1
|
Ghezzi B, Matera B, Meglioli M, Rossi F, Duraccio D, Faga MG, Zappettini A, Macaluso GM, Lumetti S. Composite PCL Scaffold With 70% β-TCP as Suitable Structure for Bone Replacement. Int Dent J 2024; 74:1220-1232. [PMID: 38614878 DOI: 10.1016/j.identj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/15/2024] Open
Abstract
OBJECTIVES The purpose of this work was to optimise printable polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) biomaterials with high percentages of β-TCP endowed with balanced mechanical characteristics to resemble human cancellous bone, presumably improving osteogenesis. METHODS PCL/β-TCP scaffolds were obtained from customised filaments for fused deposition modelling (FDM) 3D printing with increasing amounts of β-TCP. Samples mechanical features, surface topography and wettability were evaluated as well as cytocompatibility assays, cell adhesion and differentiation. RESULTS The parameters of the newly fabricated materila were optimal for PCL/β-TCP scaffold fabrication. Composite surfaces showed higher hydrophilicity compared with the controls, and their surface roughness sharply was higher, possibly due to the presence of β-TCP. The Young's modulus of the composites was significantly higher than that of pristine PCL, indicating that the intrinsic strength of β-TCP is beneficial for enhancing the elastic modulus of the composite biomaterials. All novel composite biomaterials supported greater cellular growth and stronger osteoblastic differentiation compared with the PCL control. CONCLUSIONS This project highlights the possibility to fabricat, through an FDM solvent-free approach, PCL/β-TCP scaffolds of up to 70 % concentrations of β-TCP. overcoming the current lmit of 60 % stated in the literature. The combination of 3D printing and customised biomaterials allowed production of highly personalised scaffolds with optimal mechanical and biological features resembling the natural structure and the composition of bone. This underlines the promise of such structures for innovative approaches for bone and periodontal regeneration.
Collapse
Affiliation(s)
- Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Biagio Matera
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy
| | - Matteo Meglioli
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.
| | - Francesca Rossi
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Donatella Duraccio
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Maria Giulia Faga
- Istituto di Scienze e Tecnologie per l'Energia e la Mobilità Sostenibili, Consiglio Nazionale delle Ricerche, Torino, Italy
| | - Andrea Zappettini
- Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Guido Maria Macaluso
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, Italy
| |
Collapse
|
2
|
Jang HJ, Kang MS, Jang J, Lim D, Choi SW, Jung TG, Chun HJ, Kim B, Han DW. Harnessing 3D printed highly porous Ti-6Al-4V scaffolds coated with graphene oxide to promote osteogenesis. Biomater Sci 2024; 12:5491-5503. [PMID: 39310945 DOI: 10.1039/d4bm00970c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Bone tissue engineering (BTE) strategies have been developed to address challenges in orthopedic and dental therapy by expediting osseointegration and new bone formation. In this study, we developed irregular porous Ti-6Al-4V scaffolds coated with reduced graphene oxide (rGO), specifically rGO-pTi, and investigated their ability to stimulate osseointegration in vivo. The rGO-pTi scaffolds exhibited unique irregular micropores and high hydrophilicity, facilitating protein adsorption and cell growth. In vitro assays revealed that the rGO-pTi scaffolds increased alkaline phosphatase (ALP) activity, mineralization nodule formation, and osteogenic gene upregulation in MC3T3-E1 preosteoblasts. Moreover, in vivo transplantation of rGO-pTi scaffolds in rabbit calvarial bone defects showed improved bone matrix formation and osseointegration without hemorrhage. These findings highlight the potential of combining rGO with irregular micropores as a promising BTE scaffold for bone regeneration.
Collapse
Affiliation(s)
- Hee Jeong Jang
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Moon Sung Kang
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Jinju Jang
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Corporate Research Institute, RNX Inc., Bucheon 14558, Republic of Korea
| | - Dohyung Lim
- Corporate Research Institute, RNX Inc., Bucheon 14558, Republic of Korea
- Department of Mechanical Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Seong-Won Choi
- Industry Support Center for Convergence Medical Devices, Chonnam National University Hospital, Gwangju 61469, Republic of Korea
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Chungju 28160, Republic of Korea
| | - Heoung-Jae Chun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea.
- BIO-IT Fusion Technology Research Institute, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Liang HY, Lee WK, Hsu JT, Shih JY, Ma TL, Vo TTT, Lee CW, Cheng MT, Lee IT. Polycaprolactone in Bone Tissue Engineering: A Comprehensive Review of Innovations in Scaffold Fabrication and Surface Modifications. J Funct Biomater 2024; 15:243. [PMID: 39330219 PMCID: PMC11433047 DOI: 10.3390/jfb15090243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Bone tissue engineering has seen significant advancements with innovative scaffold fabrication techniques such as 3D printing. This review focuses on enhancing polycaprolactone (PCL) scaffold properties through structural modifications, including surface treatments, pore architecture adjustments, and the incorporation of biomaterials like hydroxyapatite (HA). These modifications aim to improve scaffold conformation, cellular behavior, and mechanical performance, with particular emphasis on the role of mesenchymal stem cells (MSCs) in bone regeneration. The review also explores the potential of integrating nanomaterials and graphene oxide (GO) to further enhance the mechanical and biological properties of PCL scaffolds. Future directions involve optimizing scaffold structures and compositions for improved bone tissue regeneration outcomes.
Collapse
Affiliation(s)
- Hsin-Yu Liang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Wei-Keung Lee
- Department of Physical Medicine and Rehabilitation, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Jui-Tsen Hsu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Jie-Yu Shih
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Tien-Li Ma
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh 70000, Vietnam;
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan;
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Sinwu Branch, Taoyuan 32748, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| |
Collapse
|
4
|
Slavin BV, Ehlen QT, Costello JP, Nayak VV, Bonfante EA, Benalcázar Jalkh EB, Runyan CM, Witek L, Coelho PG. 3D Printing Applications for Craniomaxillofacial Reconstruction: A Sweeping Review. ACS Biomater Sci Eng 2023; 9:6586-6609. [PMID: 37982644 PMCID: PMC11229092 DOI: 10.1021/acsbiomaterials.3c01171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The field of craniomaxillofacial (CMF) surgery is rich in pathological diversity and broad in the ages that it treats. Moreover, the CMF skeleton is a complex confluence of sensory organs and hard and soft tissue with load-bearing demands that can change within millimeters. Computer-aided design (CAD) and additive manufacturing (AM) create extraordinary opportunities to repair the infinite array of craniomaxillofacial defects that exist because of the aforementioned circumstances. 3D printed scaffolds have the potential to serve as a comparable if not superior alternative to the "gold standard" autologous graft. In vitro and in vivo studies continue to investigate the optimal 3D printed scaffold design and composition to foster bone regeneration that is suited to the unique biological and mechanical environment of each CMF defect. Furthermore, 3D printed fixation devices serve as a patient-specific alternative to those that are available off-the-shelf with an opportunity to reduce operative time and optimize fit. Similar benefits have been found to apply to 3D printed anatomical models and surgical guides for preoperative or intraoperative use. Creation and implementation of these devices requires extensive preclinical and clinical research, novel manufacturing capabilities, and strict regulatory oversight. Researchers, manufacturers, CMF surgeons, and the United States Food and Drug Administration (FDA) are working in tandem to further the development of such technology within their respective domains, all with a mutual goal to deliver safe, effective, cost-efficient, and patient-specific CMF care. This manuscript reviews FDA regulatory status, 3D printing techniques, biomaterials, and sterilization procedures suitable for 3D printed devices of the craniomaxillofacial skeleton. It also seeks to discuss recent clinical applications, economic feasibility, and future directions of this novel technology. By reviewing the current state of 3D printing in CMF surgery, we hope to gain a better understanding of its impact and in turn identify opportunities to further the development of patient-specific surgical care.
Collapse
Affiliation(s)
- Blaire V Slavin
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Quinn T Ehlen
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Joseph P Costello
- University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Vasudev Vivekanand Nayak
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
| | - Estavam A Bonfante
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Ernesto B Benalcázar Jalkh
- Department of Prosthodontics and Periodontology, University of Sao Paulo, Bauru School of Dentistry, Alameda Dr. Octávio Pinheiro Brisolla, Quadra 9 - Jardim Brasil, Bauru São Paulo 17012-901, Brazil
| | - Christopher M Runyan
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, 475 Vine St, Winston-Salem, North Carolina 27101, United States
| | - Lukasz Witek
- Biomaterials Division, NYU Dentistry, 345 E. 24th St., New York, New York 10010, United States
- Hansjörg Wyss Department of Plastic Surgery, NYU Grossman School of Medicine, New York University, 222 E 41st St., New York, New York 10017, United States
- Department of Biomedical Engineering, NYU Tandon School of Engineering, 6 MetroTech Center, Brooklyn, New York 11201, United States
| | - Paulo G Coelho
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1011 NW 15th St., Miami, Florida 33136, United States
- DeWitt Daughtry Family Department of Surgery, Division of Plastic Surgery, University of Miami Miller School of Medicine, 1120 NW 14th St., Miami, Florida 33136, United States
| |
Collapse
|
5
|
Stafin K, Śliwa P, Piątkowski M. Towards Polycaprolactone-Based Scaffolds for Alveolar Bone Tissue Engineering: A Biomimetic Approach in a 3D Printing Technique. Int J Mol Sci 2023; 24:16180. [PMID: 38003368 PMCID: PMC10671727 DOI: 10.3390/ijms242216180] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The alveolar bone is a unique type of bone, and the goal of bone tissue engineering (BTE) is to develop methods to facilitate its regeneration. Currently, an emerging trend involves the fabrication of polycaprolactone (PCL)-based scaffolds using a three-dimensional (3D) printing technique to enhance an osteoconductive architecture. These scaffolds are further modified with hydroxyapatite (HA), type I collagen (CGI), or chitosan (CS) to impart high osteoinductive potential. In conjunction with cell therapy, these scaffolds may serve as an appealing alternative to bone autografts. This review discusses research gaps in the designing of 3D-printed PCL-based scaffolds from a biomimetic perspective. The article begins with a systematic analysis of biological mineralisation (biomineralisation) and ossification to optimise the scaffold's structural, mechanical, degradation, and surface properties. This scaffold-designing strategy lays the groundwork for developing a research pathway that spans fundamental principles such as molecular dynamics (MD) simulations and fabrication techniques. Ultimately, this paves the way for systematic in vitro and in vivo studies, leading to potential clinical applications.
Collapse
Affiliation(s)
- Krzysztof Stafin
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| | - Paweł Śliwa
- Department of Organic Chemistry and Technology, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland; (K.S.); (P.Ś.)
| | - Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, ul. Warszawska 24, PL 31-155 Kraków, Poland
| |
Collapse
|
6
|
Zhou J, See CW, Sreenivasamurthy S, Zhu D. Customized Additive Manufacturing in Bone Scaffolds-The Gateway to Precise Bone Defect Treatment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0239. [PMID: 37818034 PMCID: PMC10561823 DOI: 10.34133/research.0239] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023]
Abstract
In the advancing landscape of technology and novel material development, additive manufacturing (AM) is steadily making strides within the biomedical sector. Moving away from traditional, one-size-fits-all implant solutions, the advent of AM technology allows for patient-specific scaffolds that could improve integration and enhance wound healing. These scaffolds, meticulously designed with a myriad of geometries, mechanical properties, and biological responses, are made possible through the vast selection of materials and fabrication methods at our disposal. Recognizing the importance of precision in the treatment of bone defects, which display variability from macroscopic to microscopic scales in each case, a tailored treatment strategy is required. A patient-specific AM bone scaffold perfectly addresses this necessity. This review elucidates the pivotal role that customized AM bone scaffolds play in bone defect treatment, while offering comprehensive guidelines for their customization. This includes aspects such as bone defect imaging, material selection, topography design, and fabrication methodology. Additionally, we propose a cooperative model involving the patient, clinician, and engineer, thereby underscoring the interdisciplinary approach necessary for the effective design and clinical application of these customized AM bone scaffolds. This collaboration promises to usher in a new era of bioactive medical materials, responsive to individualized needs and capable of pushing boundaries in personalized medicine beyond those set by traditional medical materials.
Collapse
Affiliation(s)
- Juncen Zhou
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Carmine Wang See
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Sai Sreenivasamurthy
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| | - Donghui Zhu
- Department of Biomedical Engineering,
Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
7
|
Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:759. [PMID: 37508786 PMCID: PMC10376773 DOI: 10.3390/bioengineering10070759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.
Collapse
Affiliation(s)
| | | | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.)
| |
Collapse
|
8
|
Gharibshahian M, Salehi M, Beheshtizadeh N, Kamalabadi-Farahani M, Atashi A, Nourbakhsh MS, Alizadeh M. Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Front Bioeng Biotechnol 2023; 11:1168504. [PMID: 37469447 PMCID: PMC10353441 DOI: 10.3389/fbioe.2023.1168504] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Population ageing and various diseases have increased the demand for bone grafts in recent decades. Bone tissue engineering (BTE) using a three-dimensional (3D) scaffold helps to create a suitable microenvironment for cell proliferation and regeneration of damaged tissues or organs. The 3D printing technique is a beneficial tool in BTE scaffold fabrication with appropriate features such as spatial control of microarchitecture and scaffold composition, high efficiency, and high precision. Various biomaterials could be used in BTE applications. PCL, as a thermoplastic and linear aliphatic polyester, is one of the most widely used polymers in bone scaffold fabrication. High biocompatibility, low cost, easy processing, non-carcinogenicity, low immunogenicity, and a slow degradation rate make this semi-crystalline polymer suitable for use in load-bearing bones. Combining PCL with other biomaterials, drugs, growth factors, and cells has improved its properties and helped heal bone lesions. The integration of PCL composites with the new 3D printing method has made it a promising approach for the effective treatment of bone injuries. The purpose of this review is give a comprehensive overview of the role of printed PCL composite scaffolds in bone repair and the path ahead to enter the clinic. This study will investigate the types of 3D printing methods for making PCL composites and the optimal compounds for making PCL composites to accelerate bone healing.
Collapse
Affiliation(s)
- Maliheh Gharibshahian
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Nima Beheshtizadeh
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amir Atashi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
9
|
Lee HY, Lee JW. Current Status and Future Outlook of Additive Manufacturing Technologies for the Reconstruction of the Trachea. J Funct Biomater 2023; 14:jfb14040196. [PMID: 37103286 PMCID: PMC10141199 DOI: 10.3390/jfb14040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Tracheal stenosis and defects occur congenitally and in patients who have undergone tracheal intubation and tracheostomy due to long-term intensive care. Such issues may also be observed during tracheal removal during malignant head and neck tumor resection. However, to date, no treatment method has been identified that can simultaneously restore the appearance of the tracheal skeleton while maintaining respiratory function in patients with tracheal defects. Therefore, there is an urgent need to develop a method that can maintain tracheal function while simultaneously reconstructing the skeletal structure of the trachea. Under such circumstances, the advent of additive manufacturing technology that can create customized structures using patient medical image data provides new possibilities for tracheal reconstruction surgery. In this study, the three-dimensional (3D) printing and bioprinting technologies used in tracheal reconstruction are summarized, and various research results related to the reconstruction of mucous membranes, cartilage, blood vessels, and muscle tissue, which are tissues required for tracheal reconstruction, are classified. The prospects for 3D-printed tracheas in clinical studies are also described. This review serves as a guide for the development of artificial tracheas and clinical trials using 3D printing and bioprinting.
Collapse
Affiliation(s)
- Hwa-Yong Lee
- Division of Science Education, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin Woo Lee
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
10
|
van der Heide D, Cidonio G, Stoddart M, D'Este M. 3D printing of inorganic-biopolymer composites for bone regeneration. Biofabrication 2022; 14. [PMID: 36007496 DOI: 10.1088/1758-5090/ac8cb2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/25/2022] [Indexed: 11/12/2022]
Abstract
In most cases, bone injuries heal without complications, however, there is an increasing number of instances where bone healing needs major clinical intervention. Available treatment options have severe drawbacks, such as donor site morbidity and limited availability for autografting. Bone graft substitutes containing growth factors would be a viable alternative, however they have been associated with dose-related safety concerns and lack control over spatial architecture to anatomically match bone defect sites. 3D printing offers a solution to produce patient specific bone graft substitutes that are customized to the patient bone defect with temporal control over the incorporated therapeutics to maximize their efficacy. Inspired by the natural constitution of bone tissue, composites made of inorganic phases, such as nanosilicate particles, calcium phosphate, and bioactive glasses, combined with biopolymer matrices have been investigated as building blocks for the biofabrication of bone constructs. Besides capturing elements of the bone physiological structure, these inorganic/organic composites can be designed for specific cohesivity, rheological and mechanical properties, while both inorganic and organic constituents contribute to the composite bioactivity. This review provides an overview of 3D printed composite biomaterial-inks for bone tissue engineering. Furthermore, key aspects in biomaterial-ink design, 3D printing techniques, and the building blocks for composite biomaterial-inks are summarized.
Collapse
Affiliation(s)
- Daphne van der Heide
- AO Research Institute Davos, Clavadelerstrasse, 8, Davos Platz, Davos, Graubünden, 7270, SWITZERLAND
| | - Gianluca Cidonio
- Istituto Italiano di Tecnologia Center for Life Nano Science, 3D Microfluidic Biofabrication Laboratory, Roma, Lazio, 00161, ITALY
| | - Martin Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Davos, Graubünden, 7270, SWITZERLAND
| | - Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos, Graubünden, 7270, SWITZERLAND
| |
Collapse
|
11
|
Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. IN VITRO MODELS 2022; 1:289-307. [PMID: 36567849 PMCID: PMC9766883 DOI: 10.1007/s44164-022-00028-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.
Collapse
Affiliation(s)
- Lucia Iafrate
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Cristina Benedetti
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| |
Collapse
|
12
|
Laser Sintering Approaches for Bone Tissue Engineering. Polymers (Basel) 2022; 14:polym14122336. [PMID: 35745911 PMCID: PMC9229946 DOI: 10.3390/polym14122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
The adoption of additive manufacturing (AM) techniques into the medical space has revolutionised tissue engineering. Depending upon the tissue type, specific AM approaches are capable of closely matching the physical and biological tissue attributes, to guide tissue regeneration. For hard tissue such as bone, powder bed fusion (PBF) techniques have significant potential, as they are capable of fabricating materials that can match the mechanical requirements necessary to maintain bone functionality and support regeneration. This review focuses on the PBF techniques that utilize laser sintering for creating scaffolds for bone tissue engineering (BTE) applications. Optimal scaffold requirements are explained, ranging from material biocompatibility and bioactivity, to generating specific architectures to recapitulate the porosity, interconnectivity, and mechanical properties of native human bone. The main objective of the review is to outline the most common materials processed using PBF in the context of BTE; initially outlining the most common polymers, including polyamide, polycaprolactone, polyethylene, and polyetheretherketone. Subsequent sections investigate the use of metals and ceramics in similar systems for BTE applications. The last section explores how composite materials can be used. Within each material section, the benefits and shortcomings are outlined, including their mechanical and biological performance, as well as associated printing parameters. The framework provided can be applied to the development of new, novel materials or laser-based approaches to ultimately generate bone tissue analogues or for guiding bone regeneration.
Collapse
|
13
|
Safina I, Embree MC. Biomaterials for recruiting and activating endogenous stem cells in situ tissue regeneration. Acta Biomater 2022; 143:26-38. [PMID: 35292413 PMCID: PMC9035107 DOI: 10.1016/j.actbio.2022.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 12/20/2022]
Abstract
Over the past two decades in situ tissue engineering has emerged as a new approach where biomaterials are used to harness the body's own stem/progenitor cells to regenerate diseased or injured tissue. Immunomodulatory biomaterials are designed to promote a regenerative environment, recruit resident stem cells to diseased or injured tissue sites, and direct them towards tissue regeneration. This review explores advances gathered from in vitro and in vivo studies on in situ tissue regenerative therapies. Here we also examine the different ways this approach has been incorporated into biomaterial sciences in order to create customized biomaterial products for therapeutic applications in a broad spectrum of tissues and diseases. STATEMENT OF SIGNIFICANCE: Biomaterials can be designed to recruit stem cells and coordinate their behavior and function towards the restoration or replacement of damaged or diseased tissues in a process known as in situ tissue regeneration. Advanced biomaterial constructs with precise structure, composition, mechanical, and physical properties can be transplanted to tissue site and exploit local stem cells and their micro-environment to promote tissue regeneration. In the absence of cells, we explore the critical immunomodulatory, chemical and physical properties to consider in material design and choice. The application of biomaterials for in situ tissue regeneration has the potential to address a broad range of injuries and diseases.
Collapse
|
14
|
Van TTT, Makkar P, Farwa U, Lee BT. Development of a novel polycaprolactone based composite membrane for periodontal regeneration using spin coating technique. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:783-800. [PMID: 34931600 DOI: 10.1080/09205063.2021.2020414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Guided bone regeneration (GBR) is known to prevent the development of soft tissue on the defect sites as well as support the new bone formation on the other end. In the present study, we developed a multilayer biodegradable membrane for GBR applications. The multilayer membrane is primarily composed of β-tricalcium phosphate (TCP), polycaprolactone (PCL), and hyaluronic acid (HA), prepared by the spin-coating method. The triple layer system has PCL-TCP composite layer on top, a PCL layer in the middle, and PCL-HA as the bottom layer. The characterization of the PCL-TCP/PCL/PCL-HA by various techniques such as SEM, EDS, XRD, and FT-IR supported the uniform formation of the triple layers with an overall thickness of ∼ 72 µm. Multilayer composite membrane showed excellent physical parameters; neutral pH, high hydrophilicity, high swelling rate, low degradation rate, and high apatite formation after immersion in simulated body fluid (SBF) for 14 days. The multilayer membrane also exhibited biocompatibility which is evident by MTT assay and confocal images. The results suggested that the multilayer composite membrane has the potential for GBR applications.
Collapse
Affiliation(s)
- Tran Thi Tuong Van
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Preeti Makkar
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ume Farwa
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Byong-Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
15
|
Sherstneva AA, Demina TS, Monteiro APF, Akopova TA, Grandfils C, Ilangala AB. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers (Basel) 2022; 14:1314. [PMID: 35406187 PMCID: PMC9003224 DOI: 10.3390/polym14071314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering and cell therapy are very attractive in terms of potential applications but remain quite challenging regarding the clinical aspects. Amongst the different strategies proposed to facilitate their implementation in clinical practices, biodegradable microparticles have shown promising outcomes with several advantages and potentialities. This critical review aims to establish a survey of the most relevant materials and processing techniques to prepare these micro vehicles. Special attention will be paid to their main potential applications, considering the regulatory constraints and the relative easiness to implement their production at an industrial level to better evaluate their application in clinical practices.
Collapse
Affiliation(s)
- Anastasia A. Sherstneva
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Tatiana S. Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ana P. F. Monteiro
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Tatiana A. Akopova
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, 70 Profsouznaya Str., 117393 Moscow, Russia; (A.A.S.); (T.A.A.)
| | - Christian Grandfils
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| | - Ange B. Ilangala
- Interfaculty Research Centre on Biomaterials (CEIB), Chemistry Institute, University of Liège, B6C, 11 Allée du 6 Août, B-4000 Liege, Belgium; (A.P.F.M.); (C.G.); (A.B.I.)
| |
Collapse
|
16
|
Li H, Li M, Ran X, Cui J, Wei F, Yi G, Chen W, Luo X, Chen Z. The Role of Zinc in Bone Mesenchymal Stem Cell Differentiation. Cell Reprogram 2022; 24:80-94. [PMID: 35172118 DOI: 10.1089/cell.2021.0137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential trace element for bone growth and bone homeostasis in the human body. Bone mesenchymal stem cells (BMSCs) are multipotent progenitors existing in the bone marrow stroma with the capability of differentiating along multiple lineage pathways. Zinc plays a paramount role in BMSCs, which can be spurred differentiating into osteoblasts, chondrocytes, or adipocytes, and modulates the formation and activity of osteoclasts. The expression of related genes also changed during the differentiation of various cell phenotypes. Based on the important role of zinc in BMSC differentiation, using zinc as a therapeutic approach for bone remodeling will be a promising method. This review explores the role of zinc ion in the differentiation of BMSCs into various cell phenotypes and outlines the existing research on their molecular mechanism.
Collapse
Affiliation(s)
- Huiyun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Muzhe Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xun Ran
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Fu Wei
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Guoliang Yi
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xuling Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
17
|
Vrana NE, Gupta S, Mitra K, Rizvanov AA, Solovyeva VV, Antmen E, Salehi M, Ehterami A, Pourchet L, Barthes J, Marquette CA, von Unge M, Wang CY, Lai PL, Bit A. From 3D printing to 3D bioprinting: the material properties of polymeric material and its derived bioink for achieving tissue specific architectures. Cell Tissue Bank 2022; 23:417-440. [PMID: 35000046 DOI: 10.1007/s10561-021-09975-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 12/22/2022]
Abstract
The application of 3D printing technologies fields for biological tissues, organs, and cells in the context of medical and biotechnology applications requires a significant amount of innovation in a narrow printability range. 3D bioprinting is one such way of addressing critical design challenges in tissue engineering. In a more general sense, 3D printing has become essential in customized implant designing, faithful reproduction of microenvironmental niches, sustainable development of implants, in the capacity to address issues of effective cellular integration, and long-term stability of the cellular constructs in tissue engineering. This review covers various aspects of 3D bioprinting, describes the current state-of-the-art solutions for all aforementioned critical issues, and includes various illustrative representations of technologies supporting the development of phases of 3D bioprinting. It also demonstrates several bio-inks and their properties crucial for being used for 3D printing applications. The review focus on bringing together different examples and current trends in tissue engineering applications, including bone, cartilage, muscles, neuron, skin, esophagus, trachea, tympanic membrane, cornea, blood vessel, immune system, and tumor models utilizing 3D printing technology and to provide an outlook of the future potentials and barriers.
Collapse
Affiliation(s)
| | | | - Kunal Mitra
- Florida Institute of Technology, Melbourne, USA
| | | | | | - Ezgi Antmen
- Center of Excellence in Biomaterials and Tissue Engineering, BIOMATEN, Middle East Technical University (METU), Ankara, Turkey
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Lea Pourchet
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | - Julien Barthes
- UMR 1121, Biomaterials and Bioengineering, INSERM, Strasbourg, France
| | | | - Magnus von Unge
- Akershus University Hospital and University of Oslo, Oslo, Norway.,Center for Clinical Research, Uppsala University, Vasteras, Uppsala, Sweden
| | - Chi-Yun Wang
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Po-Liang Lai
- Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Bone and Joint Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Arindam Bit
- National Institute of Technology, Raipur, India.
| |
Collapse
|
18
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
19
|
Kamboj N, Ressler A, Hussainova I. Bioactive Ceramic Scaffolds for Bone Tissue Engineering by Powder Bed Selective Laser Processing: A Review. MATERIALS 2021; 14:ma14185338. [PMID: 34576562 PMCID: PMC8469313 DOI: 10.3390/ma14185338] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/12/2021] [Indexed: 02/07/2023]
Abstract
The implementation of a powder bed selective laser processing (PBSLP) technique for bioactive ceramics, including selective laser sintering and melting (SLM/SLS), a laser powder bed fusion (L-PBF) approach is far more challenging when compared to its metallic and polymeric counterparts for the fabrication of biomedical materials. Direct PBSLP can offer binder-free fabrication of bioactive scaffolds without involving postprocessing techniques. This review explicitly focuses on the PBSLP technique for bioactive ceramics and encompasses a detailed overview of the PBSLP process and the general requirements and properties of the bioactive scaffolds for bone tissue growth. The bioactive ceramics enclosing calcium phosphate (CaP) and calcium silicates (CS) and their respective composite scaffolds processed through PBSLP are also extensively discussed. This review paper also categorizes the bone regeneration strategies of the bioactive scaffolds processed through PBSLP with the various modes of functionalization through the incorporation of drugs, stem cells, and growth factors to ameliorate critical-sized bone defects based on the fracture site length for personalized medicine.
Collapse
Affiliation(s)
- Nikhil Kamboj
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
| | - Antonia Ressler
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev Trg 19, p.p.177, HR-10001 Zagreb, Croatia;
| | - Irina Hussainova
- Department of Mechanical and Industrial Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia;
- Correspondence:
| |
Collapse
|
20
|
Inverse 3D Printing with Variations of the Strand Width of the Resulting Scaffolds for Bone Replacement. MATERIALS 2021; 14:ma14081964. [PMID: 33919880 PMCID: PMC8070765 DOI: 10.3390/ma14081964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/17/2022]
Abstract
The objective of this study was to vary the wall thicknesses and pore sizes of inversely printed 3D molded bodies. Wall thicknesses were varied from 1500 to 2000 to 2500 µm. The pores had sizes of 500, 750 and 1000 µm. The sacrificial structures were fabricated from polylactide (PLA) using fused deposition modeling (FDM). To obtain the final bioceramic scaffolds, a water-based slurry was filled into the PLA molds. The PLA sacrificial molds were burned out at approximately 450 °C for 4 h. Subsequently, the samples were sintered at 1250 °C for at least 4 h. The scaffolds were mechanically characterized (native and after incubation in simulated body fluid (SBF) for 28 days). In addition, the biocompatibility was assessed by live/dead staining. The scaffolds with a strand spacing of 500 µm showed the highest compressive strength; there was no significant difference in compressive strength regardless of pore size. The specimens with 1000 µm pore size showed a significant dependence on strand width. Thus, the specimens (1000 µm pores) with 2500 µm wall thickness showed the highest compressive strength of 5.97 + 0.89 MPa. While the 1000(1500) showed a value of 2.90 + 0.67 MPa and the 1000(2000) of 3.49 + 1.16 MPa. As expected for beta-Tricalciumphosphate (β-TCP), very good biocompatibility was observed with increasing cell numbers over the experimental period.
Collapse
|
21
|
Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int J Pharm 2021; 601:120559. [PMID: 33831486 DOI: 10.1016/j.ijpharm.2021.120559] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a perplexing traumatic disease that habitually gives ride to permanent disability, motor, and sensory impairment. Despite the existence of several therapeutic approaches for the injured motor or sensory neurons, they can't promote axonal regeneration. Whether prepared by conventional or rapid prototyping techniques, scaffolds can be applied to refurbish the continuity of the injured site, by creating a suitable environment for tissue repair, axonal regeneration, and vascularization. Collagen is a multi-sourced protein, found in animals skin, tendons, cartilage, bones, and human placenta, in addition to marine biomass. Collagen is highly abundant in the extracellular matrix and is known for its biocompatibility, biodegradability, porous structure, good permeability, low immunogenicity and thus is extensively applied in the pharmaceutical, cosmetic, and food industries as well as the tissue engineering field. Collagen in scaffolds is usually functionalized with different ligands and factors such as, stem cells, embryonic or human cells to augment its binding specificity and activity. The review summarizes the significance of collagen-based scaffolds and their influence on regeneration, repair and recovery of spinal cord injuries.
Collapse
|
22
|
Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
23
|
Morales X, Cortés-Domínguez I, Ortiz-de-Solorzano C. Modeling the Mechanobiology of Cancer Cell Migration Using 3D Biomimetic Hydrogels. Gels 2021; 7:17. [PMID: 33673091 PMCID: PMC7930983 DOI: 10.3390/gels7010017] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Understanding how cancer cells migrate, and how this migration is affected by the mechanical and chemical composition of the extracellular matrix (ECM) is critical to investigate and possibly interfere with the metastatic process, which is responsible for most cancer-related deaths. In this article we review the state of the art about the use of hydrogel-based three-dimensional (3D) scaffolds as artificial platforms to model the mechanobiology of cancer cell migration. We start by briefly reviewing the concept and composition of the extracellular matrix (ECM) and the materials commonly used to recreate the cancerous ECM. Then we summarize the most relevant knowledge about the mechanobiology of cancer cell migration that has been obtained using 3D hydrogel scaffolds, and relate those discoveries to what has been observed in the clinical management of solid tumors. Finally, we review some recent methodological developments, specifically the use of novel bioprinting techniques and microfluidics to create realistic hydrogel-based models of the cancer ECM, and some of their applications in the context of the study of cancer cell migration.
Collapse
Affiliation(s)
| | | | - Carlos Ortiz-de-Solorzano
- IDISNA, Ciberonc and Solid Tumors and Biomarkers Program, Center for Applied Medical Research, University of Navarra, 31008 Pamplona, Spain; (X.M.); (I.C.-D.)
| |
Collapse
|
24
|
Kovylin RS, Aleynik DY, Fedushkin IL. Modern Porous Polymer Implants: Synthesis, Properties, and Application. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
The needs of modern surgery triggered the intensive development of transplantology, medical materials science, and tissue engineering. These directions require the use of innovative materials, among which porous polymers occupy one of the leading positions. The use of natural and synthetic polymers makes it possible to adjust the structure and combination of properties of a material to its particular application. This review generalizes and systematizes the results of recent studies describing requirements imposed on the structure and properties of synthetic (or artificial) porous polymer materials and implants on their basis and the advantages and limitations of synthesis methods. The most extensively employed, promising initial materials are considered, and the possible areas of application of polymer implants based on these materials are highlighted.
Collapse
|
25
|
Kim HD, Park J, Amirthalingam S, Jayakumar R, Hwang NS. Bioinspired inorganic nanoparticles and vascular factor microenvironment directed neo-bone formation. Biomater Sci 2021; 8:2627-2637. [PMID: 32242197 DOI: 10.1039/d0bm00041h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various strategies have been explored to stimulate new bone formation. These strategies include using angiogenic stimulants in combination with inorganic biomaterials. Neovascularization during the neo-bone formation provides nutrients along with bone-forming minerals. Therefore, it is crucial to design a bone stimulating microenvironment composed of both pro-angiogenic and osteogenic factors. In this respect, human vascular endothelial growth factor (hVEGF) has been shown to promote blood vessel formation and bone formation. Furthermore, in recent years, whitlockite (WH), a novel phase of magnesium-containing calcium phosphate derivatives that exist in our bone tissue, has been synthesized and applied in bone tissue engineering. In this study, our aim is to explore the potential use of hVEGF and WH for bone tissue engineering. Our study demonstrated that hVEGF and a WH microenvironment synergistically stimulated osteogenic commitment of mesenchymal stem cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Hwan D Kim
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Jungha Park
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea.
| | - Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, the Institute of Chemical Processes, Seoul National University, Seoul, 151-742, Republic of Korea. and Interdisciplinary Program in Bioengineering, Seoul National University, 151-742, Seoul, Republic of Korea and The BioMax/N-Bio Institute of Seoul National University, Seoul, 151-742, Republic of Korea
| |
Collapse
|
26
|
Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds. Adv Healthc Mater 2020; 9:e2000724. [PMID: 32743960 DOI: 10.1002/adhm.202000724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed surging demand for bone repair/regeneration implants due to the increasing number of bone defects caused by trauma, cancer, infection, and arthritis worldwide. In addition to bone autografts and allografts, biomaterial substitutes have been widely used in clinical practice. Personalized implants with precise and personalized control of shape, porosity, composition, surface chemistry, and mechanical properties will greatly facilitate the regeneration of bone tissue and satiate the clinical needs. Additive manufacturing (AM) techniques, also known as 3D printing, are drawing fast growing attention in the fabrication of implants or scaffolding materials due to their capability of manufacturing complex and irregularly shaped scaffolds in repairing bone defects in clinical practice. This review aims to provide a comprehensive overview of recent progress in the development of materials and techniques used in the additive manufacturing of bone scaffolds. In addition, clinical application, pre-clinical trials and future prospects of AM based bone implants are also summarized and discussed.
Collapse
Affiliation(s)
- You Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Weilin Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
27
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|
28
|
Kim Y, Lee EJ, Davydov AV, Frukhbeyen S, Seppala JE, Takagi S, Chow L, Alimperti S. Biofabrication of 3D printed hydroxyapatite composite scaffolds for bone regeneration. Biomed Mater 2020; 16. [PMID: 33254152 DOI: 10.1088/1748-605x/abcf03] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/30/2020] [Indexed: 11/12/2022]
Abstract
Biofabrication has been adapted in engineering patient-specific biosynthetic grafts for bone regeneration. Herein, we developed a 3D high-resolution, room-temperature printing approach to fabricate osteoconductive scaffolds using calcium phosphate cement (CPC). The non-aqueous CPC bioinks were composed of tetracalcium phosphate (TTCP), dicalcium phosphate anhydrous (DCPA), and Polyvinyl butyral (PVB) dissolved in either ethanol (EtOH) or Tetrahydrofuran (THF). They were printed in an aqueous sodium phosphate bath, which performs as a hardening accelerator for hydroxyapatite (HA) formation and as a retainer for 3D microstructure. The PVB solvents, EtOH or THF, affected differently the slurry rheological properties, scaffold microstructure, mechanical properties, and osteoconductivity. Our proposed approach overcomes limitations of conventional fabrication methods, which require high-temperature (> 50 oC), low-resolution (> 400 μm) printing with an inadequate amount of large ceramic particles (> 35 μm). This proof-of-concept study opens venues in engineering high-resolution, implantable, and osteoconductive scaffolds with predetermined properties for bone regeneration.
Collapse
Affiliation(s)
- Yoontae Kim
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Eun-Jin Lee
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Albert V Davydov
- Metallurgy Division, National Institute of Standards and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Stanislav Frukhbeyen
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Jonathan E Seppala
- Materials Science and Engineering Division, National Institute of Standards and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, UNITED STATES
| | - Shozo Takagi
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Laurence Chow
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| | - Stella Alimperti
- American Dental Association Science and Research Institute, American Dental Association Science and Research Institute, Gaithersburg, Maryland, MD 20899, UNITED STATES
| |
Collapse
|
29
|
Chopra V, Thomas J, Sharma A, Panwar V, Kaushik S, Sharma S, Porwal K, Kulkarni C, Rajput S, Singh H, Jagavelu K, Chattopadhyay N, Ghosh D. Synthesis and Evaluation of a Zinc Eluting rGO/Hydroxyapatite Nanocomposite Optimized for Bone Augmentation. ACS Biomater Sci Eng 2020; 6:6710-6725. [DOI: 10.1021/acsbiomaterials.0c00370] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Vianni Chopra
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Jijo Thomas
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Anjana Sharma
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Vineeta Panwar
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Swati Kaushik
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| | - Shivani Sharma
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Konica Porwal
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Chirag Kulkarni
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Swati Rajput
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Himalaya Singh
- Pharmacology Division, CSIR- Central Drug Research Institute Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Kumaravelu Jagavelu
- Pharmacology Division, CSIR- Central Drug Research Institute Council of Scientific and Industrial Research, Lucknow 226031, U.P., India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, CSIR-Central Drug Research Institute, Council of Scientific and Industrial Researchs, Lucknow 226031, U.P., India
| | - Deepa Ghosh
- Institute of Nanoscience and Technology, Habitat Centre, Sector 64, Phase 10., Mohali 160062, Punjab, India
| |
Collapse
|
30
|
Hany E, Yahia S, Elsherbeny MF, Salama NM, Ateia IM, Abou El-Khier NT, El-Sherbiny I, Abou Elkhier MT. Evaluation of the osteogenic potential of rat adipose-derived stem cells with different polycaprolactone/alginate-based nanofibrous scaffolds: an in vitro study. Stem Cell Investig 2020; 7:14. [PMID: 32964007 DOI: 10.21037/sci-2020-015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 12/22/2022]
Abstract
Background Bone tissue engineering is a widely growing field that requires the combination of cells, scaffolds and signaling molecules. Adipose derived stem cells (ADSCs) are an accessible and abundant source of mesenchymal stem cells with high plasticity. Polycaprolactone/alginate (PCL/Alg) composite scaffolds have been used in bone regeneration and nano-hydroxyapatite (n-HA) is used as a reinforcing, osteoconductive component in scaffold fabrication. This study was conducted to assess the ability of three different PCL/Alg based scaffolds to induce osteogenic differentiation of ADSCs and to compare between them. Methods The study comprised 5 groups; negative control group with ADSCs cultured in complete culture media, positive control group with ADSCs cultured in osteogenic differentiation media, and 3 experimental groups with ADSCs seeded onto 3 scaffolds: S1 (PCL/Alg), S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) respectively and cultured in osteogenic media. Mineralization and gene expression were assessed by Alizarin red S (ARS) staining and real time quantitative polymerase chain reaction (RT-qPCR). Evaluation was done at 7, 14 and 21 days. Results ARS staining reflected a time dependent increase through days 7, 14 and 21, with S3 (PCL/Alg/Ca/n-HA) group showing the highest mineralization levels. RT-qPCR detected upregulation of ALP gene expression at day 7 and decline thereafter. S2 (PCL/Alg/Ca) and S3 (PCL/Alg/Ca/n-HA) groups showed significantly higher gene expression levels than S1 (PCL/Alg). Conclusions ADSCs and PCL/Alg-based scaffolds compose a good tissue engineering complex for bone regeneration. Addition of n-HA to PCL/Alg scaffolds and crosslinking with CaCl2 efficiently improve the osteogenic potential of ADSCs.
Collapse
Affiliation(s)
- Eman Hany
- Oral Biology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Sarah Yahia
- Nanomedicine Lab, Center of Material Science, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | | | - Nagla Mahmoud Salama
- Oral Pathology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Islam Mohammed Ateia
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Noha Tharwat Abou El-Khier
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ibrahim El-Sherbiny
- Nanomedicine Lab, Center of Material Science, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | | |
Collapse
|
31
|
Zeng H, Pathak JL, Shi Y, Ran J, Liang L, Yan Q, Wu T, Fan Q, Li M, Bai Y. Indirect selective laser sintering-printed microporous biphasic calcium phosphate scaffold promotes endogenous bone regeneration via activation of ERK1/2 signaling. Biofabrication 2020; 12:025032. [PMID: 32084655 DOI: 10.1088/1758-5090/ab78ed] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fabrication technique determines the physicochemical and biological properties of scaffolds, including the porosity, mechanical strength, osteoconductivity, and bone regenerative potential. Biphasic calcium phosphate (BCP)-based scaffolds are superior in bone tissue engineering due to their suitable physicochemical and biological properties. We developed an indirect selective laser sintering (SLS) printing strategy to fabricate 3D microporous BCP scaffolds for bone tissue engineering purposes. The green part of the BCP scaffold was fabricated by SLS at a relevant low temperature in the presence of epoxy resin (EP), and the remaining EP was decomposed and eliminated by a subsequent sintering process to obtain the microporous BCP scaffolds. Physicochemical properties, cell adhesion, biocompatibility, in vitro osteogenic potential, and rabbit critical-size cranial bone defect healing potential of the scaffolds were extensively evaluated. This indirect SLS printing eliminated the drawbacks of conventional direct SLS printing at high working temperatures, i.e. wavy deformation of the scaffold, hydroxyapatite decomposition, and conversion of β-tricalcium phosphate (TCP) to α-TCP. Among the scaffolds printed with various binder ratios (by weight) of BCP and EP, the scaffold with 50/50 binder ratio (S4) showed the highest mechanical strength and porosity with the smallest pore size. Scaffold S4 showed the highest effect on osteogenic differentiation of precursor cells in vitro, and this effect was ERK1/2 signaling-dependent. Scaffold S4 robustly promoted precursor cell homing, endogenous bone regeneration, and vascularization in rabbit critical-size cranial defects. In conclusion, BCP scaffolds fabricated by indirect SLS printing maintain the physicochemical properties of BCP and possess the capacity to recruit host precursor cells to the defect site and promote endogenous bone regeneration possibly via the activation of ERK1/2 signaling.
Collapse
Affiliation(s)
- Hao Zeng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Smith BT, Bittner SM, Watson E, Smoak MM, Diaz-Gomez L, Molina ER, Kim YS, Hudgins CD, Melchiorri AJ, Scott DW, Grande-Allen KJ, Yoo JJ, Atala A, Fisher JP, Mikos AG. Multimaterial Dual Gradient Three-Dimensional Printing for Osteogenic Differentiation and Spatial Segregation. Tissue Eng Part A 2019; 26:239-252. [PMID: 31696784 DOI: 10.1089/ten.tea.2019.0204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study of three-dimensional (3D) printed composite β-tricalcium phosphate (β-TCP)-/hydroxyapatite/poly(ɛ-caprolactone)-based constructs, the effects of vertical compositional ceramic gradients and architectural porosity gradients on the osteogenic differentiation of rabbit bone marrow-derived mesenchymal stem cells (MSCs) were investigated. Specifically, three different concentrations of β-TCP (0, 10, and 20 wt%) and three different porosities (33% ± 4%, 50% ± 4%, and 65% ± 3%) were examined to elucidate the contributions of chemical and physical gradients on the biochemical behavior of MSCs and the mineralized matrix production within a 3D culture system. By delaminating the constructs at the gradient transition point, the spatial separation of cellular phenotypes could be specifically evaluated for each construct section. Results indicated that increased concentrations of β-TCP resulted in upregulation of osteogenic markers, including alkaline phosphatase activity and mineralized matrix development. Furthermore, MSCs located within regions of higher porosity displayed a more mature osteogenic phenotype compared to MSCs in lower porosity regions. These results demonstrate that 3D printing can be leveraged to create multiphasic gradient constructs to precisely direct the development and function of MSCs, leading to a phenotypic gradient. Impact Statement In this study, three-dimensional (3D) printed ceramic/polymeric constructs containing discrete vertical gradients of both composition and porosity were fabricated to precisely control the osteogenic differentiation of mesenchymal stem cells. By making simple alterations in construct architecture and composition, constructs containing heterogenous populations of cells were generated, where gradients in scaffold design led to corresponding gradients in cellular phenotype. The study demonstrates that 3D printed multiphasic composite constructs can be leveraged to create complex heterogeneous tissues and interfaces.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Sean M Bittner
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Emma Watson
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Mollie M Smoak
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Eric R Molina
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas
| | - Yu Seon Kim
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Carrigan D Hudgins
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - Anthony J Melchiorri
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| | - David W Scott
- Department of Statistics, Rice University, Houston, Texas
| | | | - James J Yoo
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - Anthony Atala
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Wake Forest Institute for Regenerative Medicine, Winston-Salem, North Carolina
| | - John P Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas.,Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas.,Biomaterials Lab, Rice University, Houston, Texas.,NIH/NIBIB Center for Engineering Complex Tissues, Houston, Texas
| |
Collapse
|
33
|
Fan D, Staufer U, Accardo A. Engineered 3D Polymer and Hydrogel Microenvironments for Cell Culture Applications. Bioengineering (Basel) 2019; 6:E113. [PMID: 31847117 PMCID: PMC6955903 DOI: 10.3390/bioengineering6040113] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/13/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022] Open
Abstract
The realization of biomimetic microenvironments for cell biology applications such as organ-on-chip, in vitro drug screening, and tissue engineering is one of the most fascinating research areas in the field of bioengineering. The continuous evolution of additive manufacturing techniques provides the tools to engineer these architectures at different scales. Moreover, it is now possible to tailor their biomechanical and topological properties while taking inspiration from the characteristics of the extracellular matrix, the three-dimensional scaffold in which cells proliferate, migrate, and differentiate. In such context, there is therefore a continuous quest for synthetic and nature-derived composite materials that must hold biocompatible, biodegradable, bioactive features and also be compatible with the envisioned fabrication strategy. The structure of the current review is intended to provide to both micro-engineers and cell biologists a comparative overview of the characteristics, advantages, and drawbacks of the major 3D printing techniques, the most promising biomaterials candidates, and the trade-offs that must be considered in order to replicate the properties of natural microenvironments.
Collapse
Affiliation(s)
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands; (D.F.); (U.S.)
| |
Collapse
|
34
|
Seidenstuecker M, Lange S, Esslinger S, Latorre SH, Krastev R, Gadow R, Mayr HO, Bernstein A. Inversely 3D-Printed β-TCP Scaffolds for Bone Replacement. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3417. [PMID: 31635363 PMCID: PMC6829219 DOI: 10.3390/ma12203417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
Abstract
The aim of this study was to predefine the pore structure of β-tricalcium phosphate (β-TCP) scaffolds with different macro pore sizes (500, 750, and 1000 µm), to characterize β-TCP scaffolds, and to investigate the growth behavior of cells within these scaffolds. The lead structures for directional bone growth (sacrificial structures) were produced from polylactide (PLA) using the fused deposition modeling techniques. The molds were then filled with β-TCP slurry and sintered at 1250 °C, whereby the lead structures (voids) were burnt out. The scaffolds were mechanically characterized (native and after incubation in simulated body fluid (SBF) for 28 d). In addition, biocompatibility was investigated by live/dead, cell proliferation and lactate dehydrogenase assays. The scaffolds with a strand spacing of 500 µm showed the highest compressive strength, both untreated (3.4 ± 0.2 MPa) and treated with simulated body fluid (2.8 ± 0.2 MPa). The simulated body fluid reduced the stability of the samples to 82% (500), 62% (750) and 56% (1000). The strand spacing and the powder properties of the samples were decisive factors for stability. The fact that β-TCP is a biocompatible material is confirmed by the experiments. No lactate dehydrogenase activity of the cells was measured, which means that no cytotoxicity of the material could be detected. In addition, the proliferation rate of all three sizes increased steadily over the test days until saturation. The cells were largely adhered to or within the scaffolds and did not migrate through the scaffolds to the bottom of the cell culture plate. The cells showed increased growth, not only on the outer surface (e.g., 500: 36 ± 33 vital cells/mm² after three days, 180 ± 33 cells/mm² after seven days, and 308 ± 69 cells/mm² after 10 days), but also on the inner surface of the samples (e.g., 750: 49 ± 17 vital cells/mm² after three days, 200 ± 84 cells/mm² after seven days, and 218 ± 99 living cells/mm² after 10 days). This means that the inverse 3D printing method is very suitable for the presetting of the pore structure and for the ingrowth of the cells. The experiments on which this work is based have shown that the fused deposition modeling process with subsequent slip casting and sintering is well suited for the production of scaffolds for bone replacement.
Collapse
Affiliation(s)
- Michael Seidenstuecker
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Svenja Lange
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany.
| | - Steffen Esslinger
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Faculty 07, University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany.
- GSaME - Graduate School of Excellence advanced Manufacturing Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Sergio H Latorre
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Rumen Krastev
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany.
| | - Rainer Gadow
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Faculty 07, University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany.
- GSaME - Graduate School of Excellence advanced Manufacturing Engineering, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.
| | - Hermann O Mayr
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| | - Anke Bernstein
- G.E.R.N. Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.
| |
Collapse
|
35
|
Perić Kačarević Ž, Rider P, Alkildani S, Retnasingh S, Pejakić M, Schnettler R, Gosau M, Smeets R, Jung O, Barbeck M. An introduction to bone tissue engineering. Int J Artif Organs 2019; 43:69-86. [PMID: 31544576 DOI: 10.1177/0391398819876286] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bone tissue has the capability to regenerate itself; however, defects of a critical size prevent the bone from regenerating and require additional support. To aid regeneration, bone scaffolds created out of autologous or allograft bone can be used, yet these produce problems such as fast degradation rates, reduced bioactivity, donor site morbidity or the risk of pathogen transmission. The development of bone tissue engineering has been used to create functional alternatives to regenerate bone. This can be achieved by producing bone tissue scaffolds that induce osteoconduction and integration, provide mechanical stability, and either integrate into the bone structure or degrade and are excreted by the body. A range of different biomaterials have been used to this end, each with their own advantages and disadvantages. This review will introduce the requirements of bone tissue engineering, beginning with the regeneration process of bone before exploring the requirements of bone tissue scaffolds. Aspects covered include the manufacturing process as well as the different materials used and the incorporation of bioactive molecules, growth factors and cells.
Collapse
Affiliation(s)
- Željka Perić Kačarević
- Department of Anatomy Histology, Embryology, Pathology Anatomy and Pathology Histology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Patrick Rider
- Research and Development, botiss biomaterials GmbH, Berlin, Germany
| | - Said Alkildani
- Department of Biomedical Engineering, School of Applied Medical Sciences, German Jordanian University, Amman, Jordan
| | - Sujith Retnasingh
- Institute for Environmental Toxicology, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | - Marija Pejakić
- Department of Dental Medicine, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Reinhard Schnettler
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Jung
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mike Barbeck
- Research and Development, botiss biomaterials GmbH, Berlin, Germany.,Department of Oral and Maxillofacial Surgery, University Hospital Hamburg-Eppendorf, Hamburg, Germany.,BerlinAnalytix GmbH, Berlin, Germany
| |
Collapse
|
36
|
Geven MA, Grijpma DW. Additive manufacturing of composite structures for the restoration of bone tissue. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/2399-7532/ab201f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Dipyridamole Augments Three-Dimensionally Printed Bioactive Ceramic Scaffolds to Regenerate Craniofacial Bone. Plast Reconstr Surg 2019; 143:1408-1419. [PMID: 31033822 DOI: 10.1097/prs.0000000000005531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Autologous bone grafts remain a standard of care for the reconstruction of large bony defects, but limitations persist. The authors explored the bone regenerative capacity of customized, three-dimensionally printed bioactive ceramic scaffolds with dipyridamole, an adenosine A2A receptor indirect agonist known to enhance bone formation. METHODS Critical-size bony defects (10-mm height, 10-mm length, full-thickness) were created at the mandibular rami of rabbits (n = 15). Defects were replaced by a custom-to-defect, three-dimensionally printed bioactive ceramic scaffold composed of β-tricalcium phosphate. Scaffolds were uncoated (control), collagen-coated, or immersed in 100 μM dipyridamole. At 8 weeks, animals were euthanized and the rami retrieved. Bone growth was assessed exclusively within scaffold pores, and evaluated by micro-computed tomography/advanced reconstruction software. Micro-computed tomographic quantification was calculated. Nondecalcified histology was performed. A general linear mixed model was performed to compare group means and 95 percent confidence intervals. RESULTS Qualitative analysis did not show an inflammatory response. The control and collagen groups (12.3 ± 8.3 percent and 6.9 ± 8.3 percent bone occupancy of free space, respectively) had less bone growth, whereas the most bone growth was in the dipyridamole group (26.9 ± 10.7 percent); the difference was statistically significant (dipyridamole versus control, p < 0.03; dipyridamole versus collagen, p < 0.01 ). There was significantly more residual scaffold material for the collagen group relative to the dipyridamole group (p < 0.015), whereas the control group presented intermediate values (nonsignificant relative to both collagen and dipyridamole). Highly cellular and vascularized intramembranous-like bone healing was observed in all groups. CONCLUSION Dipyridamole significantly increased the three-dimensionally printed bioactive ceramic scaffold's ability to regenerate bone in a thin bone defect environment.
Collapse
|
38
|
|
39
|
Kharkova N, Reshetov I, Zelianin A, Philippov V, Sergeeva N, Sviridova I, Komlev V, Andreeva U, Kuznecova O. Three-dimensional TCP scaffolds enriched with Erythropoietin for stimulation of vascularization and bone formation. ELECTRONIC JOURNAL OF GENERAL MEDICINE 2019. [DOI: 10.29333/ejgm/108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Ambekar RS, Kandasubramanian B. Progress in the Advancement of Porous Biopolymer Scaffold: Tissue Engineering Application. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05334] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rushikesh S. Ambekar
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| | - Balasubramanian Kandasubramanian
- Rapid Prototype & Electrospinning Lab, Department of Metallurgical and Materials Engineering, DIAT (DU), Ministry of Defence, Girinagar, Pune 411025, India
| |
Collapse
|
41
|
Advances in additive manufacturing for bone tissue engineering scaffolds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:631-644. [PMID: 30948100 DOI: 10.1016/j.msec.2019.03.037] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 02/06/2023]
Abstract
This article reviews the current state of the art of additive manufacturing techniques for the production of bone tissue engineering (BTE) scaffolds. The most well-known of these techniques include: stereolithography, selective laser sintering, fused deposition modelling and three-dimensional printing. This review analyses in detail the basic physical principles and main applications of these techniques and presents a list of biomaterials for BTE applications, including commercial trademarks. It also describes and compares the main advantages and disadvantages and explains the highlights of each additive manufacturing technique and their evolution. Finally, is discusses both their capabilities and limitations and proposes potential strategies to improve this field.
Collapse
|
42
|
Design of Additively Manufactured Structures for Biomedical Applications: A Review of the Additive Manufacturing Processes Applied to the Biomedical Sector. JOURNAL OF HEALTHCARE ENGINEERING 2019; 2019:9748212. [PMID: 30992744 PMCID: PMC6434267 DOI: 10.1155/2019/9748212] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 11/24/2022]
Abstract
Additive manufacturing (AM) is a disruptive technology as it pushes the frontier of manufacturing towards a new design perspective, such as the ability to shape geometries that cannot be formed with any other traditional technique. AM has today shown successful applications in several fields such as the biomedical sector in which it provides a relatively fast and effective way to solve even complex medical cases. From this point of view, the purpose of this paper is to illustrate AM technologies currently used in the medical field and their benefits along with contemporary. The review highlights differences in processes, materials, and design of additive manufacturing techniques used in biomedical applications. Successful case studies are presented to emphasise the potentiality of AM processes. The presented review supports improvements in materials and design for future researches in biomedical surgeries using instruments and implants made by AM.
Collapse
|
43
|
3D printed polymer–mineral composite biomaterials for bone tissue engineering: Fabrication and characterization. J Biomed Mater Res B Appl Biomater 2019; 107:2579-2595. [DOI: 10.1002/jbm.b.34348] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/23/2018] [Accepted: 02/10/2019] [Indexed: 01/01/2023]
|
44
|
Ishihara M, Kishimoto S, Nakamura S, Fukuda K, Sato Y, Hattori H. Biomaterials as cell carriers for augmentation of adipose tissue-derived stromal cell transplantation. Biomed Mater Eng 2019; 29:567-585. [PMID: 30400072 DOI: 10.3233/bme-181009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Adipose tissue-derived stromal cells (ADSCs) contain lineage-committed progenitor cells that have the ability to differentiate into various cell types that may be useful for autologous cell transplantation to correct defects of skin, adipose, cartilage, bone, tendon, and blood vessels. The multipotent characteristics of ADSCs, as well as their abundance in the human body, make them an attractive potential resource for wound repair and applications to tissue engineering. ADSC transplantation has been used in combination with biomaterials, including cell sheets, hydrogel, and three-dimensional (3D) scaffolds based on chitosan, fibrin, atelocollagen, and decellularized porcine dermis, etc. Furthermore, low molecular weight heparin/protamine nanoparticles (LH/P NPs) have been used as an inducer of ADSC aggregation. The tissue engineering potential of these biomaterials as cell carriers is increased by the synergistic relationship between ADSCs and the biomaterials, resulting in the release of angiogenic cytokines and growth factors. In this review article, we describe the advantages of ADSC transplantation for tissue engineering, focusing on biomaterials as cell carriers which we have studied.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Satoko Kishimoto
- Research Support Center, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Koichi Fukuda
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Yoko Sato
- Division of Biomedical Engineering Research Institute, National Defense Medical College, Saitama 359-8513, Japan
| | - Hidemi Hattori
- Department of Biochemistry and Applied Sciences, University of Miyazaki, Miyazaki 889-2162, Japan
| |
Collapse
|
45
|
Zhang L, Yang G, Johnson BN, Jia X. Three-dimensional (3D) printed scaffold and material selection for bone repair. Acta Biomater 2019; 84:16-33. [PMID: 30481607 DOI: 10.1016/j.actbio.2018.11.039] [Citation(s) in RCA: 401] [Impact Index Per Article: 80.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/06/2018] [Accepted: 11/23/2018] [Indexed: 12/15/2022]
Abstract
Critical-sized bone defect repair remains a substantial challenge in clinical settings and requires bone grafts or bone substitute materials. However, existing biomaterials often do not meet the clinical requirements of structural support, osteoinductive property, and controllable biodegradability. To treat large-scale bone defects, the development of three-dimensional (3D) porous scaffolds has received considerable focus within bone engineering. A variety of biomaterials and manufacturing methods, including 3D printing, have emerged to fabricate patient-specific bioactive scaffolds that possess controlled micro-architectures for bridging bone defects in complex configurations. During the last decade, with the development of the 3D printing industry, a large number of tissue-engineered scaffolds have been created for preclinical and clinical applications using novel materials and innovative technologies. Thus, this review provides a brief overview of current progress in existing biomaterials and tissue engineering scaffolds prepared by 3D printing technologies, with an emphasis on the material selection, scaffold design optimization, and their preclinical and clinical applications in the repair of critical-sized bone defects. Furthermore, it will elaborate on the current limitations and potential future prospects of 3D printing technology. STATEMENT OF SIGNIFICANCE: 3D printing has emerged as a critical fabrication process for bone engineering due to its ability to control bulk geometry and internal structure of tissue scaffolds. The advancement of bioprinting methods and compatible ink materials for bone engineering have been a major focus to develop optimal 3D scaffolds for bone defect repair. Achieving a successful balance of cellular function, cellular viability, and mechanical integrity under load-bearing conditions is critical. Hybridization of natural and synthetic polymer-based materials is a promising approach to create novel tissue engineered scaffolds that combines the advantages of both materials and meets various requirements, including biological activity, mechanical strength, easy fabrication and controllable degradation. 3D printing is linked to the future of bone grafts to create on-demand patient-specific scaffolds.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Guojing Yang
- Department of Orthopaedics, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325200, China
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
Yang Y, Wang G, Liang H, Gao C, Peng S, Shen L, Shuai C. Additive manufacturing of bone scaffolds. Int J Bioprint 2018; 5:148. [PMID: 32596528 PMCID: PMC7294697 DOI: 10.18063/ijb.v5i1.148] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022] Open
Abstract
Additive manufacturing (AM) can obtain not only customized external shape but also porous internal structure for scaffolds, both of which are of great importance for repairing large segmental bone defects. The scaffold fabrication process generally involves scaffold design, AM, and post-treatments. Thus, this article firstly reviews the state-of-the-art of scaffold design, including computer-aided design, reverse modeling, topology optimization, and mathematical modeling. In addition, the current characteristics of several typical AM techniques, including selective laser sintering, fused deposition modeling (FDM), and electron beam melting (EBM), especially their advantages and limitations are presented. In particular, selective laser sintering is able to obtain scaffolds with nanoscale grains, due to its high heating rate and a short holding time. However, this character usually results in insufficient densification. FDM can fabricate scaffolds with a relative high accuracy of pore structure but with a relative low mechanical strength. EBM with a high beam-material coupling efficiency can process high melting point metals, but it exhibits a low-resolution and poor surface quality. Furthermore, the common post-treatments, with main focus on heat and surface treatments, which are applied to improve the comprehensive performance are also discussed. Finally, this review also discusses the future directions for AM scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Youwen Yang
- Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Guoyong Wang
- Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Huixin Liang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
| | - Shuping Peng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Lida Shen
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, 210016 Nanjing, China
| | - Cijun Shuai
- Jiangxi University of Science and Technology, Nanchang 330013, China
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha 410008, China
| |
Collapse
|
47
|
Park H, Kim JS, Oh EJ, Kim TJ, Kim HM, Shim JH, Yoon WS, Huh JB, Moon SH, Kang SS, Chung HY. Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells. Arch Craniofac Surg 2018; 19:181-189. [PMID: 30282427 PMCID: PMC6177683 DOI: 10.7181/acfs.2018.01879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/10/2018] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Autogenous bone grafts have several limitations including donor-site problems and insufficient bone volume. To address these limitations, research on bone regeneration is being conducted actively. In this study, we investigate the effects of a three-dimensionally (3D) printed polycaprolactone (PCL)/tricalcium phosphate (TCP) scaffold on the osteogenic differentiation potential of adipose tissue-derived stem cells (ADSCs) and bone marrow-derived stem cells (BMSCs). METHODS We investigated the extent of osteogenic differentiation on the first and tenth day and fourth week after cell culture. Cytotoxicity of the 3D printed PCL/β-TCP scaffold was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay, prior to osteogenic differentiation analysis. ADSCs and BMSCs were divided into three groups: C, only cultured cells; M, cells cultured in the 3D printed PCL/β-TCP scaffold; D, cells cultured in the 3D printed PCL/β-TCP scaffold with a bone differentiation medium. Alkaline phosphatase (ALP) activity assay, von Kossa staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blotting were performed for comparative analysis. RESULTS ALP assay and von Kossa staining revealed that group M had higher levels of osteogenic differentiation compared to group C. RT-PCR showed that gene expression was higher in group M than in group C, indicating that, compared to group C, osteogenic differentiation was more extensive in group M. Expression levels of proteins involved in ossification were higher in group M, as per the Western blotting results. CONCLUSION Osteogenic differentiation was increased in mesenchymal stromal cells (MSCs) cultured in the 3D printed PCL/TCP scaffold compared to the control group. Osteogenic differentiation activity of MSCs cultured in the 3D printed PCL/TCP scaffold was lower than that of cells cultured on the scaffold in bone differentiation medium. Collectively, these results indicate that the 3D printed PCL/TCP scaffold promoted osteogenic differentiation of MSCs and may be widely used for bone tissue engineering.
Collapse
Affiliation(s)
- Hannara Park
- Department of Plastic and Reconstructive Surgery, Daegu Fatima Hospital, Daegu, Korea
| | - Jin Soo Kim
- Department of Plastic and Reconstructive Surgery, Daegu Fatima Hospital, Daegu, Korea
| | - Eun Jung Oh
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae Jung Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun Mi Kim
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jin Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung, Korea
| | - Won Soo Yoon
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung, Korea
| | - Jung Bo Huh
- Department of Prosthodontics, Dental Research Institute, Institute of Translational Dental Science, School of Dentistry, Pusan National University, Yangsan, Korea
| | - Sung Hwan Moon
- Department of Medicine, Konkuk University School of Medicine, Seoul, Korea
| | - Seong Soo Kang
- College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | - Ho Yun Chung
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
48
|
Hu S, Chen H, Zhou X, Chen G, Hu K, Cheng Y, Wang L, Zhang F. Thermally induced self-agglomeration 3D scaffolds with BMP-2-loaded core-shell fibers for enhanced osteogenic differentiation of rat adipose-derived stem cells. Int J Nanomedicine 2018; 13:4145-4155. [PMID: 30046239 PMCID: PMC6054293 DOI: 10.2147/ijn.s167035] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Introduction Scaffold structure plays a vital role in cell behaviors. Compared with two-dimensional structure, 3D scaffolds can mimic natural extracellular matrix (ECM) and promote cell–cell and cell–matrix interactions. The combination of osteoconductive scaffolds and osteoinductive growth factors is considered to have synergistic effects on bone regeneration. Materials and methods In this study, core–shell poly(lactide-co-glycolide) (PLGA)/polycaprolactone (PCL)–BMP-2 (PP–B) fibrous scaffolds were prepared through coaxial electrospinning. Next, we fabricated 3D scaffolds based on PP–B fibers with thermally induced self-agglomeration (TISA) method and compared with conventional PLGA/PCL scaffolds in terms of scaffold morphology and BMP-2 release behaviors. Then, rat adipose-derived stem cells (rADSCs) were seeded on the scaffolds, and the effects on cell proliferation, cell morphology, and osteogenic differentiation of rADSCs were detected. Results The results demonstrated that 3D scaffold incorporated with BMP-2 significantly increased proliferation and osteogenic differentiation of rADSCs, followed by PP–B group. Conclusion Our findings indicate that scaffolds with 3D structure and osteoinductive growth factors have great potential in bone tissue engineering.
Collapse
Affiliation(s)
- Shuying Hu
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Hanbang Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Xuefeng Zhou
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Gang Chen
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Ke Hu
- Key Laboratory of Clinical and Medical Engineering, Department of Biomedical Engineering, School of Basic Medical Science, Nanjing Medical University, Nanjing 210000, China
| | - Yi Cheng
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Lili Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| | - Feimin Zhang
- Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, China,
| |
Collapse
|
49
|
Feng P, Wu P, Gao C, Yang Y, Guo W, Yang W, Shuai C. A Multimaterial Scaffold With Tunable Properties: Toward Bone Tissue Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700817. [PMID: 29984132 PMCID: PMC6033191 DOI: 10.1002/advs.201700817] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/23/2018] [Indexed: 05/25/2023]
Abstract
Polyetheretherketone (PEEK)/β-tricalcium phosphate (β-TCP) scaffolds are expected to be able to combine the excellent mechanical strength of PEEK and the good bioactivity and biodegradability of β-TCP. While PEEK acts as a closed membrane in which β-TCP is completely wrapped after the melting/solidifying processing, the PEEK membrane degrades very little, hence the scaffolds cannot display bioactivity and biodegradability. The strategy reported here is to blend a biodegradable polymer with PEEK and β-TCP to fabricate multi-material scaffolds via selective laser sintering (SLS). The biodegradable polymer first degrades and leaves caverns on the closed membrane, and then the wrapped β-TCP is exposed to body fluid. In this study, poly(l-lactide) (PLLA) is adopted as the biodegradable polymer. The results show that large numbers of caverns form on the membrane with the degradation of PLLA, enabling direct contact between β-TCP and body fluid, and allowing for their ion-exchange. As a consequence, the scaffolds display the bioactivity, biodegradability and cytocompatibility. Moreover, bone defect repair studies reveal that new bone tissues grow from the margin towards the center of the scaffolds from the histological analysis. The bone defect region is completely connected to the host bone end after 8 weeks of implantation.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Ping Wu
- College of ChemistryXiangtan UniversityXiangtan411105China
| | - Chengde Gao
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Youwen Yang
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Wang Guo
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Wenjing Yang
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex ManufacturingCollege of Mechanical and Electrical EngineeringCentral South UniversityChangsha410083China
- School of Energy and Machinery EngineeringJiangxi University of Science and TechnologyGanzhou341000China
- State Key Laboratory of High Performance Complex ManufacturingCentral South UniversityChangsha410083China
- Key Laboratory of Organ InjuryAging and Regenerative Medicine of Hunan ProvinceChangsha410008China
| |
Collapse
|
50
|
Kelly CN, Miller AT, Hollister SJ, Guldberg RE, Gall K. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Adv Healthc Mater 2018; 7:e1701095. [PMID: 29280325 DOI: 10.1002/adhm.201701095] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/19/2017] [Indexed: 12/18/2022]
Abstract
3D printing is now adopted for use in a variety of industries and functions. In biomedical engineering, 3D printing has prevailed over more traditional manufacturing methods in tissue engineering due to its high degree of control over both macro- and microarchitecture of porous tissue scaffolds. However, with the improved flexibility in design come new challenges in characterizing the structure-function relationships between various architectures and both mechanical and biological properties in an assortment of clinical applications. Presently, the field of tissue engineering lacks a comprehensive body of literature that is capable of drawing meaningful relationships between the designed structure and resulting function of 3D printed porous biomaterial scaffolds. This work first discusses the role of design on 3D printed porous scaffold function and then reviews characterization of these structure-function relationships for 3D printed synthetic metallic, polymeric, and ceramic biomaterials.
Collapse
Affiliation(s)
- Cambre N. Kelly
- Department of Mechanical Engineering and Materials Science; Duke University; Box 90300 Hudson Hall Durham NC 27708 USA
| | - Andrew T. Miller
- Department of Mechanical Engineering and Materials Science; Duke University; Box 90300 Hudson Hall Durham NC 27708 USA
| | - Scott J. Hollister
- Coulter Department of Biomedical Engineering; Georgia Institute of Technology; 313 Ferst Drive, Room 2127 Atlanta GA 30332 USA
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience; Georgia Institute of Technology; 315 Ferst Drive Atlanta GA 30332 USA
| | - Ken Gall
- Department of Mechanical Engineering and Materials Science; Duke University; Box 90300 Hudson Hall Durham NC 27708 USA
| |
Collapse
|