTIVE This study was conducted to investigate the potential capacity of MSCs to restore the function and regenerate the necrotic submandiular gland in the rat animal model. METHODS Twenty-one Sprague-Dawley rats were provided from a breeding colony and randomly divided into three groups including the positive control or induced SG atrophy without treatment, the treatment group or induced SG atrophy with MSCs isolated transplantation and the negative control group consists of healthy rats. The atrophic and necrotic submandiular gland was induced using intraoral duct ligation of the main duct of submandiular gland for one month. The isolated stem cells were confirmed using flow cytometry for CD90 and CD 105. The isolated MSCs were cultured and injected to submandiular gland and the potential efficacy of MSCs to treat the atrophic submandibular glands was evaluated using histopathology on two weeks post-transplantation. To detect the acinar cell protein secretory granules, Alcian Blue and periodic acid shift (PAS) staining were done. For the demonstration of mitotic index or proliferation rate of the SG epithelia tissue, Ki-67 and Smbg proteins expression were evaluated using immunohistochemistry. RESULTS The locally injected MSCs could regenerate the overall histological structure of the necrotic submandibular gland tissue within 2 weeks of post-transplantation. Alcian Blue and PAS staining indicated that the mean amount of serous and mucin secretions in the treatment group was significantly increased compared to the positive control groups. We have also found that the treatment group significantly express higher Ki-67 protein, as a diagnostic marker for cell mitosis and proliferation rate, and lower Smbg protein, as a diagnostic marker, for damage to the submandibular gland than that of control group. CONCLUSION This study demonstrates the therapeutic benefits of MSCs isolated from the SG in treating atrophic and necrotic SGs in a rat model. MSCs may be potential candidates for cell-based therapies targeting hypofunction of SG induced by a range of diseases or because of surgery and radiotherapy of head and neck cancers.
Collapse
Affiliation(s)
- Shamsoulmolouk Najafi
- Dental Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Dept. of Oral & Maxillofacial Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
- Dept of Oral & Maxillofacial Medicine, School of Dentistry, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Faraji
- Tehran University of Medical Science, Tehran, Iran
| | - Abdolreza Mohamadnia
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), ShahidBeheshti University of Medical Sciences, Tehran, Iran
- Department of Biotechnology, School of Advanced Technologies in Medicine, ShahidBeheshti University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
- Shiraz Molecular Pathology Research Cenetr, Dr Daneshbod Lab, Shiraz, Iran
- Shefa Neuroscience Reseach Center, Tehran, Iran
| | - Seyed Mostafa Mortazavi
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Naghmeh Bahrami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Yoshimoto S, Yoshizumi J, Anzai H, Morishita K, Okamura K, Hiraki A, Hashimoto S. Inhibition of Alk signaling promotes the induction of human salivary-gland-derived organoids. Dis Model Mech 2020; 13:dmm045054. [PMID: 32801121 PMCID: PMC7541338 DOI: 10.1242/dmm.045054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Hyposalivation and xerostomia are the cause of several morbidities, such as dental caries, painful mucositis, oral fungal infections, sialadenitis and dysphagia. For these reasons, preservation of normal saliva secretion is critical for the maintenance of functionally normal oral homeostasis and for keeping good health. Several strategies for restoring salivary gland function have been reported, from different points of view, based on the use of salivary-gland-derived epithelial stem/progenitor cells and tissue engineering approaches to induce organoids that mimic in vivo salivary glands. In this study, we clarified that inhibition of activin receptor-like kinase (Alk) signaling was essential for the induction of human salivary-gland-derived organoids, and demonstrated the usefulness of such organoids as an inflammatory disease model. In inflammatory conditions like sialadenitis, in general, pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α, also known as TNF) are upregulated, but their function is still unclear. In our established human salivary-gland-derived organoid culture system, we successfully induced organoid swelling by stimulation with carbachol, a non-selective cholinergic agonist, and forskolin, an activator of cystic fibrosis transmembrane conductance regulator (CFTR). Furthermore, we found that this organoid swelling was inhibited by TNF-α. From these results, we could clarify the inhibitory function of TNF-α on saliva secretion in vitro Thus, our established human salivary-gland-derived organoids would be useful for in vitro analyses of the morphological and functional changes involved in salivary gland dysfunctions in several research fields, such as pathobiology, inflammation and regenerative medicine.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shohei Yoshimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan
- Oral Medicine Research Center, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Junko Yoshizumi
- Department of Oral and Maxillofacial Surgery, Division of Oral and Medical Management, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Hiromasa Anzai
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan
- Department of Oral and Maxillofacial Surgery, Division of Oral and Medical Management, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Koichiro Morishita
- Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Kazuhiko Okamura
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Akimitsu Hiraki
- Department of Oral and Maxillofacial Surgery, Division of Oral and Medical Management, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Shuichi Hashimoto
- Section of Pathology, Department of Morphological Biology, Division of Biomedical Sciences, Fukuoka Dental College, Fukuoka 814-0193, Japan
| |
Collapse
|
47
|
Lombaert IMA, Patel VN, Jones CE, Villier DC, Canada AE, Moore MR, Berenstein E, Zheng C, Goldsmith CM, Chorini JA, Martin D, Zourelias L, Trombetta MG, Edwards PC, Meyer K, Ando D, Passineau MJ, Hoffman MP. CERE-120 Prevents Irradiation-Induced Hypofunction and Restores Immune Homeostasis in Porcine Salivary Glands. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:839-855. [PMID: 32953934 PMCID: PMC7479444 DOI: 10.1016/j.omtm.2020.07.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Salivary gland hypofunction causes significant morbidity and loss of quality of life for head and neck cancer patients treated with radiotherapy. Preventing hypofunction is an unmet therapeutic need. We used an adeno-associated virus serotype 2 (AAV2) vector expressing the human neurotrophic factor neurturin (CERE-120) to treat murine submandibular glands either pre- or post-irradiation (IR). Treatment with CERE-120 pre-IR, not post-IR, prevented hypofunction. RNA sequencing (RNA-seq) analysis showed reduced gene expression associated with fibrosis and the innate and humoral immune responses. We then used a minipig model with CERE-120 treatment pre-IR and also compared outcomes of the contralateral non-IR gland. Analysis of gene expression, morphology, and immunostaining showed reduced IR-related immune responses and improved secretory mechanisms. CERE-120 prevented IR-induced hypofunction and restored immune homeostasis, and there was a coordinated contralateral gland response to either damage or treatment. CERE-120 gene therapy is a potential treatment for head and neck cancer patients to influence communication among neuronal, immune, and epithelial cells to prevent IR-induced salivary hypofunction and restore immune homeostasis.
Collapse
Affiliation(s)
- Isabelle M A Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA.,Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Christina E Jones
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Derrick C Villier
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Ashley E Canada
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Matthew R Moore
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Elsa Berenstein
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Translational Research Core, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - John A Chorini
- Adeno-Associated Virus Section, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - Lee Zourelias
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Pittsburg, PA 15212, USA
| | - Mark G Trombetta
- Department of Oncology, Division of Radiation Oncology, Allegheny Health Network, Pittsburg, PA 15212, USA
| | - Paul C Edwards
- Department of Oral Pathology, Medicine, and Radiology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Kathleen Meyer
- Sangamo BioSciences, Inc., 501 Canal Blvd., Richmond, CA 94804
| | - Dale Ando
- Sangamo BioSciences, Inc., 501 Canal Blvd., Richmond, CA 94804
| | - Michael J Passineau
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Pittsburg, PA 15212, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| |
Collapse
|
48
|
Sumita Y, Iwamoto N, Seki M, Yoshida T, Honma R, Iwatake M, Ohba S, Takashi I, Hotokezaka Y, Harada H, Kuroshima S, Nagai K, Asahara T, Atsushi Kawakam I, Asahina I. Phase 1 clinical study of cell therapy with effective-mononuclear cells (E-MNC) for radiogenic xerostomia (first-in-human study) (FIH study on E-MNC therapy for radiogenic xerostomia). Medicine (Baltimore) 2020; 99:e20788. [PMID: 32590759 PMCID: PMC7328916 DOI: 10.1097/md.0000000000020788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Treatment for most patients with head and neck cancers includes ionizing radiation with or without chemotherapy. This treatment causes irreversible damage to salivary glands in the irradiation field accompanied by a loss of fluid-secreting acinar cells and a considerable decrease of saliva secretion. There is currently no adequate conventional treatment for this condition. In recent years, we developed an effective culture method to enhance the anti-inflammatory and vasculogenic phenotypes of peripheral blood mononuclear cells (PBMNCs), and such effectively conditioned PBMNC (E-MNC) therapy has shown promising improvements to the function of radiation-injured salivary glands in preclinical studies. However, the safety and effect of E-NMC therapy have yet assessed in human. The objective of this ongoing first-in-man study is to assess the safety, tolerability, and in part the efficacy of E-MNC therapy for treating radiation-induced xerostomia. METHODS/DESIGN This phase 1 first-in-man study is an open-label, single-center, two-step dose escalation study. A total of 6 patients, who had no recurrence of head and neck cancer over 5 years following radiation therapy and suffered from radiation-induced xerostomia, will receive a transplantation of E-NMCs derived from autologous PBMNCs to a submandibular gland. The duration of the intervention will be 1 year. To analyze the recovery of salivary secretion, a gum test will be performed. To analyze the recovery of atrophic salivary glands, computed tomography (CT), and magnetic resonance imaging (MRI) of salivary glands will be conducted. The primary endpoint is the safety of the protocol. The secondary endpoints are the changes from baseline in whole saliva secretion and salivary gland atrophy. DISCUSSION This will be the first clinical study of regenerative therapy using E-MNCs for patients with severe radiation-induced xerostomia. The results of this study are expected to contribute to developing the low-invasive cell-based therapy for radiation-induced xerostomia. TRIAL REGISTRATION This study was registered with the Japan Registry of Clinical Trials (http://jrct.niph.go.jp) as jRCTb070190057.
Collapse
Affiliation(s)
| | - Naoki Iwamoto
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki
| | | | - Takako Yoshida
- Basic and Translational Research Center for Hard Tissue Disease
| | - Ryo Honma
- Basic and Translational Research Center for Hard Tissue Disease
- Department of Regenerative Oral Surgery, Unit of Translational Medicine
| | - Mayumi Iwatake
- Basic and Translational Research Center for Hard Tissue Disease
| | - Seigo Ohba
- Department of Regenerative Oral Surgery, Unit of Translational Medicine
| | - I. Takashi
- Department of Regenerative Oral Surgery, Unit of Translational Medicine
| | - Yuka Hotokezaka
- Department of Radiology and Cancer Biology, Nagasaki University Graduate School of Biomedical Sciences
| | | | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki
| | | | - Takayuki Asahara
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Japan
| | - I Atsushi Kawakam
- Department of Immunology and Rheumatology, Division of Advanced Preventive Medical Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki
| | - Izumi Asahina
- Department of Regenerative Oral Surgery, Unit of Translational Medicine
| |
Collapse
|
49
|
Marrosu V, Carta F, Quartu D, Tatti M, Mariani C, De Seta D, Puxeddu R, Angeletti D, Campo F, Petrone P, Spinato G, Scarpa A, Molteni G, Mannelli G, Capasso P, Ralli M, Casoli V, Salzano FA, Mocella SA, Barbara F, Dadduzio S, Berardi A, Berardi C. The secretory senescence in otorhinolaryngology: principles of treatment. JOURNAL OF GERONTOLOGY AND GERIATRICS 2020. [DOI: 10.36150/2499-6564-489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Tanaka J, Mishima K. In vitro three-dimensional culture systems of salivary glands. Pathol Int 2020; 70:493-501. [PMID: 32367629 DOI: 10.1111/pin.12947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Dry mouth can be caused by salivary gland hypofunction due to Sjögren's syndrome (SS) or radiation therapy for head and neck cancer, and it can also be a side effect of medications. The use of sialagogues effectively increases saliva secretion in patients with dry mouth. However, the application of sialagogues is not always satisfactory because of their side effects, such as sweating, nausea, runny nose and diarrhea. Two-dimensional (2D) cell cultures have been used not only for drug screening and discovery but also to clarify disease mechanisms. However, three-dimensional (3D) cell cultures are expected to be even more advantageous than 2D cell cultures. Therefore, we have tried to develop an in vitro cell culture system that can reconstitute 3D salivary glands. Sox9 and Foxc1 were identified as important genes that differentiate mouse embryonic stem cell-derived oral ectoderm into salivary gland placode. Using these genes and organoid culture systems, we succeeded in generating salivary gland organoids that exhibited a morphology and gene expression profile that were similar to those of the embryonic rudiment from which salivary glands arise in normal mice. These organoids are expected to be a promising tool for disease modeling, drug discovery and regenerative medicine in salivary glands.
Collapse
Affiliation(s)
- Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, Showa University School of Dentistry, Tokyo, Japan
| |
Collapse
|