1
|
Yang H, Xu Y, Cheong S, Xie C, Zhu Y, Xu S, Lu F, He Y. Mobilization of subcutaneous fascia contributes to the vascularization and function of acellular adipose matrix via formation of vascular matrix complex. Mater Today Bio 2025; 30:101461. [PMID: 39866780 PMCID: PMC11764388 DOI: 10.1016/j.mtbio.2025.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025] Open
Abstract
Regenerative biomaterials are commonly used for soft-tissue repair in both pre-clinical and clinical settings, but their effectiveness is often limited by poor regenerative outcomes and volume loss. Efficient vascularization is crucial for the long-term survival and function of these biomaterials in vivo. Despite numerous pro-vascularization strategies developed over the past decades, the fundamental mechanisms of vascularization in regenerative biomaterials remain largely unexplored. In this study, we employed matrix-tracing, vessel-tracing, cell-tracing, and matrix analysis techniques, etc. to investigate the vascularization process of acellular adipose matrix (AAM) implants in a murine model. Here, we show that the mobilization of subcutaneous fascia contributes to the vascularization in AAM implants. Tracing techniques revealed that the subcutaneous fascia migrates to encase the AAM implants, bringing along fascia-embedded blood vessels, thus forming a vascular matrix complex (VMC) on the implant surface. Restricting fascia mobilization or removing fascia tissue significantly reduced AAM vascularization and hindered the regenerative process, leading to implant collapse at a later stage. Notably, VMC exhibited a dynamic matrix remodeling process closely aligned with implant vascularization. Our findings highlight the crucial role of subcutaneous fascia mobility in facilitating the vascularization of AAM implants, offering a novel direction and target for guaranteeing long-term survival and function of regenerative biomaterials in vivo.
Collapse
Affiliation(s)
- Han Yang
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yidan Xu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Cuiying Xie
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yufan Zhu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Shujie Xu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| |
Collapse
|
2
|
Arciola CR, Ravaioli S, Mirzaei R, Dolzani P, Montanaro L, Daglia M, Campoccia D. Biofilms in Periprosthetic Orthopedic Infections Seen through the Eyes of Neutrophils: How Can We Help Neutrophils? Int J Mol Sci 2023; 24:16669. [PMID: 38068991 PMCID: PMC10706149 DOI: 10.3390/ijms242316669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Despite advancements in our knowledge of neutrophil responses to planktonic bacteria during acute inflammation, much remains to be elucidated on how neutrophils deal with bacterial biofilms in implant infections. Further complexity transpires from the emerging findings on the role that biomaterials play in conditioning bacterial adhesion, the variety of biofilm matrices, and the insidious measures that biofilm bacteria devise against neutrophils. Thus, grasping the entirety of neutrophil-biofilm interactions occurring in periprosthetic tissues is a difficult goal. The bactericidal weapons of neutrophils consist of the following: ready-to-use antibacterial proteins and enzymes stored in granules; NADPH oxidase-derived reactive oxygen species (ROS); and net-like structures of DNA, histones, and granule proteins, which neutrophils extrude to extracellularly trap pathogens (the so-called NETs: an allusive acronym for "neutrophil extracellular traps"). Neutrophils are bactericidal (and therefore defensive) cells endowed with a rich offensive armamentarium through which, if frustrated in their attempts to engulf and phagocytose biofilms, they can trigger the destruction of periprosthetic bone. This study speculates on how neutrophils interact with biofilms in the dramatic scenario of implant infections, also considering the implications of this interaction in view of the design of new therapeutic strategies and functionalized biomaterials, to help neutrophils in their arduous task of managing biofilms.
Collapse
Affiliation(s)
- Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (S.R.); (D.C.)
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Paolo Dolzani
- Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Lucio Montanaro
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy;
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy;
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (S.R.); (D.C.)
| |
Collapse
|
3
|
Scheuermann K, Viana CTR, Dos Reis DC, de Lazari MGT, Orellano LAA, Machado CT, Dos Santos LCC, Ulrich H, Capettini LSA, Andrade SP, Campos PP. Amitriptyline efficacy in decreasing implant-induced foreign body reaction. IUBMB Life 2023; 75:732-742. [PMID: 37086464 DOI: 10.1002/iub.2725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 03/15/2023] [Indexed: 04/24/2023]
Abstract
Beyond its actions on the nervous system, amitriptyline (AM) has been shown to lower inflammatory, angiogenic, and fibrogenic markers in a few pathological conditions in human and in experimental animal models. However, its effects on foreign body reaction (FBR), a complex adverse healing process, after biomedical material implantation are not known. We have evaluated the effects of AM on the angiogenic and fibrogenic components on a model of implant-induced FBR. Sponge disks were implanted subcutaneously in C57BL/6 mice, that were treated daily with oral administration of AM (5 mg/kg) for seven consecutive days in two protocols: treatment was started on the day of surgery and the implants were removed on the seventh day after implantation and treatment started 7 days after implantation and the implants removed 14 after implantation. None of the angiogenic (vessels, Vascular endothelial growth factor (VEGF), and interleukin-1β (IL-1β) or fibrogenic parameters (collagen, TGF-β, and fibrous capsule) and giant cell numbers analyzed were attenuated by AM in 7-day-old implants. However, AM was able to downregulate angiogenesis and FBR in 14-day-old implants. The effects of AM described here expands its range of actions as a potential agent capable of attenuating fibroproliferative processes that may impair functionality of implantable devices.
Collapse
Affiliation(s)
- Karina Scheuermann
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Celso Tarso Rodrigues Viana
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Diego Carlos Dos Reis
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Laura Alejandra Ariza Orellano
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Clara Tolentino Machado
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Park D, Lee SJ, Choi DK, Park JW. Therapeutic Agent-Loaded Fibrous Scaffolds for Biomedical Applications. Pharmaceutics 2023; 15:pharmaceutics15051522. [PMID: 37242764 DOI: 10.3390/pharmaceutics15051522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Tissue engineering is a sophisticated field that involves the integration of various disciplines, such as clinical medicine, material science, and life science, to repair or regenerate damaged tissues and organs. To achieve the successful regeneration of damaged or diseased tissues, it is necessary to fabricate biomimetic scaffolds that provide structural support to the surrounding cells and tissues. Fibrous scaffolds loaded with therapeutic agents have shown considerable potential in tissue engineering. In this comprehensive review, we examine various methods for fabricating bioactive molecule-loaded fibrous scaffolds, including preparation methods for fibrous scaffolds and drug-loading techniques. Additionally, we delved into the recent biomedical applications of these scaffolds, such as tissue regeneration, inhibition of tumor recurrence, and immunomodulation. The aim of this review is to discuss the latest research trends in fibrous scaffold manufacturing methods, materials, drug-loading methods with parameter information, and therapeutic applications with the goal of contributing to the development of new technologies or improvements to existing ones.
Collapse
Affiliation(s)
- Dongsik Park
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Su Jin Lee
- Drug Manufacturing Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Dong Kyu Choi
- New Drug Development Center (NDDC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| | - Jee-Woong Park
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI Hub), Daegu 41061, Republic of Korea
| |
Collapse
|
5
|
Dal-Fabbro R, Swanson WB, Capalbo LC, Sasaki H, Bottino MC. Next-generation biomaterials for dental pulp tissue immunomodulation. Dent Mater 2023; 39:333-349. [PMID: 36894414 PMCID: PMC11034777 DOI: 10.1016/j.dental.2023.03.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/24/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVES The current standard for treating irreversibly damaged dental pulp is root canal therapy, which involves complete removal and debridement of the pulp space and filling with an inert biomaterial. A regenerative approach to treating diseased dental pulp may allow for complete healing of the native tooth structure and enhance the long-term outcome of once-necrotic teeth. The aim of this paper is, therefore, to highlight the current state of dental pulp tissue engineering and immunomodulatory biomaterials properties, identifying exciting opportunities for their synergy in developing next-generation biomaterials-driven technologies. METHODS An overview of the inflammatory process focusing on immune responses of the dental pulp, followed by periapical and periodontal tissue inflammation are elaborated. Then, the most recent advances in treating infection-induced inflammatory oral diseases, focusing on biocompatible materials with immunomodulatory properties are discussed. Of note, we highlight some of the most used modifications in biomaterials' surface, or content/drug incorporation focused on immunomodulation based on an extensive literature search over the last decade. RESULTS We provide the readers with a critical summary of recent advances in immunomodulation related to pulpal, periapical, and periodontal diseases while bringing light to tissue engineering strategies focusing on healing and regenerating multiple tissue types. SIGNIFICANCE Significant advances have been made in developing biomaterials that take advantage of the host's immune system to guide a specific regenerative outcome. Biomaterials that efficiently and predictably modulate cells in the dental pulp complex hold significant clinical promise for improving standards of care compared to endodontic root canal therapy.
Collapse
Affiliation(s)
- Renan Dal-Fabbro
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - W Benton Swanson
- Department of Biologic and Materials Science, Division of Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Leticia C Capalbo
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
7
|
Biazar E, Kamalvand M, Avani F. Recent advances in surface modification of biopolymeric nanofibrous scaffolds. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1857383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Esmaeil Biazar
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mahshad Kamalvand
- Department of Biomaterials Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Farzaneh Avani
- Biomedical Engineering Faculty, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
8
|
Hendow EK, Moazen M, Iacoviello F, Bozec L, Pellet-Many C, Day RM. Microporous Biodegradable Films Promote Therapeutic Angiogenesis. Adv Healthc Mater 2020; 9:e2000806. [PMID: 32666663 PMCID: PMC8427471 DOI: 10.1002/adhm.202000806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Indexed: 01/10/2023]
Abstract
Peripheral arterial disease and critical limb ischemia are common symptoms of cardiovascular disease. Vascular surgery is used to create a bypass around occluded blood vessels to improve blood flow to ischemic muscle, thus avoiding the need for amputation. Attempts to vascularize tissues by therapeutic angiogenesis using delivery of exogenous angiogenic agents are underwhelming. A material-based approach that provides an endogenous stimulus capable of promoting angiogenesis and increased tissue perfusion would provide a paradigm shift in treatment options available. It is reported here that microporous biodegradable films produced using thermally induced phase separation provide a localized biophysical stimulus of proangiogenic genes in vivo that is associated with increased blood vessel density and restoration of blood flow to ischemic tissue. These findings show, for the first time, that acellular, nonfunctionalized biodegradable biomaterials can provide an innovative, material-based approach for therapeutic angiogenesis to enhance tissue reperfusion in vivo.
Collapse
Affiliation(s)
- Eseelle K Hendow
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mehran Moazen
- UCL Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - Francesco Iacoviello
- Electrochemical Innovation Lab, UCL Department of Chemical Engineering, University College London, Roberts Building, London, WC1E 7JE, UK
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, 124 Edwards Street, Toronto, Ontario, M5G 1G6, Canada
| | - Caroline Pellet-Many
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK
| | - Richard M Day
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
9
|
Hemocompatibility of biodegradable Zn-0.8 wt% (Cu, Mn, Li) alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109896. [DOI: 10.1016/j.msec.2019.109896] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/27/2022]
|
10
|
Varela P, Sartori S, Viebahn R, Salber J, Ciardelli G. Macrophage immunomodulation: An indispensable tool to evaluate the performance of wound dressing biomaterials. J Appl Biomater Funct Mater 2019; 17:2280800019830355. [PMID: 30808227 DOI: 10.1177/2280800019830355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major burden of the healthcare system resides in providing proper medical treatment for all types of chronic wounds, which are usually treated with dressings to induce a faster regeneration. Hence, to reduce healing time and improve the patient's quality of life, it is extremely important to select the most appropriate constituent material for a specific wound dressing. A wide range of wound dressings exist but their mechanisms of action are poorly explored, especially concerning the immunomodulatory effects that occur from the interactions between immune cells and the biomaterial. Tissue-resident and monocyte-derived recruited macrophages are key regulators of wound repair. These phagocytic immune cells exert specific functions during the different stages of wound healing. The recognition of the substantial role of macrophages in the outcome of the wound healing process requires specific understanding of the immunomodulatory effects of commercially available or newly developed wound dressings. For a precise intervention, it is necessary to obtain more knowledge on macrophage polarization in different phases of wound healing in the presence of the dressings. The main purpose of this review is to collect clinical cases in which macrophage immunomodulation was taken into consideration as an indicator of the performances of novel or mainstream wound dressing materials, including those provided with antimicrobial properties.
Collapse
Affiliation(s)
- Patrícia Varela
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.,2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Susanna Sartori
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Richard Viebahn
- 2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Jochen Salber
- 2 Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr-University Bochum, Germany
| | - Gianluca Ciardelli
- 1 Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
11
|
Biomaterials: Foreign Bodies or Tuners for the Immune Response? Int J Mol Sci 2019; 20:ijms20030636. [PMID: 30717232 PMCID: PMC6386828 DOI: 10.3390/ijms20030636] [Citation(s) in RCA: 363] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
The perspectives of regenerative medicine are still severely hampered by the host response to biomaterial implantation, despite the robustness of technologies that hold the promise to recover the functionality of damaged organs and tissues. In this scenario, the cellular and molecular events that decide on implant success and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. To avoid adverse events, rather than the use of inert scaffolds, current state of the art points to the use of immunomodulatory biomaterials and their knowledge-based use to reduce neutrophil activation, and optimize M1 to M2 macrophage polarization, Th1 to Th2 lymphocyte switch, and Treg induction. Despite the fact that the field is still evolving and much remains to be accomplished, recent research breakthroughs have provided a broader insight on the correct choice of biomaterial physicochemical modifications to tune the reaction of the host immune system to implanted biomaterial and to favor integration and healing.
Collapse
|
12
|
Raval N, Kalyane D, Maheshwari R, Tekade RK. Surface Modifications of Biomaterials and Their Implication on Biocompatibility. BIOMATERIALS AND BIONANOTECHNOLOGY 2019:639-674. [DOI: 10.1016/b978-0-12-814427-5.00017-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Adamowicz J, Van Breda SV, Kloskowski T, Juszczak K, Pokrywczynska M, Drewa T. Constructing artificial urinary conduits: current capabilities and future potential. Expert Rev Med Devices 2018; 16:135-144. [PMID: 30588868 DOI: 10.1080/17434440.2019.1562901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Intestinal segments are currently used in reconstructive urology to create urinary diversion after cystectomy. Ileal conduit (IC) is the dominant type of urinary diversion. Nevertheless, IC is not an ideal solution as the procedure still requires entero-enterostomy to restore the bowel continuity. This step is a source of relevant complications that might prolong recovery time. Fabrication of artificial urinary conduit is a tempting idea to introduce an alternative form of urinary diversion which might improve cystectomy outcomes. AREAS COVERED The aim of this review is to discuss available research data about artificial urinary conduit and identify major challenges for future studies. EXPERT OPINION Fabrication of artificial urinary conduit is in range of current tissue engineering technology but there are still many challenges to overcome. There is an urgent need for studies to be conducted on large animal models with long follow up to expose the limitation of experimental strategies and to gather data for translational research.
Collapse
Affiliation(s)
- Jan Adamowicz
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Shane V Van Breda
- b Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Tomasz Kloskowski
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Kajetan Juszczak
- c Department of Urology , Memorial Rydygier Hospital , Cracow , Poland
| | - Marta Pokrywczynska
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Tomasz Drewa
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| |
Collapse
|
14
|
Sánchez PF, Brey EM, Briceño JC. Endothelialization mechanisms in vascular grafts. J Tissue Eng Regen Med 2018; 12:2164-2178. [PMID: 30079631 DOI: 10.1002/term.2747] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/18/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022]
Abstract
Despite the wide variety of tissue-engineered vascular grafts that are currently being developed, autologous vessels, such as the saphenous vein, are still the gold standard grafts for surgical treatment of vascular disease. Recently developed technologies have shown promising results in preclinical studies, but they still do not overcome the issues that native vessels present, and only a few have made the transition into clinical use. The endothelial lining is a key aspect for the success or failure of the grafts, especially on smaller diameter grafts (<5 mm). However, during the design and evaluation of the grafts, the mechanisms for the formation of this layer are not commonly examined. Therefore, a significant amount of established research might not be relevant to the clinical context, due to important differences that exist between the vascular regeneration mechanisms found in animal models and humans. This article reviews current knowledge about endothelialization mechanisms that have been so far identified: in vitro seeding, transanastomotic growth, transmural infiltration, and fallout endothelialization. Emphasis is placed on the models used for study of theses mechanisms and their effects on the development of tissue-engineering vascular conduits.
Collapse
Affiliation(s)
- Paolo F Sánchez
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Eric M Brey
- Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas.,Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois.,Research Service, South Texas Veterans Health Care System, San Antonio, Texas
| | - Juan Carlos Briceño
- Department of Biomedical Engineering, Universidad de los Andes, Bogotá, Colombia.,Research Department, Fundación Cardioinfantil Instituto de Cardiología, Bogotá, Colombia
| |
Collapse
|
15
|
Jiang W, Rutherford D, Vuong T, Liu H. Nanomaterials for treating cardiovascular diseases: A review. Bioact Mater 2017; 2:185-198. [PMID: 29744429 PMCID: PMC5935516 DOI: 10.1016/j.bioactmat.2017.11.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/29/2023] Open
Abstract
Nanomaterials such as nanostructured surfaces, nanoparticles, and nanocomposites represent new viable sources for future therapeutics for cardiovascular diseases. The special properties of nanomaterials such as their intrinsic physiochemical properties, surface energy and surface topographies could actively enhance desirable cellular responses within the cardiovascular system, projecting a growing potential for clinical translation. Recent progress on nanomaterials opened up new opportunities for treating cardiovascular diseases. Successful translation of nanomaterials into cardiovascular applications requires a comprehensive understanding of both nanomaterials and biomedicine, and, thus, it is critical to stress current advancements on both sides. In this review, the authors introduced crucial fabrication techniques for promising nanomaterials for cardiovascular applications. This review highlighted the key elements to consider for their fabrication, properties and applications. The important concerns relevant to cardiovascular nanomaterials, such as cellular responses to nanomaterials and the toxicity of nanomaterials, are also discussed. This review provided an overview of necessary knowledge and key concerns on nanomaterials specific for treating cardiovascular diseases, from the perspectives of both material science and biomedicine. Reviewed current progress of nanomaterials and their cardiovascular applications. Mainly focused on nanostructured surfaces, nanoparticles and nanocomposites. Discussed important topics of nanomaterials for cardiovascular applications. Comparatively reviewed the fabrication of nanomaterials. Informative to researchers in the field of biomaterials and nanomaterials.
Collapse
Affiliation(s)
- Wensen Jiang
- Materials Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Dana Rutherford
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Tiffany Vuong
- Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| | - Huinan Liu
- Materials Science and Engineering, University of California, Riverside, Riverside, CA, 92521, USA.,Department of Bioengineering, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
16
|
Zhang H, Zhu T, Zhang L, Wu Q. Stromal cell‑derived factor‑1 induces matrix metalloproteinase expression in human endplate chondrocytes, cartilage endplate degradation in explant culture, and the amelioration of nucleus pulposus degeneration in vivo. Int J Mol Med 2017; 41:969-976. [PMID: 29207021 DOI: 10.3892/ijmm.2017.3278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/13/2017] [Indexed: 11/05/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is a strong etiological factor in chronic lower back pain. Stem cell migration toward the site of IVD degeneration for regeneration is restricted by avascularity and distance. Our previous study indicated that the expression of stromal cell‑derived factor‑1 (SDF‑1) and its receptor, C-X-C chemokine receptor type 4 (CXCR4) was upregulated in degenerated cartilage endplate (CEP) and nucleus pulposus (NP). In the present study, SDF‑1 increased CXCR4 mRNA and protein expression in human endplate chondrocytes in a dose‑dependent manner. The results of reverse transcription-quantitative polymerase chain reaction, western blotting and zymography indicated that SDF‑1 increased matrix metalloproteinase (MMP)‑1, ‑3 and ‑13 mRNA and protein expression in human endplate chondrocytes in a dose‑dependent manner. The results of zymography suggested that SDF‑1 also increased MMP‑2 and ‑9 protein expression in a dose‑dependent manner. The CXCR4‑specific chemical inhibitor AMD3100 significantly decreased the levels of MMP‑1, ‑2, ‑3, ‑9 and ‑13 expression. In a human cartilage explant culture model, SDF‑1 accelerated the degradation of extracellular matrix (ECM), and AMD3100 decreased cartilage cleavage. However, in a rat tail disc degeneration model, the injection of SDF‑1 into the NP resulted in the retention of dense areas of proteoglycan matrix and enhanced NP regeneration. These results suggest that SDF‑1, as an inflammatory cytokine, induces MMP expression in human endplate chondrocytes and that ECM remodeling in the CEP may be a favorable factor of endogenous stem cell homing into the NP for regeneration in vivo.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Ting Zhu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Li Zhang
- Department of Clinical Laboratory, Hangzhou Red Cross Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310000, P.R. China
| | - Qionghua Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
17
|
Adamowicz J, Pokrywczynska M, Van Breda SV, Kloskowski T, Drewa T. Concise Review: Tissue Engineering of Urinary Bladder; We Still Have a Long Way to Go? Stem Cells Transl Med 2017; 6:2033-2043. [PMID: 29024555 PMCID: PMC6430044 DOI: 10.1002/sctm.17-0101] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/18/2017] [Indexed: 12/18/2022] Open
Abstract
Regenerative medicine is a new branch of medicine based on tissue engineering technology. This rapidly developing field of science offers revolutionary treatment strategy aimed at urinary bladder regeneration. Despite many promising announcements of experimental urinary bladder reconstruction, there has been a lack in commercialization of therapies based on current investigations. This is due to numerous obstacles that are slowly being identified and precisely overcome. The goal of this review is to present the current status of research on urinary bladder regeneration and highlight further challenges that need to be gradually addressed. We put an emphasis on expectations of urologists that are awaiting tissue engineering based solutions in clinical practice. This review also presents a detailed characteristic of obstacles on the road to successful urinary bladder regeneration from urological clinician perspective. A defined interdisciplinary approach might help to accelerate planning transitional research tissue engineering focused on urinary tracts. Stem Cells Translational Medicine 2017;6:2033-2043.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marta Pokrywczynska
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
18
|
Katunar MR, Gomez Sanchez A, Santos Coquillat A, Civantos A, Martinez Campos E, Ballarre J, Vico T, Baca M, Ramos V, Cere S. In vitro and in vivo characterization of anodised zirconium as a potential material for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:957-968. [PMID: 28415552 DOI: 10.1016/j.msec.2017.02.139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/14/2016] [Accepted: 02/24/2017] [Indexed: 01/07/2023]
Abstract
In vitro studies offer the insights for the understanding of the mechanisms at the tissue-implant interface that will provide an effective functioning in vivo. The good biocompatibility of zirconium makes a good candidate for biomedical applications and the attractive in vivo performance is mainly due to the presence of a protective oxide layer. The aim of this study is to evaluate by in vitro and in vivo approach, the influence of surface modification achieved by anodisation at 30 and 60V on zirconium implants on the first steps of the osseointegration process. In this study cell attachment, proliferation and morphology of mouse myoblast C2C12-GFP and in mouse osteoprogenitor MC3T3-E1 cells was evaluated. Also, together with the immune system response, osteoclast differentiation and morphology with RAW 264.7 murine cell line were analysed. It was found that anodisation treatment at 60V enhanced cell spreading and the osteoblastic and osteoclastic cells morphology, showing a strong dependence on the surface characteristics. In vivo tests were performed in a rat femur osteotomy model. Dynamical and static histological and histomorphometric analyses were developed 15 and 30days after surgery. Newly formed bone around Zr60V implants showed a continuous newly compact and homogeneous bone just 15 after surgery, as judged by the enhanced thickness and mineralization rate. The results indicate that anodising treatment at 60V could be an effective improvement in the osseointegration of zirconium by stimulating adhesion, proliferation, morphology, new bone thickness and bone mineral apposition, making zirconium an emerging candidate material for biomedical applications.
Collapse
Affiliation(s)
- Maria R Katunar
- INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata, Argentina.
| | - Andrea Gomez Sanchez
- INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata, Argentina
| | - Ana Santos Coquillat
- Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid, Madrid, España
| | - Ana Civantos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid, Spain
| | | | - Josefina Ballarre
- INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata, Argentina
| | - Tamara Vico
- INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata, Argentina
| | - Matias Baca
- Traumatologia y Ortopedia, Hospital Interzonal General de Agudos "Oscar Alende", Mar del Plata, Argentina
| | - Viviana Ramos
- Instituto de Ciencia y Tecnología de Polímeros, CSIC, Madrid, Spain
| | - Silvia Cere
- INTEMA, Universidad Nacional de Mar del Plata-CONICET, Juan B. Justo, 4302, B7608FDQ, Mar del Plata, Argentina
| |
Collapse
|
19
|
Vigani B, Mastracci L, Grillo F, Perteghella S, Preda S, Crivelli B, Antonioli B, Galuzzi M, Tosca MC, Marazzi M, Torre ML, Chlapanidas T. Local biological effects of adipose stromal vascular fraction delivery systems after subcutaneous implantation in a murine model. J BIOACT COMPAT POL 2016; 31:600-612. [DOI: 10.1177/0883911516635841] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
The aim of this study was to test alginate beads and silk fibroin non-woven mats as stromal vascular fraction delivery systems to support cell implantation for tissue repair and regeneration, through trophic and immunomodulant paracrine signaling. Furthermore, in vivo scaffold biocompatibility was histologically analyzed in a murine model at different time endpoints, with particular focus on construct-induced vascularization and neoangiogenesis. The fibroin mat induced a typical foreign body reaction, recruiting macrophages and giant cells and concurrently promoted neovascularization of the implanted construct. Conversely, alginate beads triggered a more circumscribed, chronic inflammatory reaction, which decreased over time. The combined in vivo implantation of alginate beads and fibroin mat with stromal vascular fraction promoted vascularization and integration of scaffolds into the surrounding subcutaneous environment. The new blood vessel ingrowth should, hopefully, support engineered cell viability and functionality, as well as the transport of soluble bioactive molecules. Due to their neovascularization properties, stromal vascular fraction administration, using alginate or fibroin scaffolds, is a new, promising, cost-effective tissue engineering approach.
Collapse
Affiliation(s)
- Barbara Vigani
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Luca Mastracci
- Pathology Section, Department of Surgical and Integrated Diagnostic Sciences (DISC), University of Genoa, IRCCS AOU San Martino—IST, Genoa, Italy
| | - Federica Grillo
- Pathology Section, Department of Surgical and Integrated Diagnostic Sciences (DISC), University of Genoa, IRCCS AOU San Martino—IST, Genoa, Italy
| | | | - Stefania Preda
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Barbara Antonioli
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Marta Galuzzi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Marta C Tosca
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Mario Marazzi
- Struttura Semplice Tissue Therapy, Niguarda Ca’ Granda Hospital, Milan, Italy
| | - Maria L Torre
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | |
Collapse
|
20
|
Surface modification of electrospun fibres for biomedical applications: A focus on radical polymerization methods. Biomaterials 2016; 106:24-45. [DOI: 10.1016/j.biomaterials.2016.08.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 12/18/2022]
|
21
|
Molinos M, Almeida CR, Caldeira J, Cunha C, Gonçalves RM, Barbosa MA. Inflammation in intervertebral disc degeneration and regeneration. J R Soc Interface 2015; 12:20141191. [PMID: 25673296 DOI: 10.1098/rsif.2014.1191] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is one of the major causes of low back pain, a problem with a heavy economic burden, which has been increasing in prevalence as populations age. Deeper knowledge of the complex spatial and temporal orchestration of cellular interactions and extracellular matrix remodelling is critical to improve current IVD therapies, which have so far proved unsatisfactory. Inflammation has been correlated with degenerative disc disease but its role in discogenic pain and hernia regression remains controversial. The inflammatory response may be involved in the onset of disease, but it is also crucial in maintaining tissue homeostasis. Furthermore, if properly balanced it may contribute to tissue repair/regeneration as has already been demonstrated in other tissues. In this review, we focus on how inflammation has been associated with IVD degeneration by describing observational and in vitro studies as well as in vivo animal models. Finally, we provide an overview of IVD regenerative therapies that target key inflammatory players.
Collapse
Affiliation(s)
- Maria Molinos
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| | - Catarina R Almeida
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Joana Caldeira
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Patologia e Imunologia-IPATIMUP, Universidade do Porto, Porto, Portugal
| | - Carla Cunha
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Raquel M Gonçalves
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal
| | - Mário A Barbosa
- Instituto de Engenharia Biomédica-INEB, Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar-ICBAS, Universidade do Porto, Porto, Portugal
| |
Collapse
|
22
|
Interleukin-1β in intervertebral disk degeneration. Clin Chim Acta 2015; 450:262-72. [PMID: 26341894 DOI: 10.1016/j.cca.2015.08.029] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/26/2015] [Accepted: 08/30/2015] [Indexed: 01/06/2023]
Abstract
Intervertebral disk degeneration (IDD) is the most common diagnosis in patients with low back pain, a main cause of musculoskeletal disability in the world. Interleukin-1 (IL-1) β is the most important member of the IL-1 family, and has a strong pro-inflammatory activity by stimulating the secretion of multiple pro-inflammatory mediators. IL-1β is highly expressed in degenerative intervertebral disk (IVD) tissues and cells, and it has been shown to be involved in multiple pathological processes during disk degeneration, including inflammatory responses, matrix destruction, angiogenesis and innervation, cellular apoptosis, oxidative stress and cellular senescence. However, inhibition of IL-1β is found to promote extracellular matrix (ECM) repair and protect against disk regeneration. In this review, after a brief description of IL-1β signaling, we mainly focus on the expression profiles, roles and therapeutic potential of IL-1β in IDD. A better understanding will help develop novel IL-1β-based therapeutic interventions for degenerative disk disease.
Collapse
|
23
|
Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342304. [PMID: 26247017 PMCID: PMC4515263 DOI: 10.1155/2015/342304] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Collapse
|
24
|
Lendlein A, Neffe AT, Jérôme C. Advanced Functional Polymers in Medicine (AFPM). Clin Hemorheol Microcirc 2015; 60:1-2. [DOI: 10.3233/ch-151941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Germany
| | - Axel T. Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Germany
| | - Christine Jérôme
- Centre d’Etude et de Recherche sur les Macromolécules (CERM), Université de Liège, Belgium
| |
Collapse
|
25
|
Haase T, Krost A, Sauter T, Kratz K, Peter J, Kamann S, Jung F, Lendlein A, Zohlnhöfer D, Rüder C. In vivo biocompatibility assessment of poly (ether imide) electrospun scaffolds. J Tissue Eng Regen Med 2015; 11:1034-1044. [PMID: 25712330 DOI: 10.1002/term.2002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 11/25/2014] [Accepted: 12/17/2014] [Indexed: 12/18/2022]
Abstract
Poly(ether imide) (PEI), which can be chemically functionalized with biologically active ligands, has emerged as a potential biomaterial for medical implants. Electrospun PEI scaffolds have shown advantageous properties, such as enhanced endothelial cell adherence, proliferation and low platelet adhesion in in vitro experiments. In this study, the in vivo behaviour of electrospun PEI scaffolds and PEI films was examined in a murine subcutaneous implantation model. Electrospun PEI scaffolds and films were surgically implanted subcutaneously in the dorsae of mice. The surrounding subcutaneous tissue response was examined via histopathological examination at 7 and 28 days after implantation. No serious adverse events were observed for both types of PEI implants. The presence of macrophages or foreign body giant cells in the vicinity of the implants and the formation of a fibrous capsule indicated a normal foreign body reaction towards PEI films and scaffolds. Capsule thickness and inflammatory infiltration cells significantly decreased for PEI scaffolds during days 7-28 while remaining unchanged for PEI films. The infiltration of cells into the implant was observed for PEI scaffolds 7 days after implantation and remained stable until 28 days of implantation. Additionally some, but not all, PEI scaffold implants induced the formation of functional blood vessels in the vicinity of the implants. Conclusively, this study demonstrates the in vivo biocompatibility of PEI implants, with favourable properties of electrospun PEI scaffolds regarding tissue integration and wound healing. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tobias Haase
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Annalena Krost
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany
| | - Tilman Sauter
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Karl Kratz
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Jan Peter
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany
| | - Stefanie Kamann
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Friedrich Jung
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Andreas Lendlein
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Institute of Biomaterial Science, Helmholtz-Zentrum Geesthacht, Teltow, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Dietlind Zohlnhöfer
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| | - Constantin Rüder
- Berlin-Brandenburg Centre for Regenerative Therapies, Berlin, Germany.,Department of Cardiology, Campus Virchow Klinikum, Charité, Berlin, Germany
| |
Collapse
|
26
|
Miller KS, Khosravi R, Breuer CK, Humphrey JD. A hypothesis-driven parametric study of effects of polymeric scaffold properties on tissue engineered neovessel formation. Acta Biomater 2015; 11:283-94. [PMID: 25288519 PMCID: PMC4256111 DOI: 10.1016/j.actbio.2014.09.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 01/22/2023]
Abstract
Continued advances in the tissue engineering of vascular grafts have enabled a paradigm shift from the desire to design for adequate suture retention, burst pressure and thrombo-resistance to the goal of achieving grafts having near native properties, including growth potential. Achieving this far more ambitious outcome will require the identification of optimal, not just adequate, scaffold structure and material properties. Given the myriad possible combinations of scaffold parameters, there is a need for a new strategy for reducing the experimental search space. Toward this end, we present a new modeling framework for in vivo neovessel development that allows one to begin to assess in silico the potential consequences of different combinations of scaffold structure and material properties. To restrict the number of parameters considered, we also utilize a non-dimensionalization to identify key properties of interest. Using illustrative constitutive relations for both the evolving fibrous scaffold and the neotissue that develops in response to inflammatory and mechanobiological cues, we show that this combined non-dimensionalization computational approach predicts salient aspects of neotissue development that depend directly on two key scaffold parameters, porosity and fiber diameter. We suggest, therefore, that hypothesis-driven computational models should continue to be pursued given their potential to identify preferred combinations of scaffold parameters that have the promise of improving neovessel outcome. In this way, we can begin to move beyond a purely empirical trial-and-error search for optimal combinations of parameters and instead focus our experimental resources on those combinations that are predicted to have the most promise.
Collapse
Affiliation(s)
- Kristin S Miller
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Ramak Khosravi
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Christopher K Breuer
- Surgical Research and Regenerative Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Jay D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
27
|
Boccafoschi F, Mosca C, Ramella M, Carmagnola I, Chiono V, Ciardelli G, Cannas M. Biological evaluation of materials for cardiovascular application: The role of the short-term inflammatory response in endothelial regeneration. J Biomed Mater Res A 2013; 101:3131-40. [DOI: 10.1002/jbm.a.34630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 11/12/2022]
|