1
|
Varga B, Streicher JM, Majumdar S. Strategies towards safer opioid analgesics-A review of old and upcoming targets. Br J Pharmacol 2023; 180:975-993. [PMID: 34826881 PMCID: PMC9133275 DOI: 10.1111/bph.15760] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Opioids continue to be of use for the treatment of pain. Most clinically used analgesics target the μ opioid receptor whose activation results in adverse effects like respiratory depression, addiction and abuse liability. Various approaches have been used by the field to separate receptor-mediated analgesic actions from adverse effects. These include biased agonism, opioids targeting multiple receptors, allosteric modulators, heteromers and splice variants of the μ receptor. This review will focus on the current status of the field and some upcoming targets of interest that may lead to a safer next generation of analgesics. LINKED ARTICLES: This article is part of a themed issue on Advances in Opioid Pharmacology at the Time of the Opioid Epidemic. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.7/issuetoc.
Collapse
Affiliation(s)
- Balazs Varga
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| | - John M. Streicher
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Susruta Majumdar
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy in St Louis and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
2
|
Non-Peptide Opioids Differ in Effects on Mu-Opioid (MOP) and Serotonin 1A (5-HT 1A) Receptors Heterodimerization and Cellular Effectors (Ca 2+, ERK1/2 and p38) Activation. Molecules 2022; 27:molecules27072350. [PMID: 35408749 PMCID: PMC9000251 DOI: 10.3390/molecules27072350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/24/2022] [Accepted: 04/02/2022] [Indexed: 11/17/2022] Open
Abstract
The importance of the dynamic interplay between the opioid and the serotonin neuromodulatory systems in chronic pain is well recognized. In this study, we investigated whether these two signalling pathways can be integrated at the single-cell level via direct interactions between the mu-opioid (MOP) and the serotonin 1A (5-HT1A) receptors. Using fluorescence cross-correlation spectroscopy (FCCS), a quantitative method with single-molecule sensitivity, we characterized in live cells MOP and 5-HT1A interactions and the effects of prolonged (18 h) exposure to selected non-peptide opioids: morphine, codeine, oxycodone and fentanyl, on the extent of these interactions. The results indicate that in the plasma membrane, MOP and 5-HT1A receptors form heterodimers that are characterized with an apparent dissociation constant Kdapp = (440 ± 70) nM). Prolonged exposure to all non-peptide opioids tested facilitated MOP and 5-HT1A heterodimerization and stabilized the heterodimer complexes, albeit to a different extent: Kd, Fentanylapp = (80 ± 70) nM), Kd,Morphineapp = (200 ± 70) nM, Kd, Codeineapp = (100 ± 70) nM and Kd, Oxycodoneapp = (200 ± 70) nM. The non-peptide opioids differed also in the extent to which they affected the mitogen-activated protein kinases (MAPKs) p38 and the extracellular signal-regulated kinase (Erk1/2), with morphine, codeine and fentanyl activating both pathways, whereas oxycodone activated p38 but not ERK1/2. Acute stimulation with different non-peptide opioids differently affected the intracellular Ca2+ levels and signalling dynamics. Hypothetically, targeting MOP−5-HT1A heterodimer formation could become a new strategy to counteract opioid induced hyperalgesia and help to preserve the analgesic effects of opioids in chronic pain.
Collapse
|
3
|
Opioid Receptors and Protonation-Coupled Binding of Opioid Drugs. Int J Mol Sci 2021; 22:ijms222413353. [PMID: 34948150 PMCID: PMC8707250 DOI: 10.3390/ijms222413353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023] Open
Abstract
Opioid receptors are G-protein-coupled receptors (GPCRs) part of cell signaling paths of direct interest to treat pain. Pain may associate with inflamed tissue characterized by acidic pH. The potentially low pH at tissue targeted by opioid drugs in pain management could impact drug binding to the opioid receptor, because opioid drugs typically have a protonated amino group that contributes to receptor binding, and the functioning of GPCRs may involve protonation change. In this review, we discuss the relationship between structure, function, and dynamics of opioid receptors from the perspective of the usefulness of computational studies to evaluate protonation-coupled opioid-receptor interactions.
Collapse
|
4
|
G protein signaling-biased mu opioid receptor agonists that produce sustained G protein activation are noncompetitive agonists. Proc Natl Acad Sci U S A 2021; 118:2102178118. [PMID: 34819362 DOI: 10.1073/pnas.2102178118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2021] [Indexed: 12/15/2022] Open
Abstract
The ability of a ligand to preferentially promote engagement of one signaling pathway over another downstream of GPCR activation has been referred to as signaling bias, functional selectivity, and biased agonism. The presentation of ligand bias reflects selectivity between active states of the receptor, which may result in the display of preferential engagement with one signaling pathway over another. In this study, we provide evidence that the G protein-biased mu opioid receptor (MOR) agonists SR-17018 and SR-14968 stabilize the MOR in a wash-resistant yet antagonist-reversible G protein-signaling state. Furthermore, we demonstrate that these structurally related biased agonists are noncompetitive for radiolabeled MOR antagonist binding, and while they stimulate G protein signaling in mouse brains, partial agonists of this class do not compete with full agonist activation. Importantly, opioid antagonists can readily reverse their effects in vivo. Given that chronic treatment with SR-17018 does not lead to tolerance in several mouse pain models, this feature may be desirable for the development of long-lasting opioid analgesics that remain sensitive to antagonist reversal of respiratory suppression.
Collapse
|
5
|
An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation. Mol Metab 2021; 54:101329. [PMID: 34454092 PMCID: PMC8476777 DOI: 10.1016/j.molmet.2021.101329] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE The loss of forkhead box protein O1 (FoxO1) signaling in response to metabolic stress contributes to the etiology of type II diabetes, causing the dedifferentiation of pancreatic beta cells to a cell type reminiscent of endocrine progenitors. Lack of methods to easily model this process in vitro, however, have hindered progress into the identification of key downstream targets and potential inhibitors. We therefore aimed to establish such an in vitro cellular dedifferentiation model and apply it to identify novel agents involved in the maintenance of beta-cell identity. METHODS The murine beta-cell line, Min6, was used for primary experiments and high-content screening. Screens encompassed a library of small-molecule drugs representing the chemical and target space of all FDA-approved small molecules with an automated immunofluorescence readout. Validation experiments were performed in a murine alpha-cell line as well as in primary murine and human diabetic islets. Developmental effects were studied in zebrafish and C. elegans models, while diabetic db/db mouse models were used to elucidate global glucose metabolism outcomes. RESULTS We show that short-term pharmacological FoxO1 inhibition can model beta-cell dedifferentiation by downregulating beta-cell-specific transcription factors, resulting in the aberrant expression of progenitor genes and the alpha-cell marker glucagon. From a high-content screen, we identified loperamide as a small molecule that can prevent FoxO inhibitor-induced glucagon expression and further stimulate insulin protein processing and secretion by altering calcium levels, intracellular pH, and FoxO1 localization. CONCLUSIONS Our study provides novel models, molecular targets, and drug candidates for studying and preventing beta-cell dedifferentiation.
Collapse
|
6
|
Cui X, Xu X, Ju Z, Wang G, Xi C, Li J. Herkinorin negatively regulates NLRP3 inflammasome to alleviate neuronal ischemic injury through activating Mu opioid receptor and inhibiting the NF-κB pathway. J Cell Biochem 2021; 122:1085-1097. [PMID: 33835525 DOI: 10.1002/jcb.29929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 02/04/2023]
Abstract
Herkinorin is a novel opioid receptor agonist. Activation of opioid receptors, a member of G protein coupled receptors (GPCRs), may play an important role in Herkinorin neuroprotection. GPCRs may modulate NOD-like receptor protein 3 (NLRP3)-mediated inflammatory responses in the mechanisms of inflammation-associated disease and pathological processes. In this study, we investigated the effects of Herkinorin on NLRP3 and the underlying receptor and molecular mechanisms in oxygen-glucose deprivation/reperfusion (OGD/R)-treated rat cortex neurons. First, Western blot analysis showed that Herkinorin can inhibit the activation of NLRP3 and Caspase-1, decrease the expression of interleukin (IL)-1β, and decrease the secretion of IL-6 and tumour necrosis factor α detected by enzyme-linked immunosorbent assay in OGD/R-treated neurons. Then we found that Herkinorin downregulated NLRP3 levels by inhibiting the activation of nuclear factor kappa B (NF-κB) pathway, reducing the phosphorylation level of p65 and IκBα in OGD/R-treated neurons (p < .05 or .01, n = 3 per group). Instead, both the mu opioid receptor (MOR) inhibitor, β-funaltrexamine, and MOR knockdown reversed the effects of Herkinorin on NLRP3 (p < .05 or .01, n = 3 per group). Further, we found that the level of β-arrestin2 decreased in the cell membrane and increased in the cytoplasm after Herkinorin pretreatment in OGD/R-treated neurons. In co-immunoprecipitation experiments, Herkinorin increased the binding of IκBα with β-arrestin2, decreased the ubiquitination level of IκBα, and β-arrestin2 knockdown reversed the effects of Herkinorin on IκBα in OGD/R-treated neurons (p < .05 or .01, n = 3 per group). Our data demonstrated that Herkinorin negatively regulated NLRP3 inflammasome to alleviate neuronal ischemic injury through inhibiting NF-κB pathway mediated primarily by MOR activation. Inhibition of the NF-κB pathway by Herkinorin may be achieved by decreasing the ubiquitination level of IκBα, in which β-arrestin2 may play an important role.
Collapse
Affiliation(s)
- Xu Cui
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xin Xu
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhihai Ju
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guyan Wang
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chunhua Xi
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, School of Basic Medical Science, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Che T, Dwivedi-Agnihotri H, Shukla AK, Roth BL. Biased ligands at opioid receptors: Current status and future directions. Sci Signal 2021; 14:14/677/eaav0320. [PMID: 33824179 DOI: 10.1126/scisignal.aav0320] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The opioid crisis represents a major worldwide public health crisis that has accelerated the search for safer and more effective opioids. Over the past few years, the identification of biased opioid ligands capable of eliciting selective functional responses has provided an alternative avenue to develop novel therapeutics without the side effects of current opioid medications. However, whether biased agonism or other pharmacological properties, such as partial agonism (or low efficacy), account for the therapeutic benefits remains questionable. Here, we provide a summary of the current status of biased opioid ligands that target the μ- and κ-opioid receptors and highlight advances in preclinical and clinical trials of some of these ligands. We also discuss an example of structure-based biased ligand discovery at the μ-opioid receptor, an approach that could revolutionize drug discovery at opioid and other receptors. Last, we briefly discuss caveats and future directions for this important area of research.
Collapse
Affiliation(s)
- Tao Che
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.
| | - Hemlata Dwivedi-Agnihotri
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Bryan L Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA. .,National Institute of Mental Health Psychoactive Drug Screening Program, School of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.,Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Cunningham CW, Elballa WM, Vold SU. Bifunctional opioid receptor ligands as novel analgesics. Neuropharmacology 2019; 151:195-207. [PMID: 30858102 DOI: 10.1016/j.neuropharm.2019.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/30/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Prolonged treatment of chronic severe pain with opioid analgesics is frought with problematic adverse effects including tolerance, dependence, and life-threatening respiratory depression. Though these effects are mediated predominately through preferential activation of μ opioid peptide (μOP) receptors, there is an emerging appreciation that actions at κOP and δOP receptors contribute to the observed pharmacologic and behavioral profile of μOP receptor agonists and may be targeted simultaneously to afford improved analgesic effects. Recent developments have also identified the related nociceptin opioid peptide (NOP) receptor as a key modulator of the effects of μOP receptor signaling. We review here the available literature describing OP neurotransmitter systems and highlight recent drug and probe design strategies.
Collapse
Affiliation(s)
| | - Waleed M Elballa
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| | - Stephanie U Vold
- Department of Pharmaceutical Sciences, Concordia University Wisconsin, Mequon, WI, USA.
| |
Collapse
|
9
|
Insights from molecular dynamics simulations to exploit new trends for the development of improved opioid drugs. Neurosci Lett 2018; 700:50-55. [PMID: 29466721 DOI: 10.1016/j.neulet.2018.02.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023]
Abstract
Having accidental deaths from opioid overdoses almost quadrupled over the past fifteen years, there is a strong need to develop new, non-addictive medications for chronic pain to stop one of the deadliest epidemics in American history. Given their potentially fewer on-target overdosing risks and other adverse effects compared to classical opioid drugs, attention has recently shifted to opioid allosteric modulators and G protein-biased opioid agonists as likely drug candidates to prevent and/or reverse opioid overdoses. Understanding how these molecules bind and activate their receptors at an atomistic level is key to developing them into effective new therapeutics, and molecular dynamics-based strategies are contributing tremendously to this understanding.
Collapse
|
10
|
Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J Comput Aided Mol Des 2017; 31:467-482. [PMID: 28364251 DOI: 10.1007/s10822-017-0016-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of -11.52 ± 1.14 kcal mol-1 by alchemical free energy estimations, which is close to the experimental values -10.91 ± 0.2 and -10.80 ± 0.05 kcal mol-1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin's selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.
Collapse
|
11
|
Abstract
G protein-coupled receptors (GPCRs) are often pleiotropically linked to numerous cellular signaling mechanisms in cells, and it is now known that many agonists differentially activate some signaling pathways at the expense of others. The mechanism for this effect is the stabilization of different active receptor states by different agonists, and it leads to varying qualities of efficacy for different agonists. Agonist bias is a powerful mechanism to amplify beneficial signals and diminish harmful signals, and thus improve the overall profile of agonist ligands. This unit describes a method to quantify agonist bias with a scale that enables medicinal chemists to amplify or reduce these effects in new molecules. The method is based on the Black/Leff operational model and yields a statistical estimate of the confidence for bias measurements. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Bartuzi D, Kaczor AA, Matosiuk D. Activation and Allosteric Modulation of Human μ Opioid Receptor in Molecular Dynamics. J Chem Inf Model 2015; 55:2421-34. [DOI: 10.1021/acs.jcim.5b00280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Damian Bartuzi
- Department
of Synthesis and Chemical Technology of Pharmaceutical Substances
with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical
Analytics, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| | - Agnieszka A. Kaczor
- Department
of Synthesis and Chemical Technology of Pharmaceutical Substances
with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical
Analytics, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
- School
of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Dariusz Matosiuk
- Department
of Synthesis and Chemical Technology of Pharmaceutical Substances
with Computer Modeling Lab, Faculty of Pharmacy with Division of Medical
Analytics, Medical University of Lublin, 4A Chodźki St., PL-20093 Lublin, Poland
| |
Collapse
|
13
|
Biased signalling: the instinctive skill of the cell in the selection of appropriate signalling pathways. Biochem J 2015; 470:155-67. [DOI: 10.1042/bj20150358] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
GPCRs (G-protein-coupled receptors) are members of a family of proteins which are generally regarded as the largest group of therapeutic drug targets. Ligands of GPCRs do not usually activate all cellular signalling pathways linked to a particular seven-transmembrane receptor in a uniform manner. The fundamental idea behind this concept is that each ligand has its own ability, while interacting with the receptor, to activate different signalling pathways (or a particular set of signalling pathways) and it is this concept which is known as biased signalling. The importance of biased signalling is that it may selectively activate biological responses to favour therapeutically beneficial signalling pathways and to avoid adverse effects. There are two levels of biased signalling. First, bias can arise from the ability of GPCRs to couple to a subset of the available G-protein subtypes: Gαs, Gαq/11, Gαi/o or Gα12/13. These subtypes produce the diverse effects of GPCRs by targeting different effectors. Secondly, biased GPCRs may differentially activate G-proteins or β-arrestins. β-Arrestins are ubiquitously expressed and function to terminate or inhibit classic G-protein signalling and initiate distinct β-arrestin-mediated signalling processes. The interplay of G-protein and β-arrestin signalling largely determines the cellular consequences of the administration of GPCR-targeted drugs. In the present review, we highlight the particular functionalities of biased signalling and discuss its biological effects subsequent to GPCR activation. We consider that biased signalling is potentially allowing a choice between signalling through ‘beneficial’ pathways and the avoidance of ‘harmful’ ones.
Collapse
|
14
|
Kelly E, Mundell SJ, Sava A, Roth AL, Felici A, Maltby K, Nathan PJ, Bullmore ET, Henderson G. The opioid receptor pharmacology of GSK1521498 compared to other ligands with differential effects on compulsive reward-related behaviours. Psychopharmacology (Berl) 2015; 232:305-14. [PMID: 24973897 PMCID: PMC4281354 DOI: 10.1007/s00213-014-3666-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 06/12/2014] [Indexed: 12/02/2022]
Abstract
RATIONALE The novel opioid receptor antagonist, GSK1421498, has been shown to attenuate reward-driven compulsive behaviours, such as stimulant drug seeking or binge eating, in animals and humans. Here, we report new data on the receptor pharmacology of GSK121498, in comparison to naltrexone, naloxone, 6-β-naltrexol and nalmefene. OBJECTIVES To determine whether the novel opioid antagonist, GSK1521498, is an orthosteric or allosteric antagonist at the μ opioid receptor (MOPr) and whether it has neutral antagonist or inverse agonist properties. METHODS A combination of radioligand binding assays and [(35)S]GTPγS binding assays was employed. RESULTS GSK1521498 completely displaced [(3)H]naloxone binding to MOPr and did not alter the rate of [(3)H]naloxone dissociation from MOPr observations compatible with it binding to the orthosteric site on MOPr. GSK1521498 exhibited inverse agonism when MOPr was overexpressed but not when the level of MOPr expression was low. In parallel studies under conditions of high receptor expression density, naloxone, naltrexone, 6-β-naltrexol and nalmefene exhibited partial agonism, not inverse agonism as has been reported previously for naloxone and naltrexone. In brain tissue from mice receiving a prolonged morphine pre-treatment, GSK1521498 exhibited slight inverse agonism. CONCLUSIONS Differences between GSK1521498 and naltrexone in their effects on compulsive reward seeking are arguably linked to the more selective and complete MOPr antagonism of GSK1521498 versus the partial MOPr agonism of naltrexone. GSK1521498 is also pharmacologically differentiated by its inverse agonist efficacy at high levels of MOPr expression, but this may be less likely to contribute to behavioural differentiation at patho-physiological levels of expression.
Collapse
Affiliation(s)
- Eamonn Kelly
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD UK
| | - Stuart J. Mundell
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD UK
| | - Anna Sava
- Aptuit Centre for Drug Discovery & Development, Aptuit Srl., Verona, Italy
| | - Adelheid L. Roth
- Aptuit Centre for Drug Discovery & Development, Aptuit Srl., Verona, Italy
| | - Antonio Felici
- Aptuit Centre for Drug Discovery & Development, Aptuit Srl., Verona, Italy
| | - Kay Maltby
- Medicines Discovery and Development, GlaxoSmithKline, Clinical Unit Cambridge, Cambridge, UK ,Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Pradeep J. Nathan
- Medicines Discovery and Development, GlaxoSmithKline, Clinical Unit Cambridge, Cambridge, UK ,Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Edward T. Bullmore
- Medicines Discovery and Development, GlaxoSmithKline, Clinical Unit Cambridge, Cambridge, UK ,Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Graeme Henderson
- School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD UK
| |
Collapse
|
15
|
Taylor BK, Corder G. Endogenous analgesia, dependence, and latent pain sensitization. Curr Top Behav Neurosci 2014; 20:283-325. [PMID: 25227929 PMCID: PMC4464817 DOI: 10.1007/7854_2014_351] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endogenous activation of µ-opioid receptors (MORs) provides relief from acute pain. Recent studies have established that tissue inflammation produces latent pain sensitization (LS) that is masked by spinal MOR signaling for months, even after complete recovery from injury and re-establishment of normal pain thresholds. Disruption with MOR inverse agonists reinstates pain and precipitates cellular, somatic, and aversive signs of physical withdrawal; this phenomenon requires N-methyl-D-aspartate receptor-mediated activation of calcium-sensitive adenylyl cyclase type 1 (AC1). In this review, we present a new conceptual model of the transition from acute to chronic pain, based on the delicate balance between LS and endogenous analgesia that develops after painful tissue injury. First, injury activates pain pathways. Second, the spinal cord establishes MOR constitutive activity (MORCA) as it attempts to control pain. Third, over time, the body becomes dependent on MORCA, which paradoxically sensitizes pain pathways. Stress or injury escalates opposing inhibitory and excitatory influences on nociceptive processing as a pathological consequence of increased endogenous opioid tone. Pain begets MORCA begets pain vulnerability in a vicious cycle. The final result is a silent insidious state characterized by the escalation of two opposing excitatory and inhibitory influences on pain transmission: LS mediated by AC1 (which maintains the accelerator) and pain inhibition mediated by MORCA (which maintains the brake). This raises the prospect that opposing homeostatic interactions between MORCA analgesia and latent NMDAR-AC1-mediated pain sensitization creates a lasting vulnerability to develop chronic pain. Thus, chronic pain syndromes may result from a failure in constitutive signaling of spinal MORs and a loss of endogenous analgesic control. An overarching long-term therapeutic goal of future research is to alleviate chronic pain by either (a) facilitating endogenous opioid analgesia, thus restricting LS within a state of remission, or (b) extinguishing LS altogether.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Physiology, School of Medicine, University of Kentucky Medical Center, Lexington, KY, 40536-0298, USA,
| | | |
Collapse
|
16
|
Rowan MP, Bierbower SM, Eskander MA, Szteyn K, Por ED, Gomez R, Veldhuis N, Bunnett NW, Jeske NA. Activation of mu opioid receptors sensitizes transient receptor potential vanilloid type 1 (TRPV1) via β-arrestin-2-mediated cross-talk. PLoS One 2014; 9:e93688. [PMID: 24695785 PMCID: PMC3973553 DOI: 10.1371/journal.pone.0093688] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
The transient receptor potential family V1 channel (TRPV1) is activated by multiple stimuli, including capsaicin, acid, endovanilloids, and heat (>42C). Post-translational modifications to TRPV1 result in dynamic changes to the sensitivity of receptor activation. We have previously demonstrated that β-arrestin2 actively participates in a scaffolding mechanism to inhibit TRPV1 phosphorylation, thereby reducing TRPV1 sensitivity. In this study, we evaluated the effect of β-arrestin2 sequestration by G-protein coupled receptors (GPCRs) on thermal and chemical activation of TRPV1. Here we report that activation of mu opioid receptor by either morphine or DAMGO results in β-arrestin2 recruitment to mu opioid receptor in sensory neurons, while activation by herkinorin does not. Furthermore, treatment of sensory neurons with morphine or DAMGO stimulates β-arrestin2 dissociation from TRPV1 and increased sensitivity of the receptor. Conversely, herkinorin treatment has no effect on TRPV1 sensitivity. Additional behavioral studies indicate that GPCR-driven β-arrestin2 sequestration plays an important peripheral role in the development of thermal sensitivity. Taken together, the reported data identify a novel cross-talk mechanism between GPCRs and TRPV1 that may contribute to multiple clinical conditions.
Collapse
Affiliation(s)
- Matthew P. Rowan
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Sonya M. Bierbower
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Michael A. Eskander
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Kalina Szteyn
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Elaine D. Por
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Ruben Gomez
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Nicholas Veldhuis
- Departments of Pharmacology and Medicine, Monash Institute of Pharmacological Sciences, Parkville, Victoria, Australia
| | - Nigel W. Bunnett
- Departments of Pharmacology and Medicine, Monash Institute of Pharmacological Sciences, Parkville, Victoria, Australia
| | - Nathaniel A. Jeske
- Department of Oral and Maxillofacial Surgery, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Physiology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
It is now established that agonists do not uniformly activate pleiotropic signaling mechanisms initiated by receptors but rather can bias signals according to the unique receptor conformations they stabilize. One of the important emerging signaling systems where this can occur is through β-arrestin. This chapter discusses biased signaling where emphasis or de-emphasis of β-arrestin signaling is postulated (or been shown) to be beneficial. The chapter specifically focuses on methods to quantify biased effects; these methods furnish scales that can be used in the process of optimizing biased agonism (and antagonism) for therapeutic benefit. Specifically, methods to derive ΔΔLog(τ/K A) or ΔΔLog(Relative Activity) values are described to do this.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042, Genetic Medicine Building, CB# 7365, Chapel Hill, NC, 27599-7365, USA,
| |
Collapse
|
18
|
Ligand-specific regulation of the endogenous mu-opioid receptor by chronic treatment with mu-opioid peptide agonists. BIOMED RESEARCH INTERNATIONAL 2013; 2013:501086. [PMID: 24350273 PMCID: PMC3857906 DOI: 10.1155/2013/501086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/22/2013] [Accepted: 09/06/2013] [Indexed: 11/17/2022]
Abstract
Since the discovery of the endomorphins (EM), the postulated endogenous peptide agonists of the mu-opioid receptors, several analogues have been synthesized to improve their binding and pharmacological profiles. We have shown previously that a new analogue, cis-1S,2R-aminocyclohexanecarboxylic acid2-endomorphin-2 (ACHC-EM2), had elevated mu-receptor affinity, selectivity, and proteolytic stability over the parent compound. In the present work, we have studied its antinociceptive effects and receptor regulatory processes. ACHC-EM2 displayed a somewhat higher (60%) acute antinociceptive response than the parent peptide, EM2 (45%), which peaked at 10 min after intracerebroventricular (icv) administration in the rat tail-flick test. Analgesic tolerance developed to the antinociceptive effect of ACHC-EM2 upon its repeated icv injection that was complete by a 10-day treatment. This was accompanied by attenuated coupling of mu-sites to G-proteins in subcellular fractions of rat brain. Also, the density of mu-receptors was upregulated by about 40% in the light membrane fraction, with no detectable changes in surface binding. Distinct receptor regulatory processes were noted in subcellular fractions of rat brains made tolerant by the prototypic full mu-agonist peptide, DAMGO, and its chloromethyl ketone derivative, DAMCK. These results are discussed in light of the recently discovered phenomenon, that is, the “so-called biased agonism” or “functional selectivity”.
Collapse
|
19
|
Abstract
Ligand bias refers to the ability of a drug at a receptor to activate selectively particular cell signalling pathways over others, in a way that cannot be explained by traditional models of receptor theory. For a physiologically and therapeutically important GPCR (G-protein-coupled receptor) such as the MOPr (μ-opioid receptor), the role of ligand bias is currently being explored, not only in order to understand the molecular function of this receptor, but also with a view to developing better analgesic drugs with fewer adverse effects. In this short review, the ways to detect and quantify agonist bias at MOPr are discussed, along with the possible significance of MOPr ligand bias in the therapeutic use of opioid drugs. An important conclusion of this work is that attempts to define ligand bias at any GPCR on the basis of the visual inspection of concentration-response curves or comparison of maximum response (Emax) values can be misleading. Instead, reliable estimations of relative agonist efficacy are needed to calculate bias effectively.
Collapse
|
20
|
Cui X, Yeliseev A, Liu R. Ligand interaction, binding site and G protein activation of the mu opioid receptor. Eur J Pharmacol 2013; 702:309-15. [PMID: 23415745 DOI: 10.1016/j.ejphar.2013.01.060] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/24/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
With the recently solved crystal structure of the murine mu opioid receptor, the elucidation of the structure function relationships of the human mu receptor becomes feasible. In this study, we analyzed the available structural information along with ligand binding and G protein activation of human mu receptor. Affinity determinations were performed in a HEK293 cell line stably transfected with the human mu opioid receptor for 6 different agonists (morphine, DMAGO, and herkinorn) and antagonists (naloxone, beta-Funaltrexamine, and Norbinaltorphimine). G protein activation was investigated in membrane preparations containing human mu receptors treated with the agonist, partial agonist, or antagonist compounds. 4DKL.pdb was utilized for structural analysis and docking calculations for 28 mu receptor ligands. The predicted affinities from docking were compared with those experimentally determined. While all known ligands bind to the receptor through the same binding site that is large enough to accommodate molecules of various sizes, interaction with D147 (D149 in human mu receptor) is essential for binding. No distinguishable interaction pattern in the binding site for agonist, partial agonist, or antagonist to predict pharmacological activities was found. The failure to reconcile the predicted affinities from docking with experimental values indicates that the receptor might undergo significant conformational changes from one state to the other states upon different ligand binding. A simplified model to understand the complicated system is proposed and further study on these multiple conformations using high resolution structural approaches is suggested.
Collapse
Affiliation(s)
- Xu Cui
- Department of Anesthesiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | | | | |
Collapse
|
21
|
An efficient synthesis of 3-OBn-6β,14-epoxy-bridged opiates from naltrexone and identification of a related dual MOR inverse agonist/KOR agonist. Bioorg Med Chem Lett 2012; 22:6801-5. [DOI: 10.1016/j.bmcl.2012.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/08/2012] [Accepted: 06/11/2012] [Indexed: 12/14/2022]
|
22
|
Li F, Deck JA, Dersch CM, Rothman RB, Deschamps JR, Jacobson AE, Rice KC. Probes for narcotic receptor mediated phenomena. 46. N-substituted-2,3,4,9,10,10a-hexahydro-1H-1,4a-(epiminoethano)phenanthren-6- and 8-ols - carbocyclic relatives of f-oxide-bridged phenylmorphans. Eur J Med Chem 2012; 58:557-67. [PMID: 23168379 DOI: 10.1016/j.ejmech.2012.10.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/04/2012] [Accepted: 10/22/2012] [Indexed: 10/27/2022]
Abstract
Oxide-bridged phenylmorphans were conceptualized as topologically distinct, structurally rigid ligands with 3-dimensional shapes that could not be appreciably modified on interaction with opioid receptors. An enantiomer of the N-phenethyl-substituted ortho-f isomer was found to have high affinity for the μ-receptor (K(i) = 7 nM) and was about four times more potent than naloxone as an antagonist. In order to examine the effect of introduction of a small amount of flexibility into these molecules, we have replaced the rigid 5-membered oxide ring with a more flexible 6-membered carbon ring. Synthesis of the new N-phenethyl-substituted tricyclic N-substituted-2,3,4,9,10,10a-hexahydro-1H-1,4a-(epiminoethano)phenanthren-6- and 8-ols resulted in a two carbon-bridged relative of the f-isomers, the dihydrofuran ring was replaced by a cyclohexene ring. The carbocyclic compounds had much higher affinity and greater selectivity for the μ-receptor than the f-oxide-bridged phenylmorphans. They were also much more potent μ-antagonists, with activities comparable to naltrexone in the [(35)S]GTP-γ-S assay.
Collapse
Affiliation(s)
- Fuying Li
- Drug Design and Synthesis Section, Chemical Biology Research Branch, National Institute on Drug Abuse, and The National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Department of Health and Human Services, 5625 Fishers Lane, Room 4N03, Bethesda, MD 20892-9415, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Ananthan S, Saini SK, Dersch CM, Xu H, McGlinchey N, Giuvelis D, Bilsky EJ, Rothman RB. 14-Alkoxy- and 14-acyloxypyridomorphinans: μ agonist/δ antagonist opioid analgesics with diminished tolerance and dependence side effects. J Med Chem 2012; 55:8350-63. [PMID: 23016952 DOI: 10.1021/jm300686p] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the search for opioid ligands with mixed functional activity, a series of 5'-(4-chlorophenyl)-4,5α-epoxypyridomorphinans possessing alkoxy or acyloxy groups at C-14 was synthesized and evaluated. In this series, the affinity and functional activity of the ligands were found to be influenced by the nature of the substituent at C-14 as well as by the substituent at N-17. Whereas the incorporation of a 3-phenylpropoxy group at C-14 on N-methylpyridomorhinan gave a dual MOR agonist/DOR agonist 17h, its incorporation on N-cyclopropylmethylpyridomorphinan gave a MOR agonist/DOR antagonist 17d. Interestingly, 17d, in contrast to 17h, did not produce tolerance or dependence effects upon prolonged treatment in cells expressing MOR and DOR. Moreover, 17d displayed greatly diminished analgesic tolerance as compared to morphine upon repeated administration, thus supporting the hypothesis that ligands with MOR agonist/DOR antagonist functional activity could emerge as novel analgesics devoid of tolerance, dependence, and related side effects.
Collapse
Affiliation(s)
- Subramaniam Ananthan
- Organic Chemistry Department, Southern Research Institute, Birmingham, AL 35205, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kenakin T. The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacol Toxicol 2012; 13:3. [PMID: 22947056 PMCID: PMC3506267 DOI: 10.1186/2050-6511-13-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022] Open
Abstract
The discovery that not all agonists uniformly activate cellular signaling pathways (biased signaling) has greatly changed the drug discovery process for agonists and the strategy for treatment of disease with agonists. Technological advances have enabled complex receptor behaviors to be viewed independently and through these assays, the bias for an agonist can be quantified. It is predicted that therapeutic phenotypes will be linked, through translational studies, to quantified scales of bias to guide medicinal chemists in the drug discovery process.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042 Genetic Medicine Building, CB# 7365, Chapel Hill, NC 27599-7365, USA.
| |
Collapse
|
25
|
Lamb K, Tidgewell K, Simpson DS, Bohn LM, Prisinzano TE. Antinociceptive effects of herkinorin, a MOP receptor agonist derived from salvinorin A in the formalin test in rats: new concepts in mu opioid receptor pharmacology: from a symposium on new concepts in mu-opioid pharmacology. Drug Alcohol Depend 2012; 121:181-8. [PMID: 22119134 PMCID: PMC3288203 DOI: 10.1016/j.drugalcdep.2011.10.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 07/28/2011] [Accepted: 10/22/2011] [Indexed: 10/14/2022]
Abstract
Herkinorin is the first μ opioid (MOP) selective agonist derived from salvinorin A, a hallucinogenic natural product. Previous work has shown that, unlike other opioids, herkinorin does not promote the recruitment of β-arrestin-2 to the MOP receptor and does not lead to receptor internalization. This paper presents the first in vivo evaluation of herkinorin's antinociceptive effects in rats, using the formalin test as a model of tonic inflammatory pain. Herkinorin was found to produce a dose-dependent decrease in the number of flinches evoked by formalin. These antinociceptive effects were substantially blocked by pretreatment with the nonselective antagonist naloxone, indicating that the antinociception is mediated by opioid receptors. Contralateral administration of herkinorin did not attenuate the number of flinches evoked by formalin, indicating that its effects are peripherally restricted to the site of injection. Following chronic administration (5-day), herkinorin maintained antinociceptive efficacy in both phases of the formalin test. Furthermore, unlike morphine, herkinorin was still able to inhibit flinching in both phases of the formalin test in animals made tolerant to chronic systemic morphine treatment. Collectively, these results suggest that herkinorin may produce peripheral antinociception with decreased tolerance liability and thereby represents a promising template for the development of agents for the treatment of a variety of pain states.
Collapse
Affiliation(s)
- Kenneth Lamb
- Division of Medicinal & Natural Products Chemistry, College of Pharmacy, The University of Iowa, Iowa City, IA 52242
| | - Kevin Tidgewell
- Division of Medicinal & Natural Products Chemistry, College of Pharmacy, The University of Iowa, Iowa City, IA 52242
| | - Denise S. Simpson
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045
| | - Laura M. Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458
| | - Thomas E. Prisinzano
- Division of Medicinal & Natural Products Chemistry, College of Pharmacy, The University of Iowa, Iowa City, IA 52242,Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045,Correspondence and Reprint Requests: Thomas E. Prisinzano, Associate Professor, The University of Kansas, Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, 4070 Malott Hall, Lawrence, Kansas 66045-7582, Tel: (785) 864-3267, Fax: (785) 864-5326, , Web: http://www.medchem.ku.edu/faculty_prisinzano.shtml
| |
Collapse
|
26
|
Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2012; 12:205-16. [PMID: 23411724 DOI: 10.1038/nrd3954] [Citation(s) in RCA: 585] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Agonists of seven-transmembrane receptors, also known as G protein-coupled receptors (GPCRs), do not uniformly activate all cellular signalling pathways linked to a given seven-transmembrane receptor (a phenomenon termed ligand or agonist bias); this discovery has changed how high-throughput screens are designed and how lead compounds are optimized for therapeutic activity. The ability to experimentally detect ligand bias has necessitated the development of methods for quantifying agonist bias in a way that can be used to guide structure-activity studies and the selection of drug candidates. Here, we provide a viewpoint on which methods are appropriate for quantifying bias, based on knowledge of how cellular and intracellular signalling proteins control the conformation of seven-transmembrane receptors. We also discuss possible predictions of how biased molecules may perform in vivo, and what potential therapeutic advantages they may provide.
Collapse
|
27
|
Raehal KM, Schmid CL, Groer CE, Bohn LM. Functional selectivity at the μ-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev 2011; 63:1001-19. [PMID: 21873412 DOI: 10.1124/pr.111.004598] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids are the most effective analgesic drugs for the management of moderate or severe pain, yet their clinical use is often limited because of the onset of adverse side effects. Drugs in this class produce most of their physiological effects through activation of the μ opioid receptor; however, an increasing number of studies demonstrate that different opioids, while presumably acting at this single receptor, can activate distinct downstream responses, a phenomenon termed functional selectivity. Functional selectivity of receptor-mediated events can manifest as a function of the drug used, the cellular or neuronal environment examined, or the signaling or behavioral measure recorded. This review summarizes both in vitro and in vivo work demonstrating functional selectivity at the μ opioid receptor in terms of G protein coupling, receptor phosphorylation, interactions with β-arrestins, receptor desensitization, internalization and signaling, and details on how these differences may relate to the progression of analgesic tolerance after their extended use.
Collapse
Affiliation(s)
- Kirsten M Raehal
- Molecular Therapeutics and Neuroscience, The Scripps Research Institute, Jupiter, Florida, USA
| | | | | | | |
Collapse
|
28
|
Cunningham CW, Rothman RB, Prisinzano TE. Neuropharmacology of the naturally occurring kappa-opioid hallucinogen salvinorin A. Pharmacol Rev 2011; 63:316-47. [PMID: 21444610 DOI: 10.1124/pr.110.003244] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Salvia divinorum is a perennial sage native to Oaxaca, Mexico, that has been used traditionally in divination rituals and as a treatment for the "semimagical" disease panzón de borrego. Because of the intense "out-of-body" experiences reported after inhalation of the pyrolized smoke, S. divinorum has been gaining popularity as a recreational hallucinogen, and the United States and several other countries have regulated its use. Early studies isolated the neoclerodane diterpene salvinorin A as the principal psychoactive constituent responsible for these hallucinogenic effects. Since the finding that salvinorin A exerts its potent psychotropic actions through the activation of KOP receptors, there has been much interest in elucidating the underlying mechanisms behind its effects. These effects are particularly remarkable, because 1) salvinorin A is the first reported non-nitrogenous opioid receptor agonist, and 2) its effects are not mediated by the 5-HT(2A) receptor, the classic target of hallucinogens such as lysergic acid diethylamide and mescaline. Rigorous investigation into the structural features of salvinorin A responsible for opioid receptor affinity and selectivity has produced numerous receptor probes, affinity labels, and tools for evaluating the biological processes responsible for its observed psychological effects. Salvinorin A has therapeutic potential as a treatment for pain, mood and personality disorders, substance abuse, and gastrointestinal disturbances, and suggests that nonalkaloids are potential scaffolds for drug development for aminergic G-protein coupled receptors.
Collapse
|
29
|
Kenakin T. G protein coupled receptors as allosteric proteins and the role of allosteric modulators. J Recept Signal Transduct Res 2011; 30:313-21. [PMID: 20858023 DOI: 10.3109/10799893.2010.503964] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Seven transmembrane receptors (7TMRs) are proteins that convey signals through changes in conformation. These conformations are stabilized by external molecules (i.e. agonists, antagonists, modulators) and act upon other bodies (termed 'guests') which can be other molecules in the extracellular space, or proteins along the plane of the membrane (receptor oligomerization) or signaling proteins in the cytosol (i.e. G protein, β-arrestin). These elements comprise allosteric systems and a great deal of 7TMR pharmacology can be considered in terms of allosteric behavior. Allosteric ligands acting on 7TMRs possess four unique behaviors that can be valuable therapeutically; (1) the ability to alter the interaction of very large proteins, (2) probe dependence, (3) saturable effect, and (4) induction of separate changes in affinity and efficacy of other ligands. Two of these behaviors (namely probe dependence for CCR5-based HIV-1 entry inhibitors and functional selectivity for biased agonism) will be highlighted with examples.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline Research and Development, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
30
|
|
31
|
Kumar K, Kumar S, Kurupati RK, Seth MK, Mohan A, Hussain ME, Pasha S. Intracellular cAMP assay and Eu-GTP-γS binding studies of chimeric opioid peptide YFa. Eur J Pharmacol 2010; 650:28-33. [PMID: 20887721 DOI: 10.1016/j.ejphar.2010.09.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 07/26/2010] [Accepted: 09/14/2010] [Indexed: 11/20/2022]
Abstract
In our previous studies chimeric peptide of Met-enkephalin and FMRFa, YGGFMKKKFMRFamide (YFa), demonstrated concentration dependent κ- and μ-opioid receptor mediated antinociception without tolerance development. To gain further insight of the observed behavior of YFa, the present study was undertaken. The effect of chimeric peptide on forskolin-stimulated cAMP formation under acute and chronic treatment and stimulation of Eu-GTP-γS binding in CHO cells stably expressing κ- and μ-opioid receptors was assessed. YFa showed concentration dependent inhibition of forskolin-stimulated cAMP in both hKOR and hMOR-CHO cells; however, the inhibition at 1nM was significantly higher in hKOR cells and comparable to DynA (1-13) than that shown at 20nM in hMOR cells. Chronic treatment of YFa, similar to DynA (1-13), did not show significant change in forskolin-stimulated cAMP level in both hKOR and hMOR cells. However, chronic treatment of morphine and DAMGO showed an increase in forskolin-stimulated cAMP level in hMOR-CHO cells indicating superactivation of adenylyl cyclase. Eu-GTP-γS binding studies of YFa showed a concentration dependent adherent binding with κ- and μ-opioid receptors; however, the latter demonstrated significant binding at higher concentration. Thus the study indicates the chimeric opioid peptide YFa as a potent κ- receptor specific antinociceptive moiety, showing no tolerance and hence may serve as a lead in understanding the mechanism of tolerance development, antinociception and its modulation.
Collapse
Affiliation(s)
- Krishan Kumar
- Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
| | | | | | | | | | | | | |
Collapse
|
32
|
Sally EJ, Xu H, Dersch CM, Hsin LW, Chang LT, Prisinzano TE, Simpson DS, Giuvelis D, Rice KC, Jacobson AE, Cheng K, Bilsky EJ, Rothman RB. Identification of a novel "almost neutral" micro-opioid receptor antagonist in CHO cells expressing the cloned human mu-opioid receptor. Synapse 2010; 64:280-8. [PMID: 19953652 DOI: 10.1002/syn.20723] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The basal (constitutive) activity of G protein-coupled receptors allows for the measurement of inverse agonist activity. Some competitive antagonists turn into inverse agonists under conditions where receptors are constitutively active. In contrast, neutral antagonists have no inverse agonist activity, and they block both agonist and inverse agonist activity. The mu-opioid receptor (MOR) demonstrates detectable constitutive activity only after a state of dependence is produced by chronic treatment with a MOR agonist. We therefore sought to identify novel MOR inverse agonists and novel neutral MOR antagonists in both untreated and agonist-treated MOR cells. CHO cells expressing the cloned human mu receptor (hMOR-CHO cells) were incubated for 20 h with medium (control) or 10 microM (2S,4aR,6aR,7R,9S,10aS,10bR)-9-(benzoyloxy)-2-(3-furanyl)dodecahydro-6a,10b-dimethyl-4,10-dioxo-2H-naphtho-[2,1-c]pyran-7-carboxylic acid methyl ester (herkinorin, HERK). HERK treatment generates a high degree of basal signaling and enhances the ability to detect inverse agonists. [(35)S]-GTP-gamma-S assays were conducted using established methods. We screened 21 MOR "antagonists" using membranes prepared from HERK-treated hMOR-CHO cells. All antagonists, including CTAP and 6beta-naltrexol, were inverse agonists. However, LTC-274 ((-)-3-cyclopropylmethyl-2,3,4,4alpha,5,6,7,7alpha-octahydro-1H-benzofuro[3,2-e]isoquinolin-9-ol)) showed the lowest efficacy as an inverse agonist, and, at concentrations less than 5 nM, had minimal effects on basal [(35)S]-GTP-gamma-S binding. Other efforts in this study identified KC-2-009 ((+)-3-((1R,5S)-2-((Z)-3-phenylallyl)-2-azabicyclo[3.3.1]nonan-5-yl)phenol hydrochloride) as an inverse agonist at untreated MOR cells. In HERK-treated cells, KC-2-009 had the highest efficacy as an inverse agonist. In summary, we identified a novel and selective MOR inverse agonist (KC-2-009) and a novel MOR antagonist (LTC-274) that shows the least inverse agonist activity among 21 MOR antagonists. LTC-274 is a promising lead compound for developing a true MOR neutral antagonist.
Collapse
Affiliation(s)
- Elliott J Sally
- Clinical Psychopharmacology Section, IRP, NIDA, NIH, DHHS, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kenakin T, Miller LJ. Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 2010; 62:265-304. [PMID: 20392808 DOI: 10.1124/pr.108.000992] [Citation(s) in RCA: 462] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
It is useful to consider seven transmembrane receptors (7TMRs) as disordered proteins able to allosterically respond to a number of binding partners. Considering 7TMRs as allosteric systems, affinity and efficacy can be thought of in terms of energy flow between a modulator, conduit (the receptor protein), and a number of guests. These guests can be other molecules, receptors, membrane-bound proteins, or signaling proteins in the cytosol. These vectorial flows of energy can yield standard canonical guest allostery (allosteric modification of drug effect), effects along the plane of the cell membrane (receptor oligomerization), or effects directed into the cytosol (differential signaling as functional selectivity). This review discusses these apparently diverse pharmacological effects in terms of molecular dynamics and protein ensemble theory, which tends to unify 7TMR behavior toward cells. Special consideration will be given to functional selectivity (biased agonism and biased antagonism) in terms of mechanism of action and potential therapeutic application. The explosion of technology that has enabled observation of diverse 7TMR behavior has also shown how drugs can have multiple (pluridimensional) efficacies and how this can cause paradoxical drug classification and nomenclatures.
Collapse
Affiliation(s)
- Terry Kenakin
- GlaxoSmithKline, 5 Moore Drive, Mailtstop V-287, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
34
|
|
35
|
Bilsky EJ, Giuvelis D, Osborn MD, Dersch CM, Xu H, Rothman RB. In vitro and in vivo assessment of mu opioid receptor constitutive activity. Methods Enzymol 2010; 484:413-43. [PMID: 21036244 DOI: 10.1016/b978-0-12-381298-8.00021-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Constitutive (basal) signaling has been described and characterized for numerous G protein coupled receptors (GPCRs). The relevance of this activity to disease, drug discovery and development, and to clinical pharmacotherapy is just beginning to emerge. Opioid receptors were the first GPCR systems for which there was definitive evidence presented for constitutive activity, with numerous studies now published on the regulation of this activity (e.g., structure/activity of the receptor as it relates to basal activity, pharmacology of ligands that act as agonists, inverse agonists and "neutral antagonists," etc.). This chapter summarizes some of the methods used to characterize constitutive activity at the mu opioid receptor (MOR) in preclinical in vitro and in vivo model systems. This includes cell-based systems that are useful for higher throughput screening of novel ligands and for studying variables that can impact basal tone in a system. In vivo assays are also described in which constitutive activity is increased in response to acute or chronic opioid agonist exposure and where withdrawal is precipitated with antagonists that may function as inverse agonists or "neutral" antagonists. The methods described have inherent advantages and disadvantages that need to be considered in any drug discovery/development program. A brief discussion of progress toward understanding the clinical implications of MOR constitutive activity in the management of opioid addiction and chronic pain is also included in this chapter.
Collapse
Affiliation(s)
- Edward J Bilsky
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, USA
| | | | | | | | | | | |
Collapse
|
36
|
Cholecystokinin receptors mediate tolerance to the analgesic effect of TENS in arthritic rats. Pain 2009; 148:84-93. [PMID: 19944533 DOI: 10.1016/j.pain.2009.10.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/25/2009] [Accepted: 10/15/2009] [Indexed: 11/21/2022]
Abstract
Transcutaneous electrical nerve stimulation (TENS) is a treatment for pain that involves placement of electrical stimulation through the skin for pain relief. Previous work from our laboratory shows that repeated application of TENS produces analgesic tolerance by the fourth day and a concomitant cross-tolerance at spinal opioid receptors. Prior pharmacological studies show that blockade of cholecystokinin (CCK) receptors systemically and spinally prevents the development of analgesic tolerance to repeated doses of opioid agonists. We therefore hypothesized that systemic and intrathecal blockade of CCK receptors would prevent the development of analgesic tolerance to TENS, and cross-tolerance at spinal opioid receptors. In animals with knee joint inflammation (3% kaolin/carrageenan), high (100Hz) or low frequency (4Hz) TENS was applied daily and the mechanical withdrawal thresholds of the muscle and paw were examined. We tested thresholds before and after inflammation, and before and after TENS. Animals treated systemically, prior to TENS, with the CCK antagonist, proglumide, did not develop tolerance to repeated application of TENS on the fourth day. Spinal blockade of CCK-A or CCK-B receptors blocked the development of tolerance to high and low frequency TENS, respectively. In the same animals we show that spinal blockade of CCK-A receptors prevents cross-tolerance at spinal delta-opioid receptors that normally occurs with high frequency TENS; and blockade of CCK-B receptors prevents cross-tolerance at spinal mu-opioid receptors that normally occurs with low frequency TENS. Thus, we conclude that blockade of CCK receptors prevents the development of analgesic tolerance to repeated application of TENS in a frequency-dependent manner.
Collapse
|
37
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|
38
|
Fontana G, Savona G, Rodríguez B, Dersch CM, Rothman RB, Prisinzano TE. Synthetic studies of neoclerodane diterpenoids from Salvia splendens and evaluation of Opioid Receptor affinity. Tetrahedron 2008; 64:10041-10048. [PMID: 20027203 DOI: 10.1016/j.tet.2008.08.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Salvinorin A (1), a neoclerodane diterpene from the hallucinogenic mint Salvia divinorum, is the only known non-nitrogenous and specific kappa-opioid agonist. Several structural congeners of 1 isolated from Salvia splendens (2 - 8) together with a series of semisynthetic derivatives (9 - 24), some of which possess a pyrazoline structural moiety (9, 19 - 22), have been tested for affinity at human mu, delta, and kappa opioid receptors. None of these compounds showed high affinity binding to these receptors. However, 10 showed modest affinity for kappa receptors suggesting other naturally neoclerodanes from different Salvia species may possess opioid affinity.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Chimica Organica "E. Paternò", Università degli Studi di Palermo, Parco d'Orleans 2, I-90128 Palermo, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Turchan-Cholewo J, Dimayuga FO, Ding Q, Keller JN, Hauser KF, Knapp PE, Bruce-Keller AJ. Cell-specific actions of HIV-Tat and morphine on opioid receptor expression in glia. J Neurosci Res 2008; 86:2100-10. [PMID: 18338799 DOI: 10.1002/jnr.21653] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
HIV-1 patients who abuse opiate-based drugs, including heroin and morphine, are at a higher risk of developing HIV dementia. The effects of opiates are mediated predominantly through opioid receptors, which are expressed on glial cells. As HIV-1 infection in the CNS is restricted to glial cells, experiments were designed to measure the cell-specific effects of HIV Tat and morphine exposure on opioid receptor expression in both astrocytes and microglia. Specifically, the cell-type-specific pattern of mu opioid receptor (MOR), delta opioid receptor (DOR), and kappa opioid receptor (KOR) localization (surface vs. intracellular) and expression of opioid receptor mRNA were determined after exposure to morphine in the presence and the absence of Tat in primary cultured microglia and astrocytes. Data show that morphine treatment caused significantly decreased cell surface expression of opioid receptors in microglia but not in astrocytes. However, morphine treatment in the presence of Tat significantly increased intracellular expression of opioid receptors and prevented morphine-induced cell surface opioid receptor down-regulation in microglia. These findings document that cell surface opioid receptor expression is divergently regulated by morphine in microglia compared with in astrocytes, and further suggest that HIV-Tat could exacerbate opioid receptor signaling in microglia by increasing receptor expression and/or altering ligand-induced trafficking of opioid receptors.
Collapse
|
40
|
Rutherford JM, Wang J, Xu H, Dersch CM, Partilla JS, Rice KC, Rothman RB. Evidence for a mu-delta opioid receptor complex in CHO cells co-expressing mu and delta opioid peptide receptors. Peptides 2008; 29:1424-31. [PMID: 18472184 DOI: 10.1016/j.peptides.2008.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/25/2022]
Abstract
Based on non-competitive binding interactions we suggested that mu and delta receptors associate as a mu/delta receptor complex in rat brain. We hypothesized that the same non-competitive binding interactions observed in rat brain will be seen in CHO cells that co-express mu and delta receptors, but not in cells that express just mu or delta receptors. We used CHO cells expressing the cloned human mu receptor, cloned human delta receptor, or cloned mouse delta/human mu ("dimer cell"). Cell membranes were prepared from intact cells pretreated with 100nM SUPERFIT. [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding assays followed published procedures. SUPERFIT, a delta-selective irreversible ligand, decreased [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to delta receptors by approximately 75% and to mu receptors by approximately 50% in dimer cells. SUPERFIT treatment did not decrease [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to mu cells. The IC(50) values observed in SUPERFIT-treated dimer cells were: [d-Pen(2),d-Pen(5)]enkephalin (1820nM) and morphine (171nM). Saturation binding experiments with SUPERFIT-treated dimer cells showed that [d-Pen(2),d-Pen(5)]enkephalin (5000nM) was a competitive inhibitor. In contrast, morphine (1000nM) lowered the B(max) from 1944fmol/mg to 1276fmol/mg protein (35% decrease). Both [d-Pen(2),d-Pen(5)]enkephalin and morphine competitively inhibited [(3)H][d-Ala(2),d-Leu(5)]enkephalin binding to SUPERFIT-treated mu cells. The results indicate that the mu-delta opioid receptor complex defined on the basis of non-competitive binding interactions in rat brain over 20 years ago likely occurs as a consequence of the formation of mu-delta heterodimers. SUPERFIT-treated dimer cells may provide a useful model to study the properties of mu-delta heterodimers.
Collapse
MESH Headings
- Animals
- Binding Sites
- CHO Cells
- Cricetinae
- Cricetulus
- Dimerization
- Enkephalin, Leucine-2-Alanine/pharmacology
- Female
- Humans
- Inhibitory Concentration 50
- Ligands
- Mice
- Ovary/cytology
- Ovary/drug effects
- Ovary/metabolism
- Receptor Aggregation/drug effects
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- John M Rutherford
- Clinical Psychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Butelman ER, Rus S, Simpson DS, Wolf A, Prisinzano TE, Kreek MJ. The effects of herkinorin, the first mu-selective ligand from a salvinorin A-derived scaffold, in a neuroendocrine biomarker assay in nonhuman primates. J Pharmacol Exp Ther 2008; 327:154-60. [PMID: 18593955 DOI: 10.1124/jpet.108.140079] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Herkinorin is the first mu-opioid receptor-selective ligand from the salvinorin A diterpenoid scaffold. Herkinorin has relative mu > kappa > delta binding selectivity, and it can act as an agonist at both mu- and kappa-receptors, in vitro. These studies were the first in vivo evaluation of the effects of herkinorin in nonhuman primates, using prolactin release, a neuroendocrine biomarker assay that is responsive to both mu- and kappa-agonists, as well as to compounds with limited ability to cross the blood-brain barrier. In cumulative dosing studies (0.01-0.32 mg/kg i.v.), herkinorin produced only small effects in gonadally intact males (n = 4), but a more robust effect in females (n = 4). Time course studies with herkinorin (0.32 mg/kg) confirmed this greater effectiveness in females and revealed a fast onset after i.v. administration (e.g., by 5-15 min). Antagonism experiments with different doses of nalmefene (0.01 and 0.1 mg/kg) caused dose-dependent and complete prevention of the effect of herkinorin in females. This is consistent with a principal mu-agonist effect of herkinorin, with likely partial contribution by kappa-agonist effects. The peripherally selective antagonist quaternary naltrexone (1 mg/kg s.c.) caused approximately 70% reduction in the peak effect of herkinorin (0.32 mg/kg) in females, indicating that this effect of herkinorin is prominently mediated outside the blood-brain barrier.
Collapse
Affiliation(s)
- Eduardo R Butelman
- The Rockefeller University, Box 171, 1230 York Ave., New York, NY 10065, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Xu H, Wang X, Partilla JS, Bishop-Mathis K, Benaderet TS, Dersch CM, Simpson DS, Prisinzano TE, Rothman RB. Differential effects of opioid agonists on G protein expression in CHO cells expressing cloned human opioid receptors. Brain Res Bull 2008; 77:49-54. [PMID: 18639745 DOI: 10.1016/j.brainresbull.2008.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 04/21/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
Abstract
Recent evidence indicates that agonist ligands of G protein coupled receptors (GPCR) can activate different signaling systems. Such "agonist-directed" signaling also occurs with opioid receptors. Previous work from our laboratory showed that chronic morphine, but not DAMGO, up-regulates the expression of Galpha12 and that both morphine and DAMGO decreased Galphai3 expression in CHO cells expressing the cloned human mu opioid receptor. In this study, we tested the hypothesis that chronic opioid regulation of G protein expression is agonist-directed. Following a 20h treatment of CHO cells expressing the cloned human mu (hMOR-CHO), delta (hDOR-CHO) or kappa (hKOR-CHO) opioid receptors with various opioid agonists, we determined the expression level of Galpha12 and Galphai3 by Western blots. Among five mu agonists (morphine, etorphine, DADLE, DAMGO, herkinorin) tested with hMOR-CHO cells, only chronic morphine and etorphine up-regulated Galpha12 expression. All five mu agonists decreased Galphai3 expression. Among six delta agonists (SNC80, DPDPE, deltorphin-1, morphine, DADLE, etorphine) tested with hDOR-CHO cells, all six agonists down-regulated Galphai3 expression or moderately up-regulated Galpha12 expression. Among five kappa agonists, ((-)-ethylketocyclazocine, salvinorin A, U69,593, etorphine, (-)-U50,488) tested with hKOR-CHO cells, only chronic (-)-U50,488 and (-)-EKC up-regulated Galpha12 expression. All kappa agonists decreased Galphai3 expression. These data demonstrate that chronic opioid agonist regulation of G protein expression depends not only on the agonist tested, but also on the type of opioid receptor expressed in a common cellular host, providing additional evidence for agonist-directed signaling.
Collapse
Affiliation(s)
- Heng Xu
- Clinical Psychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Tidgewell K, Groer CE, Harding WW, Lozama A, Schmidt M, Marquam A, Hiemstra J, Partilla JS, Dersch CM, Rothman RB, Bohn LM, Prisinzano TE. Herkinorin analogues with differential beta-arrestin-2 interactions. J Med Chem 2008; 51:2421-31. [PMID: 18380425 DOI: 10.1021/jm701162g] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Salvinorin A is a psychoactive natural product that has been found to be a potent and selective kappa opioid receptor agonist in vitro and in vivo. The activity of salvinorin A is unusual compared to other opioids such as morphine in that it mediates potent kappa opioid receptor signaling yet leads to less receptor downregulation than observed with other kappa agonists. Our initial chemical modifications of salvinorin A have yielded one analogue, herkinorin ( 1c), with high affinity at the microOR. We recently reported that 1c does not promote the recruitment of beta-arrestin-2 to the microOR or receptor internalization. Here we describe three new derivatives of 1c ( 3c, 3f, and 3i) with similar properties and one, benzamide 7b, that promotes recruitment of beta-arrestin-2 to the microOR and receptor internalization. When the important role micro opioid receptor regulation plays in determining physiological responsiveness to opioid narcotics is considered, micro opioids derived from salvinorin A may offer a unique template for the development of functionally selective mu opioid receptor-ligands with the ability to produce analgesia while limiting adverse side effects.
Collapse
Affiliation(s)
- Kevin Tidgewell
- Division of Medicinal and Natural Products Chemistry, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kelly E, Bailey CP, Henderson G. Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 2007; 153 Suppl 1:S379-88. [PMID: 18059321 DOI: 10.1038/sj.bjp.0707604] [Citation(s) in RCA: 281] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The widely accepted model of G protein-coupled receptor (GPCR) regulation describes a system where the agonist-activated receptors couple to G proteins to induce a cellular response, and are subsequently phosphorylated by a family of kinases called the G protein-coupled receptor kinases (GRKs). The GRK-phosphorylated receptor then acts as a substrate for the binding of a family of proteins called arrestins, which uncouple the receptor and G protein so desensitizing the agonist-induced response. Other kinases, principally the second messenger-dependent protein kinases, are also known to play a role in the desensitization of many GPCR responses. It is now clear that there are subtle and complex interactions between GRKs and second messenger-dependent protein kinases in the regulation of GPCR function. Functional selectivity describes the ability of agonists to stabilize different active conformations of the same GPCR. With regard to desensitization, distinct agonist-activated conformations of a GPCR could undergo different molecular mechanisms of desensitization. An example of this is the mu opioid receptor (MOPr), where the agonists morphine and [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) induce desensitization of the MOPr by different mechanisms, largely protein kinase C (PKC)- or GRK-dependent, respectively. This can be best explained by supposing that these two agonists stabilize distinct conformations of the MOPr, which are nevertheless able to couple to the relevant G-proteins and produce similar responses, yet are sufficiently different to trigger different regulatory processes. There is evidence that other GPCRs also undergo agonist-selective desensitization, but the full therapeutic consequences of this phenomenon await further detailed study.
Collapse
Affiliation(s)
- E Kelly
- Department of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|