1
|
Antidepressant-Like Properties of Intrastriatal Botulinum Neurotoxin-A Injection in a Unilateral 6-OHDA Rat Model of Parkinson's Disease. Toxins (Basel) 2021; 13:toxins13070505. [PMID: 34357977 PMCID: PMC8310221 DOI: 10.3390/toxins13070505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s patients often suffer from depression and anxiety, for which there are no optimal treatments. Hemiparkinsonian (hemi-PD) rats were used to test whether intrastriatal Botulinum neurotoxin-A (BoNT-A) application could also have antidepressant-like properties in addition to the known improvement of motor performance. To quantify depression- and anxiety-like behavior, the forced swim test, tail suspension test, open field test, and elevated plus maze test were applied to hemi-PD rats injected with BoNT-A or vehicle. Furthermore, we correlated the results in the forced swim test, open field test, and elevated plus maze test with the rotational behavior induced by apomorphine and amphetamine. Hemi-PD rats did not show significant anxiety-like behavior as compared with Sham 6-OHDA- + Sham BoNT-A-injected as well as with non-injected rats. However, hemi-PD rats demonstrated increased depression-like behaviors compared with Sham- or non-injected rats; this was seen by increased struggling frequency and increased immobility frequency. Hemi-PD rats intrastriatally injected with BoNT-A exhibited reduced depression-like behavior compared with the respective vehicle-receiving hemi-PD animals. The significant effects of intrastriatally applied BoNT-A seen in the forced swim test are reminiscent of those found after various antidepressant drug therapies. Our data correspond with the efficacy of BoNT-A treatment of glabellar frown lines in treating patients with major depression and suggest that also intrastriatal injected BoNT-A may have some antidepressant-like effect on hemi-PD.
Collapse
|
2
|
Receptor Ligands as Helping Hands to L-DOPA in the Treatment of Parkinson's Disease. Biomolecules 2019; 9:biom9040142. [PMID: 30970612 PMCID: PMC6523988 DOI: 10.3390/biom9040142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/06/2019] [Indexed: 12/12/2022] Open
Abstract
Levodopa (LD) is the most effective drug in the treatment of Parkinson’s disease (PD). However, although it represents the “gold standard” of PD therapy, LD can cause side effects, including gastrointestinal and cardiovascular symptoms as well as transient elevated liver enzyme levels. Moreover, LD therapy leads to LD-induced dyskinesia (LID), a disabling motor complication that represents a major challenge for the clinical neurologist. Due to the many limitations associated with LD therapeutic use, other dopaminergic and non-dopaminergic drugs are being developed to optimize the treatment response. This review focuses on recent investigations about non-dopaminergic central nervous system (CNS) receptor ligands that have been identified to have therapeutic potential for the treatment of motor and non-motor symptoms of PD. In a different way, such agents may contribute to extending LD response and/or ameliorate LD-induced side effects.
Collapse
|
3
|
Beta2-Adrenoceptor Agonists in Parkinson’s Disease and Other Synucleinopathies. J Neuroimmune Pharmacol 2019; 15:74-81. [DOI: 10.1007/s11481-018-09831-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 12/27/2022]
|
4
|
Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia 2018; 66:1244-1262. [PMID: 29076603 PMCID: PMC5903986 DOI: 10.1002/glia.23250] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Memory, the ability to retain learned information, is necessary for survival. Thus far, molecular and cellular investigations of memory formation and storage have mainly focused on neuronal mechanisms. In addition to neurons, however, the brain comprises other types of cells and systems, including glia and vasculature. Accordingly, recent experimental work has begun to ask questions about the roles of non-neuronal cells in memory formation. These studies provide evidence that all types of glial cells (astrocytes, oligodendrocytes, and microglia) make important contributions to the processing of encoded information and storing memories. In this review, we summarize and discuss recent findings on the critical role of astrocytes as providers of energy for the long-lasting neuronal changes that are necessary for long-term memory formation. We focus on three main findings: first, the role of glucose metabolism and the learning- and activity-dependent metabolic coupling between astrocytes and neurons in the service of long-term memory formation; second, the role of astrocytic glucose metabolism in arousal, a state that contributes to the formation of very long-lasting and detailed memories; and finally, in light of the high energy demands of the brain during early development, we will discuss the possible role of astrocytic and neuronal glucose metabolisms in the formation of early-life memories. We conclude by proposing future directions and discussing the implications of these findings for brain health and disease. Astrocyte glycogenolysis and lactate play a critical role in memory formation. Emotionally salient experiences form strong memories by recruiting astrocytic β2 adrenergic receptors and astrocyte-generated lactate. Glycogenolysis and astrocyte-neuron metabolic coupling may also play critical roles in memory formation during development, when the energy requirements of brain metabolism are at their peak.
Collapse
Affiliation(s)
- Cristina M Alberini
- Center for Neural Science, New York University, New York, New York, 10003
- Associate Investigator, Neuroscience Institute, NYU Langone Medical Center, New York, New York, 10016
| | - Emmanuel Cruz
- Center for Neural Science, New York University, New York, New York, 10003
| | - Giannina Descalzi
- Center for Neural Science, New York University, New York, New York, 10003
| | - Benjamin Bessières
- Center for Neural Science, New York University, New York, New York, 10003
| | - Virginia Gao
- Center for Neural Science, New York University, New York, New York, 10003
| |
Collapse
|
5
|
Xiao LY, Wang XR, Yang JW, Ye Y, Zhu W, Cao Y, Ma SM, Liu CZ. Acupuncture Prevents the Impairment of Hippocampal LTP Through β1-AR in Vascular Dementia Rats. Mol Neurobiol 2018; 55:7677-7690. [PMID: 29435917 DOI: 10.1007/s12035-018-0943-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
It is widely accepted that the synaptic dysfunction and synapse loss contribute to the cognitive deficits of vascular dementia (VD) patients. We have previously reported that acupuncture improved cognitive function in rats with VD. However, the mechanisms involved in acupuncture improving cognitive ability remain to be elucidated. The present study aims to investigate the pathways and molecules involved in the neuroprotective effect of acupuncture. We assessed the effects of acupuncture on hippocampal long-term potentiation (LTP), the most prominent cellular model of memory formation. Acupuncture enhanced LTP and norepinephrine (NE) levels in the hippocampus. Inhibition of the β-adrenergic receptor (AR), but not the α-AR, was able to block the effects of acupuncture on hippocampal LTP. Furthermore, inhibition of β1-AR, not β2-AR, abolished the enhanced LTP induced by acupuncture. The expression analysis revealed a significant upregulation of β1-AR and unchanged β2-AR with acupuncture, which supported the above findings. Specifically, increased β1-ARs in the dentate gyrus were expressed on neurons exclusively. Taken together, the present data supports a beneficial role of acupuncture in synaptic plasticity challenged with VD. A likely mechanism is the increase of NE and activation of β1-AR in the hippocampus.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China.,Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Xue-Rui Wang
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Jing-Wen Yang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Yang Ye
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Wen Zhu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Yan Cao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
6
|
Mann T, Zilles K, Dikow H, Hellfritsch A, Cremer M, Piel M, Rösch F, Hawlitschka A, Schmitt O, Wree A. Dopamine, Noradrenaline and Serotonin Receptor Densities in the Striatum of Hemiparkinsonian Rats following Botulinum Neurotoxin-A Injection. Neuroscience 2018; 374:187-204. [PMID: 29421436 DOI: 10.1016/j.neuroscience.2018.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is characterized by a degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that causes a dopamine (DA) deficit in the caudate-putamen (CPu) accompanied by compensatory changes in other neurotransmitter systems. These changes result in severe motor and non-motor symptoms. To disclose the role of various receptor binding sites for DA, noradrenaline, and serotonin in the hemiparkinsonian (hemi-PD) rat model induced by unilateral 6-hydroxydopamine (6-OHDA) injection, the densities of D1, D2/D3, α1, α2, and 5HT2A receptors were longitudinally visualized and measured in the CPu of hemi-PD rats by quantitative in vitro receptor autoradiography. We found a moderate increase in D1 receptor density 3 weeks post lesion that decreased during longer survival times, a significant increase of D2/D3 receptor density, and 50% reduction in 5HT2A receptor density. α1 receptor density remained unaltered in hemi-PD and α2 receptors demonstrated a slight right-left difference increasing with post lesion survival. In a second step, the possible role of receptors on the known reduction of apomorphine-induced rotations in hemi-PD rats by intrastriatally injected Botulinum neurotoxin-A (BoNT-A) was analyzed by measuring the receptor densities after BoNT-A injection. The application of this neurotoxin reduced D2/D3 receptor density, whereas the other receptors mainly remained unaltered. Our results provide novel data for an understanding of the postlesional plasticity of dopaminergic, noradrenergic and serotonergic receptors in the hemi-PD rat model. The results further suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing the interhemispheric imbalance in D2/D3 receptor density.
Collapse
Affiliation(s)
- T Mann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - K Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany; JARA - Translational Brain Medicine, and Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52062 Aachen, Germany
| | - H Dikow
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Hellfritsch
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - M Cremer
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany
| | - M Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - F Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - A Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - O Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany.
| |
Collapse
|
7
|
Ouk K, Aungier J, Cuesta M, Morton AJ. Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington's disease. Neuropharmacology 2017; 131:337-350. [PMID: 29274752 DOI: 10.1016/j.neuropharm.2017.12.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/31/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023]
Abstract
Circadian abnormalities seen in Huntington's disease (HD) patients are recapitulated in several HD transgenic mouse models. In mice, alongside the master clock located in the suprachiasmatic nucleus (SCN), two other oscillators may influence circadian behaviour. These are the food-entrainable oscillator (FEO) and the methamphetamine-sensitive circadian oscillator (MASCO). SCN- and MASCO- (but not FEO-) driven rhythms are progressively disrupted in the R6/2 mouse model of HD. MASCO-driven rhythms are induced by chronic treatment with low dose of methamphetamine and characterised by an increase in period length to greater than 24 h. Interestingly, the rhythms mediated by MASCO deteriorate earlier than those mediated by the SCN in R6/2 mice. Here, we used a pharmacological strategy to investigate the mechanisms underlying MASCO-driven rhythms in WT mice. In contrast to methamphetamine, chronic cocaine was ineffective in generating a MASCO-like component of activity although it markedly increased locomotion. Furthermore, neither blocking dopamine (DA) receptors (with the DA antagonist haloperidol) nor blocking neurotransmission by inhibiting the activity of vesicular monoamine transporter (with reserpine) prevented the expression of the MASCO-driven rhythms, although both treatments downregulated locomotor activity. Interestingly, chronic treatment with paroxetine, a serotonin-specific reuptake inhibitor commonly used as antidepressant in HD, was able to restore the expression of MASCO-driven rhythms in R6/2 mice. Thus, MASCO-driven rhythms appear to be mediated by both serotoninergic and dopaminergic systems. This supports the idea that abnormalities in MASCO output may contribute to both the HD circadian and psychiatric phenotype.
Collapse
Affiliation(s)
- Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Juliet Aungier
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - Marc Cuesta
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, United Kingdom.
| |
Collapse
|
8
|
Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci U S A 2016; 113:8526-31. [PMID: 27402767 DOI: 10.1073/pnas.1605063113] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2-adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long-term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.
Collapse
|
9
|
Bhide N, Lindenbach D, Barnum CJ, George JA, Surrena MA, Bishop C. Effects of the beta-adrenergic receptor antagonist Propranolol on dyskinesia and L-DOPA-induced striatal DA efflux in the hemi-parkinsonian rat. J Neurochem 2015; 134:222-32. [PMID: 25866285 PMCID: PMC4490965 DOI: 10.1111/jnc.13125] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 04/06/2015] [Accepted: 04/08/2015] [Indexed: 12/20/2022]
Abstract
Dopamine (DA) replacement therapy with L-DOPA continues to be the primary treatment of Parkinson's disease; however, long-term therapy is accompanied by L-DOPA-induced dyskinesias (LID). Several experimental and clinical studies have established that Propranolol, a β-adrenergic receptor antagonist, reduces LID without affecting L-DOPA's efficacy. However, the exact mechanisms underlying these effects remain to be elucidated. The aim of this study was to evaluate the anti-dyskinetic profile of Propranolol against a panel of DA replacement strategies, as well as elucidate the underlying neurochemical mechanisms. Results indicated that Propranolol, in a dose-dependent manner, reduced LID, without affecting motor performance. Propranolol failed to alter dyskinesia produced by the D1 receptor agonist, SKF81297 (0.08 mg/kg, sc), or the D2 receptor agonist, Quinpirole (0.05 mg/kg, sc). These findings suggested a pre-synaptic mechanism for Propranolol's anti-dyskinetic effects, possibly through modulating L-DOPA-mediated DA efflux. To evaluate this possibility, microdialysis studies were carried out in the DA-lesioned striatum of dyskinetic rats and results indicated that co-administration of Propranolol (20 mg/kg, ip) was able to attenuate L-DOPA- (6 mg/kg, sc) induced DA efflux. Therefore, Propranolol's anti-dyskinetic properties appear to be mediated via attenuation of L-DOPA-induced extraphysiological efflux of DA.
Collapse
Affiliation(s)
- Nirmal Bhide
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
- Currently at Eli Lilly, Indianapolis, IN 46285
| | - David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Christopher J. Barnum
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Jessica A. George
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Margaret A. Surrena
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Christopher Bishop
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| |
Collapse
|
10
|
Barnum CJ, Bhide N, Lindenbach D, Surrena MA, Goldenberg AA, Tignor S, Klioueva A, Walters H, Bishop C. Effects of noradrenergic denervation on L-DOPA-induced dyskinesia and its treatment by α- and β-adrenergic receptor antagonists in hemiparkinsonian rats. Pharmacol Biochem Behav 2011; 100:607-15. [PMID: 21978941 DOI: 10.1016/j.pbb.2011.09.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 11/17/2022]
Abstract
While L-3,4-dihydroxyphenylalanine (L-DOPA) remains the standard treatment for Parkinson's disease (PD), long-term efficacy is often compromised by L-DOPA-induced dyskinesia (LID). Recent research suggests that targeting the noradrenergic (NE) system may provide relief from both PD and LID, however, most PD patients exhibit NE loss which may modify response to such strategies. Therefore this investigation aimed to characterize the development and expression of LID and the anti-dyskinetic potential of the α2- and β-adrenergic receptor antagonists idazoxan and propranolol, respectively, in rats receiving 6-OHDA lesions with (DA lesion) or without desipramaine protection (DA+NE lesion). Male Sprague-Dawley rats (N=110) received unilateral 6-hydroxydopamine lesions. Fifty-three rats received desipramine to protect NE neurons (DA lesion) and 57 received no desipramine reducing striatal and hippocampal NE content 64% and 86% respectively. In experiment 1, the development and expression of L-DOPA-induced abnormal involuntary movements (AIMs) and rotations were examined. L-DOPA efficacy using the forepaw adjusting steps (FAS) test was also assessed in DA- and DA+NE-lesioned rats. In experiment 2, DA- and DA+NE-lesioned rats received pre-treatments of idazoxan or propranolol followed by L-DOPA after which the effects of these adrenergic compounds were observed. Results demonstrated that moderate NE loss reduced the development and expression of AIMs and rotations but not L-DOPA efficacy while anti-dyskinetic efficacy of α2- and β-adrenergic receptor blockade was maintained. These findings suggest that the NE system modulates LID and support the continued investigation of adrenergic compounds for the improved treatment of PD.
Collapse
Affiliation(s)
- Christopher J Barnum
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, Binghamton, NY 13902, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cuesta M, Aungier J, Morton AJ. The methamphetamine-sensitive circadian oscillator is dysfunctional in a transgenic mouse model of Huntington's disease. Neurobiol Dis 2011; 45:145-55. [PMID: 21820053 DOI: 10.1016/j.nbd.2011.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 07/06/2011] [Accepted: 07/20/2011] [Indexed: 10/17/2022] Open
Abstract
A progressive disintegration of the rest-activity rhythm has been observed in the R6/2 mouse model of Huntington's disease (HD). Rest-activity rhythm is controlled by a circadian clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, although SCN-independent oscillators such as the methamphetamine (MAP)-sensitive circadian oscillator (MASCO) can also control rhythmicity, even in SCN-lesioned animals. We aimed to test whether or not the administration of MAP could restore a normal rest-activity rhythm in R6/2 mice, via the activation of the MASCO. We administered chronic low doses of MAP to wild-type (WT) and presymptomatic (7-8 weeks) R6/2 mice, in constant darkness. As expected, ~40% of the WT mice expressed a rest-activity rhythm controlled by the MASCO, with a period of around 32 h. By contrast, the MASCO was missing from almost 95% of the R6/2 mice, even at early stages of disease. Interestingly, although the MASCO was deficient, initially MAP was able to stabilize the day/night activity ratio in R6/2 mice and delay the onset of disintegration of the rest-activity rhythm driven by the SCN. Furthermore, in presymptomatic R6/2 mice treated with L-DOPA, a MASCO-like component began to emerge, although this never became established. Our data show a major dysfunction of the MASCO in presymptomatic R6/2 mice that is likely to be due to an early abnormality of the catecholaminergic systems. We suggest that the dysfunction of the MASCO in humans could be partially responsible for circadian disturbances observed in HD patients, as well as patients with other neurological diseases in which both catecholaminergic and circadian abnormalities are present, such as Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- Marc Cuesta
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | | | | |
Collapse
|
12
|
Lindenbach D, Ostock CY, Eskow Jaunarajs KL, Dupre KB, Barnum CJ, Bhide N, Bishop C. Behavioral and cellular modulation of L-DOPA-induced dyskinesia by beta-adrenoceptor blockade in the 6-hydroxydopamine-lesioned rat. J Pharmacol Exp Ther 2011; 337:755-65. [PMID: 21402691 DOI: 10.1124/jpet.111.179416] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic dopamine replacement therapy in Parkinson's disease (PD) leads to deleterious motor sequelae known as L-DOPA-induced dyskinesia (LID). No known therapeutic can eliminate LID, but preliminary evidence suggests that dl-1-isopropylamino-3-(1-naphthyloxy)-2-propanol [(±)propranolol], a nonselective β-adrenergic receptor (βAR) antagonist, may reduce LID. The present study used the rat unilateral 6-hydroxydopamine model of PD to characterize and localize the efficacy of (±)propranolol as an adjunct to therapy with L-DOPA. We first determined whether (±)propranolol was capable of reducing the development and expression of LID without impairing motor performance ON and OFF L-DOPA. Coincident to this investigation, we used reverse-transcription polymerase chain reaction techniques to analyze the effects of chronic (±)propranolol on markers of striatal activity known to be involved in LID. To determine whether (±)propranolol reduces LID through βAR blockade, we subsequently examined each enantiomer separately because only the (-)enantiomer has significant βAR affinity. We next investigated the effects of a localized striatal βAR blockade on LID by cannulating the region and microinfusing (±)propranolol before systemic L-DOPA injections. Results showed that a dose range of (±)propranolol reduced LID without deleteriously affecting motor activity. Pharmacologically, only (-)propranolol had anti-LID properties indicating βAR-specific effects. Aberrant striatal signaling associated with LID was normalized with (±)propranolol cotreatment, and intrastriatal (±)propranolol was acutely able to reduce LID. This research confirms previous work suggesting that (±)propranolol reduces LID through βAR antagonism and presents novel evidence indicating a potential striatal locus of pharmacological action.
Collapse
Affiliation(s)
- David Lindenbach
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, P.O. Box 6000, Binghamton, NY 13902-6000, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Dowie MJ, Scotter EL, Molinari E, Glass M. The therapeutic potential of G-protein coupled receptors in Huntington's disease. Pharmacol Ther 2010; 128:305-23. [PMID: 20708032 DOI: 10.1016/j.pharmthera.2010.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/29/2023]
Abstract
Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.
Collapse
Affiliation(s)
- Megan J Dowie
- Centre for Brain Research, University of Auckland, Private Bag 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
14
|
Hara M, Fukui R, Hieda E, Kuroiwa M, Bateup HS, Kano T, Greengard P, Nishi A. Role of adrenoceptors in the regulation of dopamine/DARPP-32 signaling in neostriatal neurons. J Neurochem 2010; 113:1046-59. [PMID: 20236221 DOI: 10.1111/j.1471-4159.2010.06668.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Studies in animal models of Parkinson's disease have revealed that degeneration of noradrenaline neurons is involved in the motor deficits. Several types of adrenoceptors are highly expressed in neostriatal neurons. However, the selective actions of these receptors on striatal signaling pathways have not been characterized. In this study, we investigated the role of adrenoceptors in the regulation of dopamine/dopamine- and cAMP-regulated phosphoprotein of M(r) 32 kDa (DARPP-32) signaling by analyzing DARPP-32 phosphorylation at Thr34 [protein kinase A (PKA)-site] in mouse neostriatal slices. Activation of beta(1)-adrenoceptors induced a rapid and transient increase in DARPP-32 phosphorylation. Activation of alpha(2)-adrenoceptors also induced a rapid and transient increase in DARPP-32 phosphorylation, which subsequently decreased below basal levels. In addition, activation of alpha(2)-adrenoceptors attenuated, and blockade of alpha(2)-adrenoceptors enhanced dopamine D(1) and adenosine A(2A) receptor/DARPP-32 signaling. Chemical lesioning of noradrenergic neurons mimicked the effects of alpha(2)-adrenoceptor blockade. Under conditions of alpha(2)-adrenoceptor blockade, the dopamine D(2) receptor-induced decrease in DARPP-32 phosphorylation was attenuated. Our data demonstrate that beta(1)- and alpha(2)-adrenoceptors regulate DARPP-32 phosphorylation in neostriatal neurons. G(i) activation by alpha(2)-adrenoceptors antagonizes G(s)/PKA signaling mediated by D(1) and A(2A) receptors in striatonigral and striatopallidal neurons, respectively, and thereby enhances D(2) receptor/G(i) signaling in striatopallidal neurons. alpha(2)-Adrenoceptors may therefore be a therapeutic target for the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Masato Hara
- Department of Anesthesiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
β1-Adrenoceptor distribution in the rat brain: An immunohistochemical study. Neurosci Lett 2009; 458:84-8. [DOI: 10.1016/j.neulet.2009.04.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 04/08/2009] [Accepted: 04/10/2009] [Indexed: 11/23/2022]
|
16
|
Activation of beta1-adrenoceptors excites striatal cholinergic interneurons through a cAMP-dependent, protein kinase-independent pathway. J Neurosci 2003. [PMID: 12832552 DOI: 10.1523/jneurosci.23-12-05272.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The role of noradrenergic neurotransmission was analyzed in striatal cholinergic interneurons. Conventional intracellular and whole-cell patch-clamp recordings were made of cholinergic interneurons in rat brain slice preparations. Bath-applied noradrenaline (NA) (1-300 microm) dose-dependently induced both an increase in the spontaneous firing activity and a membrane depolarization of the recorded cells. In voltage-clamped neurons, an inward current was induced by NA. This effect was not prevented by alpha-adrenoceptor antagonists, whereas it was mimicked by the beta-adrenoceptor agonist isoproterenol and blocked by the beta1 antagonists propranolol and betaxolol. Interestingly, forskolin, activator of adenylate cyclase, mimicked and occluded the membrane depolarization obtained at saturating doses of both dopamine and NA. Accordingly, SQ22,536, a selective adenylate cyclase inhibitor, reduced the response to NA. Analysis of the reversal potential of the NA-induced current did not provide homogeneous results, indicating the involvement of multiple membrane conductances. Because cAMP is known to modulate Ih, the effects of ZD7288, a selective inhibitor of Ih current, were examined on the NA-induced membrane depolarization/inward current. ZD7288 mostly reduced the response to NA. However, both KT-5720 and H-89, selective protein kinase A (PKA) blockers, failed to prevent the excitatory action of NA. Likewise, calphostin C, antagonist of PKC, genistein, inhibitor of tyrosine kinase, and 8-Bromo-cGMP, blocker of PKG, did not affect the response to NA. Finally, double-labeling experiments combining beta1-adrenoceptor and choline acetyltransferase immunocytochemistry by means of confocal microscopy revealed a strong beta1-adrenoceptor labeling on cholinergic interneurons. We conclude that NA depolarizes striatal cholinergic interneurons via beta1-adrenoceptor activation, through a cAMP-dependent but PKA-independent mechanism.
Collapse
|
17
|
Doze P, van Waarde A, Tewson TJ, Vaalburg W, Elsinga PH. Synthesis and evaluation of (S)-[18F]-fluoroethylcarazolol for in vivo beta-adrenoceptor imaging in the brain. Neurochem Int 2002; 41:17-27. [PMID: 11918968 DOI: 10.1016/s0197-0186(01)00140-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The beta-adrenergic receptor ligand (S)-4-(3-(2'-[18F]-fluoroethylamino)-2-hydroxypropoxy)-carbazol ((S)-[18F]-fluoroethylcarazolol) was prepared by reaction of [18F]-fluoroethylamine with the corresponding (S)-epoxide and was evaluated in rats by studying its pharmacokinetics and its binding profile both in vitro and in vivo. In vitro, (S)-fluoroethylcarazolol binds preferentially to beta-adrenoceptors (pK(i)=9.3 for beta(1) and 9.4 for beta(2)) and has less affinity to 5HT(1A) and 5HT(1D) receptors (pK(i)=6.7 and 5.2). In vivo, standard uptake values (SUVs) up to 0.63+/-0.07 in cortical regions were found after 60 min. Metabolites (90%) appeared within 10 min in plasma, whereas, in brain 70-75% parent compound was found after 60 min. Clearance from plasma occurred within 5 min. Cerebral uptake could be blocked by 'cold' fluoroethylcarazolol in every region, except medulla. Uptake was also blocked by propranolol and pindolol, but not by WAY 100635. ICI 89406 hardly lowered [18F] levels in brain. ICI 118551 reduced uptake of [18F] in cerebellum (mainly beta(2)) by 30%. Specific binding (tissue minus medulla values) in various brain regions corresponded with those observed for [18F]-fluorocarazolol (r(2)=0.95) and with in vitro beta-adrenoceptor densities (r(2)=0.76). Autoradiography using phosphor images of (S)-[18F]-fluoroethylcarazolol in rat brain showed the characteristic binding pattern of beta-antagonists, while propranolol treatment resulted in low and homogenous uptake. Regional tissue minus medulla values corresponded with in vitro beta-adrenoceptor densities (r(2)=0.77). We conclude that (S)-[18F]-fluoroethylcarazolol is a high affinity ligand that binds specifically to cerebral beta-adrenoceptors in vivo and may be of use for beta-adrenoceptor imaging in the brain with PET.
Collapse
Affiliation(s)
- P Doze
- PET Center, Groningen University Hospital, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
18
|
Doze P, Elsinga PH, Maas B, Van Waarde A, Wegman T, Vaalburg W. Synthesis and evaluation of radiolabeled antagonists for imaging of beta-adrenoceptors in the brain with PET. Neurochem Int 2002; 40:145-55. [PMID: 11738481 DOI: 10.1016/s0197-0186(01)00081-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Five potent, lipophilic beta-adrenoceptor antagonists (carvedilol, pindolol, toliprolol and fluorinated analogs of bupranolol and penbutolol) were labeled with either carbon-11 or fluorine-18 and evaluated for cerebral beta-adrenoceptor imaging in experimental animals. The standard radioligand for autoradiography of beta-adrenoceptors, [125I]-iodocyanopindolol, was also included in this survey. All compounds showed either very low uptake in rat brain or a regional distribution that was not related to beta-adrenoceptors, whereas some ligands did display specific binding in heart and lungs. Apparently, the criteria of a high affinity and a moderately high lipophilicity were insufficient to predict the suitability of beta-adrenergic antagonists for visualization of beta-adrenoceptors in the central nervous system.
Collapse
Affiliation(s)
- Petra Doze
- PET-Center, Groningen University Hospital, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
19
|
Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA. beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem 2001; 276:41310-7. [PMID: 11526121 DOI: 10.1074/jbc.m107480200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.
Collapse
Affiliation(s)
- J Xu
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA. beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem 2000; 275:38659-66. [PMID: 10995758 DOI: 10.1074/jbc.m005938200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta(1)-adrenergic receptor (beta(1)AR) is the most abundant subtype of beta-adrenergic receptor in the mammalian brain and is known to potently regulate synaptic plasticity. To search for potential neuronal beta(1)AR-interacting proteins, we screened a rat brain cDNA library using the beta(1)AR carboxyl terminus (beta(1)AR-CT) as bait in the yeast two-hybrid system. These screens identified PSD-95, a multiple PDZ domain-containing scaffolding protein, as a specific binding partner of the beta(1)AR-CT. This interaction was confirmed by in vitro fusion protein pull-down and blot overlay experiments, which demonstrated that the beta(1)AR-CT binds specifically to the third PDZ domain of PSD-95. Furthermore, the full-length beta(1)AR associates with PSD-95 in cells, as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. The interaction between beta(1)AR and PSD-95 is mediated by the last few amino acids of the beta(1)AR, and mutation of the beta(1)AR carboxyl terminus eliminated the binding and disrupted the co-localization of the beta(1)AR and PSD-95 in cells. Agonist-induced internalization of the beta(1)AR in HEK-293 cells was markedly attenuated by PSD-95 co-expression, whereas co-expression of PSD-95 has no significant effect on either desensitization of the beta(1)AR or beta(1)AR-induced cAMP accumulation. Furthermore, PSD-95 facilitated the formation of a complex between the beta(1)AR and N-methyl-d-aspartate receptors, as assessed by co-immunoprecipitation. These data reveal that PSD-95 is a specific beta(1)AR binding partner that modulates beta(1)AR function and facilitates physical association of the beta(1)AR with synaptic proteins, such as the N-methyl-d-aspartate receptors, which are known to be regulated by beta(1)AR stimulation.
Collapse
Affiliation(s)
- L A Hu
- Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Graybiel AM, Penney JB. Chemical architecture of the basal ganglia. ACTA ACUST UNITED AC 1999. [DOI: 10.1016/s0924-8196(99)80025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
22
|
Doze P, Van Waarde A, Elsinga PH, Van-Loenen Weemaes AM, Willemsen AT, Vaalburg W. Validation of S-1'-[18F]fluorocarazolol for in vivo imaging and quantification of cerebral beta-adrenoceptors. Eur J Pharmacol 1998; 353:215-26. [PMID: 9726651 DOI: 10.1016/s0014-2999(98)00418-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
S-1'-[18F]fluorocarazolol (S-(-)-4-(2-hydroxy-3-(1'-[18F]fluoroisopropyl)-aminopropoxy)carba zole, a non-subtype-selective beta-adrenoceptor antagonist) has been investigated for in vivo studies of beta-adrenoceptors. Previous results indicated that uptake of this radioligand in heart and lung can be inhibited by beta-adrenoceptor agonists and antagonists. In the present study, blocking, displacement and saturation experiments were performed in rats, in combination with metabolite analysis to investigate the suitability of this radioligand for in vivo positron emission tomography (PET) imaging and quantification of beta-adrenoceptors in the brain. The results demonstrate that, (i) the uptake of S-1'-[18F]fluorocarazolol reflects specific binding to beta-adrenoceptors, (ii) binding of S-1'-[18F]fluorocarazolol to atypical or non-beta-adrenergic sites is negligible, (iii) uptake of radioactive metabolites in the brain is less than 25% of total radioactivity, 60 min after injection, (iv) in vivo measurements of receptor densities (Bmax) in cortex, cerebellum, heart, lung and erythrocytes are within range of densities determined from in vitro assays, (v) binding of S-1'-[18F]fluorocarazolol can be displaced. In conclusion, S-1'-[18F]fluorocarazolol seems to possess the appropriate characteristics to visualize and quantify beta-adrenoceptors in vivo in the central nervous system using PET.
Collapse
Affiliation(s)
- P Doze
- PET Center, Groningen University Hospital, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Nicholas AP, Hökfelt T, Pieribone VA. The distribution and significance of CNS adrenoceptors examined with in situ hybridization. Trends Pharmacol Sci 1996; 17:245-55. [PMID: 8756183 DOI: 10.1016/0165-6147(96)10022-5] [Citation(s) in RCA: 186] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Several of the established alpha 1-, alpha 2- and beta-adrenoceptors have now been isolated and cloned. The in situ hybridization method has been used to map the distribution of many of these adrenoceptors within cells of the CNS. These studies add complementary and new information to our knowledge of adrenoceptor localization provided previously by radioligand-mediated autoradiography. Neuronal cell groups containing one or more mRNAs for seven adrenoceptor subtypes throughout the rat CNS have been mapped. In the present review Anthony Nicholas, Tomas Hökfelt and Vincent Pieribone will examine these localizations and discuss the additional information these maps supply, as well as some implications for understanding central noradrenaline and adrenaline systems.
Collapse
MESH Headings
- Animals
- Central Nervous System/metabolism
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Humans
- In Situ Hybridization
- Neurons/cytology
- Neurons/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Radioligand Assay
- Rats
- Receptors, Adrenergic, alpha/classification
- Receptors, Adrenergic, alpha/genetics
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/classification
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Terminology as Topic
- Tissue Distribution
Collapse
Affiliation(s)
- A P Nicholas
- Department of Neurology, University of Alabama at Birmingham 35294-0007, USA
| | | | | |
Collapse
|
24
|
Grijalba B, Berciano J, Anciones B, Pazos A, Pascual J. Adrenergic receptors in the cerebellum of olivopontocerebellar atrophy. J Neural Transm (Vienna) 1994; 96:135-42. [PMID: 7857596 DOI: 10.1007/bf01277935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using autoradiographic techniques we studied the changes that in adrenergic receptors occurred in the cerebellum of two olivopontocerebellar atrophy (OPCA) patients as compared with a control group. In OPCA cerebellum the densities of total beta-adrenoceptors were reduced along the cortex but increased in the white matter. Although mainly the beta 1 subtype was decreased along the cerebellar cortex, the increase of beta-receptors over the white matter was due to a selective raise in the beta 2 subtype. These findings suggest a postsynaptic neuronal location for the beta 1 subtype and a glial location for the beta 2-adrenoceptor. On the other hand, alpha 2-adrenoceptors were clearly reduced all along the cerebellar cortex of these OPCA brains, this probably being secondary to the loss of presynaptic adrenergic terminals arising from the locus coeruleus. These results help clarify both the subcellular location of adrenoceptors in human cerebellum and the neurochemical pathophysiology of OPCA.
Collapse
Affiliation(s)
- B Grijalba
- Department of Physiology and Pharmacology, University Hospital Marqués de Valdecilla, Faculty of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | |
Collapse
|
25
|
Nicholas AP, Pieribone VA, Hökfelt T. Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 1993; 56:1023-39. [PMID: 8284033 DOI: 10.1016/0306-4522(93)90148-9] [Citation(s) in RCA: 166] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Selective, 35S-labeled, oligonucleotide probes were designed from sequences of the rat beta-1 and beta-2 adrenoceptor messenger RNAs for use in situ hybridization experiments on sections of unfixed rat brain and spinal cord. After hybridized sections were exposed to film or dipped in autoradiographic emulsion, specific and selective labeling patterns characteristic for each receptor messenger RNA and region of the central nervous system were observed. For example, labeling for beta-1 messenger RNA was found in the anterior olfactory nucleus, cerebral cortex, lateral intermediate septal nucleus, reticular thalamic nucleus, oculomotor complex, vestibular nuclei, deep cerebellar nuclei, trapezoid nucleus, abducens nucleus, ventrolateral pontine and medullary reticular formations, the intermediate gray matter of the spinal cord and in the pineal gland, while beta-2 messenger RNA labeling was strongest in the olfactory bulb, piriform cortex, hippocampal formation, thalamic intralaminar nuclei and cerebellar cortex. In some of these regions the beta-1 labeling seemed mainly confined to the cell nucleus. Whether or not this apparently nuclear labeling is specific, i.e. indicates synthesis of beta-1 receptor, remains to be established. However, all labeling patterns described disappeared when excess unlabeled probes were added to their respective radiolabeled probes or when sense probes were employed. Since the in situ method labels only cell bodies that produce the messenger RNA for these two beta receptor subtypes, a comparison between these maps and those of past autoradiographic studies mapping the location of central beta receptors using drugs as radioligands may produce further insights regarding the pre- and postsynaptic localization of these receptors in the various parts of the central nervous system circuitry.
Collapse
Affiliation(s)
- A P Nicholas
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Pascual J, Berciano J, Grijalba B, del Olmo E, González AM, Figols J, Pazos A. Dopamine D1 and D2 receptors in progressive supranuclear palsy: an autoradiographic study. Ann Neurol 1992; 32:703-7. [PMID: 1449252 DOI: 10.1002/ana.410320516] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dopamine D1 and D2 receptors were studied in brain tissue sections from a typical patient with progressive supranuclear palsy and in 7 age-matched brains. The density of D1 receptors in the caudate-putamen and frontal cortex of the patient was within control limits. By contrast, the density of nigral D1 receptors and striatal D2 receptors was dramatically reduced in the patient as compared to the control brains. This work shows again that the loss of striatal D2 receptors is the most plausible explanation for the poor response to dopaminergic drugs in patients with progressive supranuclear palsy. While the loss of nigral D1 receptors can be explained by the loss of nigral neurons, it seems that neurons bearing striatal D1 receptors are spared in progressive supranuclear palsy. The clinical effects of selective D1 agonists are worth testing in this devastating disorder.
Collapse
Affiliation(s)
- J Pascual
- Department of Physiology and Pharmacology, University Hospital Marqués de Valdecilla, Santander, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Lafarga M, Berciano MT, Del Olmo E, Andres MA, Pazos A. Osmotic stimulation induces changes in the expression of beta-adrenergic receptors and nuclear volume of astrocytes in supraoptic nucleus of the rat. Brain Res 1992; 588:311-6. [PMID: 1327410 DOI: 10.1016/0006-8993(92)91592-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The influence of osmotic stimulation on the density of beta-adrenoceptor binding sites in the rat supraoptic nucleus (SON) was studied by quantitative autoradiography using 125I-cyanopindolol (ICYP). Increased density of beta-adrenoceptor binding sites was observed in osmotically stimulated rats and also after the suppression of neuronal activation by rehydration of animals. This was mainly due to a significant increase in the concentration of beta 2 binding sites. The overexpression of beta-adrenoceptors occurred concomitantly with nuclear expansion in SON astrocytes. Moreover, the higher concentration of beta-adrenoceptors observed in the ventral portion of the SON largely coincided with the area that showed intense GFAP-immunostaining. These results provide indirect evidence of an astrocytic location of beta-adrenoceptors and also of beta-adrenergic mediation in the structural and functional changes of SON astrocytes.
Collapse
Affiliation(s)
- M Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine, Santander, Spain
| | | | | | | | | |
Collapse
|