1
|
Dolgetta A, Johnson M, Fruitman K, Siegel L, Zhou Y, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter the distribution of glutamate receptors within rat hippocampal CA3 pyramidal cells following oxycodone conditioned place preference. Neurobiol Stress 2022; 17:100431. [PMID: 35535260 PMCID: PMC9076964 DOI: 10.1016/j.ynstr.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Glutamate receptors have a key role in the neurobiology of opioid addiction. Using electron microscopic immunocytochemical methods, this project elucidates how sex and chronic immobilization stress (CIS) impact the redistribution of GluN1 and GluA1 within rat hippocampal CA3 pyramidal cells following oxycodone (Oxy) conditioned place preference (CPP). Four groups of female and male Sprague-Dawley rats subjected to CPP were used: Saline- (Sal) and Oxy-injected (3 mg/kg, I.P.) naïve rats; and Sal- and Oxy-injected CIS rats. GluN1: In both naive and CIS rats, Sal-females compared to Sal-males had elevated cytoplasmic and total dendritic GluN1. Following Oxy CPP, near plasmalemmal, cytoplasmic, and total GluN1 decreased in CA3 dendrites of unstressed females suggesting reduced pools of GluN1 available for ligand binding. Following CIS, Oxy-males (which did not acquire CPP) had increased GluN1 in all compartments of dendrites and spines of CA3 neurons. GluA1: There were no differences in the distribution GluA1 in any cellular compartments of CA3 dendrites in naïve females and males following either Sal or Oxy CPP. CIS alone increased the percent of GluA1 in CA3 dendritic spines in males compared to females. CIS Oxy-males compared to CIS Sal-males had an increase in cytoplasmic and total dendritic GluA1. Thus, in CIS Oxy-males increased pools of GluN1 and GluA1 are available for ligand binding in CA3 neurons. Together with our prior experiments, these changes in GluN1 and GluA1 following CIS in males may contribute to an increased sensitivity of CA3 neurons to glutamate excitation and a reduced capacity to acquire Oxy CPP.
Collapse
Key Words
- ABC, avidin-biotin complex
- AMPA receptors
- BSA, bovine serum albumin
- CIS, chronic immobilization stress
- CPP, conditioned place preference
- DAB, diaminobenzidine
- DG, dentate gyrus
- DOR, delta opioid receptor
- Drug associative-learning
- Electron microscopy
- GABA, Gamma-amino butyric acid
- GluA1, AMPA glutamate receptor subunit 1
- GluN1, NMDA, glutamate receptor subunit 1
- LTP, long-term potentiation
- MOR, mu opioid receptor
- NMDA receptors
- NMDA, N-methyl-D-aspartate
- NPY, neuropeptide Y
- Oxy, oxycodone
- PARV, parvalbumin
- PB, phosphate buffer
- PFA, paraformaldehyde
- PM, plasma membrane
- Pyramidal cells
- ROI, region of interest
- SLM, stratum lacunosum-moleculare
- SLu, stratum lucidum
- SO, stratum oriens
- SOM, somatostatin
- SR, stratum radiatum
- Sal, saline
- TS, tris-buffered saline
- ir, immunoreactivity
Collapse
Affiliation(s)
- Alexandra Dolgetta
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Megan Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Kate Fruitman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Luke Siegel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
2
|
Bai Y, Chen YB, Qiu XT, Chen YB, Ma LT, Li YQ, Sun HK, Zhang MM, Zhang T, Chen T, Fan BY, Li H, Li YQ. Nucleus tractus solitarius mediates hyperalgesia induced by chronic pancreatitis in rats. World J Gastroenterol 2019; 25:6077-6093. [PMID: 31686764 PMCID: PMC6824279 DOI: 10.3748/wjg.v25.i40.6077] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP). We hypothesized that the nucleus tractus solitarius (NTS), a primary central site that integrates pancreatic afferents apart from the thoracic spinal dorsal horn, plays a key role in the pathogenesis of visceral hypersensitivity in a rat model of CP.
AIM To investigate the role of the NTS in the visceral hypersensitivity induced by chronic pancreatitis.
METHODS CP was induced by the intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. Pancreatic hyperalgesia was assessed by referred somatic pain via von Frey filament assay. Neural activation of the NTS was indicated by immunohistochemical staining for Fos. Basic synaptic transmission within the NTS was assessed by electrophysiological recordings. Expression of vesicular glutamate transporters (VGluTs), N-methyl-D-aspartate receptor subtype 2B (NR2B), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subtype 1 (GluR1) was analyzed by immunoblotting. Membrane insertion of NR2B and GluR1 was evaluated by electron microscopy. The regulatory role of the NTS in visceral hypersensitivity was detected via pharmacological approach and chemogenetics in CP rats.
RESULTS TNBS treatment significantly increased the number of Fos-expressing neurons within the caudal NTS. The excitatory synaptic transmission was substantially potentiated within the caudal NTS in CP rats (frequency: 5.87 ± 1.12 Hz in CP rats vs 2.55 ± 0.44 Hz in sham rats, P < 0.01; amplitude: 19.60 ± 1.39 pA in CP rats vs 14.71 ± 1.07 pA in sham rats; P < 0.01). CP rats showed upregulated expression of VGluT2, and increased phosphorylation and postsynaptic trafficking of NR2B and GluR1 within the caudal NTS. Blocking excitatory synaptic transmission via the AMPAR antagonist CNQX and the NMDAR antagonist AP-5 microinjection reversed visceral hypersensitivity in CP rats (abdominal withdraw threshold: 7.00 ± 1.02 g in CNQX group, 8.00 ± 0.81 g in AP-5 group and 1.10 ± 0.27 g in saline group, P < 0.001). Inhibiting the excitability of NTS neurons via chemogenetics also significantly attenuated pancreatic hyperalgesia (abdominal withdraw threshold: 13.67 ± 2.55 g in Gi group, 2.00 ± 1.37 g in Gq group, and 2.36 ± 0.67 g in mCherry group, P < 0.01).
CONCLUSION Our findings suggest that enhanced excitatory transmission within the caudal NTS contributes to pancreatic pain and emphasize the NTS as a pivotal hub for the processing of pancreatic afferents, which provide novel insights into the central sensitization of painful CP.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health College, Fuzhou 350101, Fujian Province, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yan-Bing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Li-Tian Ma
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ying-Qi Li
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hong-Ke Sun
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
- Joint Laboratory of Neuroscience at Hainan Medical University and Fourth Military Medical University, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
3
|
Rosa SG, Pesarico AP, Tagliapietra CF, da Luz SC, Nogueira CW. Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome. J Psychopharmacol 2017; 31:1250-1262. [PMID: 28857657 DOI: 10.1177/0269881117724353] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Animal and clinical researches indicate that the opioid system exerts a crucial role in the etiology of mood disorders and is a target for intervention in depression treatment. This study investigated the contribution of the opioid system to the antidepressant-like action of acute or repeated m-trifluoromethyl-diphenyl diselenide administration to Swiss mice. m-Trifluoromethyl-diphenyl diselenide (50 mg/kg, intragastric) produced an antidepressant-like action in the forced swimming test from 30 min to 24 h after treatment. This effect was blocked by the µ and δ-opioid receptor antagonists, naloxonazine (10 mg/kg, intraperitoneally) and naltrindole (3 mg/kg, intraperitoneally), and it was potentiated by a κ-opioid receptor antagonist, norbinaltrophimine (1 mg/kg, subcutaneously ). Combined treatment with subeffective doses of m-trifluoromethyl-diphenyl diselenide (10 mg/kg, intragastric) and morphine (1 mg/kg, subcutaneously) resulted in a synergistic antidepressant-like effect. The opioid system contribution to the m-trifluoromethyl-diphenyl diselenide antidepressant-like action was also demonstrated in the modified tail suspension test, decreasing mouse immobility and swinging time and increasing curling time, results similar to those observed using morphine, a positive control. Treatment with m-trifluoromethyl-diphenyl diselenide induced neither tolerance to the antidepressant-like action nor physical signs of withdrawal, which could be associated with the fact that m-trifluoromethyl-diphenyl diselenide did not change the mouse cortical and hippocampal glutamate uptake and release. m-Trifluoromethyl-diphenyl diselenide treatments altered neither locomotor nor toxicological parameters in mice. These findings demonstrate that m-trifluoromethyl-diphenyl diselenide elicited an antidepressant-like action by direct or indirect μ and δ-opioid receptor activation and the κ-opioid receptor blockade, without inducing tolerance, physical signs of withdrawal and toxicity.
Collapse
Affiliation(s)
- Suzan G Rosa
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Ana P Pesarico
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Carolina F Tagliapietra
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| | - Sônia Ca da Luz
- 2 Departamento de Patologia, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Cristina W Nogueira
- 1 Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, Brasil
| |
Collapse
|
4
|
Agmatine Prevents Adaptation of the Hippocampal Glutamate System in Chronic Morphine-Treated Rats. Neurosci Bull 2016; 32:523-530. [PMID: 27161447 DOI: 10.1007/s12264-016-0031-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/26/2016] [Indexed: 01/03/2023] Open
Abstract
Chronic exposure to opioids induces adaptation of glutamate neurotransmission, which plays a crucial role in addiction. Our previous studies revealed that agmatine attenuates opioid addiction and prevents the adaptation of glutamate neurotransmission in the nucleus accumbens of chronic morphine-treated rats. The hippocampus is important for drug addiction; however, whether adaptation of glutamate neurotransmission is modulated by agmatine in the hippocampus remains unknown. Here, we found that continuous pretreatment of rats with ascending doses of morphine for 5 days resulted in an increase in the hippocampal extracellular glutamate level induced by naloxone (2 mg/kg, i.p.) precipitation. Agmatine (20 mg/kg, s.c.) administered concurrently with morphine for 5 days attenuated the elevation of extracellular glutamate levels induced by naloxone precipitation. Furthermore, in the hippocampal synaptosome model, agmatine decreased the release and increased the uptake of glutamate in synaptosomes from chronic morphine-treated rats, which might contribute to the reduced elevation of glutamate levels induced by agmatine. We also found that expression of the hippocampal NR2B subunit, rather than the NR1 subunit, of N-methyl-D-aspartate receptors (NMDARs) was down-regulated after chronic morphine treatment, and agmatine inhibited this reduction. Taken together, agmatine prevented the adaptation of the hippocampal glutamate system caused by chronic exposure to morphine, including modulating extracellular glutamate concentration and NMDAR expression, which might be one of the mechanisms underlying the attenuation of opioid addiction by agmatine.
Collapse
|
5
|
Zhao H, Peters JH, Zhu M, Page SJ, Ritter RC, Appleyard SM. Frequency-dependent facilitation of synaptic throughput via postsynaptic NMDA receptors in the nucleus of the solitary tract. J Physiol 2014; 593:111-25. [PMID: 25281729 DOI: 10.1113/jphysiol.2013.258103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 09/15/2014] [Indexed: 12/28/2022] Open
Abstract
Hindbrain NMDA receptors play important roles in reflexive and behavioural responses to vagal activation. NMDA receptors have also been shown to contribute to the synaptic responses of neurons in the nucleus of the solitary tract (NTS), but their exact role remains unclear. In this study we used whole cell patch-clamping techniques in rat horizontal brain slice to investigate the role of NMDA receptors in the fidelity of transmission across solitary tract afferent-NTS neuron synapses. Results show that NMDA receptors contribute up to 70% of the charge transferred across the synapse at high (>5 Hz) firing rates, but have little contribution at lower firing frequencies. Results also show that NMDA receptors critically contribute to the fidelity of transmission across these synapses during high frequency (>5 Hz) afferent discharge rates. This novel role of NMDA receptors may explain in part how primary visceral afferents, including vagal afferents, can maintain fidelity of transmission across a broad range of firing frequencies. Neurons within the nucleus of the solitary tract (NTS) receive vagal afferent innervations that initiate gastrointestinal and cardiovascular reflexes. Glutamate is the fast excitatory neurotransmitter released in the NTS by vagal afferents, which arrive there via the solitary tract (ST). ST stimulation elicits excitatory postsynaptic currents (EPSCs) in NTS neurons mediated by both AMPA- and NMDA-type glutamate receptors (-Rs). Vagal afferents exhibit a high probability of vesicle release and exhibit robust frequency-dependent depression due to presynaptic vesicle depletion. Nonetheless, synaptic throughput is maintained even at high frequencies of afferent activation. Here we test the hypothesis that postsynaptic NMDA-Rs are essential in maintaining throughput across ST-NTS synapses. Using patch clamp electrophysiology in horizontal brainstem slices, we found that NMDA-Rs, including NR2B subtypes, carry up to 70% of the charge transferred across the synapse during high frequency stimulations (>5 Hz). In contrast, their relative contribution to the ST-EPSC is much less during low (<2 Hz) frequency stimulations. Afferent-driven activation of NMDA-Rs produces a sustained depolarization during high, but not low, frequencies of stimulation as a result of relatively slow decay kinetics. Hence, NMDA-Rs are critical for maintaining action potential generation at high firing rates. These results demonstrate a novel role for NMDA-Rs enabling a high probability of release synapse to maintain the fidelity of synaptic transmission during high frequency firing when glutamate release and AMPA-R responses are reduced. They also suggest why NMDA-Rs are critical for responses that may depend on high rates of afferent discharge.
Collapse
Affiliation(s)
- Huan Zhao
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | |
Collapse
|
6
|
Beckerman MA, Ogorodnik E, Glass MJ. Acute morphine associated alterations in the subcellular location of the AMPA-GluR1 receptor subunit in dendrites of neurons in the mouse central nucleus of the amygdala: comparisons and contrasts with other glutamate receptor subunits. Synapse 2013; 67:692-704. [PMID: 23564315 PMCID: PMC4061138 DOI: 10.1002/syn.21673] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/22/2013] [Indexed: 01/27/2023]
Abstract
Within the amygdala, AMPA receptors expressing the AMPA-GluR1 (GluR1) subunit play an important role in basal glutamate signaling as well as behaviors associated with exposure to drugs of abuse like opiates. Although the ultrastructural location of GluR1 is an important functional feature of this protein, the basal distribution of GluR1, as well as its sensitivity to acute morphine, has never been characterized in the mouse central nucleus of the amygdala (CeA). Electron microscopic immunocytochemistry employing visually distinct gold and peroxidase markers was used to explore the distribution of GluR1 and its relationship with the mu-opioid receptor (µOR) in the mouse CeA under basal conditions and after morphine. We also looked at the effect of morphine on other glutamate receptor subunits, including AMPA-GluR2 (GluR2) and NMDA-NR1 (NR1). In opiate naive animals, GluR1 and µOR were present in diverse populations of neuronal profiles, but mainly in somatodendritic structures that expressed exclusive labeling for either antigen, as well as those co-expressing both proteins. Compared to saline treated animals, mice given morphine showed significant differences in the subcellular location of GluR1 in dendrites without co-expression of µOR. Although GluR2 also showed similar changes in non-µOR expressing dendrites, contrasting effects were seen in GluR2 and µOR co-expressing profiles. These results provide the ultrastructural basis for basal interactions involving the modulation of GluR1 or µOR activity in the mouse CeA. Further, they indicate that the subcellular distribution of GluR1 is modified by acute opiates in a manner that compares, as well as contrasts, with GluR2.
Collapse
Affiliation(s)
- Marc A. Beckerman
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Evgeny Ogorodnik
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| | - Michael J. Glass
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY 10065
| |
Collapse
|
7
|
Altered phosphorylation of GluA1 in the striatum is associated with locomotor sensitization induced by exposure to increasing doses of morphine. Eur J Pharmacol 2013; 702:294-301. [DOI: 10.1016/j.ejphar.2013.01.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 11/23/2022]
|
8
|
Pre- and postsynaptic localization of NMDA receptor subunits at hippocampal mossy fibre synapses. Neuroscience 2013; 230:139-50. [DOI: 10.1016/j.neuroscience.2012.10.061] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 10/25/2012] [Accepted: 10/26/2012] [Indexed: 11/20/2022]
|
9
|
Lenoir M, Guillem K, Koob GF, Ahmed SH. Drug specificity in extended access cocaine and heroin self-administration. Addict Biol 2012; 17:964-76. [PMID: 21995515 DOI: 10.1111/j.1369-1600.2011.00385.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Increased drug availability can precipitate a rapid escalation of drug consumption in both vulnerable humans and laboratory animals. Drug intake escalation is observed across a broad spectrum of drugs of abuse, including stimulants, opiates, ethanol and phencyclidine. Whether and to what extent the processes underlying escalated levels of drug intake vary across different substances is poorly understood. The present study sought to address this question in rats self-administering both cocaine and heroin-two addictive drugs with both common and different neurobiological effects. In experiment 1, we determined how cocaine intake is initially related to heroin intake in non-escalated rats with a limited access to both drugs. In experiment 2, two groups of rats were initially allowed to self-administer either cocaine or heroin for 1 hour per day and then after behavioral stabilization, for 6 hours per day to precipitate drug intake escalation. In each group, dose-injection functions for cocaine and heroin self-administration were generated. In experiment 1, regardless of the dose, rats with a high intake of one drug did not necessarily have a high intake of the alternate drug. In experiment 2, escalated levels of heroin or cocaine self-administration did not generalize to the other drug. This outcome was confirmed in a third drug substitution experiment following different access lengths to cocaine self-administration (i.e. 1, 4 and 8 hours). The processes underlying spontaneous and escalated drug overconsumption appear thus to vary across different drugs of abuse. More research should be devoted in the future to these differences.
Collapse
Affiliation(s)
- Magalie Lenoir
- Behavioral Neuroscience Branch, National Institute on Drug Abuse-Intramural Research Program, NIH, Baltimore, MD, USA
| | | | | | | |
Collapse
|
10
|
Beckerman MA, Glass MJ. The NMDA-NR1 receptor subunit and the mu-opioid receptor are expressed in somatodendritic compartments of central nucleus of the amygdala neurons projecting to the bed nucleus of the stria terminalis. Exp Neurol 2011; 234:112-26. [PMID: 22227057 DOI: 10.1016/j.expneurol.2011.12.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/02/2011] [Accepted: 12/14/2011] [Indexed: 12/26/2022]
Abstract
The pathway between the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST) is emerging as a critical mediator of stress-related affective processes. Evidence also indicates that exposure to drugs of abuse, like opioids, is associated with NMDA-type glutamate receptor-dependent plasticity in the CeA and BNST. However, there is little evidence that NMDA receptors are expressed in CeA neurons projecting to the BNST, or are required for opioid-induced BNST neural activation. Immunoelectron microscopy, tract tracing, and conditional gene deletion technology were used to investigate the synaptic organization of the NMDA receptor and the mu-opioid receptor (μOR) in the CeA-BNST pathway. By dual labeling electron microscopy, numerous CeA-BNST projection neurons expressed the NMDA-NR1 receptor subunit (NR1) or μOR. By triple labeling, it was also found that NR1 and μOR were co-expressed in some CeA-BNST projection neurons. Despite being colocalized in somato-dendritic compartments of CeA neurons, NR1 and μOR were rarely expressed in their axonal terminations in the BNST. Deleting the NR1 gene in CeA neurons resulted in a reduction of morphine-induced Fos protein labeling in the ventral BNST. In summary, NR1 and μOR are coexpressed in somatodendritic sites of CeA neurons, including those projecting to the BNST. In addition, expression of the NR1 gene in CeA neurons is required for morphine-induced BNST neural activation. Thus, postsynaptic NMDA receptors and μORs are positioned for the co-modulation of CeA projection neurons to the BNST, which may provide a synaptic substrate for stress-induced emotional processes critically involved in opioid addictive behaviors.
Collapse
Affiliation(s)
- Marc A Beckerman
- Department of Neurology, Weill Cornell Medical College, New York, NY 10065, USA
| | | |
Collapse
|
11
|
Chronic desipramine treatment alters tyrosine hydroxylase but not norepinephrine transporter immunoreactivity in norepinephrine axons in the rat prefrontal cortex. Int J Neuropsychopharmacol 2011; 14:1219-32. [PMID: 21208501 PMCID: PMC3117082 DOI: 10.1017/s1461145710001525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Pharmacological blockade of norepinephrine (NE) reuptake is clinically effective in treating several mental disorders. Drugs that bind to the NE transporter (NET) alter both protein levels and activity of NET and also the catecholamine synthetic enzyme tyrosine hydroxylase (TH). We examined the rat prefrontal cortex (PFC) by electron microscopy to determine whether the density and subcellular distribution of immunolabelling for NET and co-localization of NET with TH within individual NE axons were altered by chronic treatment with the selective NE uptake inhibitor desipramine (DMI). Following DMI treatment (21 d, 15 mg/kg.d), NET-immunoreactive (ir) axons were significantly less likely to co-localize TH. This finding is consistent with reports of reduced TH levels and activity in the locus coeruleus after chronic DMI and indicates a reduction of NE synthetic capacity in the PFC. Measures of NET expression and membrane localization, including the number of NET-ir profiles per tissue area sampled, the number of gold particles per NET-ir profile area, and the proportion of gold particles associated with the plasma membrane, were similar in DMI- and vehicle-treated rats. These findings were verified using two different antibodies directed against distinct epitopes of the NET protein. The results suggest that chronic DMI treatment does not reduce NET expression within individual NE axons in vivo or induce an overall translocation of NET protein away from the plasma membrane in the PFC as measured by ultrastructural immunogold labelling. Our findings encourage consideration of possible post-translational mechanisms for regulating NET activity in antidepressant-induced modulation of NE clearance.
Collapse
|
12
|
Scavone JL, Asan E, Van Bockstaele EJ. Unraveling glutamate-opioid receptor interactions using high-resolution electron microscopy: implications for addiction-related processes. Exp Neurol 2011; 229:207-13. [PMID: 21459090 DOI: 10.1016/j.expneurol.2011.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/11/2011] [Accepted: 03/21/2011] [Indexed: 11/24/2022]
Abstract
Adaptive responses in glutamate and opioid receptor systems in limbic circuits are emerging as a critical component of the neural plasticity induced by chronic use of abused substances. The present commentary reviews findings from neuroanatomical studies, with superior spatial resolution, that support a cellular basis for prominent interactions of glutamate and opioid receptor systems in preclinical models of drug addiction. The review begins by highlighting the advantages of high-resolution electron microscopic immunohistochemistry for unraveling receptor interactions at the synapse. With an emphasis on a recent publication describing the anatomical relationship between the μ-opioid receptor (MOR) and the AMPA-GluR2 subunit (Beckerman, M. A., and Glass, M. J., 2011. Ultrastructural relationship between the AMPA-GluR2 receptor subunit and the mu-opioid receptor in the mouse central nucleus of the amygdala. Exp Neurol), we review the anatomical evidence for opioid-induced neural plasticity of glutamate receptors in selected brain circuits that are key integrative substrates in the brain's motivational system. The findings stress the importance of glutamate-opioid interactions as important neural mediators of adaptations to chronic use of abused drugs, particularly within the amygdaloid complex.
Collapse
Affiliation(s)
- Jillian L Scavone
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
13
|
Agmatine modulates neuroadaptations of glutamate transmission in the nucleus accumbens of repeated morphine-treated rats. Eur J Pharmacol 2011; 650:200-5. [DOI: 10.1016/j.ejphar.2010.09.071] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 09/04/2010] [Accepted: 09/23/2010] [Indexed: 11/22/2022]
|
14
|
Chronic intermittent hypoxia induces NMDA receptor-dependent plasticity and suppresses nitric oxide signaling in the mouse hypothalamic paraventricular nucleus. J Neurosci 2010; 30:12103-12. [PMID: 20826673 DOI: 10.1523/jneurosci.3367-10.2010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Chronic intermittent hypoxia (CIH) is a concomitant of sleep apnea that produces a slowly developing chemosensory-dependent blood pressure elevation ascribed in part to NMDA receptor-dependent plasticity and reduced nitric oxide (NO) signaling in the carotid body. The hypothalamic paraventricular nucleus (PVN) is responsive to hypoxic stress and also contains neurons that express NMDA receptors and neuronal nitric oxide synthase (nNOS). We tested the hypothesis that extended (35 d) CIH results in a decrease in the surface/synaptic availability of the essential NMDA NR1 subunit in nNOS-containing neurons and NMDA-induced NO production in the PVN of mice. As compared with controls, the 35 d CIH-exposed mice showed a significant increase in blood pressure and an increased density of NR1 immunogold particles located in the cytoplasm of nNOS-containing dendrites. Neither of these between-group differences was seen after 14 d, even though there was already a reduction in the NR1 plasmalemmal density at this time point. Patch-clamp recording of PVN neurons in slices showed a significant reduction in NMDA currents after either 14 or 35 d exposure to CIH compared with sham controls. In contrast, NO production, as measured by the NO-sensitive fluorescent dye 4-amino-5-methylamino-2',7'-difluorofluorescein, was suppressed only in the 35 d CIH group. We conclude that CIH produces a reduction in the surface/synaptic targeting of NR1 in nNOS neurons and decreases NMDA receptor-mediated currents in the PVN before the emergence of hypertension, the development of which may be enabled by suppression of NO signaling in this brain region.
Collapse
|
15
|
Lessard A, Savard M, Gobeil F, Pierce JP, Pickel VM. The neurokinin-3 (NK3) and the neurokinin-1 (NK1) receptors are differentially targeted to mesocortical and mesolimbic projection neurons and to neuronal nuclei in the rat ventral tegmental area. Synapse 2009; 63:484-501. [PMID: 19224600 PMCID: PMC2742351 DOI: 10.1002/syn.20627] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tonic activation of neurokinin-3 (NK(3)) receptors in dopamine neurons of the ventral tegmental area (VTA) has been implicated in the pathophysiology of schizophrenia. This psychiatric disorder is associated with a dysfunctional activity in VTA projection neurons that can affect cognitive function at the level of the medial prefrontal cortex (mPFC) as well as motor and motivational states controlled in part by mesolimbic output to the nucleus accumbens (Acb). To determine the relevant sites for NK(3) receptor activation within this neuronal network, we used confocal and electron microscopy to examine NK(3) receptors (Cy5; immunogold) and retrograde labeling of fluorogold (FG, FITC; immunoperoxidase) in the VTA of rats receiving either Acb or mPFC injections of FG. Comparison was made with neurokinin-1 (NK(1)) receptors, which are also present, but less abundant then NK(3) receptors, in dopaminergic and GABAergic VTA neurons. There were no observable differences between NK(3) and NK(1) receptors in their primary locations in the cytoplasm and on the plasma membrane of VTA somata and dendrites with or without FG. Dendrites labeled with FG retrogradely transported from mPFC, however, contained more NK(3) or less NK(1) immunogold particles (plasmalemmal + cytoplasmic) then those retrogradely labeled following FG injection in the Acb. Moreover, only the NK(3) receptors were detected in neuronal nuclei in the VTA and in the nuclei of human HEK-293T NK(3)-transfected cells. The enrichment of NK(3) receptors in mesocortical projection neurons and nuclear distribution of these receptors may provide insight for understanding the selective antipsychotic effectiveness of NK(3) antagonists.
Collapse
Affiliation(s)
- Andrée Lessard
- Dept. Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021
| | - Martin Savard
- Dept. Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Fernand Gobeil
- Dept. Pharmacology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Joseph P. Pierce
- Dept. Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021
| | - Virginia M. Pickel
- Dept. Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10021
| |
Collapse
|
16
|
Glutamatergic neurotransmission in the nucleus tractus solitarii: structural and functional characteristics. J Chem Neuroanat 2009; 38:145-53. [PMID: 19778680 DOI: 10.1016/j.jchemneu.2009.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/29/2022]
Abstract
Glutamate is the main excitatory transmitter in the central nervous system. As such, it plays a major role in transmitting and processing visceral sensory information within the nucleus tractus solitarii (NTS). Here, we review current knowledge on NTS glutamatergic transmission. We describe the main organizational features of NTS glutamatergic synapses as determined by work performed during the last decade using antibodies against glutamate receptors and transporters proteins. In light of these recent neuronatomical findings, we discuss some functional properties of developing and adult NTS glutamatergic synapses.
Collapse
|
17
|
Doherty J, Ogbomnwan Y, Williams B, Frantz K. Age-dependent morphine intake and cue-induced reinstatement, but not escalation in intake, by adolescent and adult male rats. Pharmacol Biochem Behav 2008; 92:164-72. [PMID: 19091300 DOI: 10.1016/j.pbb.2008.11.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
Abstract
Despite increasing rates of opioid abuse by human adolescents, few laboratory experiments address adolescent vulnerability to opiates. We examined intravenous morphine self-administration after adolescent- vs. adult-onset, followed by extinction and cue-induced reinstatement. Adolescent male Sprague-Dawley rats [postnatal day (P) 35 at start] and adults (P91) acquired lever pressing maintained by 0.375 mg/kg/infusion morphine on a fixed ratio one schedule of reinforcement. Subjects were subsequently divided into short or long daily access conditions (ShAcc, 1-h vs. LgAcc, 8-h; 18 sessions). After extinction, cue-induced reinstatement was recorded over 1 h. During the first six 1-h acquisition sessions and continuing throughout ShAcc conditions, adolescent-onset rats self-administered less morphine than adults, an effect commonly interpreted as higher drug sensitivity. In contrast under LgAcc conditions, escalation of morphine intake was similar across ages. Extinction of drug-seeking was similar across ages, although rats from LgAcc conditions pressed more than ShAcc conditions. Notably, cue-induced reinstatement was less robust in rats that began morphine self-administration during adolescence vs. adulthood. Although increased sensitivity of younger rats to morphine reinforcement under ShAcc conditions might help explain opioid abuse by human adolescents, lower rates of reinstatement in younger rats might suggest that adolescent development includes some protective factors that dampen the long-term impact of early drug intake.
Collapse
Affiliation(s)
- James Doherty
- Department of Biology, Georgia State University, Atlanta, GA 30302-5030, USA
| | | | | | | |
Collapse
|
18
|
Hara Y, Pickel VM. Preferential relocation of the N-methyl-D-aspartate receptor NR1 subunit in nucleus accumbens neurons that contain dopamine D1 receptors in rats showing an apomorphine-induced sensorimotor gating deficit. Neuroscience 2008; 154:965-77. [PMID: 18479834 PMCID: PMC2587121 DOI: 10.1016/j.neuroscience.2008.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/08/2008] [Indexed: 11/24/2022]
Abstract
Sensorimotor gating as measured by prepulse inhibition (PPI) to startle-evoking auditory stimulation (AS) is disrupted in schizophrenia and in rodents receiving systemic administration of apomorphine, a dopamine D1/D2 receptor agonist, or MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. The functional analogies and our prior results showing apomorphine- and AS-induced relocation of the dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell suggest that apomorphine and AS may affect the subcellular distribution of the NMDA receptor NR1 subunit, a protein that forms protein-protein interactions with the D1R. We quantitatively compared the electron microscopic immunogold labeling for NR1 in dendritic profiles distinguished with respect to presence of D1R immunoreactivity and location in the Acb shell or core of rats receiving a single s.c. injection of vehicle (VEH) or apomorphine (APO) alone, or combined with AS (VEH+AS, APO+AS). The rats in the APO+AS group were previously shown to have PPI deficits, whereas the rats in the VEH+AS group had normal PPI. A significantly higher percentage of plasmalemmal and a lower percentage of cytoplasmic NR1 immunogold particles were seen in D1R-labeled dendritic spines in the Acb shell of the APO+AS group compared with all other groups. D1R-containing small dendrites in the Acb shell of the APO+AS group also showed a significantly higher density of plasmalemmal and a lower density of cytoplasmic NR1 immunogold particles compared with VEH or APO groups. In the Acb core, the APO+AS group had significantly fewer dendritic spines co-expressing NR1 and D1R compared with VEH or VEH+AS groups. These results, together with our earlier findings, suggest that NMDA receptors are preferentially mobilized in D1R-containing Acb neurons of rats showing apomorphine-induced disruption of PPI in a paradigm using acoustic stimulation.
Collapse
Affiliation(s)
- Y Hara
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street KB-410, New York, NY 10021, USA
| | | |
Collapse
|
19
|
Glass MJ, Hegarty DM, Oselkin M, Quimson L, South SM, Xu Q, Pickel VM, Inturrisi CE. Conditional deletion of the NMDA-NR1 receptor subunit gene in the central nucleus of the amygdala inhibits naloxone-induced conditioned place aversion in morphine-dependent mice. Exp Neurol 2008; 213:57-70. [PMID: 18614169 DOI: 10.1016/j.expneurol.2008.04.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 12/14/2022]
Abstract
Preclinical behavioral pharmacological and neuropharmacological evidence indicates that the NMDA receptor plays an important role in opioid dependence, however, the neural substrates subserving these actions are poorly understood. The central nucleus of the amygdala (CeA) is a critical coordinator of autonomic, behavioral, and emotional systems impacted by opioids, however there is no evidence that the essential NMDA-NR1 (NR1) subunit gene in the amygdala plays a role in opioid dependence. To determine the role of the NR1 subunit gene in the amygdala with respect to physical and psychological opioid withdrawal, a spatial-temporal deletion of this gene was produced by microinjecting a recombinant adeno-associated virus (rAAV) expressing the GFP reporter and Cre recombinase (rAAV-GFP-Cre) into the CeA of adult "floxed" NR1 mice (fNR1). Amygdala microinjection of rAAV-GFP-Cre produced a decrease in NR1 gene expression and protein immunolabeling in postsynaptic sites of neurons without signs of compromised ultrastructural neuronal morphology. Amygdala NR1 gene deletion also did not affect locomotor, somatosensory, or sensory-motor behaviors. In addition, bilateral local NR1 gene deletion did not impact somatic or visceral withdrawal symptoms precipitated by naloxone in morphine-dependent mice. However, there was a significant deficit in the expression of an opioid withdrawal-induced conditioned place aversion in mice with amygdala NR1 deletion. These results indicate that functional amygdala NMDA receptors are involved in aversive psychological processes associated with opioid withdrawal. More generally, spatial-temporal deletion of the NR1 subunit by Cre-loxP technology is an effective means to elucidate the neurogenetic substrates of complex phenotypes associated with drug abuse.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The articulated goals of Dialogues in Clinical Neuroscience are to serve as "an interface between clinical neuropsychiatry and the neurosciences by providing state-of-the-art information and original insights into relevant clinical, biological, and therapeutic aspects." My laboratory the Laboratory of the Biology of Addictive Diseases at The Rockefeller University, has for years been focused on "bidirectional translational research," that is, learning by careful observations and study in patient populations with the disorders under study, in this case primarily specific addictive diseases, and then using that knowledge to create improved animal models or other laboratory-based research paradigms, while, at the same time, taking research findings made at the bench into the clinic as promptly as that is appropriate and feasible. In this invited review, therefore, the focus will be on perspectives of our Laboratory of the Biology of Addictive Diseases and related National Institutes of Health/National Institute on Drug Abuse research Center, including laboratory-based molecular neurobiological research, research using several animal models designed to mimic human patterns of drug abuse and addiction, as well as basic clinical research, intertwined with treatment-related research.
Collapse
Affiliation(s)
- Mary Jeanne Kreek
- Laboratory of Biology of Addictive Diseases, Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
21
|
Chronic administration of morphine is associated with a decrease in surface AMPA GluR1 receptor subunit in dopamine D1 receptor expressing neurons in the shell and non-D1 receptor expressing neurons in the core of the rat nucleus accumbens. Exp Neurol 2008; 210:750-61. [PMID: 18294632 DOI: 10.1016/j.expneurol.2008.01.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/07/2007] [Accepted: 01/07/2008] [Indexed: 12/20/2022]
Abstract
The nucleus accumbens (Acb) is an extensively studied neuroanatomical substrate of opiate reward and the neural plasticity associated with chronic opioid use. The cellular mechanisms mediating opioid-dependent plasticity are uncertain, however AMPA-type glutamate receptor trafficking in dopamine D1 dopamine receptor (D1R) expressing neurons may be a potential cellular pathway for these adaptations, although there is no evidence for this possibility. Immunogold electron microscopy was used to quantify the surface expression of the AMPA GluR1 subunit in dendritic profiles of neurons in the Acb in response to intermittent 14-day non-contingent injections of escalating doses of morphine, a model that parallels opioid self-administration. To determine if changes in GluR1 trafficking occurred in neurons potentially sensitive to dopamine-induced D1R activation, immunoperoxidase labeling of D1R was combined with immunogold labeling of GluR1. Immunogold quantification was performed in two distinct Acb subregions, the shell, an area involved in processing incentive salience related to rewarding stimuli, and the core, an area involved in reward-seeking behaviors. We provide the first report that chronic morphine administration is associated with a receptor-phenotypic decrease in surface trafficking of GluR1 in Acb subregions. When compared to saline injected animals, morphine produced a decrease in plasma membrane GluR1 labeling in medium- and large-sized D1R expressing dendritic profiles in the Acb shell. In contrast, in the Acb core, surface GluR1 was decreased in small-sized dendrites that did not express the dopamine receptor. These results indicate that chronic intermittent injection of escalating doses of morphine is accompanied by ultrastructural plasticity of GluR1 in neurons that are responsive to glutamate and dopamine-induced D1R activation in the Acb shell, and neurons capable of responding to glutamate but not D1R receptor stimulation in the Acb core. Thus, AMPA receptor trafficking associated with chronic opiate exposure in functionally distinct areas of the Acb may be distinguished by D1R receptor activation, suggesting the potential for differing neural substrates of reward and motor aspects of addictive processes involving glutamate and dopamine signaling.
Collapse
|
22
|
Abstract
This review provides a neuroadaptive perspective regarding the role of the hormonal and brain stress systems in drug addiction with a focus on the changes that occur during the transition from limited access to drugs to long-term compulsive use of drugs. A dramatic escalation in drug intake with extended access to drug self-administration is characterized by a dysregulation of brain reward pathways. Hormonal studies using an experimenter-administered cocaine binge model and an escalation self-administration model have revealed large increases in ACTH and corticosterone in rats during an acute binge with attenuation during the chronic binge stage and a reactivation of the hypothalamic-pituitary-adrenal axis during acute withdrawal. The activation of the hypothalamic-pituitary-adrenal axis with cocaine appears to depend on feed-forward activation of the mesolimbic dopamine system. At the same time, escalation in drug intake with either extended access or dependence-induction produces an activation of the brain stress system's corticotropin-releasing factor outside of the hypothalamus in the extended amygdala, which is particularly evident during acute withdrawal. A model of the role of different levels of hormonal/brain stress activation in addiction is presented that has heuristic value for understanding individual vulnerability to drug dependence and novel treatments for the disorder.
Collapse
Affiliation(s)
- George Koob
- Committee on the Neurobiology of Addictive Disorders, the Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
23
|
Russo SJ, Bolanos CA, Theobald DE, DeCarolis NA, Renthal W, Kumar A, Winstanley CA, Renthal NE, Wiley MD, Self DW, Russell DS, Neve RL, Eisch AJ, Nestler EJ. IRS2-Akt pathway in midbrain dopamine neurons regulates behavioral and cellular responses to opiates. Nat Neurosci 2006; 10:93-9. [PMID: 17143271 DOI: 10.1038/nn1812] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 11/09/2006] [Indexed: 11/09/2022]
Abstract
Chronic morphine administration (via subcutaneous pellet) decreases the size of dopamine neurons in the ventral tegmental area (VTA), a key reward region in the brain, yet the molecular basis and functional consequences of this effect are unknown. In this study, we used viral-mediated gene transfer in rat to show that chronic morphine-induced downregulation of the insulin receptor substrate 2 (IRS2)-thymoma viral proto-oncogene (Akt) signaling pathway in the VTA mediates the decrease in dopamine cell size seen after morphine exposure and that this downregulation diminishes morphine reward, as measured by conditioned place preference. We further show that the reduction in size of VTA dopamine neurons persists up to 2 weeks after morphine withdrawal, which parallels the tolerance to morphine's rewarding effects caused by previous chronic morphine exposure. These findings directly implicate the IRS2-Akt signaling pathway as a critical regulator of dopamine cell morphology and opiate reward.
Collapse
Affiliation(s)
- Scott J Russo
- Department of Psychiatry and Center for Basic Neuroscience, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Glass MJ, Kruzich PJ, Colago EEO, Kreek MJ, Pickel VM. Increased AMPA GluR1 receptor subunit labeling on the plasma membrane of dendrites in the basolateral amygdala of rats self-administering morphine. Synapse 2006; 58:1-12. [PMID: 16037950 DOI: 10.1002/syn.20176] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Glutamate-dependent synaptic plasticity is emerging as an important neural substrate of addiction. These drug-dependent neural adaptations may occur within brain systems that mediate reward, emotion, and cognitive function such as the amygdala complex. Modification of glutamate receptor targeting may be a key mechanism mediating neural plasticity; however, evidence for alteration of amygdala AMPA receptor localization in response to drug self-administration is lacking. High-resolution immunogold electron microscopic immunocytochemistry was used to compare surface and intracellular labeling of the calcium sensitive AMPA GluR1 receptor subunit in the basolateral (BLA) and central (CeA) nuclei of the amygdala in rats self-administering escalating doses of morphine or saline. Morphine self-administration was associated with regionally diverse effects on dendritic GluR1 targeting in the BLA and CeA. In the BLA of morphine self-administering animals, there was a significant increase in the proportion of immunogold particles for GluR1 on the plasma membrane of dendrites, particularly in association with extrasynaptic sites, which was most prominent in large (2-4 microm) profiles. In contrast, there were no significant differences in surface or intracellular immunogold labeling in the CeA between morphine self-administering and control animals. In both amygdala regions, GluR1 and the micro-opioid receptor, the major cellular target of morphine, were only infrequently colocalized. These results indicate that GluR1 targeting is a dynamic process that can be differentially affected in distinct amygdala regions in response to chronic self-administration of morphine. Homeostatic adaptations in the subcellular localization of calcium sensitive AMPA receptors within the BLA may be an important neural substrate for alterations in reward, autonomic function, and behavioral processes associated with opiate addiction.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
This paper is the 27th consecutive installment of the annual review of research concerning the endogenous opioid system, now spanning over 30 years of research. It summarizes papers published during 2004 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, USA.
| | | |
Collapse
|