1
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Karatepe K, Mafra de Faria B, Zhang J, Chen X, Pinto H, Fyodorov D, Sefik E, Willcockson M, Flavell R, Skoultchi A, Guo S. Linker histone regulates the myeloid versus lymphoid bifurcation of multipotent hematopoietic stem and progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.16.613227. [PMID: 39345411 PMCID: PMC11429722 DOI: 10.1101/2024.09.16.613227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Myeloid-biased differentiation of multipotent hematopoietic stem and progenitor cells (HSPCs) occurs with aging or exhaustion. The molecular mechanism(s) responsible for this fate bias remain unclear. Here we report that linker histone regulates HSPC fate choice at the lymphoid versus myeloid bifurcation. HSPCs expressing H1.0 from a doxycycline (dox) inducible transgene favor the lymphoid fate, display strengthened nucleosome organization and reduced chromatin accessibility at genomic regions hosting key myeloid fate drivers. The transcription factor Hlf is located in one of such regions, where chromatin accessibility and gene expression is reduced in H1.0 high HSPCs. Furthermore, H1.0 protein in HSPCs decreases in an aspartyl protease dependent manner, a process enhanced in response to interferon alpha (IFNα) signaling. Aspartyl protease inhibitors preserve endogenous H1.0 levels and promote the lymphoid fate of wild type HSPCs. Thus, our work uncovers a point of intervention to mitigate myeloid skewed hematopoiesis.
Collapse
|
3
|
Blanch-Asensio A, Grandela C, Mummery CL, Davis RP. STRAIGHT-IN: a platform for rapidly generating panels of genetically modified human pluripotent stem cell lines. Nat Protoc 2024:10.1038/s41596-024-01039-2. [PMID: 39179886 DOI: 10.1038/s41596-024-01039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/11/2024] [Indexed: 08/26/2024]
Abstract
Targeted integration of large DNA cargoes (>10 kb) or genomic replacements in mammalian cells, such as human pluripotent stem cells (hPS cells), remains challenging. Here we describe a platform termed serine and tyrosine recombinase-assisted integration of genes for high-throughput investigation (STRAIGHT-IN) to circumvent this. First, a landing pad cassette is precisely inserted or used to replace specific genomic regions. The site-specific integrase Bxb1 then enables DNA constructs, including those >50 kb, to be integrated into the genome, while Cre recombinase excises auxiliary DNA sequences to prevent postintegrative silencing. Using a strategy whereby the positive selection marker is only expressed if the donor plasmid carrying the payload is correctly targeted, we can obtain 100% enrichment for cells containing the DNA payload. Procedures for expressing Cre efficiently also mean that a clonal isolation step is no longer essential to derive the required genetically modified hPS cells containing the integrated DNA, potentially reducing clonal variability. Furthermore, STRAIGHT-IN facilitates rapid and multiplexed generation of genetically matched hPS cells when multiple donor plasmids are delivered simultaneously. STRAIGHT-IN has various applications, which include integrating complex genetic circuits for synthetic biology, as well as creating panels of hPS cells lines containing, as necessary, hundreds of disease-linked variants for disease modeling and drug discovery. After establishing the hPS cell line containing the landing pad, the entire procedure, including donor plasmid synthesis, takes 1.5-3 months, depending on whether single or multiple DNA payloads are integrated. This protocol only requires the researcher to be skilled in molecular biology and standard cell culture techniques.
Collapse
Affiliation(s)
- Albert Blanch-Asensio
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Catarina Grandela
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, the Netherlands.
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
4
|
Chung TH, Zhuravskaya A, Makeyev EV. Regulation potential of transcribed simple repeated sequences in developing neurons. Hum Genet 2024; 143:875-895. [PMID: 38153590 PMCID: PMC11294396 DOI: 10.1007/s00439-023-02626-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Simple repeated sequences (SRSs), defined as tandem iterations of microsatellite- to satellite-sized DNA units, occupy a substantial part of the human genome. Some of these elements are known to be transcribed in the context of repeat expansion disorders. Mounting evidence suggests that the transcription of SRSs may also contribute to normal cellular functions. Here, we used genome-wide bioinformatics approaches to systematically examine SRS transcriptional activity in cells undergoing neuronal differentiation. We identified thousands of long noncoding RNAs containing >200-nucleotide-long SRSs (SRS-lncRNAs), with hundreds of these transcripts significantly upregulated in the neural lineage. We show that SRS-lncRNAs often originate from telomere-proximal regions and that they have a strong potential to form multivalent contacts with a wide range of RNA-binding proteins. Our analyses also uncovered a cluster of neurally upregulated SRS-lncRNAs encoded in a centromere-proximal part of chromosome 9, which underwent an evolutionarily recent segmental duplication. Using a newly established in vitro system for rapid neuronal differentiation of induced pluripotent stem cells, we demonstrate that at least some of the bioinformatically predicted SRS-lncRNAs, including those encoded in the segmentally duplicated part of chromosome 9, indeed increase their expression in developing neurons to readily detectable levels. These and other lines of evidence suggest that many SRSs may be expressed in a cell type and developmental stage-specific manner, providing a valuable resource for further studies focused on the functional consequences of SRS-lncRNAs in the normal development of the human brain, as well as in the context of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Tek Hong Chung
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, New Hunt's House, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
5
|
Zhuravskaya A, Yap K, Hamid F, Makeyev EV. Alternative splicing coupled to nonsense-mediated decay coordinates downregulation of non-neuronal genes in developing mouse neurons. Genome Biol 2024; 25:162. [PMID: 38902825 PMCID: PMC11188260 DOI: 10.1186/s13059-024-03305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The functional coupling between alternative pre-mRNA splicing (AS) and the mRNA quality control mechanism called nonsense-mediated decay (NMD) can modulate transcript abundance. Previous studies have identified several examples of such a regulation in developing neurons. However, the systems-level effects of AS-NMD in this context are poorly understood. RESULTS We developed an R package, factR2, which offers a comprehensive suite of AS-NMD analysis functions. Using this tool, we conducted a longitudinal analysis of gene expression in pluripotent stem cells undergoing induced neuronal differentiation. Our analysis uncovers hundreds of AS-NMD events with significant potential to regulate gene expression. Notably, this regulation is significantly overrepresented in specific functional groups of developmentally downregulated genes. Particularly strong association with gene downregulation is detected for alternative cassette exons stimulating NMD upon their inclusion into mature mRNA. By combining bioinformatic analyses with CRISPR/Cas9 genome editing and other experimental approaches we show that NMD-stimulating cassette exons regulated by the RNA-binding protein PTBP1 dampen the expression of their genes in developing neurons. We also provided evidence that the inclusion of NMD-stimulating cassette exons into mature mRNAs is temporally coordinated with NMD-independent gene repression mechanisms. CONCLUSIONS Our study provides an accessible workflow for the discovery and prioritization of AS-NMD targets. It further argues that the AS-NMD pathway plays a widespread role in developing neurons by facilitating the downregulation of functionally related non-neuronal genes.
Collapse
Affiliation(s)
- Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Karen Yap
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
6
|
Hsu HC, Hsu SP, Hsu FY, Chang M, Chen JA. LncRNA Litchi is a regulator for harmonizing maturity and resilient functionality in spinal motor neurons. iScience 2024; 27:109207. [PMID: 38433925 PMCID: PMC10906515 DOI: 10.1016/j.isci.2024.109207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/08/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Long noncoding RNAs (lncRNAs) play pivotal roles in modulating gene expression during development and disease. Despite their high expression in the central nervous system (CNS), understanding the precise physiological functions of CNS-associated lncRNAs has been challenging, largely due to the in vitro-centric nature of studies in this field. Here, utilizing mouse embryonic stem cell (ESC)-derived motor neurons (MNs), we identified an unexplored MN-specific lncRNA, Litchi (Long Intergenic RNAs in Chat Intron). By employing an "exon-only" deletion strategy in ESCs and a mouse model, we reveal that Litchi deletion profoundly impacts MN dendritic complexity, axonal growth, and altered action potential patterns. Mechanistically, voltage-gated channels and neurite growth-related genes exhibited heightened sensitivity to Litchi deletion. Our Litchi-knockout mouse model displayed compromised motor behaviors and reduced muscle strength, highlighting Litchi's critical role in motor function. This study unveils an underappreciated function of lncRNAs in orchestrating MN maturation and maintaining robust electrophysiological properties.
Collapse
Affiliation(s)
- Ho-Chiang Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Sheng-Ping Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Fang-Yu Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei 11529, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
McMahon R, Masamsetti VP, Tam PPL. Phenotypic Analysis of Early Neurogenesis in a Mouse Chimeric Embryo and Stem Cell-Based Neuruloid Model. Methods Mol Biol 2024; 2746:165-177. [PMID: 38070089 DOI: 10.1007/978-1-0716-3585-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Analyzing the impact of genetic mutations on early neurogenesis of mammalian embryos in conventional mouse mutant models is laborious and time-consuming. To overcome these constraints and to fast-track the phenotypic analysis, we developed a protocol that harnesses the amenability of engineering genetic modifications in embryonic stem cells from which mid-gestation mouse chimeras and in vitro neuruloids are generated. These stem cell-based chimera and neuruloid experimental models allow phenotyping at early developmental time points of neurogenesis.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Avarlaid A, Esvald E, Koppel I, Parkman A, Zhuravskaya A, Makeyev EV, Tuvikene J, Timmusk T. An 840 kb distant upstream enhancer is a crucial regulator of catecholamine-dependent expression of the Bdnf gene in astrocytes. Glia 2024; 72:90-110. [PMID: 37632136 PMCID: PMC10952894 DOI: 10.1002/glia.24463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a fundamental role in the developing and adult nervous system, contributing to neuronal survival, differentiation, and synaptic plasticity. Dysregulation of BDNF synthesis, secretion or signaling has been associated with many neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. Although the transcriptional regulation of the Bdnf gene has been extensively studied in neurons, less is known about the regulation and function of BDNF in non-neuronal cells. The most abundant type of non-neuronal cells in the brain, astrocytes, express BDNF in response to catecholamines. However, genetic elements responsible for this regulation have not been identified. Here, we investigated four potential Bdnf enhancer regions and based on reporter gene assays, CRISPR/Cas9 engineering and CAPTURE-3C-sequencing we conclude that a region 840 kb upstream of the Bdnf gene regulates catecholamine-dependent expression of Bdnf in rodent astrocytes. We also provide evidence that this regulation is mediated by CREB and AP1 family transcription factors. This is the first report of an enhancer coordinating the transcription of Bdnf gene in non-neuronal cells.
Collapse
Affiliation(s)
- Annela Avarlaid
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Eli‐Eelika Esvald
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Protobios LLCTallinnEstonia
| | - Indrek Koppel
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Annabel Parkman
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
| | - Anna Zhuravskaya
- Centre for Developmental NeurobiologyKing's College LondonLondonUK
| | | | - Jürgen Tuvikene
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Protobios LLCTallinnEstonia
| | - Tõnis Timmusk
- Department of Chemistry and BiotechnologyTallinn University of TechnologyTallinnEstonia
- Protobios LLCTallinnEstonia
| |
Collapse
|
9
|
Kainov Y, Zhuravskaya A, Makeyev EV. Protocol for auxin-inducible depletion of the RNA-binding protein PTBP1 in mouse embryonic stem cells. STAR Protoc 2023; 4:102644. [PMID: 37862173 PMCID: PMC10594634 DOI: 10.1016/j.xpro.2023.102644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Inducible degradation of proteins of interest provides a powerful approach for functional studies. Here, we present a protocol for tightly controlled depletion of the RNA-binding protein PTBP1 in mouse embryonic stem cells (ESCs). We describe steps for establishing an ESC line expressing doxycycline-inducible auxin receptor protein OsTIR1 and tagging endogenous Ptbp1 alleles using CRISPR-Cas9 and homology-directed repair reagents. We then detail procedures for assaying the efficiency of inducible PTBP1 knockdown by immunoblotting. This protocol is adaptable for other protein targets. For complete details on the use and execution of this protocol, please refer to Iannone et al.1.
Collapse
Affiliation(s)
- Yaroslav Kainov
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
10
|
Zhang W, Golynker I, Brosh R, Fajardo A, Zhu Y, Wudzinska AM, Ordoñez R, Ribeiro-Dos-Santos AM, Carrau L, Damani-Yokota P, Yeung ST, Khairallah C, Vela Gartner A, Chalhoub N, Huang E, Ashe HJ, Khanna KM, Maurano MT, Kim SY, tenOever BR, Boeke JD. Mouse genome rewriting and tailoring of three important disease loci. Nature 2023; 623:423-431. [PMID: 37914927 PMCID: PMC10632133 DOI: 10.1038/s41586-023-06675-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Genetically engineered mouse models (GEMMs) help us to understand human pathologies and develop new therapies, yet faithfully recapitulating human diseases in mice is challenging. Advances in genomics have highlighted the importance of non-coding regulatory genome sequences, which control spatiotemporal gene expression patterns and splicing in many human diseases1,2. Including regulatory extensive genomic regions, which requires large-scale genome engineering, should enhance the quality of disease modelling. Existing methods set limits on the size and efficiency of DNA delivery, hampering the routine creation of highly informative models that we call genomically rewritten and tailored GEMMs (GREAT-GEMMs). Here we describe 'mammalian switching antibiotic resistance markers progressively for integration' (mSwAP-In), a method for efficient genome rewriting in mouse embryonic stem cells. We demonstrate the use of mSwAP-In for iterative genome rewriting of up to 115 kb of a tailored Trp53 locus, as well as for humanization of mice using 116 kb and 180 kb human ACE2 loci. The ACE2 model recapitulated human ACE2 expression patterns and splicing, and notably, presented milder symptoms when challenged with SARS-CoV-2 compared with the existing K18-hACE2 model, thus representing a more human-like model of infection. Finally, we demonstrated serial genome writing by humanizing mouse Tmprss2 biallelically in the ACE2 GREAT-GEMM, highlighting the versatility of mSwAP-In in genome writing.
Collapse
Affiliation(s)
- Weimin Zhang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Ilona Golynker
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | - Ran Brosh
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Alvaro Fajardo
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | - Yinan Zhu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Aleksandra M Wudzinska
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Raquel Ordoñez
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - André M Ribeiro-Dos-Santos
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Lucia Carrau
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | | | - Stephen T Yeung
- Department of Microbiology, NYU Langone Health, New York, NY, USA
| | | | - Antonio Vela Gartner
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Noor Chalhoub
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Emily Huang
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Hannah J Ashe
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
| | - Kamal M Khanna
- Department of Microbiology, NYU Langone Health, New York, NY, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Matthew T Maurano
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Sang Yong Kim
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Benjamin R tenOever
- Department of Microbiology, NYU Langone Health, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York, NY, USA
| | - Jef D Boeke
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY, USA.
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA.
| |
Collapse
|
11
|
Liu Y, Wang J, Südhof TC, Wernig M. Efficient generation of functional neurons from mouse embryonic stem cells via neurogenin-2 expression. Nat Protoc 2023; 18:2954-2974. [PMID: 37596357 PMCID: PMC11349042 DOI: 10.1038/s41596-023-00863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/27/2023] [Indexed: 08/20/2023]
Abstract
The production of induced neuronal (iN) cells from human embryonic stem cells (ESCs) and induced pluripotent stem cells by the forced expression of proneural transcription factors is rapid, efficient and reproducible. The ability to generate large numbers of human neurons in such a robust manner enables large-scale studies of human neural differentiation and neuropsychiatric diseases. Surprisingly, similar transcription factor-based approaches for converting mouse ESCs into iN cells have been challenging, primarily because of low cell survival. Here, we provide a detailed approach for the efficient and reproducible generation of functional iN cells from mouse ESC cultures by the genetically induced expression of neurogenin-2. The resulting iN cells display mature pre- and postsynaptic specializations and form synaptic networks. Our method provides the basis for studying neuronal development and enables the direct comparison of cellular phenotypes in mouse and human neurons generated in an equivalent way. The procedure requires 14 d and can be carried out by users with expertise in stem cell culture.
Collapse
Affiliation(s)
- Yingfei Liu
- Institute for Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jinzhao Wang
- Institute for Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas C Südhof
- Department of Molecular & Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Yaganoglu S, Kalyviotis K, Vagena-Pantoula C, Jülich D, Gaub BM, Welling M, Lopes T, Lachowski D, Tang SS, Del Rio Hernandez A, Salem V, Müller DJ, Holley SA, Vermot J, Shi J, Helassa N, Török K, Pantazis P. Highly specific and non-invasive imaging of Piezo1-dependent activity across scales using GenEPi. Nat Commun 2023; 14:4352. [PMID: 37468521 PMCID: PMC10356793 DOI: 10.1038/s41467-023-40134-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Mechanosensing is a ubiquitous process to translate external mechanical stimuli into biological responses. Piezo1 ion channels are directly gated by mechanical forces and play an essential role in cellular mechanotransduction. However, readouts of Piezo1 activity are mainly examined by invasive or indirect techniques, such as electrophysiological analyses and cytosolic calcium imaging. Here, we introduce GenEPi, a genetically-encoded fluorescent reporter for non-invasive optical monitoring of Piezo1-dependent activity. We demonstrate that GenEPi has high spatiotemporal resolution for Piezo1-dependent stimuli from the single-cell level to that of the entire organism. GenEPi reveals transient, local mechanical stimuli in the plasma membrane of single cells, resolves repetitive contraction-triggered stimulation of beating cardiomyocytes within microtissues, and allows for robust and reliable monitoring of Piezo1-dependent activity in vivo. GenEPi will enable non-invasive optical monitoring of Piezo1 activity in mechanochemical feedback loops during development, homeostatic regulation, and disease.
Collapse
Affiliation(s)
- Sine Yaganoglu
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | | | | | - Dörthe Jülich
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Benjamin M Gaub
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Maaike Welling
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
- Department of Bioengineering, Imperial College London, London, UK
| | - Tatiana Lopes
- Section of Investigative Medicine, Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, UK
| | | | - See Swee Tang
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Victoria Salem
- Department of Bioengineering, Imperial College London, London, UK
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Julien Vermot
- Department of Bioengineering, Imperial College London, London, UK
| | - Jian Shi
- Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, University of Leeds, Leeds, UK
| | - Nordine Helassa
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Katalin Török
- Molecular and Clinical Sciences Research Institute, St. George's, University of London, London, UK
| | - Periklis Pantazis
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule (ETH) Zurich, Basel, Switzerland.
- Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
13
|
Albini S, Palmieri L, Dubois A, Bourg N, Lostal W, Richard I. Assessment of Therapeutic Potential of a Dual AAV Approach for Duchenne Muscular Dystrophy. Int J Mol Sci 2023; 24:11421. [PMID: 37511179 PMCID: PMC10380683 DOI: 10.3390/ijms241411421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a yet incurable rare genetic disease that affects the skeletal and cardiac muscles, leading to progressive muscle wasting and premature death. DMD is caused by the lack of dystrophin, a muscle protein essential for the biochemical support and integrity of muscle fibers. Gene replacement strategies for Duchenne muscular dystrophy (DMD) employing the adeno-associated virus (AAV) face the challenge imposed by the limited packaging capacity of AAV, only allowing the accommodation of a short version of dystrophin (µDys) that is still far removed from correcting human disease. The need to develop strategies leading to the expression of a best performing dystrophin variant led to only few studies reporting on the use of dual vectors, but none reported on a method to assess in vivo transgene reconstitution efficiency, the degree of which directly affects the use of safe AAV dosing. We report here on the generation of a dual AAV vector approach for the expression of a larger dystrophin version (quasidystrophin) based on homologous recombination, and the development of a methodology employing a strategic droplet digital PCR design, to determine the recombination efficiency as well as the occurrence of unwanted concatemerization events or aberrant expression from the single vectors. We demonstrated that, upon systemic delivery in the dystrophic D2.B10-Dmdmdx/J (DBA2mdx) mice, our dual AAV approach led to high transgene reconstitution efficiency and negligible Inverted Terminal Repeats (ITR)-dependent concatemerization, with consequent remarkable protein restoration in muscles and improvement of muscle pathology. This evidence supports the suitability of our system for gene therapy application and the potential of this methodology to assess and improve the feasibility for therapeutic translation of multiple vector approaches.
Collapse
Affiliation(s)
- Sonia Albini
- Genethon, 91100 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Laura Palmieri
- Genethon, 91100 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Auriane Dubois
- Genethon, 91100 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Nathalie Bourg
- Genethon, 91100 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - William Lostal
- Genethon, 91100 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| | - Isabelle Richard
- Genethon, 91100 Evry, France
- Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France
| |
Collapse
|
14
|
Sierra-Pagan JE, Dsouza N, Das S, Larson TA, Sorensen JR, Ma X, Stan P, Wanberg EJ, Shi X, Garry MG, Gong W, Garry DJ. FOXK1 regulates Wnt signalling to promote cardiogenesis. Cardiovasc Res 2023; 119:1728-1739. [PMID: 37036809 PMCID: PMC10325700 DOI: 10.1093/cvr/cvad054] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 04/11/2023] Open
Abstract
AIMS Congenital heart disease (CHD) is the most common genetic birth defect, which has considerable morbidity and mortality. We focused on deciphering key regulators that govern cardiac progenitors and cardiogenesis. FOXK1 is a forkhead/winged helix transcription factor known to regulate cell cycle kinetics and is restricted to mesodermal progenitors, somites, and heart. In the present study, we define an essential role for FOXK1 during cardiovascular development. METHODS AND RESULTS We used the mouse embryoid body system to differentiate control and Foxk1 KO embryonic stem cells into mesodermal, cardiac progenitor cells and mature cardiac cells. Using flow cytometry, immunohistochemistry, cardiac beating, transcriptional and chromatin immunoprecipitation quantitative polymerase chain reaction assays, bulk RNA sequencing (RNAseq) and assay for transposase-accessible chromatin using sequencing (ATACseq) analyses, FOXK1 was observed to be an important regulator of cardiogenesis. Flow cytometry analyses revealed perturbed cardiogenesis in Foxk1 KO embryoid bodies (EBs). Bulk RNAseq analysis at two developmental stages showed a significant reduction of the cardiac molecular program in Foxk1 KO EBs compared to the control EBs. ATACseq analysis during EB differentiation demonstrated that the chromatin landscape nearby known important regulators of cardiogenesis was significantly relaxed in control EBs compared to Foxk1 KO EBs. Furthermore, we demonstrated that in the absence of FOXK1, cardiac differentiation was markedly impaired by assaying for cardiac Troponin T expression and cardiac contractility. We demonstrate that FOXK1 is an important regulator of cardiogenesis by repressing the Wnt/β-catenin signalling pathway and thereby promoting differentiation. CONCLUSION These results identify FOXK1 as an essential transcriptional and epigenetic regulator of cardiovascular development. Mechanistically, FOXK1 represses Wnt signalling to promote the development of cardiac progenitor cells.
Collapse
Affiliation(s)
- Javier E Sierra-Pagan
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Nikita Dsouza
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Satyabrata Das
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Thijs A Larson
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Jacob R Sorensen
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Xiao Ma
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Patricia Stan
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Erik J Wanberg
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Xiaozhong Shi
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Mary G Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, 516 Delaware ST SE Minneapolis, MN 55455, USA
| | - Wuming Gong
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Cardiovascular Division, Department of Medicine, University of Minnesota, 401 East River ParkwayVCRC 1st Floor, Suite 131 Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, 2001 6th Street SE Minneapolis, MN 55455, USA
- Paul and Sheila Wellstone Muscular Dystrophy Center, University of Minnesota, 516 Delaware ST SE Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Steimle JD, Kim C, Rowton M, Nadadur RD, Wang Z, Stocker M, Hoffmann AD, Hanson E, Kweon J, Sinha T, Choi K, Black BL, Cunningham JM, Moskowitz IP, Ikegami K. ETV2 primes hematoendothelial gene enhancers prior to hematoendothelial fate commitment. Cell Rep 2023; 42:112665. [PMID: 37330911 PMCID: PMC10592526 DOI: 10.1016/j.celrep.2023.112665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/14/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population. Accessible ETV2-binding sites are active at the Etv2 locus but not at other hematoendothelial regulator genes. Hematoendothelial commitment coincides with the activation of a small repertoire of previously accessible ETV2-binding sites at hematoendothelial regulators. Hematoendothelial differentiation accompanies activation of a large repertoire of new ETV2-binding sites and upregulation of hematopoietic and endothelial gene regulatory networks. This work distinguishes specification, commitment, and sublineage differentiation phases of ETV2-dependent transcription and suggests that the shift from ETV2 binding to ETV2-bound enhancer activation, not ETV2 binding to target enhancers, drives hematoendothelial fate commitment.
Collapse
Affiliation(s)
- Jeffrey D Steimle
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Megan Rowton
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Rangarajan D Nadadur
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Zhezhen Wang
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Junghun Kweon
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John M Cunningham
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, and Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Kohta Ikegami
- Division of Molecular and Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
16
|
Wu R, Park J, Qian Y, Shi Z, Hu R, Yuan Y, Xiong S, Wang Z, Yan G, Ong SG, Song Q, Song Z, Mahmoud AM, Xu P, He C, Arpke RW, Kyba M, Shu G, Jiang Q, Jiang Y. Genetically prolonged beige fat in male mice confers long-lasting metabolic health. Nat Commun 2023; 14:2731. [PMID: 37169793 PMCID: PMC10175245 DOI: 10.1038/s41467-023-38471-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
A potential therapeutic target to curb obesity and diabetes is thermogenic beige adipocytes. However, beige adipocytes quickly transition into white adipocytes upon removing stimuli. Here, we define the critical role of cyclin dependent kinase inhibitor 2A (Cdkn2a) as a molecular pedal for the beige-to-white transition. Beige adipocytes lacking Cdkn2a exhibit prolonged lifespan, and male mice confer long-term metabolic protection from diet-induced obesity, along with enhanced energy expenditure and improved glucose tolerance. Mechanistically, Cdkn2a promotes the expression and activity of beclin 1 (BECN1) by directly binding to its mRNA and its negative regulator BCL2 like 1 (BCL2L1), activating autophagy and accelerating the beige-to-white transition. Reactivating autophagy by pharmacological or genetic methods abolishes beige adipocyte maintenance induced by Cdkn2a ablation. Furthermore, hyperactive BECN1 alone accelerates the beige-to-white transition in mice and human. Notably, both Cdkn2a and Becn1 exhibit striking positive correlations with adiposity. Hence, blocking Cdkn2a-mediated BECN1 activity holds therapeutic potential to sustain beige adipocytes in treating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolei Xiong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Congcong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
17
|
Gödecke N, Herrmann S, Weichelt V, Wirth D. A Ubiquitous Chromatin Opening Element and DNA Demethylation Facilitate Doxycycline-Controlled Expression during Differentiation and in Transgenic Mice. ACS Synth Biol 2023; 12:482-491. [PMID: 36755406 PMCID: PMC9942253 DOI: 10.1021/acssynbio.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic expression cassettes provide the ability to control transgene expression in experimental animal models through external triggers, enabling the study of gene function and the modulation of endogenous regulatory networks in vivo. The performance of synthetic expression cassettes in transgenic animals critically depends on the regulatory properties of the respective chromosomal integration sites, which are affected by the remodeling of the chromatin structure during development. The epigenetic status may affect the transcriptional activity of the synthetic cassettes and even lead to transcriptional silencing, depending on the chromosomal sites and the tissue. In this study, we investigated the influence of the ubiquitous chromosome opening element (UCOE) HNRPA2B1-CBX3 and its subfragments A2UCOE and CBX3 on doxycycline-controlled expression modules within the chromosomal Rosa26 locus. While HNRPA2B1-CBX3 and A2UCOE reduced the expression of the synthetic cassettes in mouse embryonic stem cells, CBX3 stabilized the expression and facilitated doxycycline-controlled expression after in vitro differentiation. In transgenic mice, the CBX3 element protected the cassettes from overt silencing although the expression was moderate and only partially controlled by doxycycline. We demonstrate that CBX3-flanked synthetic cassettes can be activated by decitabine-mediated blockade of DNA methylation or by specific recruitment of the catalytic demethylation domain of the ten-eleven translocation protein TET1 to the synthetic promoter. This suggests that CBX3 renders the synthetic cassettes permissive for subsequent epigenetic activation, thereby supporting doxycycline-controlled expression. Together, this study reveals a strategy for overcoming epigenetic constraints of synthetic expression cassettes, facilitating externally controlled transgene expression in mice.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Herrmann
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Viola Weichelt
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany,Institute
of Experimental Hematology, Medical University
Hannover (MHH), 30625 Hannover, Germany,
| |
Collapse
|
18
|
Iannone C, Kainov Y, Zhuravskaya A, Hamid F, Nojima T, Makeyev EV. PTBP1-activated co-transcriptional splicing controls epigenetic status of pluripotent stem cells. Mol Cell 2023; 83:203-218.e9. [PMID: 36626906 DOI: 10.1016/j.molcel.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Many spliceosomal introns are excised from nascent transcripts emerging from RNA polymerase II (RNA Pol II). The extent of cell-type-specific regulation and possible functions of such co-transcriptional events remain poorly understood. We examined the role of the RNA-binding protein PTBP1 in this process using an acute depletion approach followed by the analysis of chromatin- and RNA Pol II-associated transcripts. We show that PTBP1 activates the co-transcriptional excision of hundreds of introns, a surprising effect given that this protein is known to promote intron retention. Importantly, some co-transcriptionally activated introns fail to complete their splicing without PTBP1. In a striking example, retention of a PTBP1-dependent intron triggers nonsense-mediated decay of transcripts encoding DNA methyltransferase DNMT3B. We provide evidence that this regulation facilitates the natural decline in DNMT3B levels in developing neurons and protects differentiation-specific genes from ectopic methylation. Thus, PTBP1-activated co-transcriptional splicing is a widespread phenomenon mediating epigenetic control of cellular identity.
Collapse
Affiliation(s)
- Camilla Iannone
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Yaroslav Kainov
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Takayuki Nojima
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
19
|
Dupuy V, Prieur M, Pizzoccaro A, Margarido C, Valjent E, Bockaert J, Bouschet T, Marin P, Chaumont-Dubel S. Spatiotemporal dynamics of 5-HT 6 receptor ciliary localization during mouse brain development. Neurobiol Dis 2023; 176:105949. [PMID: 36496200 DOI: 10.1016/j.nbd.2022.105949] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.
Collapse
Affiliation(s)
- Vincent Dupuy
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Matthieu Prieur
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Anne Pizzoccaro
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Clara Margarido
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Joël Bockaert
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Philippe Marin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Séverine Chaumont-Dubel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
20
|
Caron L, Testa S, Magdinier F. Induced Pluripotent Stem Cells for Modeling Physiological and Pathological Striated Muscle Complexity. J Neuromuscul Dis 2023; 10:761-776. [PMID: 37522215 PMCID: PMC10578229 DOI: 10.3233/jnd-230076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Neuromuscular disorders (NMDs) are a large group of diseases associated with either alterations of skeletal muscle fibers, motor neurons or neuromuscular junctions. Most of these diseases is characterized with muscle weakness or wasting and greatly alter the life of patients. Animal models do not always recapitulate the phenotype of patients. The development of innovative and representative human preclinical models is thus strongly needed for modeling the wide diversity of NMDs, characterization of disease-associated variants, investigation of novel genes function, or the development of therapies. Over the last decade, the use of patient's derived induced pluripotent stem cells (hiPSC) has resulted in tremendous progress in biomedical research, including for NMDs. Skeletal muscle is a complex tissue with multinucleated muscle fibers supported by a dense extracellular matrix and multiple cell types including motor neurons required for the contractile activity. Major challenges need now to be tackled by the scientific community to increase maturation of muscle fibers in vitro, in particular for modeling adult-onset diseases affecting this tissue (neuromuscular disorders, cachexia, sarcopenia) and the evaluation of therapeutic strategies. In the near future, rapidly evolving bioengineering approaches applied to hiPSC will undoubtedly become highly instrumental for investigating muscle pathophysiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Leslie Caron
- Aix-Marseille Univ-INSERM, MMG, Marseille, France
| | | | | |
Collapse
|
21
|
Costa A, Powell LM, Malaguti M, Soufi A, Lowell S, Jarman AP. Repurposing the lineage-determining transcription factor Atoh1 without redistributing its genomic binding sites. Front Cell Dev Biol 2022; 10:1016367. [PMID: 36420143 PMCID: PMC9676683 DOI: 10.3389/fcell.2022.1016367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Although the lineage-determining ability of transcription factors is often modulated according to cellular context, the mechanisms by which such switching occurs are not well known. Using a transcriptional programming model, we found that Atoh1 is repurposed from a neuronal to an inner ear hair cell (HC) determinant by the combined activities of Gfi1 and Pou4f3. In this process, Atoh1 maintains its regulation of neuronal genes but gains ability to regulate HC genes. Pou4f3 enables Atoh1 access to genomic locations controlling the expression of sensory (including HC) genes, but Atoh1 + Pou4f3 are not sufficient for HC differentiation. Gfi1 is key to the Atoh1-induced lineage switch, but surprisingly does not alter Atoh1's binding profile. Gfi1 acts in two divergent ways. It represses the induction by Atoh1 of genes that antagonise HC differentiation, a function in keeping with its well-known repressor role in haematopoiesis. Remarkably, we find that Gfi1 also acts as a co-activator: it binds directly to Atoh1 at existing target genes to enhance its activity. These findings highlight the diversity of mechanisms by which one TF can redirect the activity of another to enable combinatorial control of cell identity.
Collapse
Affiliation(s)
- Aida Costa
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Lynn M. Powell
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | - Mattias Malaguti
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdenour Soufi
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sally Lowell
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew P. Jarman
- Centre for Discovery Brain Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Serina Secanechia YN, Bergiers I, Rogon M, Arnold C, Descostes N, Le S, López-Anguita N, Ganter K, Kapsali C, Bouilleau L, Gut A, Uzuotaite A, Aliyeva A, Zaugg JB, Lancrin C. Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition. Sci Rep 2022; 12:16974. [PMID: 36217016 PMCID: PMC9550822 DOI: 10.1038/s41598-022-20906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.
Collapse
Affiliation(s)
- Yasmin Natalia Serina Secanechia
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Isabelle Bergiers
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419619.20000 0004 0623 0341Present Address: Therapeutics Discovery, Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Matt Rogon
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Centre for Biomolecular Network Analysis, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian Arnold
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nicolas Descostes
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, Bioinformatics Services, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Stephanie Le
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Natalia López-Anguita
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419538.20000 0000 9071 0620Present Address: Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Kerstin Ganter
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Chrysi Kapsali
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Lea Bouilleau
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Aaron Gut
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Auguste Uzuotaite
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Ayshan Aliyeva
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Judith B. Zaugg
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christophe Lancrin
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
23
|
Rowton M, Perez-Cervantes C, Hur S, Jacobs-Li J, Lu E, Deng N, Guzzetta A, Hoffmann AD, Stocker M, Steimle JD, Lazarevic S, Oubaha S, Yang XH, Kim C, Yu S, Eckart H, Koska M, Hanson E, Chan SSK, Garry DJ, Kyba M, Basu A, Ikegami K, Pott S, Moskowitz IP. Hedgehog signaling activates a mammalian heterochronic gene regulatory network controlling differentiation timing across lineages. Dev Cell 2022; 57:2181-2203.e9. [PMID: 36108627 PMCID: PMC10506397 DOI: 10.1016/j.devcel.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
Many developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro. GLI1 directly activated a de novo progenitor-specific network in vitro, akin to that of SHF progenitors in vivo, which prevented the onset of the cardiac differentiation program. A Hedgehog signaling-dependent active-to-repressive GLI transition functioned as a differentiation timer, restricting the progenitor network to the SHF. GLI1 expression was associated with progenitor status across germ layers, and it delayed the differentiation of neural progenitors in vitro, suggesting a broad role for Hedgehog signaling as a heterochronic pathway.
Collapse
Affiliation(s)
- Megan Rowton
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Carlos Perez-Cervantes
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Suzy Hur
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jessica Jacobs-Li
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Emery Lu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Nikita Deng
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexander Guzzetta
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Andrew D Hoffmann
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Matthew Stocker
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Jeffrey D Steimle
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sonja Lazarevic
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sophie Oubaha
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Xinan H Yang
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Chul Kim
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Shuhan Yu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Heather Eckart
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Mervenaz Koska
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Erika Hanson
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sunny S K Chan
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anindita Basu
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Sebastian Pott
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Departments of Pediatrics, Pathology, Human Genetics, and Genetic Medicine, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
24
|
Hosur V, Low BE, Wiles MV. Programmable RNA-Guided Large DNA Transgenesis by CRISPR/Cas9 and Site-Specific Integrase Bxb1. Front Bioeng Biotechnol 2022; 10:910151. [PMID: 35866031 PMCID: PMC9294445 DOI: 10.3389/fbioe.2022.910151] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
The inability to insert large DNA constructs into the genome efficiently and precisely is a key challenge in genomic engineering. Random transgenesis, which is widely used, lacks precision, and comes with a slew of drawbacks. Lentiviral and adeno-associated viral methods are plagued by, respectively, DNA toxicity and a payload capacity of less than 5 kb. Homology-directed repair (HDR) techniques based on CRISPR-Cas9 can be effective, but only in the 1-5 kb range. In addition, long homology arms-DNA sequences that permit construct insertion-of lengths ranging from 0.5 to 5 kb are required by currently known HDR-based techniques. A potential new method that uses Cas9-guided transposases to insert DNA structures up to 10 kb in length works well in bacteria, but only in bacteria. Surmounting these roadblocks, a new toolkit has recently been developed that combines RNA-guided Cas9 and the site-specific integrase Bxb1 to integrate DNA constructs ranging in length from 5 to 43 kb into mouse zygotes with germline transmission and into human cells. This ground-breaking toolkit will give researchers a valuable resource for developing novel, urgently needed mouse and human induced pluripotent stem cell (hiPSC) models of cancer and other genetic diseases, as well as therapeutic gene integration and biopharmaceutical applications, such as the development of stable cell lines to produce therapeutic protein products.
Collapse
Affiliation(s)
- Vishnu Hosur
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States
| | | | | |
Collapse
|
25
|
Pinglay S, Bulajić M, Rahe DP, Huang E, Brosh R, Mamrak NE, King BR, German S, Cadley JA, Rieber L, Easo N, Lionnet T, Mahony S, Maurano MT, Holt LJ, Mazzoni EO, Boeke JD. Synthetic regulatory reconstitution reveals principles of mammalian Hox cluster regulation. Science 2022; 377:eabk2820. [PMID: 35771912 PMCID: PMC9648154 DOI: 10.1126/science.abk2820] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Precise Hox gene expression is crucial for embryonic patterning. Intra-Hox transcription factor binding and distal enhancer elements have emerged as the major regulatory modules controlling Hox gene expression. However, quantifying their relative contributions has remained elusive. Here, we introduce "synthetic regulatory reconstitution," a conceptual framework for studying gene regulation, and apply it to the HoxA cluster. We synthesized and delivered variant rat HoxA clusters (130 to 170 kilobases) to an ectopic location in the mouse genome. We found that a minimal HoxA cluster recapitulated correct patterns of chromatin remodeling and transcription in response to patterning signals, whereas the addition of distal enhancers was needed for full transcriptional output. Synthetic regulatory reconstitution could provide a generalizable strategy for deciphering the regulatory logic of gene expression in complex genomes.
Collapse
Affiliation(s)
- Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Dylan P. Rahe
- Department of Biology, New York University, New York, NY 10003, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Nicholas E. Mamrak
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Benjamin R. King
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Sergei German
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - John A. Cadley
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Lila Rieber
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Nicole Easo
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Timothée Lionnet
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Cell Biology, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Matthew T. Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Liam J. Holt
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | | | - Jef D. Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
26
|
Aydin B, Sierk M, Moreno-Estelles M, Tejavibulya L, Kumar N, Flames N, Mahony S, Mazzoni EO. Foxa2 and Pet1 Direct and Indirect Synergy Drive Serotonergic Neuronal Differentiation. Front Neurosci 2022; 16:903881. [PMID: 35801179 PMCID: PMC9254625 DOI: 10.3389/fnins.2022.903881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal programming by forced expression of transcription factors (TFs) holds promise for clinical applications of regenerative medicine. However, the mechanisms by which TFs coordinate their activities on the genome and control distinct neuronal fates remain obscure. Using direct neuronal programming of embryonic stem cells, we dissected the contribution of a series of TFs to specific neuronal regulatory programs. We deconstructed the Ascl1-Lmx1b-Foxa2-Pet1 TF combination that has been shown to generate serotonergic neurons and found that stepwise addition of TFs to Ascl1 canalizes the neuronal fate into a diffuse monoaminergic fate. The addition of pioneer factor Foxa2 represses Phox2b to induce serotonergic fate, similar to in vivo regulatory networks. Foxa2 and Pet1 appear to act synergistically to upregulate serotonergic fate. Foxa2 and Pet1 co-bind to a small fraction of genomic regions but mostly bind to different regulatory sites. In contrast to the combinatorial binding activities of other programming TFs, Pet1 does not strictly follow the Foxa2 pioneer. These findings highlight the challenges in formulating generalizable rules for describing the behavior of TF combinations that program distinct neuronal subtypes.
Collapse
Affiliation(s)
- Begüm Aydin
- Department of Biology, New York University, New York City, NY, United States
| | - Michael Sierk
- Interdisciplinary Sciences Department, Saint Vincent College, Latrobe, PA, United States
| | - Mireia Moreno-Estelles
- Department of Biology, New York University, New York City, NY, United States
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IIBV-CSIC, Valencia, Spain
| | - Link Tejavibulya
- Department of Biology, New York University, New York City, NY, United States
| | - Nikathan Kumar
- Department of Biology, New York University, New York City, NY, United States
| | - Nuria Flames
- Developmental Neurobiology Unit, Instituto de Biomedicina de Valencia IIBV-CSIC, Valencia, Spain
- *Correspondence: Nuria Flames,
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Shaun Mahony,
| | - Esteban O. Mazzoni
- Department of Biology, New York University, New York City, NY, United States
- Esteban O. Mazzoni,
| |
Collapse
|
27
|
Zhang W, Brosh R, McCulloch LH, Zhu Y, Ashe H, Ellis G, Camellato BR, Kim SY, Maurano MT, Boeke JD. A conditional counterselectable Piga knockout in mouse embryonic stem cells for advanced genome writing applications. iScience 2022; 25:104438. [PMID: 35692632 PMCID: PMC9184564 DOI: 10.1016/j.isci.2022.104438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 03/18/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Overwriting counterselectable markers is an efficient strategy for removing wild-type DNA or replacing it with payload DNA of interest. Currently, one bottleneck of efficient genome engineering in mammals is the shortage of counterselectable (negative selection) markers that work robustly without affecting organismal developmental potential. Here, we report a conditional Piga knockout strategy that enables efficient proaerolysin-based counterselection in mouse embryonic stem cells. The conditional Piga knockout cells show similar proaerolysin resistance as full (non-conditional) Piga deletion cells, which enables the use of a PIGA transgene as a counterselectable marker for genome engineering purposes. Native Piga function is readily restored in conditional Piga knockout cells to facilitate subsequent mouse development. We also demonstrate the generality of our strategy by engineering a conditional knockout of endogenous Hprt. Taken together, our work provides a new tool for advanced mouse genome writing and mouse model establishment.
Collapse
Affiliation(s)
- Weimin Zhang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Laura H McCulloch
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Yinan Zhu
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Hannah Ashe
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Gwen Ellis
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA
| | | | - Sang Yong Kim
- Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201, USA
| |
Collapse
|
28
|
Extended intergenic DNA contributes to neuron-specific expression of neighboring genes in the mammalian nervous system. Nat Commun 2022; 13:2733. [PMID: 35585070 PMCID: PMC9117226 DOI: 10.1038/s41467-022-30192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/20/2022] [Indexed: 11/08/2022] Open
Abstract
Mammalian genomes comprise largely intergenic noncoding DNA with numerous cis-regulatory elements. Whether and how the size of intergenic DNA affects gene expression in a tissue-specific manner remain unknown. Here we show that genes with extended intergenic regions are preferentially expressed in neural tissues but repressed in other tissues in mice and humans. Extended intergenic regions contain twice as many active enhancers in neural tissues compared to other tissues. Neural genes with extended intergenic regions are globally co-expressed with neighboring neural genes controlled by distinct enhancers in the shared intergenic regions. Moreover, generic neural genes expressed in multiple tissues have significantly longer intergenic regions than neural genes expressed in fewer tissues. The intergenic regions of the generic neural genes have many tissue-specific active enhancers containing distinct transcription factor binding sites specific to each neural tissue. We also show that genes with extended intergenic regions are enriched for neural genes only in vertebrates. The expansion of intergenic regions may reflect the regulatory complexity of tissue-type-specific gene expression in the nervous system.
Collapse
|
29
|
Glover HJ, Shparberg RA, Morris MB. L-Proline Supplementation Drives Self-Renewing Mouse Embryonic Stem Cells to a Partially Primed Pluripotent State: The Early Primitive Ectoderm-Like Cell. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2490:11-24. [PMID: 35486235 DOI: 10.1007/978-1-0716-2281-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mouse embryonic stem cells (mESCs) can be grown under a variety of culture conditions as discrete cell states along the pluripotency continuum, ranging from the least mature "ground state" to being "primed" to differentiate. Cells along this continuum are demarcated by differences in gene expression, X chromosome inactivation, ability to form chimeras and epigenetic marks. We have developed a protocol to differentiate "naïve" mESCs to a "partially primed" state by adding the amino acid L-proline to self-renewal medium. These cells express the primitive ectoderm markers Dnmt3b and Fgf5, and are thus called early primitive ectoderm-like (EPL) cells. In addition to changes in gene expression, these cells undergo a morphological change to flattened, dispersed colonies, have an increased proliferation rate, and a predisposition to neural fate. EPL cells can be used to study the cell states along the pluripotency continuum, peri-implantation embryogenesis, and as a starting point for efficient neuronal differentiation.
Collapse
Affiliation(s)
- Hannah J Glover
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Rachel A Shparberg
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Michael B Morris
- Bosch Institute and Discipline of Physiology, School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
30
|
Garipler G, Lu C, Morrissey A, Lopez-Zepeda LS, Pei Y, Vidal SE, Zen Petisco Fiore AP, Aydin B, Stadtfeld M, Ohler U, Mahony S, Sanjana NE, Mazzoni EO. The BTB transcription factors ZBTB11 and ZFP131 maintain pluripotency by repressing pro-differentiation genes. Cell Rep 2022; 38:110524. [PMID: 35294876 PMCID: PMC8972945 DOI: 10.1016/j.celrep.2022.110524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/21/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
In pluripotent cells, a delicate activation-repression balance maintains pro-differentiation genes ready for rapid activation. The identity of transcription factors (TFs) that specifically repress pro-differentiation genes remains obscure. By targeting ∼1,700 TFs with CRISPR loss-of-function screen, we found that ZBTB11 and ZFP131 are required for embryonic stem cell (ESC) pluripotency. ESCs without ZBTB11 or ZFP131 lose colony morphology, reduce proliferation rate, and upregulate transcription of genes associated with three germ layers. ZBTB11 and ZFP131 bind proximally to pro-differentiation genes. ZBTB11 or ZFP131 loss leads to an increase in H3K4me3, negative elongation factor (NELF) complex release, and concomitant transcription at associated genes. Together, our results suggest that ZBTB11 and ZFP131 maintain pluripotency by preventing premature expression of pro-differentiation genes and present a generalizable framework to maintain cellular potency.
Collapse
Affiliation(s)
- Görkem Garipler
- Department of Biology, New York University, New York, NY 10003, USA
| | - Congyi Lu
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Alexis Morrissey
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lorena S Lopez-Zepeda
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Yingzhen Pei
- Department of Biology, New York University, New York, NY 10003, USA
| | - Simon E Vidal
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | | | - Begüm Aydin
- Department of Biology, New York University, New York, NY 10003, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Uwe Ohler
- Department of Biology, Humboldt Universität zu Berlin, Berlin 10117, Germany; Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine, Berlin 13125, Germany
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Neville E Sanjana
- Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA.
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
31
|
Hall ML, Givens S, Santosh N, Iacovino M, Kyba M, Ogle BM. Laminin 411 mediates endothelial specification via multiple signaling axes that converge on β-catenin. Stem Cell Reports 2022; 17:569-583. [PMID: 35120622 PMCID: PMC9039757 DOI: 10.1016/j.stemcr.2022.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/24/2022] Open
Abstract
The extracellular matrix (ECM) provides essential cues to promote endothelial specification during tissue development in vivo; correspondingly, ECM is considered essential for endothelial differentiation outside of the body. However, systematic studies to assess the precise contribution of individual ECM proteins to endothelial differentiation have not been conducted. Further, the multi-component nature of differentiation protocols makes it challenging to study the underlying mechanisms by which the ECM contributes to cell fate. In this study, we determined that Laminin 411 alone increases endothelial differentiation of induced pluripotent stem cells over collagen I or Matrigel. The effect of ECM was shown to be independent of vascular endothelial growth factor (VEGF) binding capacity. We also show that ECM-guided endothelial differentiation is dependent on activation of focal adhesion kinase (FAK), integrin-linked kinase (ILK), Notch, and β-catenin pathways. Our results indicate that ECM contributes to endothelial differentiation through multiple avenues, which converge at the expression of active β-catenin.
Collapse
Affiliation(s)
- Mikayla L Hall
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Sophie Givens
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Natasha Santosh
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Michelina Iacovino
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Michael Kyba
- Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Twin Cities, 7-130 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Lillehei Heart Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
32
|
McMahon R, Sibbritt T, Aryamanesh N, Masamsetti VP, Tam PPL. Loss of Foxd4 Impacts Neurulation and Cranial Neural Crest Specification During Early Head Development. Front Cell Dev Biol 2022; 9:777652. [PMID: 35178396 PMCID: PMC8843869 DOI: 10.3389/fcell.2021.777652] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/30/2021] [Indexed: 11/19/2022] Open
Abstract
The specification of anterior head tissue in the late gastrulation mouse embryo relies on signaling cues from the visceral endoderm and anterior mesendoderm (AME). Genetic loss-of-function studies have pinpointed a critical requirement of LIM homeobox 1 (LHX1) transcription factor in these tissues for the formation of the embryonic head. Transcriptome analysis of embryos with gain-of-function LHX1 activity identified the forkhead box gene, Foxd4, as one downstream target of LHX1 in late-gastrulation E7.75 embryos. Our analysis of single-cell RNA-seq data show Foxd4 is co-expressed with Lhx1 and Foxa2 in the anterior midline tissue of E7.75 mouse embryos, and in the anterior neuroectoderm (ANE) at E8.25 alongside head organizer genes Otx2 and Hesx1. To study the role of Foxd4 during early development we used CRISPR-Cas9 gene editing in mouse embryonic stem cells (mESCs) to generate bi-allelic frameshift mutations in the coding sequence of Foxd4. In an in vitro model of the anterior neural tissues derived from Foxd4-loss of function (LOF) mESCs and extraembryonic endoderm cells, expression of head organizer genes as well as Zic1 and Zic2 was reduced, pointing to a need for FOXD4 in regulating early neuroectoderm development. Mid-gestation mouse chimeras harbouring Foxd4-LOF mESCs displayed craniofacial malformations and neural tube closure defects. Furthermore, our in vitro data showed a loss of FOXD4 impacts the expression of cranial neural crest markers Twist1 and Sox9. Our findings have demonstrated that FOXD4 is essential in the AME and later in the ANE for rostral neural tube closure and neural crest specification during head development.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Tennille Sibbritt
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - Nadar Aryamanesh
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia
| | - V Pragathi Masamsetti
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, Sydney, NSW, Australia.,School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Darlington, NSW, Australia
| |
Collapse
|
33
|
CpG island reconfiguration for the establishment and synchronization of polycomb functions upon exit from naive pluripotency. Mol Cell 2022; 82:1169-1185.e7. [PMID: 35202573 DOI: 10.1016/j.molcel.2022.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.
Collapse
|
34
|
Singh A, Mahesh A, Noack F, Cardoso de Toledo B, Calegari F, Tiwari VK. Tcf12 and NeuroD1 cooperatively drive neuronal migration during cortical development. Development 2022; 149:dev200250. [PMID: 35147187 PMCID: PMC8918803 DOI: 10.1242/dev.200250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/31/2021] [Indexed: 01/06/2023]
Abstract
Corticogenesis consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. NeuroD1, a basic helix-loop-helix (bHLH) transcription factor (TF), contributes to all of these events, but how it coordinates these independently is still unknown. Here, we demonstrate that NeuroD1 expression is accompanied by a gain of active chromatin at a large number of genomic loci. Interestingly, transcriptional activation of these loci relied on a high local density of adjacent bHLH TFs motifs, including, predominantly, Tcf12. We found that activity and expression levels of Tcf12 were high in cells with induced levels of NeuroD1 that spanned the transition of cortical progenitors from proliferative to neurogenic divisions. Moreover, Tcf12 forms a complex with NeuroD1 and co-occupies a subset of NeuroD1 target loci. This Tcf12-NeuroD1 cooperativity is essential for gaining active chromatin and targeted expression of genes involved in cell migration. By functional manipulation in vivo, we further show that Tcf12 is essential during cortical development for the correct migration of newborn neurons and, hence, for proper cortical lamination.
Collapse
Affiliation(s)
- Aditi Singh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| | - Florian Noack
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Beatriz Cardoso de Toledo
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Federico Calegari
- CRTD-Center for Regenerative Therapies, School of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Vijay K. Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
35
|
Kafer GR. Small Interfering RNA (siRNA) Transfection in Epiblast Stem Cells. Methods Mol Biol 2022; 2490:47-55. [PMID: 35486238 DOI: 10.1007/978-1-0716-2281-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lipid-based transfection of siRNA is a technique routinely used to investigate gene function in experiments using mammalian cells cultured in vitro. Due to innate differences in cellular characteristics, the efficiency of lipid-based transfection is variable across cell types. Pluripotent cells which exist in a "primed" state such as human embryonic stem cells (hESCs) and mouse epiblast stem cells (mEpiSCs) are notorious for being refractory to lipid-based transfection systems. Herein we describe a forward transfection protocol which we routinely use to achieve upwards of 70% transfection efficiency rates in mEpiSCs. Our protocol also includes a suggested transfection timeline and details pertaining to the techniques we use to validate transfection success.
Collapse
Affiliation(s)
- Georgia R Kafer
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Moreton Bay, QLD, Australia.
- Sunshine Coast Health Institute, Birtinya, QLD, Australia.
| |
Collapse
|
36
|
Ma Q, Yang L, Tolentino K, Wang G, Zhao Y, Litzenburger UM, Shi Q, Zhu L, Yang C, Jiao H, Zhang F, Li R, Tsai MC, Chen JA, Lai I, Zeng H, Li L, Chang HY. Inducible lncRNA transgenic mice reveal continual role of HOTAIR in promoting breast cancer metastasis. eLife 2022; 11:79126. [PMID: 36579891 PMCID: PMC9831604 DOI: 10.7554/elife.79126] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
HOTAIR is a 2.2-kb long noncoding RNA (lncRNA) whose dysregulation has been linked to oncogenesis, defects in pattern formation during early development, and irregularities during the process of epithelial-to-mesenchymal transition (EMT). However, the oncogenic transformation determined by HOTAIR in vivo and its impact on chromatin dynamics are incompletely understood. Here, we generate a transgenic mouse model with doxycycline-inducible expression of human HOTAIR in the context of the MMTV-PyMT breast cancer-prone background to systematically interrogate the cellular mechanisms by which human HOTAIR lncRNA acts to promote breast cancer progression. We show that sustained high levels of HOTAIR over time increased breast metastatic capacity and invasiveness in breast cancer cells, promoting migration and subsequent metastasis to the lung. Subsequent withdrawal of HOTAIR overexpression reverted the metastatic phenotype, indicating oncogenic lncRNA addiction. Furthermore, HOTAIR overexpression altered both the cellular transcriptome and chromatin accessibility landscape of multiple metastasis-associated genes and promoted EMT. These alterations are abrogated within several cell cycles after HOTAIR expression is reverted to basal levels, indicating an erasable lncRNA-associated epigenetic memory. These results suggest that a continual role for HOTAIR in programming a metastatic gene regulatory program. Targeting HOTAIR lncRNA may potentially serve as a therapeutic strategy to ameliorate breast cancer progression.
Collapse
Affiliation(s)
- Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Karen Tolentino
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Guiping Wang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Yang Zhao
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Ulrike M Litzenburger
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Quanming Shi
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Lin Zhu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Chen Yang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huiyuan Jiao
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rui Li
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Miao-Chih Tsai
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States
| | - Jun-An Chen
- Institute of Molecular Biology, Academia SinicaTaipeiTaiwan
| | - Ian Lai
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States,Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| | - Hong Zeng
- Transgenic, Knockout, and Tumor Model Center, Stanford University School of MedicineStanfordUnited States,Stanford Cancer Institute, Stanford University School of MedicineStanfordUnited States
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education,Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of MedicineStanfordUnited States,Howard Hughes Medical Institute, Stanford UniversityStanfordUnited States
| |
Collapse
|
37
|
Jalal S, Dastidar S, Tedesco FS. Advanced models of human skeletal muscle differentiation, development and disease: Three-dimensional cultures, organoids and beyond. Curr Opin Cell Biol 2021; 73:92-104. [PMID: 34384976 PMCID: PMC8692266 DOI: 10.1016/j.ceb.2021.06.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Advanced in vitro models of human skeletal muscle tissue are increasingly needed to model complex developmental dynamics and disease mechanisms not recapitulated in animal models or in conventional monolayer cell cultures. There has been impressive progress towards creating such models by using tissue engineering approaches to recapitulate a range of physical and biochemical components of native human skeletal muscle tissue. In this review, we discuss recent studies focussed on developing complex in vitro models of human skeletal muscle beyond monolayer cell cultures, involving skeletal myogenic differentiation from human primary myoblasts or pluripotent stem cells, often in the presence of structural scaffolding support. We conclude with our outlook on the future of advanced skeletal muscle three-dimensional cultures (e.g. organoids and biofabrication) to produce physiologically and clinically relevant platforms for disease modelling and therapy development in musculoskeletal and neuromuscular disorders.
Collapse
Affiliation(s)
- Salma Jalal
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom
| | - Sumitava Dastidar
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom
| | - Francesco Saverio Tedesco
- Department of Cell and Developmental Biology, University College London, WC1E 6DE London, United Kingdom; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom; Dubowitz Neuromuscular Centre, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom; Department of Paediatric Neurology, Great Ormond Street Hospital for Children, WC1N 3JH London, United Kingdom.
| |
Collapse
|
38
|
Dai Z, Li R, Hou Y, Li Q, Zhao K, Li T, Li MJ, Wu X. Inducible CRISPRa screen identifies putative enhancers. J Genet Genomics 2021; 48:917-927. [PMID: 34531148 DOI: 10.1016/j.jgg.2021.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 12/28/2022]
Abstract
Enhancers are critical cis-regulatory elements that regulate spatiotemporal gene expression and control cell fates. However, the identification of enhancers in native cellular contexts still remains a challenge. Here, we develop an inducible CRISPR activation (CRISPRa) system by transgenic expression of doxycycline (Dox)-inducible dCas9-VPR in mouse embryonic stem cells (iVPR ESC). With this line, a simple introduction of specific guide RNAs targeting promoters or enhancers allows us to realize the effect of CRISPRa in an inducible, reversible, and Dox concentration-dependent manner. Taking advantage of this system, we induce tiled CRISPRa across genomic regions (105 kilobases) surrounding T (Brachyury), one of the key mesodermal development regulator genes. Moreover, we identify several CRISPRa-responsive elements with chromatin features of putative enhancers, including a region the homologous sequence in which humans harbors a body height risk variant. Genetic deletion of this region in ESC does affect subsequent T gene activation and osteogenic differentiation. Therefore, our inducible CRISPRa ESC line provides a convenient platform for high-throughput screens of putative enhancers.
Collapse
Affiliation(s)
- Zhongye Dai
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuying Hou
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Qian Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ke Zhao
- Department of Pharmacology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Ting Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Mulin Jun Li
- Department of Pharmacology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin 300450, China.
| |
Collapse
|
39
|
Gadd45g initiates embryonic stem cell differentiation and inhibits breast cell carcinogenesis. Cell Death Discov 2021; 7:271. [PMID: 34601500 PMCID: PMC8487429 DOI: 10.1038/s41420-021-00667-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/09/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Many self-renewal-promoting factors of embryonic stem cells (ESCs) have been implicated in carcinogenesis, while little known about the genes that direct ESCs exit from pluripotency and regulate tumor development. Here, we show that the transcripts of Gadd45 family genes, including Gadd45a, Gadd45b, and Gadd45g, are gradually increased upon mouse ESC differentiation. Upregulation of Gadd45 members decreases cell proliferation and induces endodermal and trophectodermal lineages. In contrast, knockdown of Gadd45 genes can delay mouse ESC differentiation. Mechanistic studies reveal that Gadd45g activates MAPK signaling by increasing expression levels of the positive modulators of this pathway, such as Csf1r, Igf2, and Fgfr3. Therefore, inhibition of MAPK signaling with a MEK specific inhibitor is capable of eliminating the differentiation phenotype caused by Gadd45g upregulation. Meanwhile, GADD45G functions as a suppressor in human breast cancers. Enforced expression of GADD45G significantly inhibits tumor formation and breast cancer metastasis in mice through limitation of the propagation and invasion of breast cancer cells. These results not only expand our understanding of the regulatory network of ESCs, but also help people better treatment of cancers by manipulating the prodifferentiation candidates.
Collapse
|
40
|
Mitchell LA, McCulloch LH, Pinglay S, Berger H, Bosco N, Brosh R, Bulajić M, Huang E, Hogan MS, Martin JA, Mazzoni EO, Davoli T, Maurano MT, Boeke JD. De novo assembly and delivery to mouse cells of a 101 kb functional human gene. Genetics 2021; 218:6179110. [PMID: 33742653 DOI: 10.1093/genetics/iyab038] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/10/2021] [Indexed: 11/14/2022] Open
Abstract
Design and large-scale synthesis of DNA has been applied to the functional study of viral and microbial genomes. New and expanded technology development is required to unlock the transformative potential of such bottom-up approaches to the study of larger mammalian genomes. Two major challenges include assembling and delivering long DNA sequences. Here, we describe a workflow for de novo DNA assembly and delivery that enables functional evaluation of mammalian genes on the length scale of 100 kilobase pairs (kb). The DNA assembly step is supported by an integrated robotic workcell. We demonstrate assembly of the 101 kb human HPRT1 gene in yeast from 3 kb building blocks, precision delivery of the resulting construct to mouse embryonic stem cells, and subsequent expression of the human protein from its full-length human gene in mouse cells. This workflow provides a framework for mammalian genome writing. We envision utility in producing designer variants of human genes linked to disease and their delivery and functional analysis in cell culture or animal models.
Collapse
Affiliation(s)
- Leslie A Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Laura H McCulloch
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Henri Berger
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Nazario Bosco
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Megan S Hogan
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - James A Martin
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | | | - Teresa Davoli
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Pathology, NYU Langone Health, New York, NY 10016, USA
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.,Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn, NY 11201,USA
| |
Collapse
|
41
|
Chang SH, Su YC, Chang M, Chen JA. MicroRNAs mediate precise control of spinal interneuron populations to exert delicate sensory-to-motor outputs. eLife 2021; 10:63768. [PMID: 33787491 PMCID: PMC8075582 DOI: 10.7554/elife.63768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
Although the function of microRNAs (miRNAs) during embryonic development has been intensively studied in recent years, their postnatal physiological functions remain largely unexplored due to inherent difficulties with the presence of redundant paralogs of the same seed. Thus, it is particularly challenging to uncover miRNA functions at neural circuit level since animal behaviors would need to be assessed upon complete loss of miRNA family functions. Here, we focused on the neural functions of MiR34/449 that manifests a dynamic expression pattern in the spinal cord from embryonic to postnatal stages. Our behavioral assays reveal that the loss of MiR34/449 miRNAs perturb thermally induced pain response thresholds and compromised delicate motor output in mice. Mechanistically, MiR34/449 directly target Satb1 and Satb2 to fine-tune the precise number of a sub-population of motor synergy encoder (MSE) neurons. Thus, MiR34/449 fine-tunes optimal development of Satb1/2on interneurons in the spinal cord, thereby refining explicit sensory-to-motor circuit outputs. The spinal cord is an information superhighway that connects the body with the brain. There, circuits of neurons process information from the brain before sending commands to muscles to generate movement. Each spinal cord circuit contains many types of neurons, whose identity is defined by the set of genes that are active or ‘expressed’ in each cell. When a gene is turned on, its DNA sequence is copied to produce a messenger RNA (mRNA), a type of molecule that the cell then uses as a template to produce a protein. MicroRNAs (or miRNAs), on the other hand, are tiny RNA molecules that help to regulate gene expression by binding to and ‘deactivating’ specific mRNAs, stopping them from being used to make proteins. Mammalian cells contain thousands of types of microRNAs, many of which have unknown roles: this includes MiR34/449, a group of six microRNAs found mainly within the nervous system. By using genetic technology to delete this family from the mouse genome, Chang et al. now show that MiR34/449 has a key role in regulating spinal cord circuits. The first clue came from discovering that mice without the MiR34/449 family had unusual posture and a tendency to walk on tiptoe. The animals were also more sensitive to heat, flicking their tails away from a heat source more readily than control mice. At a finer level, the spinal cords of the mutants contained greater numbers of cells in which two genes, Satb1 and Satb2, were turned on. Compared to their counterparts in control mice, the Satb1/2-positive neurons also showed differences in the rest of the genes they expressed. In essence, these neurons had a different genetic profile in MiR34/449 mutant mice, therefore disrupting the neural circuit they belong to. Based on these findings, Chang et al. propose that in wild-type mice, the MiR34/449 family fine-tunes the expression of Satb1/2 in the spinal cord during development. In doing so, it regulates the formation of the spinal cord circuits that help to control movement. More generally, these results provide clues about how miRNAs help to determine cell identities; further studies could then examine whether other miRNAs contribute to the development and maintenance of neuronal circuits.
Collapse
Affiliation(s)
- Shih-Hsin Chang
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang-Ming University and Academia Sinica, Taipei, Taiwan.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| | - Yi-Ching Su
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Mien Chang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-An Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
42
|
Brosh R, Laurent JM, Ordoñez R, Huang E, Hogan MS, Hitchcock AM, Mitchell LA, Pinglay S, Cadley JA, Luther RD, Truong DM, Boeke JD, Maurano MT. A versatile platform for locus-scale genome rewriting and verification. Proc Natl Acad Sci U S A 2021; 118:e2023952118. [PMID: 33649239 PMCID: PMC7958457 DOI: 10.1073/pnas.2023952118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Routine rewriting of loci associated with human traits and diseases would facilitate their functional analysis. However, existing DNA integration approaches are limited in terms of scalability and portability across genomic loci and cellular contexts. We describe Big-IN, a versatile platform for targeted integration of large DNAs into mammalian cells. CRISPR/Cas9-mediated targeting of a landing pad enables subsequent recombinase-mediated delivery of variant payloads and efficient positive/negative selection for correct clones in mammalian stem cells. We demonstrate integration of constructs up to 143 kb, and an approach for one-step scarless delivery. We developed a staged pipeline combining PCR genotyping and targeted capture sequencing for economical and comprehensive verification of engineered stem cells. Our approach should enable combinatorial interrogation of genomic functional elements and systematic locus-scale analysis of genome function.
Collapse
Affiliation(s)
- Ran Brosh
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Jon M Laurent
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Raquel Ordoñez
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Emily Huang
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Megan S Hogan
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | | | - Leslie A Mitchell
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Sudarshan Pinglay
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - John A Cadley
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Raven D Luther
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - David M Truong
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
| | - Jef D Boeke
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016;
- Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016
- Department of Biomedical Engineering, NYU Tandon School of Engineering, Brooklyn 11201, NY
| | - Matthew T Maurano
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016
- Department of Pathology, NYU Langone Health, New York, NY 10016
| |
Collapse
|
43
|
Tuvikene J, Esvald EE, Rähni A, Uustalu K, Zhuravskaya A, Avarlaid A, Makeyev EV, Timmusk T. Intronic enhancer region governs transcript-specific Bdnf expression in rodent neurons. eLife 2021; 10:65161. [PMID: 33560226 PMCID: PMC7891933 DOI: 10.7554/elife.65161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) controls the survival, growth, and function of neurons both during the development and in the adult nervous system. Bdnf is transcribed from several distinct promoters generating transcripts with alternative 5' exons. Bdnf transcripts initiated at the first cluster of exons have been associated with the regulation of body weight and various aspects of social behavior, but the mechanisms driving the expression of these transcripts have remained poorly understood. Here, we identify an evolutionarily conserved intronic enhancer region inside the Bdnf gene that regulates both basal and stimulus-dependent expression of the Bdnf transcripts starting from the first cluster of 5' exons in mouse and rat neurons. We further uncover a functional E-box element in the enhancer region, linking the expression of Bdnf and various pro-neural basic helix–loop–helix transcription factors. Collectively, our results shed new light on the cell-type- and stimulus-specific regulation of the important neurotrophic factor BDNF.
Collapse
Affiliation(s)
- Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.,Protobios LLC, Tallinn, Estonia
| | - Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.,Protobios LLC, Tallinn, Estonia
| | - Annika Rähni
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kaie Uustalu
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.,Protobios LLC, Tallinn, Estonia
| |
Collapse
|
44
|
Kellaway SG, Keane P, Edginton-White B, Regha K, Kennett E, Bonifer C. Different mutant RUNX1 oncoproteins program alternate haematopoietic differentiation trajectories. Life Sci Alliance 2021; 4:4/2/e202000864. [PMID: 33397648 PMCID: PMC7812315 DOI: 10.26508/lsa.202000864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Using integrated genome-wide and phenotypic methods this study investigates four different mutant RUNX1 oncoproteins and reveals how they differentially contribute to aberrant haematopoiesis. Mutations of the haematopoietic master regulator RUNX1 are associated with acute myeloid leukaemia, familial platelet disorder and other haematological malignancies whose phenotypes and prognoses depend upon the class of the RUNX1 mutation. The biochemical behaviour of these oncoproteins and their ability to cause unique diseases has been well studied, but the genomic basis of their differential action is unknown. To address this question we compared integrated phenotypic, transcriptomic, and genomic data from cells expressing four types of RUNX1 oncoproteins in an inducible fashion during blood development from embryonic stem cells. We show that each class of mutant RUNX1 deregulates endogenous RUNX1 function by a different mechanism, leading to specific alterations in developmentally controlled transcription factor binding and chromatin programming. The result is distinct perturbations in the trajectories of gene regulatory network changes underlying blood cell development which are consistent with the nature of the final disease phenotype. The development of novel treatments for RUNX1-driven diseases will therefore require individual consideration.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | | | - Kakkad Regha
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Ella Kennett
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
45
|
Montibus B, Cercy J, Bouschet T, Charras A, Maupetit-Méhouas S, Nury D, Gonthier-Guéret C, Chauveau S, Allegre N, Chariau C, Hong CC, Vaillant I, Marques CJ, Court F, Arnaud P. TET3 controls the expression of the H3K27me3 demethylase Kdm6b during neural commitment. Cell Mol Life Sci 2021; 78:757-768. [PMID: 32405722 PMCID: PMC9644380 DOI: 10.1007/s00018-020-03541-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 01/03/2023]
Abstract
The acquisition of cell identity is associated with developmentally regulated changes in the cellular histone methylation signatures. For instance, commitment to neural differentiation relies on the tightly controlled gain or loss of H3K27me3, a hallmark of polycomb-mediated transcriptional gene silencing, at specific gene sets. The KDM6B demethylase, which removes H3K27me3 marks at defined promoters and enhancers, is a key factor in neurogenesis. Therefore, to better understand the epigenetic regulation of neural fate acquisition, it is important to determine how Kdm6b expression is regulated. Here, we investigated the molecular mechanisms involved in the induction of Kdm6b expression upon neural commitment of mouse embryonic stem cells. We found that the increase in Kdm6b expression is linked to a rearrangement between two 3D configurations defined by the promoter contact with two different regions in the Kdm6b locus. This is associated with changes in 5-hydroxymethylcytosine (5hmC) levels at these two regions, and requires a functional ten-eleven-translocation (TET) 3 protein. Altogether, our data support a model whereby Kdm6b induction upon neural commitment relies on an intronic enhancer the activity of which is defined by its TET3-mediated 5-hmC level. This original observation reveals an unexpected interplay between the 5-hmC and H3K27me3 pathways during neural lineage commitment in mammals. It also questions to which extent KDM6B-mediated changes in H3K27me3 level account for the TET-mediated effects on gene expression.
Collapse
Affiliation(s)
- Bertille Montibus
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
- King's College, London, UK
| | - Jil Cercy
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - Tristan Bouschet
- Institut de Génomique Fonctionnelle (IGF), University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amandine Charras
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
- Department of Women's and Children's Health, Institute of Lifecourse and Medical Sciences, Liverpool University, Liverpool, UK
| | | | - David Nury
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | | | - Sabine Chauveau
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - Nicolas Allegre
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - Caroline Chariau
- Nantes Université, CHU Nantes, SFR Santé, FED4203, Inserm UMS 016, CNRS UMS 3556, 44000, Nantes, France
| | - Charles C Hong
- Vanderbilt University School of Medicine Nashville, Nashville, USA
| | - Isabelle Vaillant
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France
| | - C Joana Marques
- Life and Health Sciences Research Institute (ICVS), University of Minho, Campus de Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Genetics, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Franck Court
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France.
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, 63000, Clermont-Ferrand, France.
| |
Collapse
|
46
|
Zhang N, Mendieta-Esteban J, Magli A, Lilja KC, Perlingeiro RCR, Marti-Renom MA, Tsirigos A, Dynlacht BD. Muscle progenitor specification and myogenic differentiation are associated with changes in chromatin topology. Nat Commun 2020; 11:6222. [PMID: 33277476 PMCID: PMC7718254 DOI: 10.1038/s41467-020-19999-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/03/2020] [Indexed: 12/31/2022] Open
Abstract
Using Hi-C, promoter-capture Hi-C (pCHi-C), and other genome-wide approaches in skeletal muscle progenitors that inducibly express a master transcription factor, Pax7, we systematically characterize at high-resolution the spatio-temporal re-organization of compartments and promoter-anchored interactions as a consequence of myogenic commitment and differentiation. We identify key promoter-enhancer interaction motifs, namely, cliques and networks, and interactions that are dependent on Pax7 binding. Remarkably, Pax7 binds to a majority of super-enhancers, and together with a cadre of interacting transcription factors, assembles feed-forward regulatory loops. During differentiation, epigenetic memory and persistent looping are maintained at a subset of Pax7 enhancers in the absence of Pax7. We also identify and functionally validate a previously uncharacterized Pax7-bound enhancer hub that regulates the essential myosin heavy chain cluster during skeletal muscle cell differentiation. Our studies lay the groundwork for understanding the role of Pax7 in orchestrating changes in the three-dimensional chromatin conformation in muscle progenitors.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Julen Mendieta-Esteban
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Alessandro Magli
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Karin C Lilja
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Rita C R Perlingeiro
- Department of Medicine, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Marc A Marti-Renom
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Aristotelis Tsirigos
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA
| | - Brian David Dynlacht
- Department of Pathology and Perlmutter Cancer Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
47
|
Bulajić M, Srivastava D, Dasen JS, Wichterle H, Mahony S, Mazzoni EO. Differential abilities to engage inaccessible chromatin diversify vertebrate Hox binding patterns. Development 2020; 147:dev194761. [PMID: 33028607 PMCID: PMC7710020 DOI: 10.1242/dev.194761] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022]
Abstract
Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Milica Bulajić
- Department of Biology, New York University, New York, NY 10003, USA
| | - Divyanshi Srivastava
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jeremy S Dasen
- Neuroscience Institute, Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Neuroscience, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Shaun Mahony
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | |
Collapse
|
48
|
Li R, Xia X, Wang X, Sun X, Dai Z, Huo D, Zheng H, Xiong H, He A, Wu X. Generation and validation of versatile inducible CRISPRi embryonic stem cell and mouse model. PLoS Biol 2020; 18:e3000749. [PMID: 33253175 PMCID: PMC7728392 DOI: 10.1371/journal.pbio.3000749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/10/2020] [Accepted: 11/02/2020] [Indexed: 01/09/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated (Cas) 9 has been widely used far beyond genome editing. Fusions of deactivated Cas9 (dCas9) to transcription effectors enable interrogation of the epigenome and controlling of gene expression. However, the large transgene size of dCas9-fusion hinders its applications especially in somatic tissues. Here, we develop a robust CRISPR interference (CRISPRi) system by transgenic expression of doxycycline (Dox) inducible dCas9-KRAB in mouse embryonic stem cells (iKRAB ESC). After introduction of specific single-guide RNAs (sgRNAs), the induced dCas9-KRAB efficiently maintains gene inactivation, although it modestly down-regulates the expression of active genes. The proper timing of Dox addition during cell differentiation or reprogramming allows us to study or screen spatiotemporally activated promoters or enhancers and thereby the gene functions. Furthermore, taking the ESC for blastocyst injection, we generate an iKRAB knock-in (KI) mouse model that enables the shutdown of gene expression and loss-of-function (LOF) studies ex vivo and in vivo by a simple transduction of gRNAs. Thus, our inducible CRISPRi ESC line and KI mouse provide versatile and convenient platforms for functional interrogation and high-throughput screens of specific genes and potential regulatory elements in the setting of development or diseases.
Collapse
Affiliation(s)
- Rui Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianyou Xia
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xing Wang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Sun
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhongye Dai
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dawei Huo
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Huimin Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Haiqing Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Aibin He
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Cell Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Tianjin, China
| |
Collapse
|
49
|
Şişli HB, Hayal TB, Şenkal S, Kıratlı B, Sağraç D, Seçkin S, Özpolat M, Şahin F, Yılmaz B, Doğan A. Apelin Receptor Signaling Protects GT1-7 GnRH Neurons Against Oxidative Stress In Vitro. Cell Mol Neurobiol 2020; 42:753-775. [PMID: 32989586 DOI: 10.1007/s10571-020-00968-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis regulates stress response in the body and abnormal increase in oxidative stress contributes to the various disease pathogenesis. Although hypothalamic distribution of Apelin receptor (APLNR) has been studied, the potential regulatory role in hormone releasing function of hypothalamus in response to stress is not well elucidated yet. To determine whether APLNR is involved in the protection of the hypothalamus against oxidative stress, gonadotropin-releasing hormone (GnRH) cells were used as an in vitro model system. GT1-7 mouse hypothalamic neuronal cell line was subjected to H2O2 and hypoxia induced oxidative stress under various circumstances including APLNR overexpression, knockdown and knockout. Overexpression and activation of APLNR in GnRH producing neurons caused an increase in cell proliferation under oxidative stress. In addition, blockage of APLNR function by siRNA reduced GnRH release. Activation of APLNR initiated AKT kinase pathway as a proliferative response against hypoxic culture conditions and blocked apoptosis. Although expression and activation of APLNR have not been related to GnRH neuron differentiation during development, positive contribution of activated APLNR signaling to GnRH release in mouse embryonic stem cell derived GnRH neurons was observed in the present study. Sustained overexpression and complete deletion of APLNR in mouse embryonic stem cell derived GnRH neurons reduced GnRH release in vitro. The present findings suggest that expression and activation of APLNR in GnRH releasing GT1-7 neurons might induce a protective mechanism against oxidative stress induced cell death and APLNR signaling may play a role in GnRH neurons.
Collapse
Affiliation(s)
- Hatice Burcu Şişli
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Taha Bartu Hayal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selinay Şenkal
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Binnur Kıratlı
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Derya Sağraç
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Selin Seçkin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Murat Özpolat
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Bayram Yılmaz
- Department of Physiology, Faculty of Medicine, Yeditepe University, Istanbul, Turkey
| | - Ayşegül Doğan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
50
|
Szczesnik T, Chu L, Ho JWK, Sherwood RI. A High-Throughput Genome-Integrated Assay Reveals Spatial Dependencies Governing Tcf7l2 Binding. Cell Syst 2020; 11:315-327.e5. [PMID: 32910904 PMCID: PMC7530048 DOI: 10.1016/j.cels.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 06/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Predicting where transcription factors bind in the genome from their in vitro DNA-binding affinity is confounded by the large number of possible interactions with nearby transcription factors. To characterize the in vivo binding logic for the Wnt effector Tcf7l2, we developed a high-throughput screening platform in which thousands of synthesized DNA phrases are inserted into a specific genomic locus, followed by measurement of Tcf7l2 binding by DamID. Using this platform at two genomic loci in mouse embryonic stem cells, we show that while the binding of Tcf7l2 closely follows the in vitro motif-binding strength and is influenced by local chromatin accessibility, it is also strongly affected by the surrounding 99 bp of sequence. Through controlled sequence perturbation, we show that Oct4 and Klf4 motifs promote Tcf7l2 binding, particularly in the adjacent ∼50 bp and oscillating with a 10.8-bp phasing relative to these cofactor motifs, which matches the turn of a DNA helix.
Collapse
Affiliation(s)
- Tomasz Szczesnik
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia; Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Lendy Chu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joshua W K Ho
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St Vincent's Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Richard I Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Hubrecht Institute, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|