1
|
Mncube K, Möller M, Harvey BH. Post-weaning Social Isolated Flinders Sensitive Line Rats Display Bio-Behavioural Manifestations Resistant to Fluoxetine: A Model of Treatment-Resistant Depression. Front Psychiatry 2021; 12:688150. [PMID: 34867504 PMCID: PMC8635751 DOI: 10.3389/fpsyt.2021.688150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022] Open
Abstract
Treatment-resistant depression (TRD) complicates the management of major depression (MD). The underlying biology of TRD involves interplay between genetic propensity and chronic and/or early life adversity. By combining a genetic animal model of MD and post-weaning social isolation rearing (SIR), we sought to produce an animal that displays more severe depressive- and social anxiety-like manifestations resistant to standard antidepressant treatment. Flinders Sensitive Line (FSL) pups were social or isolation reared from weaning [postnatal day (PND) 21], receiving fluoxetine (FLX) from PND 63 (10 mg/kg × 14 days), and compared to Sprague Dawley (SD) controls. Depressive-, anxiety-like, and social behaviour were assessed from PND 72 in the forced swim test (FST) and social interaction test (SIT). Post-mortem cortico-hippocampal norepinephrine (NE), serotonin (5-HT), and dopamine (DA), as well as plasma interleukin 6 (IL-6), tumour necrosis factor alpha (TNF-α), corticosterone (CORT), and dopamine-beta-hydroxylase (DBH) levels were assayed. FSL rats displayed significant cortico-hippocampal monoamine disturbances, and depressive- and social anxiety-like behaviour, the latter two reversed by FLX. SIR-exposed FSL rats exhibited significant immobility in the FST and social impairment which were, respectively, worsened by or resistant to FLX. In SIR-exposed FSL rats, FLX significantly raised depleted NE and 5-HT, significantly decreased DBH and caused a large effect size increase in DA and decrease in CORT and TNF-α. Concluding, SIR-exposed FSL rats display depressive- and social anxiety-like symptoms that are resistant to, or worsened by, FLX, with reduced plasma DBH and suppressed cortico-hippocampal 5-HT, NE and DA, all variably altered by FLX. Exposure of a genetic animal model of MD to post-weaning SIR results in a more intractable depressive-like phenotype as well as changes in TRD-related biomarkers, that are resistant to traditional antidepressant treatment. Given the relative absence of validated animal models of TRD, these findings are especially promising and warrant study, especially further predictive validation.
Collapse
Affiliation(s)
- Khulekani Mncube
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Marisa Möller
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences (PharmaCen), Division of Pharmacology, School of Pharmacy, North-West University, Potchefstroom, South Africa.,South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry and Mental Health and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
2
|
Kesić M, Mokrović G, Tvrdeić A, Miše B, Štefulj J, Čičin-Šain L. Constitutive Serotonin Tone Modulates Molecular and Behavioral Response to Chronic Fluoxetine Treatment: A Study on Genetic Rat Model. Front Psychiatry 2021; 12:741222. [PMID: 34658974 PMCID: PMC8517234 DOI: 10.3389/fpsyt.2021.741222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medications for the treatment of mood disorders. Yet, individual response to SSRIs is highly variable, with only a portion of patients showing the desired therapeutic effect. To better understand the molecular basis underlying individual variability in response to SSRIs, here we comparatively studied behavioral and molecular consequences of chronic treatment with fluoxetine, a widely used SSRI, in two sublines of rats with constitutionally different serotonin (5HT) homeostasis: the high-5HT and low-5HT sublines. Platelet 5HT levels, a recognized indicator of SSRI efficacy, were decreased by fluoxetine treatment in both 5HT-sublines. On the other hand, biologically active plasma 5HT levels were reduced only in high-5HT rats. The anxiolytic effect of fluoxetine was also evident only in high-5HT rats, as supported by spatio-temporal and ethological behavioral measures in the elevated plus maze (EPM) test and exploratory behavior measures in the open field (OF) test. None of the behavioral EPM or OF measures were significantly altered by fluoxetine treatment in low-5HT rats. Unexpectedly, 5HT levels in cerebral cortices tended to be reduced only in low-5HT rats. Moreover, the effects of fluoxetine on cortical expression levels of 5HT-related proteins were also present only in low-5HT rats, with serotonin transporter (5HTT) and serotonin receptor type 1a (Htr1a) being down-regulated, while serotonin receptor type 4 (Htr4) was up-regulated by fluoxetine treatment. The obtained results support a role of individual 5HT tone as an important influencing factor on the biological actions of SSRI antidepressants.
Collapse
Affiliation(s)
- Maja Kesić
- Laboratory for Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Gordana Mokrović
- Laboratory for Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ante Tvrdeić
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Branko Miše
- University Hospital for Infectious Diseases, Zagreb, Croatia
| | - Jasminka Štefulj
- Laboratory for Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Lipa Čičin-Šain
- Laboratory for Neurochemistry and Molecular Neurobiology, Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
3
|
Kious BM, Bakian AV. Evidence of new-onset depression among persons with migraine after discontinuing antidepressants. Psychiatry Res 2020; 288:112990. [PMID: 32353695 DOI: 10.1016/j.psychres.2020.112990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 10/24/2022]
Abstract
Antidepressants have been hypothesized to cause tardive dysphoria-the delayed development of negative emotional symptoms. We assessed the risk of tardive dysphoria in a cohort of persons with migraine taking anti-migraine antidepressants with no known diagnosis of any mood or anxiety disorder. We included all outpatient encounters in a university hospital system for migraine from January 2008 through October 2018, excluding subjects with prior psychiatric diagnoses. Kaplan-Meier survival curves and multivariable Cox proportional hazards analyses were conducted. 13,048 subjects were included; 1191 took an antidepressant; 402 discontinued an antidepressant. In multivariable analyses examining the first year after exposure, antidepressant use was not significantly associated with risk of a depression, any mood disorder (including depression, mania, and other mood disorders), or anxiety. Antidepressant discontinuation was significantly associated with increased risk of depression, but not any mood disorder or anxiety. Among persons with migraine with no known psychiatric diagnosis, antidepressants did not appear to be associated with indicators of tardive dysphoria. Antidepressant discontinuation, however, was associated with increased risk of a depression diagnosis.
Collapse
Affiliation(s)
- Brent M Kious
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, United States.
| | - Amanda V Bakian
- Department of Psychiatry, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Hvilsom AST, Lillethorup TP, Iversen P, Doudet DJ, Wegener G, Landau AM. Cortical and striatal serotonin transporter binding in a genetic rat model of depression and in response to electroconvulsive stimuli. Eur Neuropsychopharmacol 2019; 29:493-500. [PMID: 30826156 DOI: 10.1016/j.euroneuro.2019.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Depression is a debilitating mental illness and two thirds of patients respond insufficiently to conventional antidepressants. Electroconvulsive therapy (ECT) remains the most effective treatment to alleviate drug-refractory depression, however the neurobiological mechanisms are mostly unknown. The serotonergic system plays an important role in depression and alterations in the serotonin transporter (SERT) are seen both in depression and response to antidepressant pharmacotherapies. The first aim of this study was to investigate SERT density in a genetic rat model of depression, Flinders Sensitive Line (FSL), compared to control Flinders Resistant Line (FRL) and Sprague-Dawley (SD) rats. The second aim was to investigate SERT density in response to electroconvulsive stimuli (ECS), an animal model of ECT. Female rats of each strain were treated with ECS or sham (ear-clip placement with no current) for 10 days before brains were removed, frozen and cut into 20 µm thick sections. SERT density was measured in striatal and cortical regions by quantitative in vitro autoradiography using the SERT-radioligand, [3H]-DASB. Higher SERT density was observed in FSL rats compared to SD rats by 36-48% in motor cortex and striatum under sham conditions. In response to ECS, SD rats displayed a significant effect of treatment, whereas no changes were observed in FRL and FSL rats. Increased SERT binding in FSL rats compared to SD supports a dysfunction of the serotonergic system in depression. The increased SERT density after ECS, seen in SD rats but not FSL rats, suggests a different mechanism of action between depressive-like rats and controls.
Collapse
Affiliation(s)
- Anna Sophie Thue Hvilsom
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark
| | - Doris J Doudet
- Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark; Department of Medicine/Neurology, University of British Columbia, Canada
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Centre for Pharmaceutical Excellence, School of Pharmacy (Pharmacology), North-West University, Potchefstroom, South Africa
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Aarhus University, Denmark; Department of Nuclear Medicine and PET Center, Aarhus University, Nørrebrogade 44, Building 10G, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Riad M, Kobert A, Descarries L, Boye S, Rompré PP, Lacaille JC. Chronic fluoxetine rescues changes in plasma membrane density of 5-HT1A autoreceptors and serotonin transporters in the olfactory bulbectomy rodent model of depression. Neuroscience 2017; 356:78-88. [DOI: 10.1016/j.neuroscience.2017.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 05/11/2017] [Accepted: 05/11/2017] [Indexed: 11/29/2022]
|
6
|
Du Jardin KG, Müller HK, Sanchez C, Wegener G, Elfving B. Gene expression related to serotonergic and glutamatergic neurotransmission is altered in the flinders sensitive line rat model of depression: Effect of ketamine. Synapse 2016; 71:37-45. [PMID: 27589698 DOI: 10.1002/syn.21940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/11/2022]
Abstract
Major depressive disorder (MDD) is associated with dysfunctional serotonergic and glutamatergic neurotransmission, and the genetic animal model of depression Flinders Sensitive Line (FSL) rats display alterations in these systems relatively to their control strain Flinders Resistant Line (FRL). However, changes on transcript level related to serotonergic and glutamatergic signaling have only been sparsely studied in this model. The non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist ketamine has fast-onset antidepressant properties, and recent data implicate serotonergic neurotransmission in ketamine's antidepressant-like activities in rodents. Here, we investigated the transcript levels of 40 genes involved in serotonergic and glutamatergic neurotransmission in FSL and FRL rats in response to a single dose of ketamine (15 mg/kg; 90 min prior to euthanization). Using real-time quantitative polymerase chain reaction, we studied the effect of ketamine in the hippocampus, whereas strain differences were investigated in both hippocampus and frontal cortex. The expression of genes involved in serotonergic and glutamatergic neurotransmission were unaffected by a single dose of ketamine in the hippocampus. Relative to FRL rats, FSL rats displayed enhanced hippocampal transcript levels of 5-ht2c , and P11, whereas the expression was reduced for 5-ht2a , Nr2a, and Mglur2. In the frontal cortex, we found higher transcript levels of 5-ht2c and Mglur2, whereas the expression of 5-ht2a was reduced in FSL rats. Thus, ketamine is not associated with hippocampal alterations in serotonergic or glutamatergic genes at 90 min after an antidepressant dose. Furthermore, FSL rats display serotonergic and glutamatergic abnormalities on gene expression level that partly may resemble findings in MDD patients.
Collapse
Affiliation(s)
- Kristian Gaarn Du Jardin
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Heidi Kaastrup Müller
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Connie Sanchez
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark.,Lundbeck US LLC, 215 College Rd, Paramus, New Jersey
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Skovagervej 2, Risskov, Denmark
| |
Collapse
|
7
|
Blanchard H, Chang L, Rezvani AH, Rapoport SI, Taha AY. Brain Arachidonic Acid Incorporation and Turnover are not Altered in the Flinders Sensitive Line Rat Model of Human Depression. Neurochem Res 2015; 40:2293-303. [PMID: 26404538 DOI: 10.1007/s11064-015-1719-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/05/2015] [Accepted: 09/08/2015] [Indexed: 11/25/2022]
Abstract
Brain serotonergic signaling is coupled to arachidonic acid (AA)-releasing calcium-dependent phospholipase A2. Increased brain serotonin concentrations and disturbed serotonergic neurotransmission have been reported in the Flinders Sensitive Line (FSL) rat model of depression, suggesting that brain AA metabolism may be elevated. To test this hypothesis, (14)C-AA was intravenously infused to steady-state levels into control and FSL rats derived from the same Sprague-Dawley background strain, and labeled and unlabeled brain phospholipid and plasma fatty acid concentrations were measured to determine the rate of brain AA incorporation and turnover. Brain AA incorporation and turnover did not differ significantly between controls and FSL rats. Compared to controls, plasma unesterified docosahexaenoic acid was increased, and brain phosphatidylinositol AA and total lipid linoleic acid and n-3 and n-6 docosapentaenoic acid were significantly decreased in FSL rats. Several plasma esterified fatty acids differed significantly from controls. In summary, brain AA metabolism did not change in FSL rats despite reported increased levels of serotonin concentrations, suggesting possible post-synaptic dampening of serotonergic neurotransmission involving AA.
Collapse
Affiliation(s)
- Helene Blanchard
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Chang
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Amir H Rezvani
- Department of Psychiatric and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Stanley I Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neuroscience, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, RMI North, Room 3162, Davis, CA, USA.
| |
Collapse
|
8
|
Rominger A, Cumming P, Brendel M, Xiong G, Zach C, Karch S, Tatsch K, Bartenstein P, la Fougère C, Koch W, Pogarell O. Altered serotonin and dopamine transporter availabilities in brain of depressed patients upon treatment with escitalopram: A [123 I]β-CIT SPECT study. Eur Neuropsychopharmacol 2015; 25:873-81. [PMID: 25819144 DOI: 10.1016/j.euroneuro.2014.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 11/25/2014] [Accepted: 12/24/2014] [Indexed: 01/13/2023]
Abstract
Altered SERT and DAT availabilities during treatment with escitalopram were investigated with [(123)I]2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) SPECT in a series of patients fulfilling the criteria for unipolar major depressive disorder (MDD). 27 patients (10m, 42±16y) with diagnosis of MDD were recruited for the study. All patients underwent neuropsychiatric testing for assessment of Hamilton Depression (HAM-D) and Beck Depression Inventory (BDI) scores. At baseline, [(123)I]β-CIT SPECT recordings were acquired 4h (SERT-weighted) and 20-24h p.i (DAT-weighted). Follow-up scans and neuropsychiatric testing were performed after six weeks of stable escitalopram medication. Voxel-wise parametric maps of specific/ non-specific ratios-1 (~BPND) were calculated. At baseline, DAT-weighted BPND was 5.06±0.81 in striatum and SERT-weighted BPND was 0.94±0.18 in thalamus. There were significant negative correlations with age for DAT in striatum (R=-0.60; p<0.01) and SERT in thalamus (R=-0.45; p<0.05). Under SSRI treatment there was an apparent 42% occupancy of SERT in thalamus (p<0.0001), whereas DAT availability increased significantly by 20% in striatum (p<0.001); higher apparent SERT occupancy in thalamus was associated with lesser DAT increase in striatum (R=-0.62; p<0.005). The low apparent SERT occupancy may be confounded by alterations in SERT expression during treatment. Thus, [(123)I]β-CIT SPECT revealed age-dependent declines in DAT and SERT availabilities in un-medicated MDD patients, comparable to that seen previously in healthy controls. At follow-up, the SSRI-evoked increase in DAT was less pronounced in the older patients, even though apparent SERT occupancy and clinical improvement were not age-dependent. Present findings may have implications for escitalopram dosage and side effect profile in younger MDD patients.
Collapse
Affiliation(s)
- A Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - P Cumming
- Department of Psychiatry, University of Oslo, Oslo, Norway
| | - M Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - G Xiong
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C Zach
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - S Karch
- Department of Psychiatry, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - K Tatsch
- Department of Nuclear Medicine, Municipal Hospital Karlsruhe Inc., Karlsruhe, Germany
| | - P Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C la Fougère
- Department of Nuclear Medicine, University of Tubingen, Tubingen, Germany
| | - W Koch
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - O Pogarell
- Department of Psychiatry, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
9
|
Shrestha SS, Nelson EE, Liow JS, Gladding R, Lyoo CH, Noble PL, Morse C, Henter ID, Kruger J, Zhang B, Suomi SJ, Svenningsson P, Pike VW, Winslow JT, Leibenluft E, Pine DS, Innis RB. Fluoxetine administered to juvenile monkeys: effects on the serotonin transporter and behavior. Am J Psychiatry 2014; 171:323-31. [PMID: 24480874 PMCID: PMC4181537 DOI: 10.1176/appi.ajp.2013.13020183] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE This study examined the long-term effects of fluoxetine administered to juvenile rhesus monkeys who, as young adults, were imaged with positron emission tomography for two serotonergic markers: serotonin transporter (SERT) and serotonin 1A (5-HT1A) receptor. An equal number of monkeys separated from their mothers at birth-an animal model of human childhood stress-were also studied. METHOD At birth, 32 male rhesus monkeys were randomly assigned to either maternal separation or normal rearing conditions. At age 2, half (N=8) of each group was randomly assigned to fluoxetine (3 mg/kg) or placebo for 1 year. To eliminate the confounding effects of residual drug in the brain, monkeys were scanned at least 1.5 years after drug discontinuation. Social interactions were assessed both during and after drug administration. RESULTS Fluoxetine persistently upregulated SERT, but not 5-HT1A receptors, in both the neocortex and the hippocampus. Whole-brain voxel-wise analysis revealed that fluoxetine had a significant effect in the lateral temporal and cingulate cortices. In contrast, neither maternal separation by itself nor the rearing-by-drug interaction was significant for either marker. Fluoxetine had no significant effect on the behavioral measures. CONCLUSIONS Fluoxetine administered to juvenile monkeys upregulates SERT into young adulthood. Implications regarding the efficacy or potential adverse effects of SSRIs in patients cannot be directly drawn from this study. Its purpose was to investigate effects of SSRIs on brain development in nonhuman primates using an experimental approach that randomly assigned long-term SSRI treatment or placebo.
Collapse
|
10
|
Shrestha SS, Pine DS, Luckenbaugh DA, Varnäs K, Henter ID, Innis RB, Mathé AA, Svenningsson P. Antidepressant effects on serotonin 1A/1B receptors in the rat brain using a gene x environment model. Neurosci Lett 2013; 559:163-8. [PMID: 24287374 DOI: 10.1016/j.neulet.2013.11.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 11/04/2013] [Accepted: 11/19/2013] [Indexed: 01/13/2023]
Abstract
A gene-environment (GxE) interaction is implicated in both the pathophysiology and treatment of major depressive disorder (MDD). This study modeled the effects of genetic vulnerability by using the Flinders sensitive line (FSL), a rat model of depression and its control counterpart-the Flinders resistant line (FRL). The effects of environmental vulnerability (e.g., early-life stress) were modeled by using maternal separation. Rats (n=105) were drawn from four groups reflecting experimental crossing of strain (FSL vs. FRL) and early-life stress (high vs. low) to assess the effects of two antidepressants (escitalopram or nortriptyline) compared to vehicle. Quantitative in vitro autoradiography was performed using [(125)I]MPPI (5-HT1A) and [(125)I]CYP (5-HT1B) in prefrontal cortex (PFC) and hippocampus. Stringent, Bonferroni-corrected statistical analyses showed significant strain-by-rearing-by-treatment (three-way) interactions in PFC 5-HT1A and hippocampal 5-HT1B receptors. Either vulnerability reduced serotonergic binding; no additive effects were associated with the two vulnerabilities. Both antidepressants increased hippocampal 5-HT1B receptor binding; however, only nortriptyline selectively increased PFC 5-HT1A receptor binding. Taken together, our findings demonstrate that antidepressant effects on the serotonergic system are shaped by a GxE interaction that depends on antidepressant class and brain region.
Collapse
Affiliation(s)
- Stal Saurav Shrestha
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | - Daniel S Pine
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - David A Luckenbaugh
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ioline D Henter
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Aleksander A Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Dankoski EC, Wightman RM. Monitoring serotonin signaling on a subsecond time scale. Front Integr Neurosci 2013; 7:44. [PMID: 23760548 PMCID: PMC3672682 DOI: 10.3389/fnint.2013.00044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/16/2013] [Indexed: 12/17/2022] Open
Abstract
Serotonin modulates a variety of processes throughout the brain, but it is perhaps best known for its involvement in the etiology and treatment of depressive disorders. Microdialysis studies have provided a clear picture of how ambient serotonin levels fluctuate with regard to behavioral states and pharmacological manipulation, and anatomical and electrophysiological studies describe the location and activity of serotonin and its targets. However, few techniques combine the temporal resolution, spatial precision, and chemical selectivity to directly evaluate serotonin release and uptake. Fast-scan cyclic voltammetry (FSCV) is an electrochemical method that can detect minute changes in neurotransmitter concentration on the same temporal and spatial dimensions as extrasynaptic neurotransmission. Subsecond measurements both in vivo and in brain slice preparations enable us to tease apart the processes of release and uptake. These studies have particularly highlighted the significance of regulatory mechanisms to proper functioning of the serotonin system. This article will review the findings of FSCV investigations of serotonergic neurotransmission and discuss this technique's potential in future studies of the serotonin system.
Collapse
Affiliation(s)
- Elyse C Dankoski
- Curriculum in Neurobiology, University of North Carolina Chapel Hill, NC, USA
| | | |
Collapse
|
12
|
Overstreet DH, Wegener G. The Flinders Sensitive Line Rat Model of Depression—25 Years and Still Producing. Pharmacol Rev 2013; 65:143-55. [DOI: 10.1124/pr.111.005397] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
13
|
Andrews PW, Thomson JA, Amstadter A, Neale MC. Primum non nocere: an evolutionary analysis of whether antidepressants do more harm than good. Front Psychol 2012; 3:117. [PMID: 22536191 PMCID: PMC3334530 DOI: 10.3389/fpsyg.2012.00117] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/30/2012] [Indexed: 12/28/2022] Open
Abstract
Antidepressant medications are the first-line treatment for people meeting current diagnostic criteria for major depressive disorder. Most antidepressants are designed to perturb the mechanisms that regulate the neurotransmitter serotonin - an evolutionarily ancient biochemical found in plants, animals, and fungi. Many adaptive processes evolved to be regulated by serotonin, including emotion, development, neuronal growth and death, platelet activation and the clotting process, attention, electrolyte balance, and reproduction. It is a principle of evolutionary medicine that the disruption of evolved adaptations will degrade biological functioning. Because serotonin regulates many adaptive processes, antidepressants could have many adverse health effects. For instance, while antidepressants are modestly effective in reducing depressive symptoms, they increase the brain's susceptibility to future episodes after they have been discontinued. Contrary to a widely held belief in psychiatry, studies that purport to show that antidepressants promote neurogenesis are flawed because they all use a method that cannot, by itself, distinguish between neurogenesis and neuronal death. In fact, antidepressants cause neuronal damage and mature neurons to revert to an immature state, both of which may explain why antidepressants also cause neurons to undergo apoptosis (programmed death). Antidepressants can also cause developmental problems, they have adverse effects on sexual and romantic life, and they increase the risk of hyponatremia (low sodium in the blood plasma), bleeding, stroke, and death in the elderly. Our review supports the conclusion that antidepressants generally do more harm than good by disrupting a number of adaptive processes regulated by serotonin. However, there may be specific conditions for which their use is warranted (e.g., cancer, recovery from stroke). We conclude that altered informed consent practices and greater caution in the prescription of antidepressants are warranted.
Collapse
Affiliation(s)
- Paul W. Andrews
- Department of Psychology, Neuroscience and Behaviour, McMaster UniversityHamilton, ON, Canada
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| | - J. Anderson Thomson
- Counseling and Psychological Services, Student Health, University of VirginiaCharlottesville, VA, USA
- Institute of Law, Psychiatry and Public Policy, University of VirginiaCharlottesville, VA, USA
| | - Ananda Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Michael C. Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth UniversityRichmond, VA, USA
| |
Collapse
|
14
|
Kovačević T, Skelin I, Minuzzi L, Rosa-Neto P, Diksic M. Reduced metabotropic glutamate receptor 5 in the Flinders Sensitive Line of rats, an animal model of depression: an autoradiographic study. Brain Res Bull 2012; 87:406-12. [PMID: 22310150 DOI: 10.1016/j.brainresbull.2012.01.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 01/18/2012] [Indexed: 01/15/2023]
Abstract
Depression is a brain disorder and there is still only a partial understanding of its underlying pathophysiology. Antidepressant medications with a fast onset have not yet been developed. In addition to the monoaminergic systems, the brain glutaminergic system has been implicated in the etiology of depression. Animal studies of depression have gained importance because they permit a more invasive manipulation of the subjects than human studies. In the present study, we measured the densities of the brain regional metabotropic glutaminergic receptor 5 (mGluR5) in the Flinders Sensitive Line (FSL) rat model of depression and two groups of control rats, the Flinders Resistant Line (FRL) and Sprague Dawley (SPD), the parent strain for both the FSL and FRL rats. The FSL rats showed lower densities of mGluR5 in many brain regions compared to either the SPD and/or FRL rats. In addition, the densities in the FRL rats were larger than in the SPD rats, suggesting possible problems in using FRL rats as controls. The presented data suggest that mGluR5 is lower in animal models of depression which could be related to the cognitive and emotional dysfunctions in the FSL rat model of depression and could be relevant to a better understanding of depression in humans.
Collapse
Affiliation(s)
- Tomislav Kovačević
- Cone Neurosurgical Research Laboratory, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
15
|
Wegener G, Mathe AA, Neumann ID. Selectively bred rodents as models of depression and anxiety. Curr Top Behav Neurosci 2012; 12:139-187. [PMID: 22351423 DOI: 10.1007/7854_2011_192] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Stress related diseases such as depression and anxiety have a high degree of co morbidity, and represent one of the greatest therapeutic challenges for the twenty-first century. The present chapter will summarize existing rodent models for research in psychiatry, mimicking depression- and anxiety-related diseases. In particular we will highlight the use of selective breeding of rodents for extremes in stress-related behavior. We will summarize major behavioral, neuroendocrine and neuronal parameters, and pharmacological interventions, assessed in great detail in two rat model systems: The Flinders Sensitive and Flinders Resistant Line rats (FSL/FRL model), and rats selectively bred for high (HAB) or low (LAB) anxiety related behavior (HAB/LAB model). Selectively bred rodents also provide an excellent tool in order to study gene and environment interactions. Although it is generally accepted that genes and environmental factors determine the etiology of mental disorders, precise information is limited: How rigid is the genetic disposition? How do genetic, prenatal and postnatal influences interact to shape adult disease? Does the genetic predisposition determine the vulnerability to prenatal and postnatal or adult stressors? In combination with modern neurobiological methods, these models are important to elucidate the etiology and pathophysiology of anxiety and affective disorders, and to assist in the development of new treatment paradigms.
Collapse
Affiliation(s)
- Gregers Wegener
- Centre for Psychiatric Research, Aarhus University Hospital, 8240, Risskov, Denmark,
| | | | | |
Collapse
|
16
|
Drug withdrawal-induced depression: Serotonergic and plasticity changes in animal models. Neurosci Biobehav Rev 2012; 36:696-726. [DOI: 10.1016/j.neubiorev.2011.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 10/06/2011] [Accepted: 10/15/2011] [Indexed: 12/17/2022]
|
17
|
Abstract
Despite being a first-line treatment for adolescent depression and anxiety, antidepressant drugs appear to have questionable efficacy and carry an increased risk of adverse effects in this population. The neural mechanisms underlying this phenomenon are currently unknown. Recent research into the neural effects of alcohol and recreational drugs suggests that the developmental trajectory of the adolescent brain may be particularly vulnerable to pharmacological disturbance. It is therefore important to consider whether prescription psychotropic drugs may have analogous effects. This article reviews the contribution of recent preclinical, clinical and pharmacogenetic literature to current knowledge on the short-term and enduring neural effects of antidepressants on the adolescent brain, with a particular focus on the major neurotransmitter systems and neuroplasticity.
Collapse
Affiliation(s)
- Emily Karanges
- School of Psychology A18, University of Sydney, Sydney, NSW 2006, Australia
| | | |
Collapse
|
18
|
Neumann ID, Wegener G, Homberg JR, Cohen H, Slattery DA, Zohar J, Olivier JDA, Mathé AA. Animal models of depression and anxiety: What do they tell us about human condition? Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:1357-75. [PMID: 21129431 DOI: 10.1016/j.pnpbp.2010.11.028] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/24/2010] [Accepted: 11/19/2010] [Indexed: 01/07/2023]
Abstract
While modern neurobiology methods are necessary they are not sufficient to elucidate etiology and pathophysiology of affective disorders and develop new treatments. Achievement of these goals is contingent on applying cutting edge methods on appropriate disease models. In this review, the authors present four rodent models with good face-, construct-, and predictive-validity: the Flinders Sensitive rat line (FSL); the genetically "anxious" High Anxiety-like Behavior (HAB) line; the serotonin transporter knockout 5-HTT(-/-) rat and mouse lines; and the post-traumatic stress disorder (PTSD) model induced by exposure to predator scent, that they have employed to investigate the nature of depression and anxiety.
Collapse
Affiliation(s)
- I D Neumann
- Dept of Behavioural Neuroendocrinology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Differential behavioural and neurochemical outcomes from chronic paroxetine treatment in adolescent and adult rats: a model of adverse antidepressant effects in human adolescents? Int J Neuropsychopharmacol 2011; 14:491-504. [PMID: 21329552 DOI: 10.1017/s146114571100006x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Selective serotonin reuptake inhibitor use is associated with increased risk of suicidal ideation in adolescent humans, yet the neuropharmacological basis of this phenomenon is unknown. Consequently, we examined the behavioural and neurochemical effects of chronic paroxetine (PRX) treatment in adult and adolescent rats. Rats received PRX in their drinking water (target dose 10 mg/kg) for 22 d, during which time they were assessed for depression- and anxiety-like behaviours. Subsequent ex-vivo analyses examined serum PRX concentrations, striatal neurotransmitter content, and regional serotonin and dopamine transporter (SERT, DAT) binding density. After 11-12 d treatment, PRX-treated adolescent rats showed a significant inhibition of social interaction while adults were unaffected. After 19-20 d treatment, adolescents failed to show an antidepressant-like effect of PRX treatment on the forced swim test (FST), while PRX-treated adults showed a typical decrease in immobility and increase in swimming. Two PRX-treated adolescents died unexpectedly after the FST suggesting a compromised response to physical stress. Despite their greater apparent adverse reaction to the drug, adolescents had significantly lower plasma PRX than adults at day 22 of treatment. Chronic PRX treatment had similar effects in adults and adolescents on striatal 5-HT (unchanged relative to controls) and 5-HIAA levels (decreased), while markers of dopaminergic function (DOPAC, HVA, DA turnover) were increased in adults only. SERT density was up-regulated in the amygdala in PRX-treated adolescents only while DAT density in the nucleus accumbens was down-regulated only in PRX-treated adults. These data suggest that the immature rat brain responds differently to PRX and that this might be of use in modelling the atypical response of human adolescents to antidepressants. The age-specific PRX-induced changes in dopaminergic markers and SERT and DAT binding provide clues as to the neural mechanisms underlying adverse PRX effects in adolescent humans.
Collapse
|
20
|
Beaugé LA, DiPolo R. Sidedness of the ATP-Na+-K+ interactions with the Na+ pump in squid axons. Methods Mol Biol 1979; 829:125-44. [PMID: 222318 DOI: 10.1007/978-1-61779-458-2_7] [Citation(s) in RCA: 169] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Using dialysed squid axons we have been able to control internal and external ionic compositions under conditions in which most of the Na+ efflux goes through the Na+ pump. We found that (i) internal K+ had a strong inhibitory effect on Na+ efflux; this effect was antagonized by ATP, with low affinity, and by internal Na+, (ii) a reduction in ATP levels from 3 mM to 50 microM greatly increased the apparent affinity for external K+, but reduced its effectiveness compared with other monovalent cations, as an activator of Na+ efflux, and (iii) the relative effectiveness of different K+ congeners as external activator of the Na+ efflux, though affected by the ATP concentration, was not affected by the Na+/K+ ratio inside the cells. These results are consistent with the idea that the same conformation of the (Na+ + K+)-ATPase can be reached by interaction with external K+ after phosphorylation and with internal K+ before rephosphorylation. They also stress a nonphosphorylating regulatory role of ATP.
Collapse
|