1
|
Hart XM, Gründer G, Ansermot N, Conca A, Corruble E, Crettol S, Cumming P, Frajerman A, Hefner G, Howes O, Jukic MM, Kim E, Kim S, Maniscalco I, Moriguchi S, Müller DJ, Nakajima S, Osugo M, Paulzen M, Ruhe HG, Scherf-Clavel M, Schoretsanitis G, Serretti A, Spina E, Spigset O, Steimer W, Süzen SH, Uchida H, Unterecker S, Vandenberghe F, Verstuyft C, Zernig G, Hiemke C, Eap CB. Optimisation of pharmacotherapy in psychiatry through therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests: Focus on antipsychotics. World J Biol Psychiatry 2024; 25:451-536. [PMID: 38913780 DOI: 10.1080/15622975.2024.2366235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND For psychotic disorders (i.e. schizophrenia), pharmacotherapy plays a key role in controlling acute and long-term symptoms. To find the optimal individual dose and dosage strategy, specialised tools are used. Three tools have been proven useful to personalise drug treatments: therapeutic drug monitoring (TDM) of drug levels, pharmacogenetic testing (PG), and molecular neuroimaging. METHODS In these Guidelines, we provide an in-depth review of pharmacokinetics, pharmacodynamics, and pharmacogenetics for 45 antipsychotics. Over 30 international experts in psychiatry selected studies that have measured drug concentrations in the blood (TDM), gene polymorphisms of enzymes involved in drug metabolism, or receptor/transporter occupancies in the brain (positron emission tomography (PET)). RESULTS Study results strongly support the use of TDM and the cytochrome P450 (CYP) genotyping and/or phenotyping to guide drug therapies. Evidence-based target ranges are available for titrating drug doses that are often supported by PET findings. CONCLUSION All three tools discussed in these Guidelines are essential for drug treatment. TDM goes well beyond typical indications such as unclear compliance and polypharmacy. Despite its enormous potential to optimise treatment effects, minimise side effects and ultimately reduce the global burden of diseases, personalised drug treatment has not yet become the standard of care in psychiatry.
Collapse
Affiliation(s)
- Xenia Marlene Hart
- Department of Molecular Neuroimaging, Medical Faculty Mannheim, Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Gerhard Gründer
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- German Center for Mental Health (DZPG), Partner Site Mannheim, Heidelberg, Germany
| | - Nicolas Ansermot
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Andreas Conca
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Emmanuelle Corruble
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Severine Crettol
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Australia
| | - Ariel Frajerman
- Service Hospitalo-Universitaire de Psychiatrie, Hôpital de Bicêtre, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, France
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
| | - Gudrun Hefner
- Forensic Psychiatry, Vitos Clinic for Forensic Psychiatry, Eltville, Germany
| | - Oliver Howes
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Marin M Jukic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Euitae Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seoyoung Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Ignazio Maniscalco
- Dipartimento di Psichiatria, Comprensorio Sanitario di Bolzano, Bolzano, Italy
| | - Sho Moriguchi
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Daniel J Müller
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Martin Osugo
- Department of Psychosis Studies, IoPPN, King's College London, London, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, London, UK
| | - Michael Paulzen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- JARA - Translational Brain Medicine, Alexianer Center for Mental Health, Aachen, Germany
| | - Henricus Gerardus Ruhe
- Department of Psychiatry, Radboudumc, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Maike Scherf-Clavel
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Georgios Schoretsanitis
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | | | - Edoardo Spina
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Olav Spigset
- Department of Clinical Pharmacology, St. Olav University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Werner Steimer
- Institute of Clinical Chemistry and Pathobiochemistry, Technical University Munich, Munich, Germany
| | - Sinan H Süzen
- Department of Pharmaceutic Toxicology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Hiroyuki Uchida
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Stefan Unterecker
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Frederik Vandenberghe
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
| | - Celine Verstuyft
- Equipe MOODS, Inserm U1018, CESP (Centre de Recherche en Epidémiologie et Sante des Populations), Le Kremlin-Bicêtre, France
- Department of Molecular Genetics, Pharmacogenetics and Hormonology, Bicêtre University Hospital Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gerald Zernig
- Department of Pharmacology, Medical University Innsbruck, Hall in Tirol, Austria
- Private Practice for Psychotherapy and Court-Certified Witness, Hall in Tirol, Austria
| | - Christoph Hiemke
- Department of Psychiatry and Psychotherapy and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center of Mainz, Mainz, Germany
| | - Chin B Eap
- Department of Psychiatry, Unit of Pharmacogenetics and Clinical Psychopharmacology, Center for Psychiatric Neuroscience, Lausanne University Hospital, Prilly, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Wisch JK, McKay NS, Boerwinkle AH, Kennedy J, Flores S, Handen BL, Christian BT, Head E, Mapstone M, Rafii MS, O'Bryant SE, Price JC, Laymon CM, Krinsky-McHale SJ, Lai F, Rosas HD, Hartley SL, Zaman S, Lott IT, Tudorascu D, Zammit M, Brickman AM, Lee JH, Bird TD, Cohen A, Chrem P, Daniels A, Chhatwal JP, Cruchaga C, Ibanez L, Jucker M, Karch CM, Day GS, Lee JH, Levin J, Llibre-Guerra J, Li Y, Lopera F, Roh JH, Ringman JM, Supnet-Bell C, van Dyck CH, Xiong C, Wang G, Morris JC, McDade E, Bateman RJ, Benzinger TLS, Gordon BA, Ances BM. Comparison of tau spread in people with Down syndrome versus autosomal-dominant Alzheimer's disease: a cross-sectional study. Lancet Neurol 2024; 23:500-510. [PMID: 38631766 PMCID: PMC11209765 DOI: 10.1016/s1474-4422(24)00084-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING None.
Collapse
Affiliation(s)
- Julie K Wisch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA.
| | - Nicole S McKay
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Anna H Boerwinkle
- McGovern Medical School, University of Texas in Houston, Houston, TX, USA
| | - James Kennedy
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Shaney Flores
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Benjamin L Handen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bradley T Christian
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth Head
- Department of Pathology, Gillespie Neuroscience Research Facility, University of California, Irvine, CA, USA
| | - Mark Mapstone
- Department of Neurology, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Michael S Rafii
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Sid E O'Bryant
- Institute for Translational Research Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Julie C Price
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Charles M Laymon
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sharon J Krinsky-McHale
- Department of Psychology, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Florence Lai
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - H Diana Rosas
- Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA; Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Sigan L Hartley
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Shahid Zaman
- Cambridge Intellectual and Developmental Disabilities Research Group, University of Cambridge, Cambridge, UK
| | - Ira T Lott
- Department of Pediatrics, University of California Irvine School of Medicine, Irvine, CA, USA
| | - Dana Tudorascu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew Zammit
- Department of Medical Physics and Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joseph H Lee
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Annie Cohen
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patricio Chrem
- Centro de Memoria y Envejecimiento, Buenos Aires, Argentina
| | - Alisha Daniels
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Jasmeer P Chhatwal
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA
| | - Mathias Jucker
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Celeste M Karch
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Psychiatry, Washington University in St Louis, St Louis, MO, USA; German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Gregory S Day
- Department of Neurology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Jae-Hong Lee
- Department of Neurology, University of Ulsan College of Medicine, Asian Medical Center, Seoul, South Korea
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany; German Center for Neurodegenerative Diseases, site Munich, Munich, Germany; Munich Cluster for Systems Neurology, Munich, Germany
| | - Jorge Llibre-Guerra
- Hope Center for Neurological Disorders, Washington University in St Louis, St Louis, MO, USA
| | - Yan Li
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Jee Hoon Roh
- Departments of Physiology and Neurology, Korea University College of Medicine, Seoul, South Korea
| | - John M Ringman
- Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | | | | | - Chengjie Xiong
- Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - Guoqiao Wang
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA; Department of Biostatistics, Washington University in St Louis, St Louis, MO, USA
| | - John C Morris
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric McDade
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Randall J Bateman
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | | | - Brian A Gordon
- Department of Radiology, Washington University in St Louis, St Louis, MO, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
3
|
Wisch JK, Butt OH, Gordon BA, Schindler SE, Fagan AM, Henson RL, Yang C, Boerwinkle AH, Benzinger TLS, Holtzman DM, Morris JC, Cruchaga C, Ances BM. Proteomic clusters underlie heterogeneity in preclinical Alzheimer's disease progression. Brain 2023; 146:2944-2956. [PMID: 36542469 PMCID: PMC10316757 DOI: 10.1093/brain/awac484] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Heterogeneity in progression to Alzheimer's disease (AD) poses challenges for both clinical prognosis and clinical trial implementation. Multiple AD-related subtypes have previously been identified, suggesting differences in receptivity to drug interventions. We identified early differences in preclinical AD biomarkers, assessed patterns for developing preclinical AD across the amyloid-tau-(neurodegeneration) [AT(N)] framework, and considered potential sources of difference by analysing the CSF proteome. Participants (n = 10) enrolled in longitudinal studies at the Knight Alzheimer Disease Research Center completed four or more lumbar punctures. These individuals were cognitively normal at baseline. Cerebrospinal fluid measures of amyloid-β (Aβ)42, phosphorylated tau (pTau181), and neurofilament light chain (NfL) as well as proteomics values were evaluated. Imaging biomarkers, including PET amyloid and tau, and structural MRI, were repeatedly obtained when available. Individuals were staged according to the amyloid-tau-(neurodegeneration) framework. Growth mixture modelling, an unsupervised clustering technique, identified three patterns of biomarker progression as measured by CSF pTau181 and Aβ42. Two groups (AD Biomarker Positive and Intermediate AD Biomarker) showed distinct progression from normal biomarker status to having biomarkers consistent with preclinical AD. A third group (AD Biomarker Negative) did not develop abnormal AD biomarkers over time. Participants grouped by CSF trajectories were re-classified using only proteomic profiles (AUCAD Biomarker Positive versus AD Biomarker Negative = 0.857, AUCAD Biomarker Positive versus Intermediate AD Biomarkers = 0.525, AUCIntermediate AD Biomarkers versus AD Biomarker Negative = 0.952). We highlight heterogeneity in the development of AD biomarkers in cognitively normal individuals. We identified some individuals who became amyloid positive before the age of 50 years. A second group, Intermediate AD Biomarkers, developed elevated CSF ptau181 significantly before becoming amyloid positive. A third group were AD Biomarker Negative over repeated testing. Our results could influence the selection of participants for specific treatments (e.g. amyloid-reducing versus other agents) in clinical trials. CSF proteome analysis highlighted additional non-AT(N) biomarkers for potential therapies, including blood-brain barrier-, vascular-, immune-, and neuroinflammatory-related targets.
Collapse
Affiliation(s)
- Julie K Wisch
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Omar H Butt
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brian A Gordon
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Hope Center, Washington University in Saint Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anne M Fagan
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rachel L Henson
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Anna H Boerwinkle
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David M Holtzman
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Hope Center, Washington University in Saint Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Hope Center, Washington University in Saint Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Beau M Ances
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
- Hope Center, Washington University in Saint Louis, St. Louis, MO 63110, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
4
|
Liu G, Shen C, Qiu A. Amyloid-β Accumulation in Relation to Functional Connectivity in Aging: a Longitudinal Study. Neuroimage 2023; 275:120146. [PMID: 37127190 DOI: 10.1016/j.neuroimage.2023.120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/11/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
The brain undergoes many changes at pathological and functional levels in healthy aging. This study employed a longitudinal and multimodal imaging dataset from the OASIS-3 study (n=300) and explored possible relationships between amyloid beta (Aβ) accumulation and functional brain organization over time in healthy aging. We used positron emission tomography (PET) with Pittsburgh compound-B (PIB) to quantify the Aβ accumulation in the brain and resting-state functional MRI (rs-fMRI) to measure functional connectivity (FC) among brain regions. Each participant had at least 2 to 3 follow-up visits. A linear mixed-effect model was used to examine longitudinal changes of Aβ accumulation and FC throughout the whole brain. We found that the limbic and frontoparietal networks had a greater annual Aβ accumulation and a slower decline in FC in aging. Additionally, the amount of the Aβ deposition in the amygdala network at baseline slowed down the decline in its FC in aging. Furthermore, the functional connectivity of the limbic, default mode network (DMN), and frontoparietal networks accelerated the Aβ propagation across their functionally highly connected regions. The functional connectivity of the somatomotor and visual networks accelerated the Aβ propagation across the brain regions in the limbic, frontoparietal, and DMN networks. These findings suggested that the slower decline in the functional connectivity of the functional hubs may compensate for their greater Aβ accumulation in aging. The Aβ propagation from one brain region to the other may depend on their functional connectivity strength.
Collapse
Affiliation(s)
- Guodong Liu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Chenye Shen
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; The N.1 Institute for Health, National University of Singapore, Singapore; Institute of Data Science, National University of Singapore, Singapore; Department of Biomedical Engineering, the Johns Hopkins University, USA.
| |
Collapse
|
5
|
Wisch JK, Gordon BA, Boerwinkle AH, Luckett PH, Bollinger JG, Ovod V, Li Y, Henson RL, West T, Meyer MR, Kirmess KM, Benzinger TL, Fagan AM, Morris JC, Bateman RJ, Ances BM, Schindler SE. Predicting continuous amyloid PET values with CSF and plasma Aβ42/Aβ40. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12405. [PMID: 36874595 PMCID: PMC9980305 DOI: 10.1002/dad2.12405] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/14/2022] [Accepted: 01/19/2023] [Indexed: 03/06/2023]
Abstract
Introduction Continuous measures of amyloid burden as measured by positron emission tomography (PET) are being used increasingly to stage Alzheimer's disease (AD). This study examined whether cerebrospinal fluid (CSF) and plasma amyloid beta (Aβ)42/Aβ40 could predict continuous values for amyloid PET. Methods CSF Aβ42 and Aβ40 were measured with automated immunoassays. Plasma Aβ42 and Aβ40 were measured with an immunoprecipitation-mass spectrometry assay. Amyloid PET was performed with Pittsburgh compound B (PiB). The continuous relationships of CSF and plasma Aβ42/Aβ40 with amyloid PET burden were modeled. Results Most participants were cognitively normal (427 of 491 [87%]) and the mean age was 69.0 ± 8.8 years. CSF Aβ42/Aβ40 predicted amyloid PET burden until a relatively high level of amyloid accumulation (69.8 Centiloids), whereas plasma Aβ42/Aβ40 predicted amyloid PET burden until a lower level (33.4 Centiloids). Discussion CSF Aβ42/Aβ40 predicts the continuous level of amyloid plaque burden over a wider range than plasma Aβ42/Aβ40 and may be useful in AD staging. Highlights Cerebrospinal fluid (CSF) amyloid beta (Aβ)42/Aβ40 predicts continuous amyloid positron emission tomography (PET) values up to a relatively high burden.Plasma Aβ42/Aβ40 is a comparatively dichotomous measure of brain amyloidosis.Models can predict regional amyloid PET burden based on CSF Aβ42/Aβ40.CSF Aβ42/Aβ40 may be useful in staging AD.
Collapse
Affiliation(s)
- Julie K. Wisch
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University in Saint LouisSt. LouisMissouriUSA
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Anna H. Boerwinkle
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
| | - Patrick H. Luckett
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
| | - James G. Bollinger
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
- The Tracy Family SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Vitaliy Ovod
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
- The Tracy Family SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Yan Li
- Department of RadiologyWashington University in Saint LouisSt. LouisMissouriUSA
| | - Rachel L. Henson
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
| | - Tim West
- C2N DiagnosticsSt. LouisMissouriUSA
| | | | | | - Tammie L.S. Benzinger
- Department of RadiologyWashington University in Saint LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Anne M. Fagan
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - John C. Morris
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
- The Tracy Family SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Beau M. Ances
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
- Department of RadiologyWashington University in Saint LouisSt. LouisMissouriUSA
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University in Saint LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| |
Collapse
|
6
|
Cutando L, Puighermanal E, Castell L, Tarot P, Belle M, Bertaso F, Arango-Lievano M, Ango F, Rubinstein M, Quintana A, Chédotal A, Mameli M, Valjent E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat Neurosci 2022; 25:900-911. [PMID: 35710984 DOI: 10.1038/s41593-022-01092-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/10/2022] [Indexed: 01/18/2023]
Abstract
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.
Collapse
Affiliation(s)
- Laura Cutando
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France. .,Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Emma Puighermanal
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Castell
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Pauline Tarot
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Morgane Belle
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | | | - Fabrice Ango
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France.,INM, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Albert Quintana
- Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.,Inserm UMR-S 1270, Paris, France
| | | |
Collapse
|
7
|
Criswell SR, Searles Nielsen S, Dlamini WW, Warden MN, Perlmutter JS, Sheppard L, Moerlein SM, Lenox-Krug J, Checkoway H, Racette BA. Principal Component Analysis of Striatal and Extrastriatal D2 Dopamine Receptor Positron Emission Tomography in Manganese-Exposed Workers. Toxicol Sci 2021; 182:132-141. [PMID: 33881537 DOI: 10.1093/toxsci/kfab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The relationships between the neurotoxicant manganese (Mn), dopaminergic pathology, and parkinsonism remain unclear. Therefore, we used [11C](N-methyl)benperidol (NMB) positron emission tomography to investigate the associations between Mn exposure, striatal and extrastriatal D2 dopamine receptors (D2R), and motor function in 54 workers with a range of Mn exposure. Cumulative Mn exposure was estimated from work histories, and all workers were examined by a movement specialist and completed a Grooved Pegboard test (GPT). NMB D2R nondisplaceable binding potentials (BPND) were calculated for brain regions of interest. We identified 2 principal components (PCs) in a PC analysis which explained 66.8% of the regional NMB BPND variance (PC1 = 55.4%; PC2 = 11.4%). PC1 was positively correlated with NMB binding in all regions and inversely correlated with age. PC2 was driven by NMB binding in 7 brain regions (all p < .05), positively in the substantia nigra, thalamus, amygdala, and medial orbital frontal gyrus and negatively in the nucleus accumbens, anterior putamen, and caudate. PC2 was associated with both Mn exposure status and exposure duration (years). In addition, PC2 was associated with higher Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) scores and slower GPT performance. We conclude Mn exposure is associated with both striatal and extrastriatal D2R binding. Multifocal alterations in D2R expression are also associated with motor dysfunction as measured by both the GPT and UPDRS3, demonstrating a link between Mn exposure, striatal and extrastriatal D2R expression, and clinical neurotoxicity.
Collapse
Affiliation(s)
- Susan R Criswell
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Susan Searles Nielsen
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Wendy W Dlamini
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Mark N Warden
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Neuroscience, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Program in Physical Therapy, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Program in Occupational Therapy, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Lianne Sheppard
- Department of Environmental and Occupational Health Sciences, University of Washington, School of Public Health, Seattle, Washington 98195, USA.,Department of Biostatistics, University of Washington, School of Public Health, Seattle, Washington 98195, USA
| | - Stephen M Moerlein
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Jason Lenox-Krug
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Harvey Checkoway
- Department of Family Medicine and Public Health, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA.,Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, California 92093, USA
| | - Brad A Racette
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| |
Collapse
|
8
|
Samara A, Li Z, Rutlin J, Raji CA, Sun P, Song SK, Hershey T, Eisenstein SA. Nucleus accumbens microstructure mediates the relationship between obesity and eating behavior in adults. Obesity (Silver Spring) 2021; 29:1328-1337. [PMID: 34227242 PMCID: PMC8928440 DOI: 10.1002/oby.23201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Basal ganglia regions are part of the brain's reward-processing networks and are implicated in the neurobiology of obesity and eating disorders. This study examines basal ganglia microstructural properties in adults with and without obesity. METHODS Diffusion basis spectrum imaging (DBSI) images were analyzed to obtain putative imaging markers of neuroinflammation. Relationships between basal ganglia DBSI metrics and reward sensitivity and eating behaviors were also explored. RESULTS A total of 46 participants (25 people with obesity; aged 20-40 years; 37 women) were included. Relative to the people in the normal-weight group, people with obesity had smaller caudate and larger nucleus accumbens (NAcc) volumes (p < 0.05) and lower DBSI fiber fraction (reflecting apparent axonal/dendrite density) in NAcc and putamen, higher DBSI nonrestricted fraction (reflecting tissue edema) in NAcc and caudate, and higher DBSI restricted fraction (reflecting tissue cellularity) in putamen (p ≤ 0.01, all). Increased emotional and reward eating behaviors were related to lower NAcc axonal/dendrite density and greater tissue edema (p ≤ 0.002). The relationships between emotional eating and adiposity measures were mediated by NAcc microstructure. CONCLUSIONS These findings provide evidence that microstructural alterations in basal ganglia relate to obesity and insights linking NAcc microstructure and eating behavior in adults.
Collapse
Affiliation(s)
- Amjad Samara
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhaolong Li
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological and Brain Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jerrel Rutlin
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Cyrus A. Raji
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peng Sun
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sarah A. Eisenstein
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Raman F, Grandhi S, Murchison CF, Kennedy RE, Landau S, Roberson ED, McConathy J. Biomarker Localization, Analysis, Visualization, Extraction, and Registration (BLAzER) Methodology for Research and Clinical Brain PET Applications. J Alzheimers Dis 2020; 70:1241-1257. [PMID: 31322571 DOI: 10.3233/jad-190329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tools for efficient evaluation of amyloid- and tau-PET images are needed in both clinical and research settings. OBJECTIVE This study was designed to validate a semi-automated image analysis methodology, called Biomarker Localization, Analysis, Visualization, Extraction, and Registration (BLAzER). We tested BLAzER using two different segmentation platforms, FreeSurfer (FS) and Neuroreader (NR), for regional brain PET quantification in participants in the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. METHODS 127 amyloid-PET and 55 tau-PET studies with volumetric MRIs were obtained from ADNI. The BLAzER methodology utilizes segmentation of MR images by FS or NR, then visualizes and quantifies regional brain PET data using FDA-cleared software (MIM), enabling quality control to ensure optimal registration and to detect segmentation errors. RESULTS BLAzER analysis required ∼5 min plus segmentation time. BLAzER using FS segmentation showed strong agreement with ADNI for global amyloid-PET standardized uptake value ratios (SUVRs) (r = 0.9922, p < 0.001) and regional tau-PET SUVRs across all Braak staging regions (r > 0.97, p < 0.001) with high inter-operator reproducibility (ICC > 0.97) and nearly identical dichotomization as amyloid-positive or -negative (2 discrepant cases out of 127). Comparing FS versus NR segmentation with BLAzER, global SUVRs were strongly correlated for amyloid-PET (r = 0.9841, p < 0.001), but were systematically higher (4% on average) with NR, likely due to more inclusion of white matter with NR-defined regions. CONCLUSIONS BLAzER provides an efficient methodology for regional brain PET quantification. FDA-cleared components and visualization of registration reduce barriers between research and clinical applications.
Collapse
Affiliation(s)
- Fabio Raman
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sameera Grandhi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles F Murchison
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Richard E Kennedy
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susan Landau
- Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jonathan McConathy
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA.,Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
10
|
Aschenbrenner AJ, Petros J, McDade E, Wang G, Balota DA, Benzinger TLS, Cruchaga C, Goate A, Xiong C, Perrin R, Fagan AM, Graff‐Radford N, Ghetti B, Levin J, Weidinger E, Schofield P, Gräber S, Lee J, Chhatwal JP, Morris JC, Bateman R, Hassenstab J. Relationships between big-five personality factors and Alzheimer's disease pathology in autosomal dominant Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12038. [PMID: 32587883 PMCID: PMC7311802 DOI: 10.1002/dad2.12038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/06/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Changes in personality characteristics are associated with the onset of symptoms in Alzheimer's disease (AD) and may even precede clinical diagnosis. However, personality changes caused by disease progression can be difficult to separate from changes that occur with normal aging. The Dominantly Inherited Alzheimer Network (DIAN) provides a unique cohort in which to relate measures of personality traits to in vivo markers of disease in a much younger sample than in typical late onset AD. METHODS Personality traits measured with the International Personality Item Pool at baseline from DIAN participants were analyzed as a function of estimated years to onset of clinical symptoms and well-established AD biomarkers. RESULTS Both neuroticism and conscientiousness were correlated with years to symptom onset and markers of tau pathology in the cerebrospinal fluid. Self-reported conscientiousness and both neuroticism and conscientiousness ratings from a collateral source were correlated with longitudinal rates of cognitive decline such that participants who were rated as higher on neuroticism and lower on conscientiousness exhibited accelerated rates of cognitive decline. DISCUSSION Personality traits are correlated with the accumulation of AD pathology and time to symptom onset, suggesting that AD progression can influence an individual's personality characteristics. Together these findings suggest that measuring neuroticism and conscientiousness may hold utility in tracking disease progression in AD.
Collapse
Affiliation(s)
- Andrew J. Aschenbrenner
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Jennifer Petros
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Eric McDade
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Guoqiao Wang
- Division of BiostatisticsWashington University School of MedicineSt. LouisMissouriUSA
| | - David A. Balota
- Department of Psychological and Brain SciencesWashington University in St. LouisSt. LouisMissouriUSA
| | - Tammie LS Benzinger
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of RadiologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of PsychiatryWashington University School of MedicineSt. LouisMissouriUSA
| | - Alison Goate
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chengjie Xiong
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- Division of BiostatisticsWashington University School of MedicineSt. LouisMissouriUSA
| | - Richard Perrin
- Division of NeuropathologyDepartment of Pathology & ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Anne M. Fagan
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | | | - Bernardino Ghetti
- Department of Pathology and Laboratory MedicineIndiana University School of MedicineIndianapolisIndianaUSA
| | - Johannes Levin
- German Center for Neurodegenerative DiseasesMunichGermany
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Endy Weidinger
- German Center for Neurodegenerative DiseasesMunichGermany
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Peter Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Medical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - Susanne Gräber
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Jae‐Hong Lee
- Department of NeurologyUniversity of Ulsan College of MedicineAsan Medical CenterSeoulKorea
| | | | - John C. Morris
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Randall Bateman
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Jason Hassenstab
- Charles F. and Joanne Knight Alzheimer Disease Research CenterDepartment of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
- Department of Psychological and Brain SciencesWashington University in St. LouisSt. LouisMissouriUSA
| | | |
Collapse
|
11
|
Castillo-Barnes D, Su L, Ramírez J, Salas-Gonzalez D, Martinez-Murcia FJ, Illan IA, Segovia F, Ortiz A, Cruchaga C, Farlow MR, Xiong C, Graff-Radford NR, Schofield PR, Masters CL, Salloway S, Jucker M, Mori H, Levin J, Gorriz JM. Autosomal Dominantly Inherited Alzheimer Disease: Analysis of genetic subgroups by Machine Learning. AN INTERNATIONAL JOURNAL ON INFORMATION FUSION 2020; 58:153-167. [PMID: 32284705 PMCID: PMC7153760 DOI: 10.1016/j.inffus.2020.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Despite subjects with Dominantly-Inherited Alzheimer's Disease (DIAD) represent less than 1% of all Alzheimer's Disease (AD) cases, the Dominantly Inherited Alzheimer Network (DIAN) initiative constitutes a strong impact in the understanding of AD disease course with special emphasis on the presyptomatic disease phase. Until now, the 3 genes involved in DIAD pathogenesis (PSEN1, PSEN2 and APP) have been commonly merged into one group (Mutation Carriers, MC) and studied using conventional statistical analysis. Comparisons between groups using null-hypothesis testing or longitudinal regression procedures, such as the linear-mixed-effects models, have been assessed in the extant literature. Within this context, the work presented here performs a comparison between different groups of subjects by considering the 3 genes, either jointly or separately, and using tools based on Machine Learning (ML). This involves a feature selection step which makes use of ANOVA followed by Principal Component Analysis (PCA) to determine which features would be realiable for further comparison purposes. Then, the selected predictors are classified using a Support-Vector-Machine (SVM) in a nested k-Fold cross-validation resulting in maximum classification rates of 72-74% using PiB PET features, specially when comparing asymptomatic Non-Carriers (NC) subjects with asymptomatic PSEN1 Mutation-Carriers (PSEN1-MC). Results obtained from these experiments led to the idea that PSEN1-MC might be considered as a mixture of two different subgroups including: a first group whose patterns were very close to NC subjects, and a second group much more different in terms of imaging patterns. Thus, using a k-Means clustering algorithm it was determined both subgroups and a new classification scenario was conducted to validate this process. The comparison between each subgroup vs. NC subjects resulted in classification rates around 80% underscoring the importance of considering DIAN as an heterogeneous entity.
Collapse
Affiliation(s)
- Diego Castillo-Barnes
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge (UK)
| | - Javier Ramírez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Diego Salas-Gonzalez
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | | | - Ignacio A. Illan
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Fermin Segovia
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
| | - Andres Ortiz
- Department of Communications Engineering, University of Malaga, Malaga (Spain)
| | - Carlos Cruchaga
- Department of Psychiatry and Neurology, Washington University School of Medicine, St. Louis, Missouri (USA)
| | - Martin R. Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana (USA)
| | - Chengjie Xiong
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri (USA)
| | | | - Peter R. Schofield
- Neuroscience Research Australia and School of Medical Sciences, University of New South Wales, Sydney (Australia)
| | - Colin L. Masters
- Florey Institute and University of Melbourne, Victoria (Australia)
| | | | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen (Germany)
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka City University Medical school, Osaka (Japan)
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-University of Munich, Munich (Germany)
| | - Juan M. Gorriz
- Department of Signal Theory, Telematics and Communications, University of Granada, Granada (Spain)
- Department of Psychiatry, University of Cambridge, Cambridge (UK)
| | | |
Collapse
|
12
|
Eisenstein SA, Black KJ, Samara A, Koller JM, Dunn JP, Hershey T, Klein S, Smith GI. Striatal Dopamine Responses to Feeding are Altered in People with Obesity. Obesity (Silver Spring) 2020; 28:765-771. [PMID: 32086877 PMCID: PMC7093218 DOI: 10.1002/oby.22753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/03/2020] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study determined whether striatal dopamine (DA) release is affected by food ingestion and whether the DA response to high-calorie food images is greater in the fasted than in the fed state in people with obesity. METHODS Striatal DA release was evaluated in 10 people with obesity and prediabetes after consuming a meal to satiation and after fasting overnight as well as in response to viewing images of high-calorie compared with low-calorie foods after consuming a meal to satiation or fasting overnight by using positron emission tomography with [11 C]raclopride injection. RESULTS Striatal DA D2/D3 receptor availability was not different during fasted and fed conditions. Viewing images of high-calorie foods induced striatal DA release relative to viewing images of low-calorie foods (P < 0.05), but there was no difference in the magnitude of the response between fasting and fed conditions. CONCLUSIONS People with obesity and prediabetes do not increase striatal DA release after eating a meal to satiation compared with fasting overnight and fail to inhibit DA release in response to high-calorie food stimuli after eating a meal to satiation. These data suggest that impaired DA signaling contributes to greater energy intake during meals in this population.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110
- Departments of Radiology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Kevin J. Black
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110
- Departments of Radiology, Washington University School of Medicine, St. Louis, MO, 63110
- Departments of Neurology, Washington University School of Medicine, St. Louis, MO, 63110
- Departments of Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110
| | - Amjad Samara
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110
| | - Jonathan M. Koller
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110
| | - Julia P. Dunn
- Departments of Center for Human Nutrition Washington University School of Medicine, St. Louis, MO, 63110
| | - Tamara Hershey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110
- Departments of Radiology, Washington University School of Medicine, St. Louis, MO, 63110
- Departments of Neurology, Washington University School of Medicine, St. Louis, MO, 63110
| | - Samuel Klein
- Departments of Center for Human Nutrition Washington University School of Medicine, St. Louis, MO, 63110
| | - Gordon I. Smith
- Departments of Center for Human Nutrition Washington University School of Medicine, St. Louis, MO, 63110
| |
Collapse
|
13
|
Vöglein J, Paumier K, Jucker M, Preische O, McDade E, Hassenstab J, Benzinger TL, Noble JM, Berman SB, Graff-Radford NR, Ghetti B, Farlow MR, Chhatwal J, Salloway S, Xiong C, Karch CM, Cairns N, Mori H, Schofield PR, Masters CL, Goate A, Buckles V, Fox N, Rossor M, Chrem P, Allegri R, Ringman JM, Höglinger G, Steiner H, Dieterich M, Haass C, Laske C, Morris JC, Bateman RJ, Danek A, Levin J. Clinical, pathophysiological and genetic features of motor symptoms in autosomal dominant Alzheimer's disease. Brain 2019; 142:1429-1440. [PMID: 30897203 PMCID: PMC6735903 DOI: 10.1093/brain/awz050] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 12/21/2018] [Accepted: 01/13/2019] [Indexed: 11/14/2022] Open
Abstract
Owing to an early and marked deposition of amyloid-β in the basal ganglia, autosomal dominant Alzheimer's disease could distinctly involve motor symptoms. Therefore, we aimed to assess the prevalence and characteristics of motor signs in autosomal dominant Alzheimer's disease. Baseline Unified Parkinson Disease Rating Scale part three scores (UPDRS-III) from 433 participants of the Dominantly Inherited Alzheimer's Network observational study were analysed. Motor symptoms were scrutinized with respect to associations with mutation carrier status, mutation site within PSEN1, basal ganglia amyloid-β as measured by Pittsburgh compound B PET, estimated years to symptom onset and Clinical Dementia Rating Scale-Sum of Boxes. Motor findings in mutation carriers were compared to patients with sporadic Alzheimer's disease using data of the National Alzheimer's Coordination Center. Mutation carriers showed motor findings at a higher frequency (28.4% versus 12.8%; P < 0.001) and severity (mean UPDRS-III scores 2.0 versus 0.4; P < 0.001) compared to non-carriers. Eleven of the 27 UPDRS-III items were statistically more frequently affected in mutation carriers after adjustment for multiple comparisons. Ten of these 11 items were subscale components of bradykinesia. In cognitively asymptomatic mutation carriers, dysdiadochokinesia was more frequent compared to non-carriers (right hand: 3.8% versus 0%; adjusted P = 0.023; left: 4.4% versus 0.6%; adjusted P = 0.031). In this cohort, the positive predictive value for mutation carrier status in cognitively asymptomatic participants (50% a priori risk) of dysdiadochokinesia was 100% for the right and 87.5% for the left side. Mutation carriers with motor findings more frequently were basal ganglia amyloid-β positive (84% versus 63.3%; P = 0.006) and showed more basal ganglia amyloid-β deposition (Pittsburgh compound B-standardized uptake value ratio 2.472 versus 1.928; P = 0.002) than those without. Frequency and severity of motor findings were greater in post-codon 200 PSEN1 mutations (36%; mean UPDRS-III score 3.03) compared to mutations pre-codon 200 PSEN1 (19.3%, P = 0.022; 0.91, P = 0.013). In mutation carriers, motor symptom severity was significantly positively correlated with basal ganglia amyloid-β deposition, Clinical Dementia Rating scores and estimated years to symptom onset. Mutation carriers with a Clinical Dementia Rating global score of 2 exhibited more pronounced motor symptoms than sporadic Alzheimer's disease patients with the same Clinical Dementia Rating global score (mean UPDRS-III scores 20.71 versus 5.96; P < 0.001). With a prevalence of approximately 30% and increasing severity with progression of dementia, motor symptoms are proven as a clinically relevant finding in autosomal dominant Alzheimer's disease, in particular in advanced dementia stages, that correlates with deposition of amyloid-β in the basal ganglia. In a very small per cent of cognitively asymptomatic members of families with autosomal dominant Alzheimer's disease, dysdiadochokinesia may increase the chance of an individual's status as mutation carrier.
Collapse
Affiliation(s)
- Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katrina Paumier
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Mathias Jucker
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Oliver Preische
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Eric McDade
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Jason Hassenstab
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Tammie L Benzinger
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - James M Noble
- Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, and Gertrude H. Sergievsky Center, Columbia University Irving Medical Center, 710 West 168th Street Box 176, New York, NY, USA
| | - Sarah B Berman
- University of Pittsburgh, 3471 Fifth Ave #900, Pittsburgh, PA, USA
| | | | | | - Martin R Farlow
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jasmeer Chhatwal
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Chengjie Xiong
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Celeste M Karch
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Nigel Cairns
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Hiroshi Mori
- Osaka City University Medical School, Asahimachi, Abenoku, Osaka 545–8585, Japan
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Colin L Masters
- Florey Institute, University of Melbourne, Level 5, Kenneth Myer Building, 30 Royal Parade, Parkville, Victoria, 3010, Australia
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, B1065, New York, NY, USA
| | - Virginia Buckles
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Nick Fox
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, UK
| | - Martin Rossor
- Dementia Research Centre, Institute of Neurology, University College London, Queen Square, London, UK
| | | | | | - John M Ringman
- Keck School of Medicine of University of Southern California, Center for the Health Professionals, 1540 Alcazar Street, Suite 209F, Los Angeles, CA, USA
| | - Günter Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Harald Steiner
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Biomedical Center (BMC), Metabolic Biochemistry, LMU Munich, Germany
| | - Marianne Dieterich
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Biomedical Center (BMC), Metabolic Biochemistry, LMU Munich, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, 72076 Tübingen, Germany
| | - John C Morris
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Randall J Bateman
- Washington University School of Medicine, 660 South Euclid, Saint Louis, MO, USA
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | | |
Collapse
|
14
|
Quintana C, Beaulieu JM. A fresh look at cortical dopamine D2 receptor expressing neurons. Pharmacol Res 2018; 139:440-445. [PMID: 30528973 DOI: 10.1016/j.phrs.2018.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 01/02/2023]
Abstract
The dopamine D2 receptor (DRD2) remains the principal target of antipsychotic drugs used for the management of schizophrenia and other psychotic disorders. This receptor is highly expressed within the basal ganglia, more specifically the striatal caudate nucleus and the nucleus accumbens. The general functions, signaling and behavioral contributions of striatal DRD2 are well understood. However, the study of cortical DRD2 expression and functions has for the most part been restricted to a subset of pyramidal neurons and interneurons (e.g. parvalbumine positive) of the pre frontal cortex where DRD2 regulated local circuits are believed to contribute to the regulation of emotional and cognitive functions. The further investigations of cortical DRD2 functions have been hindered by relatively low receptor expression and the sensitivity of detection methods. Here we report recent findings by our group using high sensitivity approaches to map cortical DRD2 expression. Results from these investigations revealed different scales of heterogeneity within DRD2 expressing neurons. These variations affected the types of neurons expressing DRD2 as well as the co-expression of DRD2 with other receptors across several cortical regions. Furthermore several cortical regions showing higher clusters of DRD2 expressing neurons are involved in the regulation of emotional, cognitive and sensory functions that can be involved in the expression of psychotic symptoms. These findings underscore the need for a reexamination of cortical DRD2 mediated synaptic plasticity in the context of schizophrenia and other psychotic disorders.
Collapse
Affiliation(s)
- Clémentine Quintana
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S 1A8, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology & Toxicology, University of Toronto, Medical Sciences Building, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
15
|
Twohig D, Rodriguez-Vieitez E, Sando SB, Berge G, Lauridsen C, Møller I, Grøntvedt GR, Bråthen G, Patra K, Bu G, Benzinger TLS, Karch CM, Fagan A, Morris JC, Bateman RJ, Nordberg A, White LR, Nielsen HM. The relevance of cerebrospinal fluid α-synuclein levels to sporadic and familial Alzheimer's disease. Acta Neuropathol Commun 2018; 6:130. [PMID: 30477568 PMCID: PMC6260771 DOI: 10.1186/s40478-018-0624-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 12/30/2022] Open
Abstract
Accumulating evidence demonstrating higher cerebrospinal fluid (CSF) α-synuclein (αSyn) levels and αSyn pathology in the brains of Alzheimer's disease (AD) patients suggests that αSyn is involved in the pathophysiology of AD. To investigate whether αSyn could be related to specific aspects of the pathophysiology present in both sporadic and familial disease, we quantified CSF levels of αSyn and assessed links to various disease parameters in a longitudinally followed cohort (n = 136) including patients with sporadic mild cognitive impairment (MCI) and AD, and in a cross-sectional sample from the Dominantly Inherited Alzheimer's Network (n = 142) including participants carrying autosomal dominant AD (ADAD) gene mutations and their non-mutation carrying family members.Our results show that sporadic MCI patients that developed AD over a period of two years exhibited higher baseline αSyn levels (p = 0.03), which inversely correlated to their Mini-Mental State Examination scores, compared to cognitively normal controls (p = 0.02). In the same patients, there was a dose-dependent positive association between CSF αSyn and the APOEε4 allele. Further, CSF αSyn levels were higher in symptomatic ADAD mutation carriers versus non-mutation carriers (p = 0.03), and positively correlated to the estimated years from symptom onset (p = 0.05) across all mutation carriers. In asymptomatic (Clinical Dementia Rating < 0.5) PET amyloid-positive ADAD mutation carriers CSF αSyn was positively correlated to 11C-Pittsburgh Compound-B (PiB) retention in several brain regions including the posterior cingulate, superior temporal and frontal cortical areas. Importantly, APOEε4-positive ADAD mutation carriers exhibited an association between CSF αSyn levels and mean cortical PiB retention (p = 0.032). In both the sporadic AD and ADAD cohorts we found several associations predominantly between CSF levels of αSyn, tau and amyloid-β1-40.Our results suggest that higher CSF αSyn levels are linked to AD pathophysiology at the early stages of disease development and to the onset of cognitive symptoms in both sporadic and autosomal dominant AD. We conclude that APOEε4 may promote the processes driven by αSyn, which in turn may reflect on molecular mechanisms linked to the asymptomatic build-up of amyloid plaque burden in brain regions involved in the early stages of AD development.
Collapse
|
16
|
Criswell SR, Warden MN, Searles Nielsen S, Perlmutter JS, Moerlein SM, Sheppard L, Lenox-Krug J, Checkoway H, Racette BA. Selective D2 receptor PET in manganese-exposed workers. Neurology 2018; 91:e1022-e1030. [PMID: 30097475 PMCID: PMC6140373 DOI: 10.1212/wnl.0000000000006163] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/15/2018] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE To investigate the associations between manganese (Mn) exposure, D2 dopamine receptors (D2Rs), and parkinsonism using [11C](N-methyl)benperidol (NMB) PET. METHODS We used NMB PET to evaluate 50 workers with a range of Mn exposure: 22 Mn-exposed welders, 15 Mn-exposed workers, and 13 nonexposed workers. Cumulative Mn exposure was estimated from work histories, and movement disorder specialists examined all workers. We calculated NMB D2R nondisplaceable binding potential (BPND) for the striatum, globus pallidus, thalamus, and substantia nigra (SN). Multivariate analysis of covariance with post hoc descriptive discriminate analysis identified regional differences by exposure group. We used linear regression to examine the association among Mn exposure, Unified Parkinson's Disease Rating Scale motor subsection 3 (UPDRS3) score, and regional D2R BPND. RESULTS D2R BPND in the SN had the greatest discriminant power among exposure groups (p < 0.01). Age-adjusted SN D2R BPND was 0.073 (95% confidence interval [CI] 0.022-0.124) greater in Mn-exposed welders and 0.068 (95% CI 0.013-0.124) greater in Mn-exposed workers compared to nonexposed workers. After adjustment for age, SN D2R BPND was 0.0021 (95% CI 0.0005-0.0042) higher for each year of Mn exposure. Each 0.10 increase in SN D2R BPND was associated with a 2.65 (95% CI 0.56-4.75) increase in UPDRS3 score. CONCLUSIONS AND RELEVANCE Nigral D2R BPND increased with Mn exposure and clinical parkinsonism, indicating dose-dependent dopaminergic dysfunction of the SN in Mn neurotoxicity.
Collapse
Affiliation(s)
- Susan R Criswell
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Mark N Warden
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Susan Searles Nielsen
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Joel S Perlmutter
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Stephen M Moerlein
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Lianne Sheppard
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Jason Lenox-Krug
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Harvey Checkoway
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Brad A Racette
- From the Department of Neurology (S.R.C., M.N.W., S.S.N., J.S.P., J.L.-K., B.A.R.), Department of Radiology (J.S.P., S.M.M.), Department of Neuroscience (J.S.P.), Program in Physical Therapy (J.S.P.), Program in Occupational Therapy (J.S.P.), and Department of Biochemistry and Molecular Biophysics (S.M.M.), Washington University School of Medicine, St. Louis, MO; Department of Environmental and Occupational Health Sciences (L.S.) and Department of Biostatistics (L.S.), University of Washington, School of Public Health, Seattle; Department of Family Medicine and Public Health (H.C.) and Department of Neurosciences (H.C.), University of California, San Diego, School of Medicine, La Jolla; and School of Public Health (B.A.R.), Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa.
| |
Collapse
|
17
|
Eisenstein SA, Bogdan R, Chen L, Moerlein SM, Black KJ, Perlmutter JS, Hershey T, Barch DM. Preliminary evidence that negative symptom severity relates to multilocus genetic profile for dopamine signaling capacity and D2 receptor binding in healthy controls and in schizophrenia. J Psychiatr Res 2017; 86:9-17. [PMID: 27886638 PMCID: PMC5272837 DOI: 10.1016/j.jpsychires.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/07/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
Deficits in central, subcortical dopamine (DA) signaling may underlie negative symptom severity, particularly anhedonia, in healthy individuals and in schizophrenia. To investigate these relationships, we assessed negative symptoms with the Schedule for the Assessment of Negative Symptoms and the Brief Negative Symptom Scale (BNSS) and self-reported anhedonia with the Scales for Physical and Social Anhedonia (SPSA), Temporal Experience of Pleasure Scale, and Snaith-Hamilton Pleasure Scale in 36 healthy controls (HC), 27 siblings (SIB) of individuals with schizophrenia, and 66 individuals with schizophrenia or schizoaffective disorder (SCZ). A subset of participants (N = 124) were genotyped for DA-related polymorphisms in genes for DRD4, DRD2/ANKK1, DAT1, and COMT, which were used to construct biologically-informed multi-locus genetic profile (MGP) scores reflective of subcortical dopaminergic signaling. DA receptor type 2 (D2R) binding was assessed among a second subset of participants (N = 23) using PET scans with the D2R-selective, non-displaceable radioligand (N-[11C]methyl)benperidol. Higher MGP scores, reflecting elevated subcortical dopaminergic signaling capacity, were associated with less negative symptom severity, as measured by the BNSS, across all participants. In addition, higher striatal D2R binding was associated with less physical and social anhedonia, as measured by the SPSA, across HC, SIB, and SCZ. The current preliminary findings support the hypothesis that subcortical DA function may contribute to negative symptom severity and self-reported anhedonia, independent of diagnostic status.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Corresponding author, Sarah A. Eisenstein, Psychiatry Department, Campus Box 8225, Washington University School of Medicine, St. Louis, MO 63110, Phone: (314) 362-7107, Fax: (314) 362-0168,
| | - Ryan Bogdan
- Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ling Chen
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Stephen M. Moerlein
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin J. Black
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Neurology Department, Washington University School of Medicine, St. Louis, MO, USA,Neuroscience Department, Washington University School of Medicine, MO, USA
| | - Joel S. Perlmutter
- Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Biochemistry Department, Washington University School of Medicine, St. Louis, MO, USA,Programs in Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Hershey
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA; Radiology Department, Washington University School of Medicine, St. Louis, MO, USA; Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA; Neurology Department, Washington University School of Medicine, St. Louis, MO, USA.
| | - Deanna M. Barch
- Psychiatry Department, Washington University School of Medicine, St. Louis, MO, USA,Radiology Department, Washington University School of Medicine, St. Louis, MO, USA,Psychological & Brain Sciences Department, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
18
|
Natelson Love M, Clark DG, Cochran JN, Den Beste KA, Geldmacher DS, Benzinger TL, Gordon BA, Morris JC, Bateman RJ, Roberson ED. Clinical, imaging, pathological, and biochemical characterization of a novel presenilin 1 mutation (N135Y) causing Alzheimer's disease. Neurobiol Aging 2017; 49:216.e7-216.e13. [PMID: 27793474 PMCID: PMC5154842 DOI: 10.1016/j.neurobiolaging.2016.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/21/2016] [Accepted: 09/24/2016] [Indexed: 01/19/2023]
Abstract
We present 2 cases of early-onset Alzheimer's disease due to a novel N135Y mutation in PSEN1. The proband presented with memory and other cognitive symptoms at age 32. Detailed clinical characterization revealed initial deficits in memory with associated dysarthria, progressing to involve executive dysfunction, spastic gait, and episodic confusion with polyspike discharges on long-term electroencephalography. Amyloid- and FDG-PET scans showed typical results of Alzheimer's disease. By history, the proband's father had developed cognitive symptoms at age 42 and died at age 48. Neuropathological evaluation confirmed Alzheimer's disease, with moderate to severe amyloid angiopathy. Skeletal muscle showed type 2 fiber-predominant atrophy with pale central clearing. Genetic testing of the proband revealed an N135Y missense mutation in PSEN1. This mutation was predicted to be pathogenic by in silico analysis. Biochemical analysis confirmed that the mutation caused an increased Aβ42/Aβ40 ratio, consistent with other PSEN1 mutations and with a loss of presenilin function.
Collapse
Affiliation(s)
- Marissa Natelson Love
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, Birmingham VA Medical Center, Birmingham, AL, USA
| | - David G Clark
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, Birmingham VA Medical Center, Birmingham, AL, USA; Department of Neurology, Ralph H. Johnson VA Medical Center, Medical University of South Carolina, Charleston, SC, USA.
| | - J Nicholas Cochran
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle A Den Beste
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David S Geldmacher
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tammie L Benzinger
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian A Gordon
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - John C Morris
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Randall J Bateman
- Dominantly Inherited Alzheimer's Network, Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Erik D Roberson
- Alzheimer's Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA; Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, USA; McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Eisenstein SA, Bogdan R, Love-Gregory L, Corral-Frías NS, Koller JM, Black KJ, Moerlein SM, Perlmutter JS, Barch DM, Hershey T. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status. Synapse 2016; 70:418-31. [PMID: 27241797 DOI: 10.1002/syn.21916] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 01/04/2023]
Abstract
In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are nonselective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N-[(11) C]methyl)benperidol ([(11) C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in two independent samples. Sample 1 (n = 39) was composed of obese and nonobese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5 to 12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1-), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1- was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [(11) C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Latisha Love-Gregory
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110
| | - Nadia S Corral-Frías
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Jonathan M Koller
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Kevin J Black
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, 63110
| | - Stephen M Moerlein
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Biochemistry, Washington University in St. Louis, St. Louis, MO, 63110
| | - Joel S Perlmutter
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110.,Programs in Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, 63110
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130
| | - Tamara Hershey
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Radiology, Washington University in St. Louis, St. Louis, MO, 63110.,Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, 63130.,Department of Neurology, Washington University in St. Louis, St. Louis, MO, 63110
| |
Collapse
|
20
|
Matuskey D, Worhunksy P, Correa E, Pittman B, Gallezot JD, Nabulsi N, Ropchan J, Sreeram V, Gudepu R, Gaiser E, Cosgrove K, Ding YS, Potenza MN, Huang Y, Malison RT, Carson RE. Age-related changes in binding of the D2/3 receptor radioligand [(11)C](+)PHNO in healthy volunteers. Neuroimage 2016; 130:241-247. [PMID: 26876475 DOI: 10.1016/j.neuroimage.2016.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE Previous imaging studies with positron emission tomography (PET) have reliably demonstrated an age-associated decline in the dopamine system. Most of these studies have focused on the densities of dopamine receptor subtypes D2/3R (D2R family) in the striatum using antagonist radiotracers that are largely nonselective for D2R vs. D3R subtypes. Therefore, less is known about any possible age effects in D3-rich extrastriatal areas such as the substantia nigra/ventral tegmental area (SN/VTA) and hypothalamus. This study sought to investigate whether the receptor availability measured with [(11)C](+)PHNO, a D3R-preferring agonist radiotracer, also declines with age. METHODS Forty-two healthy control subjects (9 females, 33 males; age range 19-55 years) were scanned with [(11)C](+)PHNO using a High Resolution Research Tomograph (HRRT). Parametric images were computed using the simplified reference tissue model (SRTM2) with cerebellum as the reference region. Binding potentials (BPND) were calculated for the amygdala, caudate, hypothalamus, pallidum, putamen, SN/VTA, thalamus, and ventral striatum and then confirmed at the voxel level with whole-brain parametric images. RESULTS Regional [(11)C](+)PHNO BPND displayed a negative correlation between receptor availability and age in the caudate (r=-0.56, corrected p=0.0008) and putamen (r=-0.45, corrected p=0.02) in healthy subjects (respectively 8% and 5% lower per decade). No significant correlations with age were found between age and other regions (including the hypothalamus and SN/VTA). Secondary whole-brain voxel-wise analysis confirmed these ROI findings of negative associations and further identified a positive correlation in midbrain (SN/VTA) regions. CONCLUSION In accordance with previous studies, the striatum (an area rich in D2R) is associated with age-related declines of the dopamine system. We did not initially find evidence of changes with age in the SN/VTA and hypothalamus, areas previously found to have a predominantly D3R signal as measured with [(11)C](+)PHNO. A secondary analysis did find a significant positive correlation in midbrain (SN/VTA) regions, indicating that there may be differential effects of aging, whereby D2R receptor availability decreases with age while D3R availability stays unchanged or is increased.
Collapse
Affiliation(s)
- David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA.
| | - Patrick Worhunksy
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Elizabeth Correa
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | | | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Venkatesh Sreeram
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Rohit Gudepu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Edward Gaiser
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kelly Cosgrove
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Yu-Shin Ding
- Department of Radiology, New York University School of Medicine, New York, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Neurobiology, Yale University, New Haven, CT, USA; Department ofChild Study Center, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | | | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Long-term neural and physiological phenotyping of a single human. Nat Commun 2015; 6:8885. [PMID: 26648521 PMCID: PMC4682164 DOI: 10.1038/ncomms9885] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/10/2015] [Indexed: 12/25/2022] Open
Abstract
Psychiatric disorders are characterized by major fluctuations in psychological function over the course of weeks and months, but the dynamic characteristics of brain function over this timescale in healthy individuals are unknown. Here, as a proof of concept to address this question, we present the MyConnectome project. An intensive phenome-wide assessment of a single human was performed over a period of 18 months, including functional and structural brain connectivity using magnetic resonance imaging, psychological function and physical health, gene expression and metabolomics. A reproducible analysis workflow is provided, along with open access to the data and an online browser for results. We demonstrate dynamic changes in brain connectivity over the timescales of days to months, and relations between brain connectivity, gene expression and metabolites. This resource can serve as a testbed to study the joint dynamics of human brain and metabolic function over time, an approach that is critical for the development of precision medicine strategies for brain disorders.
Collapse
|
22
|
Eisenstein SA, Gredysa DM, Antenor–Dorsey JA, Green L, Arbeláez AM, Koller JM, Black KJ, Perlmutter JS, Moerlein SM, Hershey T. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity. PLoS One 2015; 10:e0133621. [PMID: 26192187 PMCID: PMC4507849 DOI: 10.1371/journal.pone.0133621] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/30/2015] [Indexed: 12/19/2022] Open
Abstract
Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Danuta M. Gredysa
- Psychology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Jo Ann Antenor–Dorsey
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Leonard Green
- Psychology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Ana Maria Arbeláez
- Pediatrics Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Jonathan M. Koller
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Kevin J. Black
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Neurology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Anatomy and Neurobiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Joel S. Perlmutter
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Neurology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Anatomy and Neurobiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Programs in Physical Therapy and Occupational Therapy, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Stephen M. Moerlein
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Biochemistry and Molecular Biophysics Department, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Tamara Hershey
- Psychiatry Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Radiology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- Neurology Department, Washington University in St. Louis, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
23
|
Eisenstein SA, Bischoff AN, Gredysa DM, Antenor-Dorsey JAV, Koller JM, Al-Lozi A, Pepino MY, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. Emotional Eating Phenotype is Associated with Central Dopamine D2 Receptor Binding Independent of Body Mass Index. Sci Rep 2015; 5:11283. [PMID: 26066863 PMCID: PMC4464302 DOI: 10.1038/srep11283] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 05/21/2015] [Indexed: 01/11/2023] Open
Abstract
PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI.
Collapse
Affiliation(s)
- Sarah A Eisenstein
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison N Bischoff
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Danuta M Gredysa
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jo Ann V Antenor-Dorsey
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jonathan M Koller
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amal Al-Lozi
- Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marta Y Pepino
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Klein
- Departments of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Physical Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA [5] Departments of Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephen M Moerlein
- 1] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin J Black
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA [4] Departments of Anatomy &Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Hershey
- 1] Departments of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA [2] Departments of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA [3] Departments of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
24
|
Black KJ, Piccirillo ML, Koller JM, Hseih T, Wang L, Mintun MA. Levodopa effects on [ (11)C]raclopride binding in the resting human brain. F1000Res 2015; 4:23. [PMID: 26180632 PMCID: PMC4490799 DOI: 10.12688/f1000research.5672.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 01/12/2023] Open
Abstract
Rationale: Synaptic dopamine (DA) release induced by amphetamine or other experimental manipulations can displace [
11C]raclopride (RAC*) from dopamine D2-like receptors. We hypothesized that exogenous levodopa might increase dopamine release at striatal synapses under some conditions but not others, allowing a more naturalistic assessment of presynaptic dopaminergic function. Presynaptic dopaminergic abnormalities have been reported in Tourette syndrome (TS). Objective: Test whether levodopa induces measurable synaptic DA release in healthy people at rest, and gather pilot data in TS. Methods: This double-blind crossover study used RAC* and positron emission tomography (PET) to measure synaptic dopamine release 4 times in each of 10 carbidopa-pretreated, neuroleptic-naïve adults: before and during an infusion of levodopa on one day and placebo on another (in random order). Five subjects had TS and 5 were matched controls. RAC* binding potential (BP
ND) was quantified in predefined anatomical volumes of interest (VOIs). A separate analysis compared BP
ND voxel by voxel over the entire brain. Results: DA release declined between the first and second scan of each day (p=0.012), including on the placebo day. Levodopa did not significantly reduce striatal RAC* binding and striatal binding did not differ significantly between TS and control groups. However, levodopa’s effect on DA release differed significantly in a right midbrain region (p=0.002, corrected), where levodopa displaced RAC* by 59% in control subjects but
increased BP
ND by 74% in TS subjects. Discussion: Decreased DA release on the second scan of the day is consistent with the few previous studies with a similar design, and may indicate habituation to study procedures. We hypothesize that mesostriatal DA neurons fire relatively little while subjects rest, possibly explaining the non-significant effect of levodopa on striatal RAC* binding. The modest sample size argues for caution in interpreting the group difference in midbrain DA release with levodopa.
Collapse
Affiliation(s)
- Kevin J Black
- Departments of Psychiatry, Neurology, Radiology, and Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Marilyn L Piccirillo
- School of Arts and Sciences, Washington University, St. Louis, MO, 63130, USA ; Temple University, Philadelphia, PA, USA
| | - Jonathan M Koller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Tiffany Hseih
- School of Arts and Sciences, Washington University, St. Louis, MO, 63130, USA ; Department of Ophthalmology, University of Cincinnati, Cincinnati, OH, USA
| | - Lei Wang
- Departments of Psychiatry & Behavioral Sciences, and Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Mark A Mintun
- Departments of Radiology, Psychiatry, Bioengineering, and Anatomy & Neurobiology, Washington University, St. Louis, MO, 63130, USA ; Avid Radiopharmaceuticals, Philadelphia, PA, USA
| |
Collapse
|
25
|
Su Y, Blazey TM, Snyder AZ, Raichle ME, Marcus DS, Ances BM, Bateman RJ, Cairns NJ, Aldea P, Cash L, Christensen JJ, Friedrichsen K, Hornbeck RC, Farrar AM, Owen CJ, Mayeux R, Brickman AM, Klunk W, Price JC, Thompson PM, Ghetti B, Saykin AJ, Sperling RA, Johnson KA, Schofield PR, Buckles V, Morris JC, Benzinger TLS. Partial volume correction in quantitative amyloid imaging. Neuroimage 2014; 107:55-64. [PMID: 25485714 DOI: 10.1016/j.neuroimage.2014.11.058] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 12/16/2022] Open
Abstract
Amyloid imaging is a valuable tool for research and diagnosis in dementing disorders. As positron emission tomography (PET) scanners have limited spatial resolution, measured signals are distorted by partial volume effects. Various techniques have been proposed for correcting partial volume effects, but there is no consensus as to whether these techniques are necessary in amyloid imaging, and, if so, how they should be implemented. We evaluated a two-component partial volume correction technique and a regional spread function technique using both simulated and human Pittsburgh compound B (PiB) PET imaging data. Both correction techniques compensated for partial volume effects and yielded improved detection of subtle changes in PiB retention. However, the regional spread function technique was more accurate in application to simulated data. Because PiB retention estimates depend on the correction technique, standardization is necessary to compare results across groups. Partial volume correction has sometimes been avoided because it increases the sensitivity to inaccuracy in image registration and segmentation. However, our results indicate that appropriate PVC may enhance our ability to detect changes in amyloid deposition.
Collapse
Affiliation(s)
- Yi Su
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Tyler M Blazey
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marcus E Raichle
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Beau M Ances
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Nigel J Cairns
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Patricia Aldea
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lisa Cash
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jon J Christensen
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Karl Friedrichsen
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Russ C Hornbeck
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Angela M Farrar
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Christopher J Owen
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Richard Mayeux
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Adam M Brickman
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - William Klunk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Julie C Price
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA 90032, USA; Department of Neurology, University of Southern California, Los Angeles, CA 90032, USA; Department of Psychiatry, University of Southern California, Los Angeles, CA 90032, USA; Department of Engineering, University of Southern California, Los Angeles, CA 90032, USA; Department of Radiology, University of Southern California, Los Angeles, CA 90032, USA; Department of Pediatrics, University of Southern California, Los Angeles, CA 90032, USA; Department of Ophthalmology, University of Southern California, Los Angeles, CA 90032, USA
| | - Bernadino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Andrew J Saykin
- Center for Neuroimaging, Department of Radiology and Imaging Science, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reisa A Sperling
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, NSW 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Virginia Buckles
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
26
|
|
27
|
Conway CR, Chibnall JT, Cumming P, Mintun MA, Gebara MAI, Perantie DC, Price JL, Cornell ME, McConathy JE, Gangwani S, Sheline YI. Antidepressant response to aripiprazole augmentation associated with enhanced FDOPA utilization in striatum: a preliminary PET study. Psychiatry Res 2014; 221:231-9. [PMID: 24468015 PMCID: PMC3982608 DOI: 10.1016/j.pscychresns.2014.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 01/28/2023]
Abstract
Several double blind, prospective trials have demonstrated an antidepressant augmentation efficacy of aripiprazole in depressed patients unresponsive to standard antidepressant therapy. Although aripiprazole is now widely used for this indication, and much is known about its receptor-binding properties, the mechanism of its antidepressant augmentation remains ill-defined. In vivo animal studies and in vitro human studies using cloned dopamine dopamine D2 receptors suggest aripiprazole is a partial dopamine agonist; in this preliminary neuroimaging trial, we hypothesized that aripiprazole's antidepressant augmentation efficacy arises from dopamine partial agonist activity. To test this, we assessed the effects of aripiprazole augmentation on the cerebral utilization of 6-[(18)F]-fluoro-3,4-dihydroxy-l-phenylalanine (FDOPA) using positron emission tomography (PET). Fourteen depressed patients, who had failed 8 weeks of antidepressant therapy with selective serotonin reuptake inhibitors, underwent FDOPA PET scans before and after aripiprazole augmentation; 11 responded to augmentation. Whole brain, voxel-wise comparisons of pre- and post-aripiprazole scans revealed increased FDOPA trapping in the right medial caudate of augmentation responders. An exploratory analysis of depressive symptoms revealed that responders experienced large improvements only in putatively dopaminergic symptoms of lassitude and inability to feel. These preliminary findings suggest that augmentation of antidepressant response by aripiprazole may be associated with potentiation of dopaminergic activity.
Collapse
Affiliation(s)
- Charles R. Conway
- Washington University School of Medicine, Department of Psychiatry, 660 South Euclid, Campus Box 8134, St. Louis, MO 63110, USA,Saint Louis University School of Medicine, Department of Neurology & Psychiatry, 1438 South Grand Boulevard, St. Louis, MO 63104, USA,Corresponding author contact information: Address: Washington University Department of Psychiatry, 660 South Euclid, Campus Box 8134, St. Louis, MO 63110, Phone: 314-362-0038; Fax: 314-362-7017,
| | - John T. Chibnall
- Saint Louis University School of Medicine, Department of Neurology & Psychiatry, 1438 South Grand Boulevard, St. Louis, MO 63104, USA
| | - Paul Cumming
- Department of Nuclear Medicine, Friedrich-Alexander University, Erlangen/Nuremberg, Germany
| | - Mark A. Mintun
- Washington University School of Medicine, Departments of Radiology and Psychiatry, St. Louis, MO 63110, USA and Avid Radiopharmaceuticals, Philadelphia, PA 19104, USA
| | - Marie Anne I. Gebara
- Washington University School of Medicine, Department of Psychiatry, 660 South Euclid, Campus Box 8134, St. Louis, MO 63110, USA
| | - Dana C. Perantie
- Washington University School of Medicine, Department of Psychiatry, 660 South Euclid, Campus Box 8134, St. Louis, MO 63110, USA
| | - Joseph L. Price
- Washington University School of Medicine, Department of Anatomy and Neurobiology, St. Louis, MO 63110, USA
| | - Martha E. Cornell
- Washington University School of Medicine, Department of Psychiatry, 660 South Euclid, Campus Box 8134, St. Louis, MO 63110, USA
| | - Jonathan E. McConathy
- Washington University School of Medicine, Department of Radiology, Division of Nuclear Medicine, St. Louis, MO 63110, USA
| | - Sunil Gangwani
- Washington University School of Medicine, Department of Psychiatry, 660 South Euclid, Campus Box 8134, St. Louis, MO 63110, USA
| | - Yvette I. Sheline
- Washington University School of Medicine, Departments of Psychiatry, Neurology, and Radiology, St. Louis, MO 63110, USA
| |
Collapse
|
28
|
Black KJ, Snyder AZ, Mink JW, Tolia VN, Revilla FJ, Moerlein SM, Perlmutter JS. Spatial reorganization of putaminal dopamine D2-like receptors in cranial and hand dystonia. PLoS One 2014; 9:e88121. [PMID: 24520350 PMCID: PMC3919754 DOI: 10.1371/journal.pone.0088121] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 01/04/2014] [Indexed: 11/17/2022] Open
Abstract
The putamen has a somatotopic organization of neurons identified by correspondence of firing rates with selected body part movements, as well as by complex, but organized, differential cortical projections onto putamen. In isolated focal dystonia, whole putaminal binding of dopamine D2-like receptor radioligands is quantitatively decreased, but it has not been known whether selected parts of the putamen are differentially affected depending upon the body part affected by dystonia. The radioligand [(18)F]spiperone binds predominantly to D2-like receptors in striatum. We hypothesized that the spatial location of [(18)F]spiperone binding within the putamen would differ in patients with dystonia limited to the hand versus the face, and we tested that hypothesis using positron emission tomography and magnetic resonance imaging. To address statistical and methodological concerns, we chose a straightforward but robust image analysis method. An automated algorithm located the peak location of [(18)F]spiperone binding within the striatum, relative to a brain atlas, in each of 14 patients with cranial dystonia and 8 patients with hand dystonia. The mean (left and right) |x|, y, and z coordinates of peak striatal binding for each patient were compared between groups by t test. The location of peak [(18)F]spiperone binding within the putamen differed significantly between groups (cranial dystonia z
Collapse
Affiliation(s)
- Kevin J. Black
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Abraham Z. Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jonathan W. Mink
- Department of Neurology, University of Rochester, Rochester, New York, United States of America
- Department of Neurobiology and Anatomy, University of Rochester, Rochester, New York, United States of America
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, New York, United States of America
- Department of Pediatrics, University of Rochester, Rochester, New York, United States of America
| | - Veeral N. Tolia
- Pediatrix Medical Group, Sunrise, Florida, United States of America
| | - Fredy J. Revilla
- Gardner Family Center for Parkinson’s Disease and Movement Disorders, University of Cincinnati College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Stephen M. Moerlein
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
29
|
Karimi M, Moerlein SM, Videen TO, Su Y, Flores HP, Perlmutter JS. Striatal dopamine D1-like receptor binding is unchanged in primary focal dystonia. Mov Disord 2013; 28:2002-6. [PMID: 24151192 PMCID: PMC4086787 DOI: 10.1002/mds.25720] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Multiple studies have demonstrated decreases in striatal D2-like (D2, D3) radioligand binding in primary focal dystonias. Although most investigations have focused on D2-specific receptors (D2R), a recent study suggests that the decreased D2-like binding may be due to a D3-specific (D3R) abnormality. However, only limited data exist on the role of D1-specific receptors (D1R) and the D1R-mediated pathways within basal ganglia in dystonia. Metabolic positron emission tomography (PET) data in primary generalized dystonia suggest resting state over activity in the D1R-mediated direct pathway, leading to excessive disinhibition of motor cortical areas. This work investigated whether striatal D1-like receptors are affected in primary focal dystonias. METHODS Striatal-specific (caudate and putamen) binding of the D1-like radioligand [(11)C]NNC 112 was measured using PET in 19 patients with primary focal dystonia (cranial, cervical, or arm) and 18 controls. RESULTS No statistically significant difference was detected in striatal D1-like binding between the two groups. The study had 91% power to detect a 20% difference, indicating that false-negative results were unlikely. CONCLUSIONS Because [(11)C]NNC 112 has high affinity for D1-like receptors, very low affinity for D2-like receptors, and minimal sensitivity to endogenous dopamine levels, we conclude that D1-like receptor binding is not impaired in these primary focal dystonias.
Collapse
Affiliation(s)
- Morvarid Karimi
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | | | | | | | | | | |
Collapse
|
30
|
Su Y, D'Angelo GM, Vlassenko AG, Zhou G, Snyder AZ, Marcus DS, Blazey TM, Christensen JJ, Vora S, Morris JC, Mintun MA, Benzinger TLS. Quantitative analysis of PiB-PET with FreeSurfer ROIs. PLoS One 2013; 8:e73377. [PMID: 24223109 PMCID: PMC3819320 DOI: 10.1371/journal.pone.0073377] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 07/27/2013] [Indexed: 11/19/2022] Open
Abstract
In vivo quantification of β-amyloid deposition using positron emission tomography is emerging as an important procedure for the early diagnosis of the Alzheimer's disease and is likely to play an important role in upcoming clinical trials of disease modifying agents. However, many groups use manually defined regions, which are non-standard across imaging centers. Analyses often are limited to a handful of regions because of the labor-intensive nature of manual region drawing. In this study, we developed an automatic image quantification protocol based on FreeSurfer, an automated whole brain segmentation tool, for quantitative analysis of amyloid images. Standard manual tracing and FreeSurfer-based analyses were performed in 77 participants including 67 cognitively normal individuals and 10 individuals with early Alzheimer's disease. The manual and FreeSurfer approaches yielded nearly identical estimates of amyloid burden (intraclass correlation = 0.98) as assessed by the mean cortical binding potential. An MRI test-retest study demonstrated excellent reliability of FreeSurfer based regional amyloid burden measurements. The FreeSurfer-based analysis also revealed that the majority of cerebral cortical regions accumulate amyloid in parallel, with slope of accumulation being the primary difference between regions.
Collapse
Affiliation(s)
- Yi Su
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail:
| | - Gina M. D'Angelo
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Andrei G. Vlassenko
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Gongfu Zhou
- Division of Biostatistics, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Abraham Z. Snyder
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Daniel S. Marcus
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Tyler M. Blazey
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Jon J. Christensen
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Shivangi Vora
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - John C. Morris
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mark A. Mintun
- Avid Radiophamaceuticals, Philadelphia, Pennsylvania, United States of America
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
31
|
Regional variability of imaging biomarkers in autosomal dominant Alzheimer's disease. Proc Natl Acad Sci U S A 2013; 110:E4502-9. [PMID: 24194552 DOI: 10.1073/pnas.1317918110] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Major imaging biomarkers of Alzheimer's disease include amyloid deposition [imaged with [(11)C]Pittsburgh compound B (PiB) PET], altered glucose metabolism (imaged with [(18)F]fluro-deoxyglucose PET), and structural atrophy (imaged by MRI). Recently we published the initial subset of imaging findings for specific regions in a cohort of individuals with autosomal dominant Alzheimer's disease. We now extend this work to include a larger cohort, whole-brain analyses integrating all three imaging modalities, and longitudinal data to examine regional differences in imaging biomarker dynamics. The anatomical distribution of imaging biomarkers is described in relation to estimated years from symptom onset. Autosomal dominant Alzheimer's disease mutation carrier individuals have elevated PiB levels in nearly every cortical region 15 y before the estimated age of onset. Reduced cortical glucose metabolism and cortical thinning in the medial and lateral parietal lobe appeared 10 and 5 y, respectively, before estimated age of onset. Importantly, however, a divergent pattern was observed subcortically. All subcortical gray-matter regions exhibited elevated PiB uptake, but despite this, only the hippocampus showed reduced glucose metabolism. Similarly, atrophy was not observed in the caudate and pallidum despite marked amyloid accumulation. Finally, before hypometabolism, a hypermetabolic phase was identified for some cortical regions, including the precuneus and posterior cingulate. Additional analyses of individuals in which longitudinal data were available suggested that an accelerated appearance of volumetric declines approximately coincides with the onset of the symptomatic phase of the disease.
Collapse
|
32
|
Eisenstein SA, Antenor-Dorsey JAV, Gredysa DM, Koller JM, Bihun EC, Ranck SA, Arbeláez AM, Klein S, Perlmutter JS, Moerlein SM, Black KJ, Hershey T. A comparison of D2 receptor specific binding in obese and normal-weight individuals using PET with (N-[(11)C]methyl)benperidol. Synapse 2013; 67:748-56. [PMID: 23650017 PMCID: PMC3778147 DOI: 10.1002/syn.21680] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/20/2013] [Accepted: 04/27/2013] [Indexed: 01/11/2023]
Abstract
Previous PET imaging studies have demonstrated mixed findings regarding dopamine D2/D3 receptor availability in obese relative to nonobese humans. Nonspecific D2/D3 radioligands do not allow for separate estimation of D2 receptor (D2R) and D3 receptor (D3R) subtypes of the D2 receptor family, which may play different roles in behavior and are distributed differently throughout the brain. These radioligands are also displaceable by endogenous dopamine, confounding interpretation of differences in receptor availability with differing levels of dopamine release. The present study used PET imaging with the D2R-selective radioligand (N-[(11)C] methyl)benperidol ([(11)C]NMB), which is nondisplaceable by endogenous dopamine, to estimate D2R specific binding (BPND) and its relationship to body mass index (BMI) and age in 15 normal-weight (mean BMI = 22.6 kg/m(2)) and 15 obese (mean BMI = 40.3 kg/m(2)) men and women. Subjects with illnesses or taking medications that interfere with dopamine signaling were excluded. Striatal D2R BPND was calculated using the Logan graphical method with cerebellum as a reference region. D2R BPND estimates were higher in putamen and caudate relative to nucleus accumbens, but did not differ between normal-weight and obese groups. BMI values did not correlate with D2R BPND . Age was negatively correlated with putamen D2R BPND in both groups. These results suggest that altered D2R specific binding is not involved in the pathogenesis of obesity per se and underscore the need for additional studies evaluating the relationship between D3R, dopamine reuptake, or endogenous dopamine release and human obesity.
Collapse
Affiliation(s)
- Sarah A. Eisenstein
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Jo Ann V. Antenor-Dorsey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Danuta M. Gredysa
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Jonathan M. Koller
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Emily C. Bihun
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Samantha A. Ranck
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Ana Maria Arbeláez
- Department of Pediatrics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Samuel Klein
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Joel S. Perlmutter
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Program in Physical Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Blvd., St. Louis, MO 63108
- Program in Occupational Therapy, Washington University School of Medicine in St. Louis, 4444 Forest Park Blvd., St. Louis, MO 63108
| | - Stephen M. Moerlein
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Kevin J. Black
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
| | - Tamara Hershey
- Department of Psychiatry, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Neurology, Washington University School of Medicine in St. Louis, 660 S. Euclid Ave., St. Louis, MO 63110
- Department of Radiology, Washington University School of Medicine in St. Louis, Mallinckrodt Institute of Radiology, 660 S. Euclid Ave., St. Louis, MO 63110
| |
Collapse
|
33
|
Conway CR, Chibnall JT, Gebara MA, Price JL, Snyder AZ, Mintun MA, Craig ADB, Cornell ME, Perantie DC, Giuffra LA, Bucholz RD, Sheline YI. Association of cerebral metabolic activity changes with vagus nerve stimulation antidepressant response in treatment-resistant depression. Brain Stimul 2013; 6:788-97. [PMID: 23485649 DOI: 10.1016/j.brs.2012.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/09/2012] [Accepted: 11/25/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Vagus nerve stimulation (VNS) has antidepressant effects in treatment resistant major depression (TRMD); these effects are poorly understood. This trial examines associations of subacute (3 months) and chronic (12 months) VNS with cerebral metabolism in TRMD. OBJECTIVE (17)Fluorodeoxyglucose positron emission tomography was used to examine associations between 12-month antidepressant VNS response and cerebral metabolic rate for glucose (CMRGlu) changes at 3 and 12 months. METHODS Thirteen TRMD patients received 12 months of VNS. Depression assessments (Hamilton Depression Rating Scale [HDRS]) and PET scans were obtained at baseline (pre-VNS) and 3/12 months. CMRGlu was assessed in eight a priori selected brain regions (bilateral anterior insular [AIC], orbitofrontal [OFC], dorsolateral prefrontal [DLPFC], and anterior cingulate cortices [ACC]). Regional CMRGlu changes over time were studied in VNS responders (decreased 12 month HDRS by ≥50%) and nonresponders. RESULTS A significant trend (decreased 3 month CMRGlu) in the right DLPFC was observed over time in VNS responders (n = 9; P = 0.006). An exploratory whole brain analysis (P(uncorrected) = 0.005) demonstrated decreased 3 month right rostral cingulate and DLPFC CMRGlu, and increased 12 month left ventral tegmental CMRGlu in responders. CONCLUSIONS/LIMITATIONS VNS response may involve gradual (months in duration) brain adaptations. Early on, this process may involve decreased right-sided DLPFC/cingulate cortical activity; longer term effects (12 months) may lead to brainstem dopaminergic activation. Study limitations included: a) a small VNS nonresponders sample (N = 4), which limited conclusions about nonresponder CMRGlu changes; b) no control group; and, c) patients maintained their psychotropic medications.
Collapse
Affiliation(s)
- Charles R Conway
- Department of Psychiatry, Washington University, St. Louis, MO, USA; Department of Neurology and Psychiatry, Saint Louis University, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Xu J, Vangveravong S, Li S, Fan J, Jones LA, Cui J, Wang R, Tu Z, Chu W, Perlmutter JS, Mach RH. Positron emission tomography imaging of dopamine D2 receptors using a highly selective radiolabeled D2 receptor partial agonist. Neuroimage 2013; 71:168-74. [PMID: 23333701 DOI: 10.1016/j.neuroimage.2013.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 12/19/2012] [Accepted: 01/08/2013] [Indexed: 11/16/2022] Open
Abstract
A series of microPET imaging studies were conducted in anesthetized rhesus monkeys using the dopamine D2-selective partial agonist, [(11)C]SV-III-130. There was a high uptake in regions of brain known to express a high density of D2 receptors under baseline conditions. Rapid displacement in the caudate and putamen, but not in the cerebellum, was observed after injection of the dopamine D2/3 receptor nonselective ligand S(-)-eticlopride at a low dosage (0.025mg/kg/i.v.); no obvious displacement in the caudate, putamen and cerebellum was observed after the treatment with a dopamine D3 receptor selective ligand WC-34 (0.1mg/kg/i.v.). Pretreatment with lorazepam (1mg/kg, i.v. 30min) to reduce endogenous dopamine prior to tracer injection resulted in unchanged binding potential (BP) values, a measure of D2 receptor binding in vivo, in the caudate and putamen. d-Amphetamine challenge studies indicate that there is a significant displacement of [(11)C]SV-III-130 by d-Amphetamine-induced increases in synaptic dopamine levels.
Collapse
Affiliation(s)
- Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Noninvasive estimation of the arterial input function in positron emission tomography imaging of cerebral blood flow. J Cereb Blood Flow Metab 2013; 33:115-21. [PMID: 23072748 PMCID: PMC3597366 DOI: 10.1038/jcbfm.2012.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Positron emission tomography (PET) with (15)O-labeled water can provide reliable measurement of cerebral blood flow (CBF). Quantification of CBF requires knowledge of the arterial input function (AIF), which is usually provided by arterial blood sampling. However, arterial sampling is invasive. Moreover, the blood generally is sampled at the wrist, which does not perfectly represent the AIF of the brain, because of the effects of delay and dispersion. We developed and validated a new noninvasive method to obtain the AIF directly by PET imaging of the internal carotid artery in a region of interest (ROI) defined by coregistered high-resolution magnetic resonance angiography. An ROI centered at the petrous portion of the internal carotid artery was defined, and the AIF was estimated simultaneously with whole brain blood flow. The image-derived AIF (IDAIF) method was validated against conventional arterial sampling. The IDAIF generated highly reproducible CBF estimations, generally in good agreement with the conventional technique.
Collapse
|
36
|
Sun J, Xu J, Cairns NJ, Perlmutter JS, Mach RH. Dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2) and dopamine transporter (DAT) densities in aged human brain. PLoS One 2012; 7:e49483. [PMID: 23185343 PMCID: PMC3504049 DOI: 10.1371/journal.pone.0049483] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
The dopamine D(1), D(2), D(3) receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77-107.8, mean: 91 years) by quantitative autoradiography. The density of D(1) receptors, VMAT2, and DAT was measured using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. The density of D(2) and D(3) receptors was calculated using the D(3)-preferring radioligand, [(3)H]WC-10 and the D(2)-preferring radioligand [(3)H]raclopride using a mathematical model developed previously by our group. Dopamine D(1), D(2), and D(3) receptors are extensively distributed throughout striatum; the highest density of D(3) receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10-20-fold lower than that of VMAT2 in striatal regions. Dopamine D(3) receptor density exceeded D(2) receptor densities in extrastriatal regions, and thalamus contained a high level of D(3) receptors with negligible D(2) receptors. The density of dopamine D(1) linearly correlated with D(3) receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D(3) receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D(1) and D(2) receptors and DAT compared with the aged rhesus monkey brain. The differential density of D(3) and D(2) receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D(2) or D(3) receptors.
Collapse
Affiliation(s)
- Jianjun Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Physical Therapy, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Robert H. Mach
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Cell Biology amd Physiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|