1
|
Asadnia M, Sadat-Shojai M. Recent perspective of synthesis and modification strategies of cellulose nanocrystals and cellulose nanofibrils and their beneficial impact in scaffold-based tissue engineering: A review. Int J Biol Macromol 2024; 293:139409. [PMID: 39746422 DOI: 10.1016/j.ijbiomac.2024.139409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Outstanding properties of nanocellulose provide opportunities for novel applications in various fields, particularly tissue engineering. Despite of numerous useful characteristics of nanocellulose, its production methods suffer from the lack of control of morphology, high cost, and the use of organic solvents. On the other hand, hydrophilicity of nanocellulose is a significant challenge for its dispersion as a reinforcement in hydrophobic polymers matrix. Therefore, sustainable production methods and well-tuning interfacial characteristics of nanocellulose have been identified as critical steps in their development. This review article discusses the numerous preparation methods and surface modification strategies of cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to help nanocellulose users obtain the appropriate material for their desired application. We also cover various polymer/nanocellulose scaffolds that are reported in the literature and investigate the effect of CNC and CNF on their mechanical, thermal and biological properties. Moreover, we provide several scientific figures and tables for a better understanding of the explored topics. Finally, we evaluate the opportunities and challenges of nanocellulose industrialization in the field of tissue engineering. Overall, this review guides researchers towards a deeper understanding of nanocellulose production processes, changing their properties using surface modification methods, and subsequently their performance in scaffold-based tissue engineering.
Collapse
Affiliation(s)
- Milad Asadnia
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| |
Collapse
|
2
|
Ozelin SD, Esperandim TR, Dias FGG, Pereira LDF, Garcia CB, de Souza TO, Magalhães LF, Barud HDS, Sábio RM, Tavares DC. Nanocomposite Based on Bacterial Cellulose and Silver Nanoparticles Improve Wound Healing Without Exhibiting Toxic Effect. J Pharm Sci 2024; 113:2383-2393. [PMID: 38615814 DOI: 10.1016/j.xphs.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Wound healing is an important and complex process, containing a multifaceted process governed by sequential yet overlapping phases. Certain treatments can optimize local physiological conditions and improve wound healing. Silver nanoparticles (AgNP) are widely known for their antimicrobial activity. On the other hand, bacterial cellulose (BC) films have been used as a dressing that temporarily substitutes the skin, offering many advantages in optimizing wound healing, in addition to being highly biocompatible. Considering the promising activities of AgNP and BC films, the present study aimed to evaluate the wound healing activity in Wistar Hannover rats using a nanocomposite based on bacterial cellulose containing AgNP (AgBC). In a period of 21 days, its influence on the wound area, microbial growth, histopathological parameters, and collagen content were analyzed. In addition, toxicity indicators were assessed, such as weight gain, water consumption, and creatinine and alanine transaminase levels. After 14 days of injury, the animals treated with AgBC showed a significant increase in wound contraction. The treatment with AgBC significantly reduced the number of microbial colonies compared to other treatments in the first 48 h after the injury. At the end of the 21 experimental days, an average wound contraction rate greater than 97 % in relation to the initial area was observed, in addition to a significant increase in the amount of collagen fibers at the edge of the wounds, lower scores of necrosis, angiogenesis and inflammation, associated with no systemic toxicity. Therefore, it is concluded that the combination of preexisting products to form a new nanocomposite based on BC and AgNP amplified the biological activity of these products, increasing the effectiveness of wound healing and minimizing possible toxic effects of silver.
Collapse
Affiliation(s)
- Saulo Duarte Ozelin
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | | | | | - Lucas de Freitas Pereira
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | - Cristiane Buzatto Garcia
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | - Thiago Olímpio de Souza
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil
| | | | - Hernane da Silva Barud
- University of Araraquara, Biopolymers and Biomaterials Laboratory, Rua Carlos Gomes, 1338, 14801-320, Araraquara, São Paulo, Brazil; BioSmart Nano, Av. Jorge Fernandes de Mattos, 311, 14808-162 Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University, School of Pharmaceutical Sciences, Rodovia Araraquara Jaú, Km 01, 14800-903, Araraquara, São Paulo, Brazil
| | - Denise Crispim Tavares
- University of Franca, Avenida Dr. Armando Salles de Oliveira, 201, 14404-600, Franca, São Paulo, Brazil.
| |
Collapse
|
3
|
Deng X, Gould ML, Katare RG, Ali MA. Melt-extruded biocompatible surgical sutures loaded with microspheres designed for wound healing. Biomed Mater 2024; 19:055007. [PMID: 38917838 DOI: 10.1088/1748-605x/ad5baa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
Sutures are commonly used in surgical procedures and have immense potential for direct drug delivery into the wound site. However, incorporating active pharmaceutical ingredients into the sutures has always been challenging as their mechanical strength deteriorates. This study proposes a new method to produce microspheres-embedded surgical sutures that offer adequate mechanical properties for effective wound healing applications. The study used curcumin, a bioactive compound found in turmeric, as a model drug due to its anti-inflammatory, antioxidant, and anti-bacterial properties, which make it an ideal candidate for a surgical suture drug delivery system. Curcumin-loaded microspheres were produced using the emulsion solvent evaporation method with polyvinyl alcohol (PVA) as the aqueous phase. The microspheres' particle sizes, drug loading (DL) capacity, and encapsulation efficiency (EE) were investigated. Microspheres were melt-extruded with polycaprolactone and polyethylene glycol via a 3D bioplotter, followed by a drawing process to optimise the mechanical strength. The sutures' thermal, physiochemical, and mechanical properties were investigated, and the drug delivery and biocompatibility were evaluated. The results showed that increasing the aqueous phase concentration resulted in smaller particle sizes and improved DL capacity and EE. However, if PVA was used at 3% w/v or below, it prevented aggregate formation after lyophilisation, and the average particle size was found to be 34.32 ± 12.82 μm. The sutures produced with the addition of microspheres had a diameter of 0.38 ± 0.02 mm, a smooth surface, minimal tissue drag, and proper tensile strength. Furthermore, due to the encapsulated drug-polymer structure, the sutures exhibited a prolonged and sustained drug release of up to 14 d. Microsphere-loaded sutures demonstrated non-toxicity and accelerated wound healing in thein vitrostudies. We anticipate that the microsphere-loaded sutures will serve as an excellent biomedical device for facilitating wound healing.
Collapse
Affiliation(s)
- X Deng
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - M L Gould
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - R G Katare
- Department of Physiology, HeartOtagoy, University of Otago, Dunedin, New Zealand
| | - M A Ali
- Faculty of Dentistry, Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|
4
|
Touzout Z, Abdellaoui N, Hadj-Hamou AS. Conception of pH-sensitive calcium alginate/poly vinyl alcohol hydrogel beads for controlled oral curcumin delivery systems. Antibacterial and antioxidant properties. Int J Biol Macromol 2024; 263:130389. [PMID: 38403207 DOI: 10.1016/j.ijbiomac.2024.130389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Curcumin, a bioactive compound derived from the rhizome of Curcuma longa, has gained widespread attention for its potential therapeutic properties, including anti-inflammatory, antioxidant and anticancer effects. However, its poor aqueous solubility, instability and limited bioavailability have hindered its clinical applications. New beads formulations based on sodium alginate biopolymer (SA) and poly vinyl alcohol (PVA) were successfully prepared and evaluated as a potential drug vehicle for extended release of curcumin (Cur). Pristine and curcumin loaded calcium alginate/poly vinyl alcohol beads (CA/PVA and CA/PVA/Cur) at different compositions of SA and PVA were prepared by an ionotropic gelation method of SA followed by two freeze-thawing (FT) cycles for further crosslinking of PVA. Characterization techniques, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), UV-Visible spectroscopy, thermogravimetric analysis (TGA) and x-ray diffraction (XRD) were used to confirm the successful microencapsulation of curcumin within the CA/PVA microcapsules. Furthermore, the swelling of pristine beads, pH-sensitive properties and in vitro release studies of curcumin loaded beads were investigated at 37 °C in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). The effect of the polymer blend ratio, the encapsulation efficiency (EE %) of curcumin, the loading capacity (LC μg/mg), the sphericity factor (SF), the antioxidant activity of the elaborated beads and their antimicrobial properties against bacteria and fungi were just as much evaluated. The obtained results indicate that the swelling and the behavior of the developed beads were influenced by the pH of the test medium and the PVA content. The introduction of PVA into the SA matrix greatly enhanced the physicochemical properties, the encapsulation efficiency and the loading capacity of the elaborated microparticles. Results also suggested that the antioxidant activity of the loaded beads (CA/PVA/Cur) showed a higher DPPH radical scavenging activity while the bacterial and fungal strains proved sensitive to the different formulations used in the assay. Moreover, the important drug encapsulation efficiency and the sustainable drug release of these materials make them promising for the development of new drug carrier systems for colon targeting.
Collapse
Affiliation(s)
- Zineb Touzout
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| | - Naima Abdellaoui
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria.
| | - Assia Siham Hadj-Hamou
- Laboratory of Polymer Materials, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene (USTHB), BP 32, El Alia, Algiers 16111, Algeria
| |
Collapse
|
5
|
Singh V, Bansal K, Bhati H, Bajpai M. New Insights into Pharmaceutical Nanocrystals for the Improved Topical Delivery of Therapeutics in Various Skin Disorders. Curr Pharm Biotechnol 2024; 25:1182-1198. [PMID: 37921127 DOI: 10.2174/0113892010276223231027075527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023]
Abstract
Nanotechnology has provided nanostructure-based delivery of drugs, among which nanocrystals have been investigated and explored for feasible topical drug delivery. Nanocrystals are nano-sized colloidal carriers, considered pure solid particles with a maximum drug load and a very small amount of stabilizer. The size or mean diameter of the nanocrystals is less than 1 μm and has a crystalline character. Prominent synthesis methods include the utilization of microfluidic- driven platforms as well as the milling approach, which is both adaptable and adjustable. Nanocrystals have shown a high capacity for loading drugs, utilization of negligible amounts of excipients, greater chemical stability, lower toxic effects, and ease of scale-up, as well as manufacturing. They have gained interest as drug delivery platforms, and the significantly large surface area of the skin makes it a potential approach for topical therapeutic formulations for different skin disorders including fungal and bacterial infections, psoriasis, wound healing, and skin cancers, etc. This article explores the preparation techniques, applications, and recent patents of nanocrystals for treating various skin conditions.
Collapse
Affiliation(s)
- Vanshita Singh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Keshav Bansal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, Uttar Pradesh, India
| |
Collapse
|
6
|
Fahma F, Firmanda A, Cabral J, Pletzer D, Fisher J, Mahadik B, Arnata IW, Sartika D, Wulandari A. Three-Dimensional Printed Cellulose for Wound Dressing Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1015-1035. [PMID: 37886399 PMCID: PMC10599445 DOI: 10.1089/3dp.2021.0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Wounds are skin tissue damage due to trauma. Many factors inhibit the wound healing phase (hemostasis, inflammation, proliferation, and alteration), such as oxygenation, contamination/infection, age, effects of injury, sex hormones, stress, diabetes, obesity, drugs, alcoholism, smoking, nutrition, hemostasis, debridement, and closing time. Cellulose is the most abundant biopolymer in nature which is promising as the main matrix of wound dressings because of its good structure and mechanical stability, moisturizes the area around the wound, absorbs excess exudate, can form elastic gels with the characteristics of bio-responsiveness, biocompatibility, low toxicity, biodegradability, and structural similarity with the extracellular matrix (ECM). The addition of active ingredients as a model drug helps accelerate wound healing through antimicrobial and antioxidant mechanisms. Three-dimensional (3D) bioprinting technology can print cellulose as a bioink to produce wound dressings with complex structures mimicking ECM. The 3D printed cellulose-based wound dressings are a promising application in modern wound care. This article reviews the use of 3D printed cellulose as an ideal wound dressing and their properties, including mechanical properties, permeability aspect, absorption ability, ability to retain and provide moisture, biodegradation, antimicrobial property, and biocompatibility. The applications of 3D printed cellulose in the management of chronic wounds, burns, and painful wounds are also discussed.
Collapse
Affiliation(s)
- Farah Fahma
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Jaydee Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, Indonesia
| | - Anting Wulandari
- Department of Agroindustrial Technology, Faculty of Agroindustrial Technology, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
7
|
Anceschi A, Patrucco A, Bhavsar P, Zoccola M, Tessari M, Erbazzi L, Zamboni P. Keratose Self-Cross-Linked Wound Dressing for Iron Sequestration in Chronic Wounds. ACS OMEGA 2023; 8:30118-30128. [PMID: 37636950 PMCID: PMC10448490 DOI: 10.1021/acsomega.3c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/06/2023] [Indexed: 08/29/2023]
Abstract
Chronic wound diseases affect a large part of the world population, and therefore, novel treatments are becoming fundamental. People with chronic wounds show high iron and protease levels due to genetic disorders or other comorbidities. Since it was demonstrated that iron plays an important role in chronic wounds, being responsible for oxidative processes (ROS generation), while metalloproteinases prevent wound healing by literally "eating" the growing skin, it is crucial to design an appropriate wound dressing. In this paper, a novel bioactive dressing for binding iron in chronic wounds has been produced. Wool-derived keratose wound dressing in the form of films has been prepared by casting an aqueous solution of keratoses. These films are water-soluble; therefore, in order to increase their stability, they have been made insoluble through a thermal cross-link treatment. Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA) analyses clarified the structure and the properties of the keratose wound dressing films. The capability of this new biomaterial in iron sequestration has been investigated by testing the adsorption of Fe3+ by inductively coupled plasma-optical emission spectrometry (ICP-OES). The results suggest that the keratose cross-linked films can adsorb a large amount of iron (about 85% of the average amount usually present in chronic wounds) following pseudo-second-order kinetics and an intraparticle diffusion model, thus opening new perspectives in chronic wound care. Furthermore, the QSAR Toolbox was applied for conducting in silico tests and for predicting the chemical behavior of the C-Ker-film. All of the data suggest that the keratose bioactive dressing can significantly contribute to wound healing by mechanisms such as iron depletion, acting as a radical scavenger, diminishing the proteolytic damage, acting as a substrate in place of skin, and, finally, promoting tissue regeneration.
Collapse
Affiliation(s)
- Anastasia Anceschi
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Alessia Patrucco
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Parag Bhavsar
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Marina Zoccola
- CNR-STIIMA,
Italian National Research Council, Institute of Intelligent Industrial
Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900 Biella, Italy
| | - Mirko Tessari
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| | - Luca Erbazzi
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Zamboni
- Vascular
Diseases Center, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Luo W, Bai L, Zhang J, Li Z, Liu Y, Tang X, Xia P, Xu M, Shi A, Liu X, Zhang D, Yu P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr Polym 2023; 311:120718. [PMID: 37028867 DOI: 10.1016/j.carbpol.2023.120718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/27/2023]
Abstract
Curcumin (CUR) has been discovered to have many biological activities, including anti-inflammatory, anti-cancer, anti-oxygenation, anti-human immunodeficiency virus, anti-microbial and exhibits a good effect on the prevention and treatment of many diseases. However, the limited properties of CUR, including the poor solubility, bioavailability and instability caused by enzymes, light, metal irons, and oxygen, have compelled researchers to turn their attention to drug carrier application to overcome these drawbacks. Encapsulation may provide potential protective effects to the embedding materials and/or have a synergistic effect with them. Therefore, nanocarriers, especially polysaccharides-based nanocarriers, have been developed in many studies to enhance the anti-inflammatory capacity of CUR. Consequently, it's critical to review current advancements in the encapsulation of CUR using polysaccharides-based nanocarriers, as well as further study the potential mechanisms of action where polysaccharides-based CUR nanoparticles (the complex nanoparticles/Nano CUR-delivery systems) exhibit their anti-inflammatory effects. This work suggests that polysaccharides-based nanocarriers will be a thriving field in the treatment of inflammation and inflammation-related diseases.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Liangyu Bai
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zhangwang Li
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yinuo Liu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xiaoyi Tang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Panpan Xia
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China
| | - Ao Shi
- School of Medicine, St.George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang 330006, China; Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang 330006, China.
| |
Collapse
|
9
|
Ansari L, Mashayekhi-Sardoo H, Baradaran Rahimi V, Yahyazadeh R, Ghayour-Mobarhan M, Askari VR. Curcumin-based nanoformulations alleviate wounds and related disorders: A comprehensive review. Biofactors 2023; 49:736-781. [PMID: 36961254 DOI: 10.1002/biof.1945] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
Despite numerous advantages, curcumin's (CUR) low solubility and low bioavailability limit its employment as a free drug. CUR-incorporated nanoformulation enhances the bioavailability and angiogenesis, collagen deposition, fibroblast proliferation, reepithelization, collagen synthesis, neovascularization, and granulation tissue formation in different wounds. Designing nanoformulations with controlled-release properties ensure the presence of CUR in the defective area during treatment. Different nanoformulations encompassing nanofibers, nanoparticles (NPs), nanospray, nanoemulsion, nanosuspension, nanoliposome, nanovesicle, and nanomicelle were described in the present study comprehensively. Moreover, for some other systems which contain nano-CUR or CUR nanoformulations, including some nanofibers, films, composites, scaffolds, gel, and hydrogels seems the CUR-loaded NPs incorporation has better control of the sustained release, and thereby, the presence of CUR until the final stages of wound healing is more possible. Incorporating CUR-loaded chitosan NPs into nanofiber increased the release time, while 80% of CUR was released during 240 h (10 days). Therefore, this system can guarantee the presence of CUR during the entire healing period. Furthermore, porous structures such as sponges, aerogels, some hydrogels, and scaffolds disclosed promising performance. These architectures with interconnected pores can mimic the native extracellular matrix, thereby facilitating attachment and infiltration of cells at the wound site, besides maintaining a free flow of nutrients and oxygen within the three-dimensional structure essential for rapid and proper wound healing, as well as enhancing mechanical strength.
Collapse
Affiliation(s)
- Legha Ansari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Roghayeh Yahyazadeh
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Ersanli C, Tzora A, Skoufos I, Voidarou CC, Zeugolis DI. Recent Advances in Collagen Antimicrobial Biomaterials for Tissue Engineering Applications: A Review. Int J Mol Sci 2023; 24:ijms24097808. [PMID: 37175516 PMCID: PMC10178232 DOI: 10.3390/ijms24097808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/09/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Biomaterial-based therapies have been receiving attention for treating microbial infections mainly to overcome the increasing number of drug-resistant bacterial strains and off-target impacts of therapeutic agents by conventional strategies. A fibrous, non-soluble protein, collagen, is one of the most studied biopolymers for the development of antimicrobial biomaterials owing to its superior physicochemical, biomechanical, and biological properties. In this study, we reviewed the different approaches used to develop collagen-based antimicrobial devices, such as non-pharmacological, antibiotic, metal oxide, antimicrobial peptide, herbal extract-based, and combination approaches, with a particular focus on preclinical studies that have been published in the last decade.
Collapse
Affiliation(s)
- Caglar Ersanli
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Athina Tzora
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Ioannis Skoufos
- Laboratory of Animal Science, Nutrition and Biotechnology, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Chrysoula Chrysa Voidarou
- Laboratory of Animal Health, Food Hygiene and Quality, Department of Agriculture, University of Ioannina, 47100 Arta, Greece
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular and Biomedical Research, School of Mechanical and Materials Engineering, University College Dublin, D04 V1W8 Dublin, Ireland
| |
Collapse
|
11
|
Kumar M, Hilles AR, Ge Y, Bhatia A, Mahmood S. A review on polysaccharides mediated electrospun nanofibers for diabetic wound healing: Their current status with regulatory perspective. Int J Biol Macromol 2023; 234:123696. [PMID: 36801273 DOI: 10.1016/j.ijbiomac.2023.123696] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The current treatment strategies for diabetic wound care provide only moderate degree of effectiveness; hence new and improved therapeutic techniques are in great demand. Diabetic wound healing is a complex physiological process that involves synchronisation of various biological events such as haemostasis, inflammation, and remodelling. Nanomaterials like polymeric nanofibers (NFs) offer a promising approach for the treatment of diabetic wounds and have emerged as viable options for wound management. Electrospinning is a powerful and cost-effective method to fabricate versatile NFs with a wide array of raw materials for different biological applications. The electrospun NFs have unique advantages in the development of wound dressings due to their high specific surface area and porosity. The electrospun NFs possess a unique porous structure and biological function similar to the natural extracellular matrix (ECM), and are known to accelerate wound healing. Compared to traditional dressings, the electrospun NFs are more effective in healing wounds owing to their distinct characteristics, good surface functionalisation, better biocompatibility and biodegradability. This review provides a comprehensive overview of the electrospinning procedure and its operating principle, with special emphasis on the role of electrospun NFs in the treatment of diabetic wounds. This review discusses the present techniques applied in the fabrication of NF dressings, and highlights the future prospects of electrospun NFs in medicinal applications.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Ayah R Hilles
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Yi Ge
- INHART, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Min K, Tae G. Cellular infiltration in an injectable sulfated cellulose nanocrystal hydrogel and efficient angiogenesis by VEGF loading. Biomater Res 2023; 27:28. [PMID: 37038209 PMCID: PMC10084697 DOI: 10.1186/s40824-023-00373-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Cellular infiltration and angiogenesis into implanted biomaterial scaffolds are crucial for successful host tissue integration and tissue regeneration. Cellulose nanocrystal (CNC) is a nano-sized cellulose derivative, which can form an injectable physical gel with salts. Sulfate groups of sulfated CNC (CNC-S) can act as a binding domain to various growth factors and cytokines with a heparin-binding domain for sustained release of them. Vascular endothelial growth factor (VEGF) can promote the proliferation of endothelial cells and angiogenesis. In this study, VEGF-loaded CNC-S hydrogel was evaluated as an injectable scaffold that can induce cellular infiltration and angiogenesis. METHODS CNC-S was hydrolyzed to get desulfated CNC (CNC-DS), which was used as a negative control group against CNC-S. Both CNC-S and CNC-DS hydrogels were prepared and compared in terms of biocompatibility and VEGF release. The hydrogels with or without VEGF loading were subcutaneously injected into mice to evaluate the biocompatibility, cellular infiltration, and angiogenesis induction of the hydrogels. RESULTS Both hydrogels possessed similar stability and shear-thinning behavior to be applicable as injectable hydrogels. However, CNC-S hydrogel showed sustained release (until 8 weeks) of VEGF whereas CNC-DS showed a very fast release of VEGF with a large burst. Subcutaneously injected CNC-S hydrogel showed much enhanced cellular infiltration as well as better biocompatibility with milder foreign body response than CNC-DS hydrogel. Furthermore, VEGF-loaded CNC-S hydrogel induced significant angiogenesis inside the hydrogel whereas VEGF-loaded CNC-DS did not. CONCLUSION CNC-S possesses good properties as a biomaterial including injectability, biocompatibility, and allowing cellular infiltration and sustained release of growth factors. VEGF-loaded CNC-S hydrogel exhibited efficient angiogenesis inside the hydrogel. The sulfate group of CNC-S was a key for good biocompatibility and the biological activities of VEGF-loaded CNC hydrogel.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju, 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Buk-Gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
13
|
de Moraes Soares Araújo G, Lima Rodrigues J, Campello Yurgel V, Silva C, Manuel Cavaco Paulo A, Isabel Saì Loureiro A, Lima Dora C. Designing and characterization of curcumin-loaded nanotechnological dressings: A promising platform for skin burn treatment. Int J Pharm 2023; 635:122712. [PMID: 36803927 DOI: 10.1016/j.ijpharm.2023.122712] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023]
Abstract
Burns affect the skin and appendages, impair their function, and become favorable regions for bacterial infections. Owing to time-consuming and costly treatments, burns have been considered a public health problem. The limitations of the treatments used for burns have motivated the search for more efficient alternatives. Curcumin has several potential properties such as anti-inflammatory, healing, and antimicrobial activities. However, this compound is unstable and has low bioavailability. Therefore, nanotechnology could offer a solution for its application. This study aimed to develop and characterize dressings (or gauzes) impregnated with curcumin nanoemulsions that were prepared using two different techniques as a promising platform for skin burn treatment. In addition, the effect of cationization on curcumin release from the gauze was evaluated. Nanoemulsions were successfully prepared using two methods, ultrasound and a high-pressure homogenizer, with sizes of 135 nm and 144.55 nm, respectively. These nanoemulsions exhibited a low polydispersity index, adequate zeta potential, high encapsulation efficiency, and stability for up to 120 d. In vitro assays demonstrated a controlled release of curcumin between 2 and 240 h. No cytotoxicity was observed at concentrations of curcumin up to 75 µg/mL, and cell proliferation was observed. The incorporation of nanoemulsions in the gauze was successfully achieved, and the evaluation of curcumin release showed a faster release from cationized gauzes, whereas the non-cationized gauze promoted a more constant release.
Collapse
Affiliation(s)
- Gabriela de Moraes Soares Araújo
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Jamile Lima Rodrigues
- Graduate Program in Food Science and Engineering, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Virginia Campello Yurgel
- LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil
| | - Carla Silva
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Ana Isabel Saì Loureiro
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.
| | - Cristiana Lima Dora
- Graduate Program in Health Sciences, Federal University of Rio Grande, Rio Grande 96203-900, Brazil; LabNano - Nanotechnology Laboratory, Federal University of Rio Grande, Rio Grande 96203-900, Brazil, RS, Brazil.
| |
Collapse
|
14
|
Rashid N, Khalid SH, Ullah Khan I, Chauhdary Z, Mahmood H, Saleem A, Umair M, Asghar S. Curcumin-Loaded Bioactive Polymer Composite Film of PVA/Gelatin/Tannic Acid Downregulates the Pro-inflammatory Cytokines to Expedite Healing of Full-Thickness Wounds. ACS OMEGA 2023; 8:7575-7586. [PMID: 36872957 PMCID: PMC9979366 DOI: 10.1021/acsomega.2c07018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Curcumin (Cur) entrapped poly(vinyl alcohol) (PVA)/gelatin composite films were prepared by cross-linking with tannic acid (TA) as bioactive dressings for rapid wound closure. Films were evaluated for mechanical strength, swelling index, water vapor transmission rate (WVTR), film solubility, and in-vitro drug release studies. SEM revealed uniform and smooth surfaces of blank (PG9) and Cur-loaded composite films (PGC4). PGC4 exhibited excellent mechanical strength (tensile strength (TS) and Young's modulus (YM) were 32.83 and 0.55 MPa, respectively), swelling ability (600-800% at pH 5.4, 7.4, and 9), WVTR (2003 ± 26), and film solubility (27.06 ± 2.0). Sustained release (81%) of the encapsulated payload was also observed for 72 h. The antioxidant activity determined by DPPH free radical scavenging showed that the PGC4 possessed strong % inhibition. The PGC4 formulation displayed higher antibacterial potential against S. aureus (14.55 mm zone of inhibition) and E. coli (13.00 mm zone of inhibition) compared to blank and positive control by the agar well diffusion method. An in-vivo wound healing study was carried out on rats using a full-thickness excisional wound model. Wounds treated with PGC4 showed very rapid healing about 93% in just 10 days post wounding as compared to 82.75% by Cur cream and 80.90% by PG9. Furthermore, histopathological studies showed ordered collagen deposition and angiogenesis along with fibroblast formation. PGC4 also exerted a strong anti-inflammatory effect by downregulating the expression of pro-inflammatory cytokines (TNF-α and IL-6 were lowered by 76% and 68% as compared to the untreated group, respectively). Therefore, Cur-loaded composite films can be an ideal delivery system for effective wound healing.
Collapse
Affiliation(s)
- Nida Rashid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Syed Haroon Khalid
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ikram Ullah Khan
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Zunera Chauhdary
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Hira Mahmood
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Ayesha Saleem
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Umair
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajid Asghar
- Department
of Pharmaceutics, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|
15
|
Yu Q, Shen C, Wang X, Wang Z, Liu L, Zhang J. Graphene Oxide/Gelatin Nanofibrous Scaffolds Loaded with N-Acetyl Cysteine for Promoting Wound Healing. Int J Nanomedicine 2023; 18:563-578. [PMID: 36756050 PMCID: PMC9900644 DOI: 10.2147/ijn.s392782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 02/05/2023] Open
Abstract
Purpose We aimed to develop an antioxidant dressing material with pro-angiogenic potential that could promote wound healing. Gelatin (Gel) was selected to improve the biocompatibility of the scaffolds, while graphene oxide (GO) was added to enhance their mechanical property. The loaded N-Acetyl cysteine (NAC) was performing the effect of scavenging reactive oxygen species (ROS) at the wound site. Materials and Methods The physicochemical and mechanical properties, NAC releases, and biocompatibility of the NAC-GO-Gel scaffolds were evaluated in vitro. The regeneration capability of the scaffolds was systemically investigated in vivo using the excisional wound-splinting model in mice. Results The NAC-GO-Gel scaffold had a stronger mechanical property and sustainer NAC release ability than the single Gel scaffold, which resulted in a better capacity for cell proliferation and migration. Mice wound-splinting models revealed that the NAC-GO-Gel scaffold effectively accelerated wound healing, promoted re-epithelialization, enhanced neovascularization, and reduced scar formation. Conclusion The NAC-GO-Gel scaffold not only promotes wound healing but also reduces scar formation, showing a great potential application for the repair of skin defects.
Collapse
Affiliation(s)
- Qian Yu
- Research Center, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, People’s Republic of China
| | - Chentao Shen
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiangsheng Wang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China,Wuhan Clinical Research Center for Superficial Organ Reconstruction, Wuhan, 430022, People’s Republic of China
| | - Lu Liu
- Department of Gastrointestinal Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China,Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Jufang Zhang
- Department of Plastic Surgery, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China,Correspondence: Jufang Zhang; Lu Liu, Tel +86-18800293916; +86-13476226821, Fax +86-571-87914773; +86-27-83662640, Email ;
| |
Collapse
|
16
|
Kumar R, Chauhan S. Cellulose nanocrystals based delivery vehicles for anticancer agent curcumin. Int J Biol Macromol 2022; 221:842-864. [PMID: 36100000 DOI: 10.1016/j.ijbiomac.2022.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
Cancer is a complex disease that starts with genetic alterations and mutations in healthy cells. The past decade has witnessed a huge demand for new biocompatibility and high-performance intelligent drug delivery systems. Curcumin (CUR) is a bioactive stimulant with numerous medical benefits. However, because of its hydrophobic nature, it has low bioavailability. The utilization of many biobased materials has been found to improve the loading of hydrophobic drugs. Cellulose nanocrystals (CNCs) with exceptional qualities and a wide range of applications, feature strong hydrophilicity and lipophilicity, great emulsification stability, high crystallinity and outstanding mechanical attributes. In this review, numerous CNCs-based composites have been evaluated for involvement in the controlled release of CUR. The first part of the review deals with recent advancements in the extraction of CNCs from lignocellulose biomass. The second elaborates some recent developments in the post-processing of CNCs in conjunction with other materials like natural polymers, synthetic polymers, β-CD, and surfactants for CUR loading/encapsulation and controlled release. Furthermore, numerous CUR drug delivery systems, challenges, and techniques for effective loading/encapsulation of CUR on CNCs-based composites have been presented. Finally, conclusions and future outlooks are also explored.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Jagdish Chandra DAV College, Dasuya, Punjab 144205, India.
| | - Sandeep Chauhan
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, 171005, India
| |
Collapse
|
17
|
Radulescu DM, Neacsu IA, Grumezescu AM, Andronescu E. New Insights of Scaffolds Based on Hydrogels in Tissue Engineering. Polymers (Basel) 2022; 14:799. [PMID: 35215710 PMCID: PMC8875010 DOI: 10.3390/polym14040799] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, biomaterials development and characterization for new applications in regenerative medicine or controlled release represent one of the biggest challenges. Tissue engineering is one of the most intensively studied domain where hydrogels are considered optimum applications in the biomedical field. The delicate nature of hydrogels and their low mechanical strength limit their exploitation in tissue engineering. Hence, developing new, stronger, and more stable hydrogels with increased biocompatibility, is essential. However, both natural and synthetic polymers possess many limitations. Hydrogels based on natural polymers offer particularly high biocompatibility and biodegradability, low immunogenicity, excellent cytocompatibility, variable, and controllable solubility. At the same time, they have poor mechanical properties, high production costs, and low reproducibility. Synthetic polymers come to their aid through superior mechanical strength, high reproducibility, reduced costs, and the ability to regulate their composition to improve processes such as hydrolysis or biodegradation over variable periods. The development of hydrogels based on mixtures of synthetic and natural polymers can lead to the optimization of their properties to obtain ideal scaffolds. Also, incorporating different nanoparticles can improve the hydrogel's stability and obtain several biological effects. In this regard, essential oils and drug molecules facilitate the desired biological effect or even produce a synergistic effect. This study's main purpose is to establish the main properties needed to develop sustainable polymeric scaffolds. These scaffolds can be applied in tissue engineering to improve the tissue regeneration process without producing other side effects to the environment.
Collapse
Affiliation(s)
- Denisa-Maria Radulescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
| | - Ionela Andreea Neacsu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandru-Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (D.-M.R.); (A.-M.G.); (E.A.)
- Academy of Romanian Scientists, 54 Independentei, 050094 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
| |
Collapse
|
18
|
Electrospun Bioscaffold Based on Cellulose Acetate and Dendrimer-modified Cellulose Nanocrystals for Controlled Drug Release. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Mehra L, Mehra S, Tiwari N, Singh T, Rawat H, Belagavi S, Jaimini A, Mittal G. Fabrication, characterization and evaluation of the efficacy of gelatin/hyaluronic acid microporous scaffolds suffused with aloe-vera in a rat burn model. J Biomater Appl 2021; 36:1346-1358. [PMID: 34873947 DOI: 10.1177/08853282211061821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Burn induced injuries are commonly encountered in civilian and military settings, leading to severe morbidity and mortality. Objective of this study was to construct microporous bioactive scaffolds of gelatin-hyaluronic acid suffused with aloe-vera gel (Gela/HA/AvG), and to evaluate their efficacy in healing partial-thickness burn wounds. Scaffolds were characterized using Fourier transform-infrared spectroscopy, Scanning electron microscopy, and Thermo-gravimetric analysis to understand intermolecular interactions and morphological characteristics. In-vitro fluid uptake ability and hemolytic index of test scaffolds were also determined. In-vitro collagenase digestion was done to assess biodegradability of scaffolds. Wound retraction studies were carried out in Sprague Dawley rats inflicted with partial-thickness burn wounds to assess and compare efficacy of optimized scaffolds with respect to negative and positive control groups. In-vivo gamma scintigraphy using Technetium-99m labeled Immunoglobulin-G (99mTc-IgG) as imaging agent was also performed to validate efficacy results. Histological and immunohistochemical comparison between groups was also made. Scaffolds exhibited mircoporous structure, with pore size getting reduced from 41.3 ± 4.3 µm to 30.49 ± 5.7 µm when gelatin conc. was varied from 1% to 5%. Optimized test scaffolds showed sustained in-vitro swelling behavior, were biodegradable and showed hemolytic index in range of 2.4-4.3%. Wound retraction study along with in-vivo gamma scintigraphy indicated that Gela/HA/AvG scaffolds were not only able to reduce local inflammation faster but also accelerated dermis regeneration. Immunohistochemical analysis, in terms of expression levels of epidermal growth factor and fibroblast growth factor-2 also corroborated in-vivo efficacy findings. Gela/HA/AvG scaffolds, therefore, can potentially be developed into an effective dermal regeneration template for partial-thickness burn wounds.
Collapse
Affiliation(s)
- Lalita Mehra
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Smritee Mehra
- Department of Biotechnology, RinggoldID:231547Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Nidhi Tiwari
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Thakuri Singh
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Harish Rawat
- Department of Nuclear Medicine, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Shreeshail Belagavi
- Department of Cytopathology, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Abhinav Jaimini
- Department of Nuclear Medicine, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Gaurav Mittal
- Department of Combat Sciences, 93048DRDO Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
20
|
Casanova F, Pereira CF, Ribeiro AB, Freixo R, Costa E, E. Pintado M, Fernandes JC, Ramos ÓL. Novel Micro- and Nanocellulose-Based Delivery Systems for Liposoluble Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2593. [PMID: 34685034 PMCID: PMC8540299 DOI: 10.3390/nano11102593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
Poor aqueous solubility of bioactive compounds is becoming a pronounced challenge in the development of bioactive formulations. Numerous liposoluble compounds have very interesting biological activities, but their low water solubility, stability, and bioavailability restrict their applications. To overcome these limitations there is a need to use enabling delivering strategies, which often demand new carrier materials. Cellulose and its micro- and nanostructures are promising carriers with unique features. In this context, this review describes the fast-growing field of micro- and nanocellulose based delivery systems with a focus on the release of liposoluble bioactive compounds. The state of research on this field is reviewed in this article, which also covers the chemistry, preparation, properties, and applications of micro- and nanocellulose based delivery systems. Although there are promising perspectives for introducing these materials into various fields, aspects of safety and toxicity must be revealed and are discussed in this review. The impact of gastrointestinal conditions on the systems and on the bioavailability of the bioactive compounds are also addressed in this review. This article helps to unveil the whole panorama of micro- and nanocellulose as delivery systems for liposoluble compounds, showing that these represent a great promise in a wide range of applications.
Collapse
Affiliation(s)
| | - Carla F. Pereira
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.C.); (A.B.R.); (R.F.); (E.C.); (M.E.P.); (J.C.F.)
| | | | | | | | | | | | - Óscar L. Ramos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (F.C.); (A.B.R.); (R.F.); (E.C.); (M.E.P.); (J.C.F.)
| |
Collapse
|
21
|
Abstract
Choosing the material with the best regeneration potential and properties closest to that of the extracellular matrix is one of the main challenges in tissue engineering and regenerative medicine. Natural polymers, such as collagen, elastin, and cellulose, are widely used for this purpose in tissue engineering. Cellulose derived from bacteria has excellent mechanical properties, high hydrophilicity, crystallinity, and a high degree of polymerization and, therefore, can be used as scaffold/membrane for tissue engineering. In the current study, we reviewed the latest trends in the application of bacterial cellulose (BC) polymers as a scaffold in different types of tissue, including bone, vascular, skin, and cartilage. Also, we mentioned the biological and mechanical advantages and disadvantages of BC polymers. Given the data presented in this study, BC polymer could be suggested as a favorable natural polymer in the design of tissue scaffolds. Implementing novel composites that combine this polymer with other materials through modern or rapid prototyping methods can open up a great prospect in the future of tissue engineering and regenerative medicine.
Collapse
|
22
|
Khezri K, Saeedi M, Mohammadamini H, Zakaryaei AS. A comprehensive review of the therapeutic potential of curcumin nanoformulations. Phytother Res 2021; 35:5527-5563. [PMID: 34131980 DOI: 10.1002/ptr.7190] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/19/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022]
Abstract
Today, due to the prevalence of various diseases such as the novel coronavirus (SARS-CoV-2), diabetes, central nervous system diseases, cancer, cardiovascular disorders, and so on, extensive studies have been conducted on therapeutic properties of natural and synthetic agents. A literature review on herbal medicine and commercial products in the global market showed that curcumin (Cur) has many therapeutic benefits compared to other natural ingredients. Despite the unique properties of Cur, its use in clinical trials is very limited. The poor biopharmaceutical properties of Cur such as short half-life in plasma, low bioavailability, poor absorption, rapid metabolism, very low solubility (at acidic and physiological pH), and the chemical instability in body fluids are major concerns associated with the clinical applications of Cur. Recently, nanoformulations are emerging as approaches to develop and improve the therapeutic efficacy of various drugs. Many studies have shown that Cur nanoformulations have tremendous therapeutic potential against various diseases such as SARS-CoV-2, cancer, inflammatory, osteoporosis, and so on. These nanoformulations can inhibit many diseases through several cellular and molecular mechanisms. However, successful long-term clinical results are required to confirm their safety and clinical efficacy. The present review aims to update and explain the therapeutic potential of Cur nanoformulations.
Collapse
Affiliation(s)
- Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | | |
Collapse
|
23
|
Development of a cellulose-based scaffold for sustained delivery of curcumin. Int J Biol Macromol 2021; 183:132-144. [PMID: 33905801 DOI: 10.1016/j.ijbiomac.2021.04.123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022]
Abstract
Due to the unique properties of cellulose-based materials, they are attractive to be developed in industrial pharmaceutics and biomedical fields. Carboxymethyl-diethyl amino ethyl cellulose scaffold (CM-DEAEC) has been synthesized in the current work as a smart novel derivative of cellulose with a great functionality in drug delivery systems. The scaffolds were well cross-linked with 2% (v/v) epichlorohydrin (ECH), loaded with curcumin (Cur), and then were analyzed by FT-IR, XRD, SEM, and mechanical strength. While developing the ideal delivery platform, curcumin (an important chemotherapeutic agent) was chosen due to its hydrophobicity and poor bioavailability. Thus, we developed a novel scaffold for efficient loading and controlled releasing of curcumin. The swelling ratio of 136%, high curcumin entrapment efficiency (up to 83.7%), sustained in vitro drug release profile, and appropriate degradability in three weeks confirmed significant properties of the CM-DEAEC scaffold. More than 99% antibacterial activity has been observed by the cross-linked curcumin loaded CM-DEAEC scaffolds. Cytotoxicity studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 4',6-diamidino-2-phenylindole (DAPI) staining showed that cross-inked curcumin loaded CM-DEAEC scaffolds did not show any toxicity using L929 cells. All experiments were compared with CMC scaffolds and better characteristics of the novel scaffold for drug delivery have been confirmed.
Collapse
|
24
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
25
|
Hivechi A, Bahrami SH, Siegel RA, Siehr A, Sahoo A, Milan PB, Joghataei MT, Amoupour M, Simorgh S. Cellulose nanocrystal effect on crystallization kinetics and biological properties of electrospun polycaprolactone. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111855. [DOI: 10.1016/j.msec.2020.111855] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/04/2020] [Accepted: 12/27/2020] [Indexed: 01/13/2023]
|
26
|
Effects of Bacterial Nanocellulose Loaded with Curcumin and Its Degradation Products on Human Dermal Fibroblasts. MATERIALS 2020; 13:ma13214759. [PMID: 33113763 PMCID: PMC7663456 DOI: 10.3390/ma13214759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 01/25/2023]
Abstract
Bacterial nanocellulose has found applications in tissue engineering, in skin tissue repair, and in wound healing. Its large surface area enables the adsorption of various substances. Bacterial nanocellulose with adsorbed substances can serve as a substrate for drug-delivery of specific bioactive healing agents into wounds. In this study, we loaded a bacterial nanocellulose hydrogel with curcumin, i.e., an important anti-bacterial and healing agent, and its degradation products. These products were prepared by thermal decomposition of curcumin (DC) at a temperature of 180 °C (DC 180) or of 300 °C (DC 300). The main thermal decomposition products were tumerone, vanillin, and feruloylmethane. Curcumin and its degradation products were loaded into the bacterial nanocellulose by an autoclaving process. The increased temperature during autoclaving enhanced the solubility and the penetration of the agents into the nanocellulose. The aim of this study was to investigate the cytotoxicity and the antimicrobial activity of pure curcumin, its degradation products, and finally of bacterial nanocellulose loaded with these agents. In vitro tests performed on human dermal fibroblasts revealed that the degradation products of curcumin, i.e., DC 180 and DC 300, were more cytotoxic than pure curcumin. However, if DC 300 was loaded into nanocellulose, the cytotoxic effect was not as strong as in the case of DC 300 powder added into the culture medium. DC 300 was found to be the least soluble product in water, which probably resulted in the poor loading of this agent into the nanocellulose. Nanocellulose loaded with pure curcumin or DC 180 exhibited more antibacterial activity than pristine nanocellulose.
Collapse
|
27
|
Terzopoulou Z, Michopoulou A, Palamidi A, Koliakou E, Bikiaris D. Preparation and Evaluation of Collagen-Based Patches as Curcumin Carriers. Polymers (Basel) 2020; 12:polym12102393. [PMID: 33080789 PMCID: PMC7602968 DOI: 10.3390/polym12102393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with psoriasis are dissatisfied with the standard pharmacological treatments, whether systemic or topical, with many of them showing interest in complementary and alternative medicine. Curcumin (Cur), a natural polyphenol derived from turmeric, has recently gained attention for skin-related diseases because of its proven anti-inflammatory action. However, topical treatment with Cur would be inadequate because of its hydrophobicity, instability, and low bioavailability. In addition, hyperkeratosis and lack of moisture in psoriatic skin result in low penetration that would prevent actives from permeating the stratum corneum. In this work, a polymer-based formulation of Cur for the topical treatment of psoriasis is reported. To improve the physicochemical stability of Cur, it was first encapsulated in chitosan nanoparticles. The Cur-loaded nanoparticles were incorporated in a hydrophilic, biocompatible collagen-based patch. The nanoparticle-containing porous collagen patches were then chemically cross-linked. Morphology, chemical interactions, swelling ratio, enzymatic hydrolysis, and Cur release from the patches were evaluated. All patches showed excellent swelling ratio, up to ~1500%, and after cross-linking, the pore size decreased, and their hydrolysis rates decelerated. The in vitro release of Cur was sustained with an initial burst release, reaching 55% after 24 h. Cur within the scaffolds imparted a proliferation inhibitory effect on psoriatic human keratinocytes in vitro.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
- Correspondence: ; Tel.: +30-2310-997-812
| | - Anna Michopoulou
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR 555 35 Thessaloniki, Greece;
| | - Artemis Palamidi
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
| | - Elena Koliakou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece;
| | - Dimitrios Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
| |
Collapse
|
28
|
Wang LP, Wang HJ, Hou XS, Raza A, Koyama Y, Ito T, Wang JY. Preparation of stretchable composite film and its application in skin burn repair. J Mech Behav Biomed Mater 2020; 113:104114. [PMID: 33045517 DOI: 10.1016/j.jmbbm.2020.104114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/20/2020] [Accepted: 09/24/2020] [Indexed: 01/09/2023]
Abstract
The poor elasticity of wound dressings often leads to wound healing failure due to rupture and fall off. In this study, the composite films of zein and hydrogel poly (acrylic acid) were developed in order to obtain stretchable wound dressing for skin burn repair. The mechanical test revealed that the maximum elongation of break of composite films could reach 349.76% when the mass ratio of zein to poly (acrylic acid) was 1.5. SEM and FTIR analysis demonstrated the good elasticity of composite films might be due to the formation of a dense structure and the strong interaction between zein and poly (acrylic acid). Interestingly, the composite films exhibited great adhesiveness to human finger skin and stretchable ability under strenuous joint exercise. CCK-8 assay and fluorescence staining showed that the composite films and their extract had good cytocompatibility on human foreskin fibroblasts (L929) cells. The in vivo experiment on rat's skin burning model indicated that the composite films could promote wound healing and collagen synthesis by comparison with commercial gauze. It could be concluded that the stretchable composite films of zein and hydrogel poly (acrylic acid) had the potential as the wound dressing.
Collapse
Affiliation(s)
- Li-Ping Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Hua-Jie Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China; Jiaxing Yaojiao Medical Device Co. Ltd., 321 Jiachuang Road, Jiaxing 314032, China
| | - Xue-Song Hou
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Ali Raza
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China
| | - Yoshiyuki Koyama
- Japan Anti-tuberculosis Association, Shin-Yamanote Hospital, 3-6-1, Suwa-cho, Higashimurayama, Tokyo, 189-0021, Japan
| | - Tomoko Ito
- Japan Anti-tuberculosis Association, Shin-Yamanote Hospital, 3-6-1, Suwa-cho, Higashimurayama, Tokyo, 189-0021, Japan
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, PR China.
| |
Collapse
|
29
|
Nehra P, Chauhan RP. Eco-friendly nanocellulose and its biomedical applications: current status and future prospect. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:112-149. [PMID: 32892717 DOI: 10.1080/09205063.2020.1817706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellulose is the earth's leading natural polymer. It is known for its properties like biocompatibility, high mechanical strength, cost-effectiveness and lightweight. Nanocellulose displays better properties as compared to the native cellulose fibre. The nanocellulose is very remunerative in the arenas of routine application especially in health care, food industry, sanitary products and many more. In the biomedical area, cellulose-based products are utilized in applications like wound healing, dental applications, drug delivery, antimicrobial material, etc. Nanocellulose biomaterials have been commercialised, representing the material of new generation. With the objective to comprehend the contribution of nanocellulose in the current status and future development in biomedical utilisations, the review is focused on cellulose, nanocellulose, types and sources of nanocellulose, its preparation, characteristics, constraints related to its composites through the analysis of certain scientific reports.
Collapse
Affiliation(s)
- Poonam Nehra
- School of Biomedical Engineering, National Institute of Technology, Kurukshetra, India
| | - R P Chauhan
- Department of Physics, National Institute of Technology, Kurukshetra, India
| |
Collapse
|
30
|
Fan X, Li M, Yang Q, Wan G, Li Y, Li N, Tang K. Morphology-controllable cellulose/chitosan sponge for deep wound hemostasis with surfactant and pore-foaming agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111408. [PMID: 33255011 DOI: 10.1016/j.msec.2020.111408] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 01/12/2023]
Abstract
Developing a facile and scalable synthetic route is important to explore the potential application of functional cellulose sponges. Here, a simple and efficient strategy to produce porous and hydrophilic cellulose sponges using surfactant and pore-foaming agent is demonstrated. The obtained cellulose sponges exhibit high water absorption capacity and rapid shape recoverability. The introduction of chitosan endows the chitosan/cellulose composite sponge with good mechanical properties. Inhibitory effects on Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa are particularly proved. Besides, the result of the dynamic whole blood clotting time indicated that the chitosan/cellulose composite sponge has better coagulation ability than those of traditional gauze and gelatin sponge. Animal experiment further showed that rapid hemostasis within 105 s could be reached with the composite sponge. Good biocompatibility of the composite sponge is proved by the results of hemocompatibility and cytotoxicity, indicating an excellent candidate as a rapid hemostatic material.
Collapse
Affiliation(s)
- Xialian Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengya Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Yang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guangming Wan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yijin Li
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450001, China
| | - Na Li
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023,China
| | - Keyong Tang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
31
|
Synthesis and characterization of curcumin loaded alginate microspheres for drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101796] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Kalirajan C, Palanisamy T. Bioengineered Hybrid Collagen Scaffold Tethered with Silver-Catechin Nanocomposite Modulates Angiogenesis and TGF-β Toward Scarless Healing in Chronic Deep Second Degree Infected Burns. Adv Healthc Mater 2020; 9:e2000247. [PMID: 32378364 DOI: 10.1002/adhm.202000247] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Management of burn wounds with diabetes and microbial infection is challenging in tissue engineering. The delayed wound healing further leads to scar formation in severe burn injury. Herein, a silver-catechin nanocomposite tethered collagen scaffold with angiogenic and antibacterial properties is developed to enable scarless healing in chronic wounds infected with Pseudomonas aeruginosa under diabetic conditions. Histological observations of the granulation tissues collected from an experimental rat model show characteristic structural organizations similar to normal skin, whereas the open wound and pristine collagen scaffold treated animals display elevated dermis with thick epidermal layer and lack of appendages. Epidermal thickness of the hybrid scaffold treated diabetic animals is lowered to 33 ± 2 µm compared to 90 ± 2 µm for pristine collagen scaffold treated groups. Further, the scar elevation index of 1.3 ± 0.1 estimated for the bioengineered scaffold treated diabetic animals is closer to the normal skin. Immunohistochemical analyses provide compelling evidence for the enhanced angiogenesis as well as downregulated transforming growth factor- β1 (TGF-β1) and upregulated TGF-β3 expressions in the hybrid scaffold treated animal groups. The insights from this study endorse the bioengineered collagen scaffolds for applications in tissue regeneration without scar in chronic burn wounds.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| | - Thanikaivelan Palanisamy
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| |
Collapse
|
33
|
Dill V, Mörgelin M. Biological dermal templates with native collagen scaffolds provide guiding ridges for invading cells and may promote structured dermal wound healing. Int Wound J 2020; 17:618-630. [PMID: 32045112 PMCID: PMC7949003 DOI: 10.1111/iwj.13314] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 01/10/2020] [Indexed: 01/14/2023] Open
Abstract
Dermal substitutes are of major importance in treating full thickness skin defects. They come in a variety of materials manufactured into various forms, such as films, hydrocolloids, hydrogels, sponges, membranes, and electrospun micro- and nanofibers. Bioactive dermal substitutes act in wound healing either by delivery of bioactive compounds or by being constructed from materials having endogenous activity. The healing success rate is highly determined by cellular and physiological processes at the host-biomaterial interface during crucial wound healing steps. Hence, it is important to design appropriate wound treatment strategies with the ability to work actively with tissues and cells to enhance healing. Therefore, in this study, we investigated biological dermal templates and their potential to stimulate natural cell adherence, guidance, and morphology. The most pronounced effect was observed in biomaterials with the highest content of native collagen networks. Cell attachment and proliferation were significantly enhanced on native collagen scaffolds. Cell morphology was more asymmetrical on such scaffolds, resembling native in vivo structures. Importantly, considerably lower expression of myofibroblast phenotype was observed on native collagen scaffolds. Our data suggest that this treatment strategy might be beneficial for the wound environment, with the potential to promote improved tissue regeneration and reduce abnormal scar formation.
Collapse
Affiliation(s)
- Veronika Dill
- Department of Clinical Sciences, Division of Infection MedicineLund UniversityLundSweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Division of Infection MedicineLund UniversityLundSweden
- Colzyx ABLundSweden
| |
Collapse
|
34
|
Sharifi S, Fathi N, Memar MY, Hosseiniyan Khatibi SM, Khalilov R, Negahdari R, Zununi Vahed S, Maleki Dizaj S. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother Res 2020; 34:1926-1946. [PMID: 32166813 DOI: 10.1002/ptr.6658] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/26/2020] [Accepted: 02/16/2020] [Indexed: 01/03/2023]
Abstract
Curcumin has been used in numerous anti-microbial research because of its low side effects and extensive traditional applications. Despite having a wide range of effects, the intrinsic physicochemical characteristics such as low bioavailability, poor water solubility, photodegradation, chemical instability, short half-life and fast metabolism of curcumin derivatives limit their pharmaceutical importance. To overcome these drawbacks and improve the therapeutic ability of curcuminoids, novel approaches have been attempted recently. Nanoparticulate drug delivery systems can increase the efficiency of curcumin in several diseases, especially infectious diseases. These innovative strategies include polymeric nanoparticles, hydrogels, nanoemulsion, nanocomposite, nanofibers, liposome, nanostructured lipid carriers (NLCs), polymeric micelles, quantum dots, polymeric blend films and nanomaterial-based combination of curcumin with other anti-bacterial agents. Integration of curcumin in these delivery systems has displayed to improve their solubility, bioavailability, transmembrane permeability, prolong plasma half-life, long-term stability, target-specific delivery and upgraded the therapeutic effects. In this review paper, a range of in vitro and in vivo studies have been critically discussed to explore the therapeutic viability and pharmaceutical significance of the nano-formulated delivery systems to elevate the anti-bacterial activities of curcumin and its derivatives.
Collapse
Affiliation(s)
- Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazanin Fathi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Rovshan Khalilov
- Department of Biophysics and Molecular Biology, Baku State University, Baku, Azerbaijan.,Institute of Radiation Problems, National Academy of Sciences of Azerbaijan, Baku, Azerbaijan.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Drohobych, Ukraine.,Joint Ukraine-Azerbaijan International Research and Education Center of Nanobiotechnology and Functional Nanosystems, Baku, Azerbaijan
| | - Ramin Negahdari
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
35
|
Ribeiro DML, Carvalho Júnior AR, Vale de Macedo GHR, Chagas VL, Silva LDS, Cutrim BDS, Santos DM, Soares BLL, Zagmignan A, de Miranda RDCM, de Albuquerque PBS, Nascimento da Silva LC. Polysaccharide-Based Formulations for Healing of Skin-Related Wound Infections: Lessons from Animal Models and Clinical Trials. Biomolecules 2019; 10:E63. [PMID: 31905975 PMCID: PMC7022374 DOI: 10.3390/biom10010063] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Skin injuries constitute a gateway for pathogenic bacteria that can be either part of tissue microbiota or acquired from the environmental. These microorganisms (such as Acinetobacter baumannii, Enterococcus faecalis,Pseudomonas aeruginosa, and Staphylococcus aureus) produce virulence factors that impair tissue integrity and sustain the inflammatory phase leading for establishment of chronic wounds. The high levels of antimicrobial resistance have limited the therapeutic arsenal for combatting skin infections. Thus, the treatment of non-healing chronic wounds is a huge challenge for health services worldwide, imposing great socio-economic damage to the affected individuals. This scenario has encouraged the use of natural polymers, such as polysaccharide, in order to develop new formulations (membranes, nanoparticles, hydrogels, scaffolds) to be applied in the treatment of skin infections. In this non-exhaustive review, we discuss the applications of polysaccharide-based formulations in the healing of infected wounds in animal models and clinical trials. The formulations discussed in this review were prepared using alginate, cellulose, chitosan, and hyaluronic acid. In addition to have healing actions per se, these polysaccharide formulations can act as transdermal drug delivery systems, controlling the release of active ingredients (such as antimicrobial and healing agents). The papers show that these polysaccharides-based formulations are efficient in controlling infection and improve the healing, even in chronic infected wounds. These data should positively impact the design of new dressings to treat skin infections.
Collapse
Affiliation(s)
- Diogo Marcelo Lima Ribeiro
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Alexsander Rodrigues Carvalho Júnior
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Gustavo Henrique Rodrigues Vale de Macedo
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Vitor Lopes Chagas
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Lucas dos Santos Silva
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Brenda da Silva Cutrim
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Deivid Martins Santos
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Bruno Luis Lima Soares
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Adrielle Zagmignan
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | - Rita de Cássia Mendonça de Miranda
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| | | | - Luís Cláudio Nascimento da Silva
- Programa de Pós-graduação, Universidade Ceuma, São Luís, Maranhão 65075–120, Brazil; (D.M.L.R.); (A.R.C.J.); (G.H.R.V.d.M.); (V.L.C.); (L.d.S.S.); (B.d.S.C.); (D.M.S.); (B.L.L.S.); (A.Z.); (R.d.C.M.d.M.)
| |
Collapse
|
36
|
Effects of Bilayer Nanofibrous Scaffolds Containing Curcumin/Lithospermi Radix Extract on Wound Healing in Streptozotocin-Induced Diabetic Rats. Polymers (Basel) 2019; 11:polym11111745. [PMID: 31653001 PMCID: PMC6918133 DOI: 10.3390/polym11111745] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Impaired growth factor production, angiogenic response, macrophage function, and collagen accumulation have been shown to delay wound healing. Delayed wound healing is a debilitating complication of diabetes that leads to significant morbidity. In this study, curcumin and Lithospermi radix (LR) extract, which are used in traditional Chinese herbal medicine, were added within nanofibrous membranes to improve wound healing in a streptozotocin (STZ)-induced diabetic rat model. Gelatin-based nanofibers, which were constructed with curcumin and LR extract at a flow rate of 0.1 mL/hour and an applied voltage of 20 kV, were electrospun onto chitosan scaffolds to produce bilayer nanofibrous scaffolds (GC/L/C). The wounds treated with GC/L/C exhibited a higher recovery rate and transforming growth factor-beta (TGF-β) expression in Western blot assays. The decreased levels of pro-inflammatory markers, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), provided evidence for the anti-inflammatory effects of GC/L/C treatment. Chronic wounds treated with GC/L/C achieved better performance with a 58 ± 7% increase in recovery rate on the seventh day. Based on its anti-inflammatory and wound-healing effects, the GC/L/C bilayer nanofibrous scaffolds can be potential materials for chronic wound treatment.
Collapse
|
37
|
Gaspar-Pintiliescu A, Stanciuc AM, Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int J Biol Macromol 2019; 138:854-865. [PMID: 31351963 DOI: 10.1016/j.ijbiomac.2019.07.155] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/15/2022]
Abstract
Skin wound dressings are commonly used to stimulate and enhance skin tissue repair. Even if wounds seem easy to repair for clinicians and to replicate in an in vitro set-up for scientists, chronic wounds remain currently an open challenge in skin tissue engineering for patients with complementary diseases. The seemingly simple process of skin healing hides a heterogenous sequence of events, specific timing, and high level of organization and coordination among the involved cell types. Taken together, all these aspects make wound healing a unique process, but we are not yet able to completely repair the chronic wounds or to reproduce them in vitro with high fidelity. This review highlights the main characteristics and properties of a natural polymer, which is widely used as biomaterial, namely collagen and of its denatured form, gelatin. Available wound dressings based on collagen/gelatin and proposed variants loaded with bioactive compounds derived from plants are presented. Applications of these composite biomaterials are discussed with emphasis on skin wound healing. A perspective on current issues is given in the light of future research. The emerging technologies support the development of innovative dressings based exclusively on natural constituents, either polymeric or bioactive compounds.
Collapse
Affiliation(s)
| | | | - Oana Craciunescu
- National Institute of R&D for Biological Sciences, Bucharest, Romania
| |
Collapse
|
38
|
Wu W, Wu J, Fu Q, Jin C, Guo F, Yan Q, Yang Q, Wu D, Yang Y, Yang G. Elaboration and characterization of curcumin-loaded Tri-CL-mPEG three-arm copolymeric nanoparticles by a microchannel technology. Int J Nanomedicine 2019; 14:4683-4695. [PMID: 31308653 PMCID: PMC6615023 DOI: 10.2147/ijn.s198217] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/08/2019] [Indexed: 12/30/2022] Open
Abstract
Purpose: Clinical applications of curcumin (Cur) have been greatly restricted due to its low solubility and poor systemic bioavailability. Three-arm amphiphilic copolymer tricarballylic acid-poly (ε-caprolactone)-methoxypolyethylene glycol (Tri-CL-mPEG) nanoparticles (NPs) were designed to improve the solubility and bioavailability of Cur. The present study adopted a microchannel system to precisely control the preparation of self-assembly polymeric NPs via liquid flow-focusing and gas displacing method. Methods: The amphiphilic three-arm copolymer Tri-CL-mPEG was synthesized and self-assembled into nearly spherical NPs, yielding Cur encapsulated into NP cores (Cur-NPs). The obtained NPs were evaluated for physicochemical properties, morphology, toxicity, cellular uptake by A549 cells, release in vitro, biodistribution, and pharmacokinetics in vivo. Results: Rapidly fabricated and isodispersed Cur-NPs prepared by this method had an average diameter of 116±3 nm and a polydispersity index of 0.197±0.008. The drug loading capacity and entrapment efficiency of Cur-NPs were 5.58±0.23% and 91.42±0.39%, respectively. In vitro release experiments showed sustained release of Cur, with cumulative release values of 40.1% and 66.1% at pH 7.4 and pH 5.0, respectively, after 10 days post-incubation. The results of cellular uptake, biodistribution, and in vivo pharmacokinetics experiments demonstrated that Cur-NPs exhibited better biocompatibility and bioavailability, while additionally enabling greater cellular uptake and prolonged circulation with possible spleen, lung, and kidney targeting effects when compared to the properties of free Cur. Conclusion: These results indicate that Tri-CL-mPEG NPs are promising in clinical applications as a controllable delivery system for hydrophobic drugs.
Collapse
Affiliation(s)
- Wenchao Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Jiangqing Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qiafan Fu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Chenhao Jin
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fangyuan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qinying Yan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Qingliang Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Danjun Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Gensheng Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China.,Research Institute of Pharmaceutical Particle Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
39
|
De France KJ, Badv M, Dorogin J, Siebers E, Panchal V, Babi M, Moran-Mirabal J, Lawlor M, Cranston ED, Hoare T. Tissue Response and Biodistribution of Injectable Cellulose Nanocrystal Composite Hydrogels. ACS Biomater Sci Eng 2019; 5:2235-2246. [PMID: 33405775 DOI: 10.1021/acsbiomaterials.9b00522] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interest in cellulose nanocrystal (CNC)-based hydrogels for drug delivery, tissue engineering, and other biomedical applications has rapidly expanded despite the minimal in vivo research reported to date. Herein, we assess both in vitro protein adsorption and cell adhesion as well as in vivo subcutaneous tissue responses and CNC biodistribution of injectable CNC-poly(oligoethylene glycol methacrylate) (POEGMA) hydrogels. Hydrogels with different PEG side chain lengths, CNC loadings, and with or without in situ magnetic alignment of the CNCs are compared. CNC loading has a minimal impact on protein adsorption but significantly increases cell adhesion. In vivo, both CNC-only and CNC-POEGMA injections largely stay at their subcutaneous injection site over one month, with minimal bioaccumulation of CNCs in any typical clearance organ. CNC-POEGMA hydrogels exhibit mild acute and chronic inflammatory responses, although significant fibroblast penetration was observed with the magnetically aligned hydrogels. Collectively, these results suggest that CNC-POEGMA hydrogels offer promise in practical biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Emily Siebers
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | | | | | | | - Michael Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Emily D Cranston
- Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, British Columbus V6T 1Z3, Canada
| | | |
Collapse
|
40
|
Mohammad IS, Hu H, Yin L, He W. Drug nanocrystals: Fabrication methods and promising therapeutic applications. Int J Pharm 2019; 562:187-202. [PMID: 30851386 DOI: 10.1016/j.ijpharm.2019.02.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
The drug nanocrystals (NCs) with unique physicochemical properties are now considered as a promising drug delivery system for poorly water-soluble drugs. So far >20 formulations of NCs have been approved in the market. In this review, we summarized recent advances of NCs with emphasis on their therapeutic applications based on administration route and disease states. At the end, we present a brief description of the future perspectives of NCs and their potential role as a promising drug delivery system. As a strategy for solubilization and bioavailability enhancement, the NCs have gained significant success. Besides this, the function of NCs is still far from developed. The emerging NC-based drug delivery approach would widen the applications of NCs in drug delivery and bio-medical field. Their in vitro and in vivo fate is extremely unclear; and the development of hybrid NCs with environment-sensitive fluorophores may assist to extend the scope of bio-imaging and provide better insight to their intracellular uptake kinetics, in vitro and in vivo.
Collapse
Affiliation(s)
- Imran Shair Mohammad
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China; School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Wei He
- Shanghai Dermatology Hospital, Shanghai 200443, PR China; Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
41
|
Ahangari N, Kargozar S, Ghayour-Mobarhan M, Baino F, Pasdar A, Sahebkar A, Ferns GAA, Kim HW, Mozafari M. Curcumin in tissue engineering: A traditional remedy for modern medicine. Biofactors 2019; 45:135-151. [PMID: 30537039 DOI: 10.1002/biof.1474] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/12/2018] [Indexed: 01/15/2023]
Abstract
Curcumin is the principal polyphenolic compound present in turmeric with broad applications in tissue engineering and regenerative medicine. It has some important inherent properties with the potential to facilitate tissue healing, including anti-inflammatory, anti-oxidant, and antibacterial activities. Therefore, curcumin has been used for the treatment of various damaged tissues, especially wound injuries. There are different forms of curcumin, among which nano-formulations are of a great importance in regenerative medicine. It is also important to design sophisticated delivery systems for controlled/localized delivery of curcumin to the target tissues and organs. Although there are many reports on the advantages of this compound, further research is required to fully explore its clinical usage. The review describes the physicochemical and biological properties of curcumin and the current state of the evidence on its applications in tissue engineering. © 2018 BioFactors, 45(2):135-151, 2019.
Collapse
Affiliation(s)
- Najmeh Ahangari
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Cardiovascular Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy
| | - Alireza Pasdar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A A Ferns
- Brighton and Sussex Medical School, Division of Medical Education, Rm 342, Mayfield House, University of Brighton, Brighton, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, South Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, South Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan, South Korea
| | - Masoud Mozafari
- Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Laghezza Masci V, Taddei A, Courant T, Tezgel O, Navarro F, Giorgi F, Mariolle D, Fausto A, Texier I. Characterization of Collagen/Lipid Nanoparticle–Curcumin Cryostructurates for Wound Healing Applications. Macromol Biosci 2019; 19:e1800446. [DOI: 10.1002/mabi.201800446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/01/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in BiologicalAgrifood and Forestry SystemsTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Anna‐Rita Taddei
- Section of Electron MicroscopyTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Thomas Courant
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Ozgül Tezgel
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Fabrice Navarro
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Franco Giorgi
- University of Pisa Lungarno Antonio Pacinotti, 43 56126 Pisa Italy
| | - Denis Mariolle
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| | - Anna‐Maria Fausto
- Department for Innovation in BiologicalAgrifood and Forestry SystemsTuscia University Largo dell'Universita 01100 Viterbo Italy
| | - Isabelle Texier
- Univ. Grenoble AlpesCEA‐LETI 17 rue des martyrs 38054 Grenoble cedex 9 France
| |
Collapse
|
43
|
Bacakova L, Pajorova J, Bacakova M, Skogberg A, Kallio P, Kolarova K, Svorcik V. Versatile Application of Nanocellulose: From Industry to Skin Tissue Engineering and Wound Healing. NANOMATERIALS 2019; 9:nano9020164. [PMID: 30699947 PMCID: PMC6410160 DOI: 10.3390/nano9020164] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 12/29/2022]
Abstract
Nanocellulose is cellulose in the form of nanostructures, i.e., features not exceeding 100 nm at least in one dimension. These nanostructures include nanofibrils, found in bacterial cellulose; nanofibers, present particularly in electrospun matrices; and nanowhiskers, nanocrystals, nanorods, and nanoballs. These structures can be further assembled into bigger two-dimensional (2D) and three-dimensional (3D) nano-, micro-, and macro-structures, such as nanoplatelets, membranes, films, microparticles, and porous macroscopic matrices. There are four main sources of nanocellulose: bacteria (Gluconacetobacter), plants (trees, shrubs, herbs), algae (Cladophora), and animals (Tunicata). Nanocellulose has emerged for a wide range of industrial, technology, and biomedical applications, namely for adsorption, ultrafiltration, packaging, conservation of historical artifacts, thermal insulation and fire retardation, energy extraction and storage, acoustics, sensorics, controlled drug delivery, and particularly for tissue engineering. Nanocellulose is promising for use in scaffolds for engineering of blood vessels, neural tissue, bone, cartilage, liver, adipose tissue, urethra and dura mater, for repairing connective tissue and congenital heart defects, and for constructing contact lenses and protective barriers. This review is focused on applications of nanocellulose in skin tissue engineering and wound healing as a scaffold for cell growth, for delivering cells into wounds, and as a material for advanced wound dressings coupled with drug delivery, transparency and sensorics. Potential cytotoxicity and immunogenicity of nanocellulose are also discussed.
Collapse
Affiliation(s)
- Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4-Krc, Czech Republic.
| | - Anne Skogberg
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Pasi Kallio
- BioMediTech Institute and Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, 33720 Tampere, Finland.
| | - Katerina Kolarova
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| | - Vaclav Svorcik
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6-Dejvice, Czech Republic.
| |
Collapse
|
44
|
Sheikhi A, Hayashi J, Eichenbaum J, Gutin M, Kuntjoro N, Khorsandi D, Khademhosseini A. Recent advances in nanoengineering cellulose for cargo delivery. J Control Release 2019; 294:53-76. [PMID: 30500355 PMCID: PMC6385607 DOI: 10.1016/j.jconrel.2018.11.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/16/2018] [Accepted: 11/25/2018] [Indexed: 12/26/2022]
Abstract
The recent decade has witnessed a growing demand to substitute synthetic materials with naturally-derived platforms for minimizing their undesirable footprints in biomedicine, environment, and ecosystems. Among the natural materials, cellulose, the most abundant biopolymer in the world with key properties, such as biocompatibility, biorenewability, and sustainability has drawn significant attention. The hierarchical structure of cellulose fibers, one of the main constituents of plant cell walls, has been nanoengineered and broken down to nanoscale building blocks, providing an infrastructure for nanomedicine. Microorganisms, such as certain types of bacteria, are another source of nanocelluloses known as bacterial nanocellulose (BNC), which benefit from high purity and crystallinity. Chemical and mechanical treatments of cellulose fibrils made up of alternating crystalline and amorphous regions have yielded cellulose nanocrystals (CNC), hairy CNC (HCNC), and cellulose nanofibrils (CNF) with dimensions spanning from a few nanometers up to several microns. Cellulose nanocrystals and nanofibrils may readily bind drugs, proteins, and nanoparticles through physical interactions or be chemically modified to covalently accommodate cargos. Engineering surface properties, such as chemical functionality, charge, area, crystallinity, and hydrophilicity, plays a pivotal role in controlling the cargo loading/releasing capacity and rate, stability, toxicity, immunogenicity, and biodegradation of nanocellulose-based delivery platforms. This review provides insights into the recent advances in nanoengineering cellulose crystals and fibrils to develop vehicles, encompassing colloidal nanoparticles, hydrogels, aerogels, films, coatings, capsules, and membranes, for the delivery of a broad range of bioactive cargos, such as chemotherapeutic drugs, anti-inflammatory agents, antibacterial compounds, and probiotics. SYNOPSIS: Engineering certain types of microorganisms as well as the hierarchical structure of cellulose fibers, one of the main building blocks of plant cell walls, has yielded unique families of cellulose-based nanomaterials, which have leveraged the effective delivery of bioactive molecules.
Collapse
Affiliation(s)
- Amir Sheikhi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Joel Hayashi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - James Eichenbaum
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Mark Gutin
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Nicole Kuntjoro
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Danial Khorsandi
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Ali Khademhosseini
- Department of Bioengineering, University of California - Los Angeles, 410 Westwood Plaza, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute (CNSI), University of California - Los Angeles, 570 Westwood Plaza, Los Angeles, CA 90095, USA; Department of Radiological Sciences, David Geffen School of Medicine, University of California - Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095, USA; Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, 5531 Boelter Hall, Los Angeles, CA 90095, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
45
|
Kasapoglu-Calik M, Ozdemir M. Synthesis and controlled release of curcumin-β-cyclodextrin inclusion complex from nanocomposite poly(N
-isopropylacrylamide/sodium alginate) hydrogels. J Appl Polym Sci 2019. [DOI: 10.1002/app.47554] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Meltem Kasapoglu-Calik
- Department of Chemical Engineering; Gebze Technical University; Gebze Kocaeli 41400 Turkey
- Department of Chemical Technology, Gedik Vocational School; Istanbul Gedik University; Istanbul 34913 Turkey
| | - Murat Ozdemir
- Department of Chemical Engineering; Gebze Technical University; Gebze Kocaeli 41400 Turkey
| |
Collapse
|
46
|
Afewerki S, Sheikhi A, Kannan S, Ahadian S, Khademhosseini A. Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng Transl Med 2019; 4:96-115. [PMID: 30680322 PMCID: PMC6336672 DOI: 10.1002/btm2.10124] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibility, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional groups that allow facile chemical modifications with other biomaterials or biomolecules. Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degradation, high viscosity, and reduced solubility in concentrated aqueous media have limited its applications and encouraged the development of gelatin-based composite hydrogels. The drawbacks of gelatin may be surmounted by synergistically combining it with a wide range of polysaccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM, which largely contains proteoglycans or glycoproteins. Moreover, gelatin-polysaccharide biomaterials benefit from mechanical resilience, high stability, low thermal expansion, improved hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound healing potential. Here, we discuss how combining gelatin and polysaccharides provides a promising approach for developing superior therapeutic biomaterials. We review gelatin-polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing an outlook for the future of this family of biomaterials as advanced natural therapeutics.
Collapse
Affiliation(s)
- Samson Afewerki
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
| | - Amir Sheikhi
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Soundarapandian Kannan
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Nanomedicine Division, Dept. of ZoologyPeriyar UniversitySalemTamil NaduIndia
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Division of Biomedical Engineering, Dept. of MedicineBrigham and Women's Hospital, Harvard Medical SchoolCambridgeMA 02142
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMA 02139
- Center for Minimally Invasive Therapeutics (C‐MIT)University of California‐Los AngelesLos AngelesCA 90095
- California NanoSystems Institute (CNSI)University of California‐Los AngelesLos AngelesCA 90095
- Dept. of BioengineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Radiological Sciences, David Geffen School of MedicineUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Chemical and Biomolecular EngineeringUniversity of California‐Los AngelesLos AngelesCA 90095
- Dept. of Bioindustrial Technologies, College of Animal Bioscience and TechnologyKonkuk UniversitySeoulRepublic of Korea
| |
Collapse
|
47
|
Nanocellulose Composite Biomaterials in Industry and Medicine. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Tang L, Hong B, Li T, Huang B. Development of bilayer films based on shellac and esterified cellulose nanocrystals for buccal drug delivery. CELLULOSE 2019; 26:1157-1167. [DOI: 10.1007/s10570-018-2114-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/07/2018] [Indexed: 01/03/2025]
|
49
|
Zhu Q, Jiang M, Liu Q, Yan S, Feng L, Lan Y, Shan G, Xue W, Guo R. Enhanced healing activity of burn wound infection by a dextran-HA hydrogel enriched with sanguinarine. Biomater Sci 2018; 6:2472-2486. [PMID: 30066700 DOI: 10.1039/c8bm00478a] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Burn wounds are associated with a series of risks, such as infection and pathologic scar tissue formation, which significantly delay wound healing and lead to complications. In this study, we successfully fabricated a dextran-hyaluronic acid (Dex-HA) hydrogel enriched with sanguinarine (SA) incorporated into gelatin microspheres (GMs), which had high porosity, good swelling ratio, enhanced NIH-3T3 fibroblast cell proliferation, and sustained SA release profile. The in vitro degradation results indicate that the SA/GMs/Dex-HA hydrogel can be degraded. The in vitro antibacterial tests showed that the SA/GMs/Dex-HA hydrogel can inhibit methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli). We evaluated the wound-healing effects and antibacterial properties of SA/GMs/Dex-HA hydrogels in a rat full-thickness burn infection model. The hematoxylin-eosin (H&E) and Masson's trichrome staining results of the SA/GMs/Dex-HA hydrogel showed that it improved re-epithelialization and enhanced extracellular matrix remodeling, and immunohistochemistry results showed that the expression of TGF-β1 and TNF-α was decreased, while the TGF-β3 expression was increased. Our findings suggest that the SA/GMs/Dex-HA hydrogel provides a potential way for infected burn treatment with high-quality and efficient scar inhibition.
Collapse
Affiliation(s)
- Qiyu Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tayeb AH, Amini E, Ghasemi S, Tajvidi M. Cellulose Nanomaterials-Binding Properties and Applications: A Review. Molecules 2018; 23:E2684. [PMID: 30340374 PMCID: PMC6222763 DOI: 10.3390/molecules23102684] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/03/2018] [Accepted: 10/13/2018] [Indexed: 02/07/2023] Open
Abstract
Cellulose nanomaterials (CNs) are of increasing interest due to their appealing inherent properties such as bio-degradability, high surface area, light weight, chirality and the ability to form effective hydrogen bonds across the cellulose chains or within other polymeric matrices. Extending CN self-assembly into multiphase polymer structures has led to useful end-results in a wide spectrum of products and countless innovative applications, for example, as reinforcing agent, emulsion stabilizer, barrier membrane and binder. In the current contribution, after a brief description of salient nanocellulose chemical structure features, its types and production methods, we move to recent advances in CN utilization as an ecofriendly binder in several disparate areas, namely formaldehyde-free hybrid composites and wood-based panels, papermaking/coating processes, and energy storage devices, as well as their potential applications in biomedical fields as a cost-effective and tissue-friendly binder for cartilage regeneration, wound healing and dental repair. The prospects of a wide range of hybrid materials that may be produced via nanocellulose is introduced in light of the unique behavior of cellulose once in nano dimensions. Furthermore, we implement some principles of colloidal and interfacial science to discuss the critical role of cellulose binding in the aforesaid fields. Even though the CN facets covered in this study by no means encompass the great amount of literature available, they may be regarded as the basis for future developments in the binder applications of these highly desirable materials.
Collapse
Affiliation(s)
- Ali H Tayeb
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA.
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME 04469, USA.
| | - Ezatollah Amini
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA.
| | - Shokoofeh Ghasemi
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA.
| | - Mehdi Tajvidi
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA.
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME 04469, USA.
| |
Collapse
|