1
|
Zhao J, Sarkar N, Ren Y, Pathak AP, Grayson WL. Engineering next-generation oxygen-generating scaffolds to enhance bone regeneration. Trends Biotechnol 2024:S0167-7799(24)00250-6. [PMID: 39343620 DOI: 10.1016/j.tibtech.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
In bone, an adequate oxygen (O2) supply is crucial during development, homeostasis, and healing. Oxygen-generating scaffolds (OGS) have demonstrated significant potential to enhance bone regeneration. However, the complexity of O2 delivery and signaling in vivo makes it challenging to tailor the design of OGS to precisely meet this biological requirement. We review recent advances in OGS and analyze persisting engineering and translational hurdles. We also discuss the potential of computational and machine learning (ML) models to facilitate the integration of novel imaging data with biological readouts and advanced biomanufacturing technologies. By elucidating how to tackle current challenges using cutting-edge technologies, we provide insights for transitioning from traditional to next-generation OGS to improve bone regeneration in patients.
Collapse
Affiliation(s)
- Jingtong Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Naboneeta Sarkar
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Yunke Ren
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA
| | - Arvind P Pathak
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Warren L Grayson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University, Baltimore, MD, USA; Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Lammers A, Hsu HH, Sundaram S, Gagnon KA, Kim S, Lee JH, Tung YC, Eyckmans J, Chen CS. Rapid Tissue Perfusion Using Sacrificial Percolation of Anisotropic Networks. MATTER 2024; 7:2184-2204. [PMID: 39221109 PMCID: PMC11360881 DOI: 10.1016/j.matt.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tissue engineering has long sought to rapidly generate perfusable vascularized tissues with vessel sizes spanning those seen in humans. Current techniques such as biological 3D printing (top-down) and cellular self-assembly (bottom-up) are resource intensive and have not overcome the inherent tradeoff between vessel resolution and assembly time, limiting their utility and scalability for engineering tissues. We present a flexible and scalable technique termed SPAN - Sacrificial Percolation of Anisotropic Networks, where a network of perfusable channels is created throughout a tissue in minutes, irrespective of its size. Conduits with length scales spanning arterioles to capillaries are generated using pipettable alginate fibers that interconnect above a percolation density threshold and are then degraded within constructs of arbitrary size and shape. SPAN is readily used within common tissue engineering processes, can be used to generate endothelial cell-lined vasculature in a multi-cell type construct, and paves the way for rapid assembly of perfusable tissues.
Collapse
Affiliation(s)
- Alex Lammers
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Subramanian Sundaram
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Keith A. Gagnon
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sudong Kim
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua H. Lee
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jeroen Eyckmans
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
3
|
Huynh GT, Tunny SS, Frith JE, Meagher L, Corrie SR. Organosilica Nanosensors for Monitoring Spatiotemporal Changes in Oxygen Levels in Bacterial Cultures. ACS Sens 2024; 9:2383-2394. [PMID: 38687178 DOI: 10.1021/acssensors.3c02747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Oxygen plays a central role in aerobic metabolism, and while many approaches have been developed to measure oxygen concentration in biological environments over time, monitoring spatiotemporal changes in dissolved oxygen levels remains challenging. To address this, we developed a ratiometric core-shell organosilica nanosensor for continuous, real-time optical monitoring of oxygen levels in biological environments. The nanosensors demonstrate good steady state characteristics (KpSV = 0.40 L/mg, R2 = 0.95) and respond reversibly to changes in oxygen concentration in buffered solutions and report similar oxygen level changes in response to bacterial cell growth (Escherichia coli) in comparison to a commercial bulk optode-based sensing film. We further demonstrated that the oxygen nanosensors could be distributed within a growing culture of E. coli and used to record oxygen levels over time and in different locations within a static culture, opening the possibility of spatiotemporal monitoring in complex biological systems.
Collapse
Affiliation(s)
- Gabriel T Huynh
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, VIC 3168, Australia
| | - Salma S Tunny
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jessica E Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| | - Simon R Corrie
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
4
|
Zhang Q, Inagaki NF, Chandel AKS, Yoshida H, Xiao D, Kamihira M, Hamada T, Sagisaka S, Kishikawa Y, Ito T. Development of Perfluoro Decalin/Fluorinated Polyimide Core-Shell Microparticles via SPG Membrane Emulsification Using Methyl Perfluoropropyl Ether Cosolvent. ACS OMEGA 2024; 9:21127-21135. [PMID: 38764690 PMCID: PMC11097379 DOI: 10.1021/acsomega.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Red blood cell-inspired perfluorocarbon-encapsulated core-shell particles have been developed for biomedical applications. Although the use of perfluorodecalin (FDC) is expected for core-shell particles owing to its high oxygen solubility, the low solubility of FDC in any organic solvent, owing to its fluorous properties, prevents its use in core-shell particles. In this study, a new cosolvent system composed of dichloromethane (DCM) and heptafluoropropyl methyl ether (HFPME) was found to dissolve both FDC and fluorinated polyimide (FPI) based on a systematic study using a phase diagram, achieving a homogeneous disperse phase for emulsification composed of oxygen-permeable FPI and oxygen-soluble FDC. Using this novel cosolvent system and Shirasu porous glass (SPG) membrane emulsification, FDC-encapsulated FPI shell microparticles were successfully prepared for the first time. In addition to oxygenation, demonstrated using hypoxia-responsive HeLa cells, the fabricated core-shell microparticles exhibited monodispersity, excellent stability, biocompatibility, and oxygen capacity.
Collapse
Affiliation(s)
- Qiming Zhang
- Department
of Chemical System Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Natsuko F. Inagaki
- Department
of Chemical System Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Arvind K. Singh Chandel
- Department
of Chemical System Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromi Yoshida
- Department
of Chemical System Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Da Xiao
- Department
of Chemical System Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Masamichi Kamihira
- Department
of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohito Hamada
- Technology
and Innovation Center, Daikin Industries
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Shigehito Sagisaka
- Technology
and Innovation Center, Daikin Industries
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Yosuke Kishikawa
- Technology
and Innovation Center, Daikin Industries
Ltd., 1-1 Nishi-Hitotsuya, Settsu, Osaka 566-8585, Japan
| | - Taichi Ito
- Department
of Chemical System Engineering, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
5
|
Accolla RP, Deller M, Lansberry TR, Simmons A, Liang JP, Patel SN, Jiang K, Stabler CL. 3D printed elastomeric biomaterial mitigates compaction during in vitro vasculogenesis. Acta Biomater 2023; 171:363-377. [PMID: 37739251 PMCID: PMC11146342 DOI: 10.1016/j.actbio.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
A key parameter for the success of most cellular implants is the formation of a complete and comprehensive intra-implant vessel network. Pre-vascularization, the generation of vessel structures in vitro prior to transplantation, provides accelerated implant perfusion via anastomosis, but scalability and ease of integration hinder clinical translation. For fibrin-based vasculogenesis approaches, the remodeling and degradation of the fragile, hydrogel matrix during the formation of vessel-like structures results in rapid, cell-mediated construct compaction leading to dense, capillary-like structures with ineffective network coverage. To resolve these challenges, vasculogenic hydrogels were embedded within a highly porous, biostable three-dimensional (3D) polydimethylsiloxane (PDMS) scaffold. Using reverse-casting of 3D-printed molds, scaffolds exhibited highly interconnected and reproducible pore structures. Pore size was optimized via in vivo screening of intra-device angiogenesis. The inclusion of the PDMS frame with vasculogenic hydrogels significantly reduced fibrin compaction in vitro, resulting in easily manipulated constructs with predictable dimensionality and increased surface area compared to fibrin hydrogel alone. Globally, vascular morphogenesis was altered by the PDMS frame, with significantly larger and less dense network structures. Vasculogenic proteomic evaluation showed a temporal impact of the addition of the PDMS frame, indicating altered cellular proliferation and migration signaling. This work establishes a platform for improving the generation of translational pre-vascularized networks for greater flexibility to meet the needs of clinically scaled, engineered tissues. STATEMENT OF SIGNIFICANCE: Competent intra-implant vascularization is a significant issue hindering the success of engineered tissues. Pre-vascularization approaches, whereby a vascular network is formed in vitro and subsequently implanted into the host to anastomose, is a promising approach but it is limited by the compacted, dense, and poorly functional microcapillary structures typically formed using soft hydrogels. Herein, we have uniquely addressed this challenge by adding a 3D printed PDMS-based open framework structure that serves to prevent hydrogel compaction. Globally, we observed distinct differences in overall construct geometry, vascular network density, compaction, and morphogenesis, indicating that this PDMS framework lead to elevated maturity of this in vitro network while retaining its global dimensions. Overall, this novel approach elevates the translational potential of pre-vascularized constructs.
Collapse
Affiliation(s)
- Robert P Accolla
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Madison Deller
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Taylor R Lansberry
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Amberlyn Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Jia-Pu Liang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Smit N Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Kaiyuan Jiang
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Department of Immunology and Pathology, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
6
|
Krishnan SR, Liu C, Bochenek MA, Bose S, Khatib N, Walters B, O’Keeffe L, Facklam A, Langer R, Anderson DG. A wireless, battery-free device enables oxygen generation and immune protection of therapeutic xenotransplants in vivo. Proc Natl Acad Sci U S A 2023; 120:e2311707120. [PMID: 37738292 PMCID: PMC10556620 DOI: 10.1073/pnas.2311707120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/10/2023] [Indexed: 09/24/2023] Open
Abstract
The immune isolation of cells within devices has the potential to enable long-term protein replacement and functional cures for a range of diseases, without requiring immune suppressive therapy. However, a lack of vasculature and the formation of fibrotic capsules around cell immune-isolating devices limits oxygen availability, leading to hypoxia and cell death in vivo. This is particularly problematic for pancreatic islet cells that have high O2 requirements. Here, we combine bioelectronics with encapsulated cell therapies to develop the first wireless, battery-free oxygen-generating immune-isolating device (O2-Macrodevice) for the oxygenation and immune isolation of cells in vivo. The system relies on electrochemical water splitting based on a water-vapor reactant feed, sustained by wireless power harvesting based on a flexible resonant inductive coupling circuit. As such, the device does not require pumping, refilling, or ports for recharging and does not generate potentially toxic side products. Through systematic in vitro studies with primary cell lines and cell lines engineered to secrete protein, we demonstrate device performance in preventing hypoxia in ambient oxygen concentrations as low as 0.5%. Importantly, this device has shown the potential to enable subcutaneous (SC) survival of encapsulated islet cells, in vivo in awake, freely moving, immune-competent animals. Islet transplantation in Type I Diabetes represents an important application space, and 1-mo studies in immune-competent animals with SC implants show that the O2-Macrodevice allows for survival and function of islets at high densities (~1,000 islets/cm2) in vivo without immune suppression and induces normoglycemia in diabetic animals.
Collapse
Affiliation(s)
- Siddharth R. Krishnan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Claudia Liu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Matthew A. Bochenek
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Suman Bose
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Nima Khatib
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Ben Walters
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Laura O’Keeffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
| | - Amanda Facklam
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Anesthesiology, Boston Children’s Hospital, Boston, MA02115
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
7
|
Kovacevic B, Ionescu CM, Jones M, Wagle SR, Lewkowicz M, Đanić M, Mikov M, Mooranian A, Al-Salami H. The Effect of Deoxycholic Acid on Chitosan-Enabled Matrices for Tissue Scaffolding and Injectable Nanogels. Gels 2022; 8:gels8060358. [PMID: 35735702 PMCID: PMC9222767 DOI: 10.3390/gels8060358] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 02/07/2023] Open
Abstract
The pathophysiology of a multitude of diseases is influenced by bioenergetic dysfunction. Healthy mitochondria are presented as essential for the regulation and function of multiple cell types, including the cells of relevance for this research: pancreatic beta cells, muscle cells, and liver cells. Hence, effects of hydrogels (particularly nanogels) on bioenergetics needs to be taken into account when designing optimum delivery matrices. Several polymers have been suggested for use in hydrogels and nanogels, with focus on chitosan due to its range of beneficial properties. Bile acids have emerged as beneficial excipients, including deoxycholic acid, which can increase membrane permeability of cells. Nanogels were manufactured containing various concentrations of chitosan and deoxycholic acid in addition to the staple sodium alginate. Nanogels then underwent an array of analysis including rheological studies and in vitro cell work assessing viability, hypoxia, and the bioenergetic profiles. Overall, deoxycholic acid showed enhanced gel strength although this resulted in slightly lower cell viability and impacted bioenergetic profiles. Results from this study showed the benefits of deoxycholic acid; however, this was found to be less suitable for cell delivery matrices and is perhaps more beneficial for drug-delivery systems.
Collapse
Affiliation(s)
- Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Michael Lewkowicz
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
| | - Maja Đanić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.Đ.); (M.M.)
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, 21101 Novi Sad, Serbia; (M.Đ.); (M.M.)
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
- Correspondence: (A.M.); (H.A.-S.)
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School and Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia; (B.K.); (C.M.I.); (M.J.); (S.R.W.); (M.L.)
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Perth, WA 6009, Australia
- Correspondence: (A.M.); (H.A.-S.)
| |
Collapse
|
8
|
Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res 2021; 40:69-94. [PMID: 36100335 PMCID: PMC9481949 DOI: 10.1016/j.jare.2021.12.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Biphasic calcium phosphates offer a chemically similar biomaterial to the natural bone, which can significantly accelerate bone formation and reconstruction. Robocasting is a suitable technique to produce porous scaffolds supporting cell viability, proliferation, and differentiation. This review discusses materials and methods utilized for BCP robocasting, considering recent advancements and existing challenges in using additives for bioink preparation. Commercialization and marketing approach, in-vitro and in-vivo evaluations, biologic responses, and post-processing steps are also investigated. Possible strategies and opportunities for the use of BCP toward injured bone regeneration along with clinical applications are discussed. The study proposes that BCP possesses an acceptable level of bone substituting, considering its challenges and struggles.
Background Aim of review Key scientific concepts of review
Collapse
|
9
|
A therapeutic vascular conduit to support in vivo cell-secreted therapy. NPJ Regen Med 2021; 6:40. [PMID: 34326344 PMCID: PMC8322381 DOI: 10.1038/s41536-021-00150-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 11/08/2022] Open
Abstract
A significant barrier to implementation of cell-based therapies is providing adequate vascularization to provide oxygen and nutrients. Here we describe an approach for cell transplantation termed the Therapeutic Vascular Conduit (TVC), which uses an acellular vessel as a scaffold for a hydrogel sheath containing cells designed to secrete a therapeutic protein. The TVC can be directly anastomosed as a vascular graft. Modeling supports the concept that the TVC allows oxygenated blood to flow in close proximity to the transplanted cells to prevent hypoxia. As a proof-of-principle study, we used erythropoietin (EPO) as a model therapeutic protein. If implanted as an arteriovenous vascular graft, such a construct could serve a dual role as an EPO delivery platform and hemodialysis access for patients with end-stage renal disease. When implanted into nude rats, TVCs containing EPO-secreting fibroblasts were able to increase serum EPO and hemoglobin levels for up to 4 weeks. However, constitutive EPO expression resulted in macrophage infiltration and luminal obstruction of the TVC, thus limiting longer-term efficacy. Follow-up in vitro studies support the hypothesis that EPO also functions to recruit macrophages. The TVC is a promising approach to cell-based therapeutic delivery that has the potential to overcome the oxygenation barrier to large-scale cellular implantation and could thus be used for a myriad of clinical disorders. However, a complete understanding of the biological effects of the selected therapeutic is absolutely essential.
Collapse
|
10
|
Recent advances in tissue engineering and anticancer modalities with photosynthetic microorganisms as potent oxygen generators. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
11
|
Liu L, Peng Z, Wang C, Wang C, Liu C, Zhu L, Tang C. Effect of synthetic oxygen-generating system on cell survival under hypoxic condition in vitro. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2021; 32:967-979. [PMID: 33482710 DOI: 10.1080/09205063.2021.1878806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Abstract
A significant challenge in the tissue engineering of injured sites is the lack of vascularization in the engineered sites due to insufficient oxygen supply. A scaffolding system is required to support seeded cells as vascularization develops. In this study, we examined the effects of hypoxic conditions and oxygen release on cell survival in a synthetic system. We developed a three-dimensional system using CaO2/poly(lactic-co-glycolic acid) microspheres suspended in a hydrogel. The system material was evaluated using stem cells under hypoxic conditions alongside controls to evaluate its oxygen-generating potential over a period of 21 days. The hydrogel acted as a flexible carrier supporting cell attachment and growth, protecting microspheres, and prolonging oxygen release. The system generated oxygen and supported cell growth, which are together expected to promote stem cell survival and growth in the weeks following implantation.
Collapse
Affiliation(s)
- Liangle Liu
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ziyue Peng
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenjian Wang
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengqiang Wang
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lixin Zhu
- Department of Spinal Surgery, Orthopaedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chengxuan Tang
- Department of Spinal Surgery, Rui'an People's Hospital & the third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Affiliation(s)
- Danni Zhong
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Zhen Du
- Institute of Translational Medicine Zhejiang University Hangzhou China
| | - Min Zhou
- The Fourth Affiliated Hospital Zhejiang University School of Medicine Jinhua China
- Institute of Translational Medicine Zhejiang University Hangzhou China
- State Key Laboratory of Modern Optical Instrumentations Zhejiang University Hangzhou China
| |
Collapse
|
13
|
Roy V, Magne B, Vaillancourt-Audet M, Blais M, Chabaud S, Grammond E, Piquet L, Fradette J, Laverdière I, Moulin VJ, Landreville S, Germain L, Auger FA, Gros-Louis F, Bolduc S. Human Organ-Specific 3D Cancer Models Produced by the Stromal Self-Assembly Method of Tissue Engineering for the Study of Solid Tumors. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6051210. [PMID: 32352002 PMCID: PMC7178531 DOI: 10.1155/2020/6051210] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/07/2020] [Accepted: 02/28/2020] [Indexed: 12/24/2022]
Abstract
Cancer research has considerably progressed with the improvement of in vitro study models, helping to understand the key role of the tumor microenvironment in cancer development and progression. Over the last few years, complex 3D human cell culture systems have gained much popularity over in vivo models, as they accurately mimic the tumor microenvironment and allow high-throughput drug screening. Of particular interest, in vitrohuman 3D tissue constructs, produced by the self-assembly method of tissue engineering, have been successfully used to model the tumor microenvironment and now represent a very promising approach to further develop diverse cancer models. In this review, we describe the importance of the tumor microenvironment and present the existing in vitro cancer models generated through the self-assembly method of tissue engineering. Lastly, we highlight the relevance of this approach to mimic various and complex tumors, including basal cell carcinoma, cutaneous neurofibroma, skin melanoma, bladder cancer, and uveal melanoma.
Collapse
Affiliation(s)
- Vincent Roy
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Brice Magne
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Maude Vaillancourt-Audet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Mathieu Blais
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Stéphane Chabaud
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Emil Grammond
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
| | - Léo Piquet
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
| | - Julie Fradette
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Isabelle Laverdière
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval and CHU de Québec-Université Laval Research Center, Oncology Division, Québec, QC, Canada
| | - Véronique J. Moulin
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Solange Landreville
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Centre de Recherche sur le Cancer de l'Université Laval, Québec, QC, Canada
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Lucie Germain
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François A. Auger
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - François Gros-Louis
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| | - Stéphane Bolduc
- Centre de Recherche du CHU de Québec-Université Laval, Axe Médecine Régénératrice, Québec, QC, Canada
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
14
|
3D-Printing of Hierarchically Designed and Osteoconductive Bone Tissue Engineering Scaffolds. MATERIALS 2020; 13:ma13081836. [PMID: 32295064 PMCID: PMC7215341 DOI: 10.3390/ma13081836] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/28/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
In Bone Tissue Engineering (BTE), autologous bone-regenerative cells are combined with a scaffold for large bone defect treatment (LBDT). Microporous, polylactic acid (PLA) scaffolds showed good healing results in small animals. However, transfer to large animal models is not easily achieved simply by upscaling the design. Increasing diffusion distances have a negative impact on cell survival and nutrition supply, leading to cell death and ultimately implant failure. Here, a novel scaffold architecture was designed to meet all requirements for an advanced bone substitute. Biofunctional, porous subunits in a load-bearing, compression-resistant frame structure characterize this approach. An open, macro- and microporous internal architecture (100 µm-2 mm pores) optimizes conditions for oxygen and nutrient supply to the implant's inner areas by diffusion. A prototype was 3D-printed applying Fused Filament Fabrication using PLA. After incubation with Saos-2 (Sarcoma osteogenic) cells for 14 days, cell morphology, cell distribution, cell survival (fluorescence microscopy and LDH-based cytotoxicity assay), metabolic activity (MTT test), and osteogenic gene expression were determined. The adherent cells showed colonization properties, proliferation potential, and osteogenic differentiation. The innovative design, with its porous structure, is a promising matrix for cell settlement and proliferation. The modular design allows easy upscaling and offers a solution for LBDT.
Collapse
|
15
|
Coy R, Al-Badri G, Kayal C, O'Rourke C, Kingham PJ, Phillips JB, Shipley RJ. Combining in silico and in vitro models to inform cell seeding strategies in tissue engineering. J R Soc Interface 2020; 17:20190801. [PMID: 32208821 DOI: 10.1098/rsif.2019.0801] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The seeding density of therapeutic cells in engineered tissue impacts both cell survival and vascularization. Excessively high seeded cell densities can result in increased death and thus waste of valuable cells, whereas lower seeded cell densities may not provide sufficient support for the tissue in vivo, reducing efficacy. Additionally, the production of growth factors by therapeutic cells in low oxygen environments offers a way of generating growth factor gradients, which are important for vascularization, but hypoxia can also induce unwanted levels of cell death. This is a complex problem that lends itself to a combination of computational modelling and experimentation. Here, we present a spatio-temporal mathematical model parametrized using in vitro data capable of simulating the interactions between a therapeutic cell population, oxygen concentrations and vascular endothelial growth factor (VEGF) concentrations in engineered tissues. Simulations of collagen nerve repair constructs suggest that specific seeded cell densities and non-uniform spatial distributions of seeded cells could enhance cell survival and the generation of VEGF gradients. These predictions can now be tested using targeted experiments.
Collapse
Affiliation(s)
- R Coy
- CoMPLEX, University College London, London, UK.,UCL Centre for Nerve Engineering, University College London, London, UK
| | - G Al-Badri
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Mathematics, University College London, London, UK
| | - C Kayal
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Mechanical Engineering, University College London, London, UK
| | - C O'Rourke
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London, London, UK
| | - P J Kingham
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - J B Phillips
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Pharmacology, UCL School of Pharmacy, University College London, London, UK
| | - R J Shipley
- UCL Centre for Nerve Engineering, University College London, London, UK.,Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
16
|
Ma B, Li M, Fuchs S, Bischoff I, Hofmann A, Unger RE, Kirkpatrick CJ. Short‐term hypoxia promotes vascularization in co‐culture system consisting of primary human osteoblasts and outgrowth endothelial cells. J Biomed Mater Res A 2019; 108:7-18. [DOI: 10.1002/jbm.a.36786] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 01/23/2023]
Affiliation(s)
- Bin Ma
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
- Medical, Molecular and Forensic SciencesMurdoch University Murdoch Western Australia Australia
| | - Ming Li
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Sabine Fuchs
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
- Experimental Trauma SurgeryUniversity Medical Center Schleswig‐Holstein Kiel Kiel Germany
| | - Iris Bischoff
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Alexander Hofmann
- Department of Trauma SurgeryUniversity Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Ronald E. Unger
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| | - Charles J. Kirkpatrick
- Institute of Pathology, University Medical Centre of the Johannes Gutenberg University Mainz Mainz Germany
| |
Collapse
|
17
|
Newland H, Eigel D, Rosser AE, Werner C, Newland B. Oxygen producing microscale spheres affect cell survival in conditions of oxygen-glucose deprivation in a cell specific manner: implications for cell transplantation. Biomater Sci 2018; 6:2571-2577. [PMID: 30132477 PMCID: PMC6157640 DOI: 10.1039/c8bm00490k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/27/2018] [Indexed: 12/31/2022]
Abstract
This study outlines the synthesis of microscale oxygen producing spheres, which, when used in conjunction with catalase, can raise the dissolved oxygen content of cell culture media for 16-20 hours. In conditions of oxygen and glucose deprivation, designed to mimic the graft environment in vivo, the spheres rescue SH-SY5Y cells and meschymal stem cells, showing that oxygen producing biomaterials may hold potential to improve the survival of cells post-transplantation.
Collapse
Affiliation(s)
- Heike Newland
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
| | - Dimitri Eigel
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
| | - Anne E. Rosser
- Brain Repair Group
, School of Biosciences
, Cardiff University
,
CF10 3AX
, UK
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
| | - Ben Newland
- Leibniz Institute of Polymer Research Dresden (IPF)
,
Hohe Strasse 6
, 01069 Dresden
, Germany
- School of Pharmacy and Pharmaceutical Sciences
, Cardiff University
,
CF10 3NB
, UK
.
| |
Collapse
|
18
|
Gleadall A, Visscher D, Yang J, Thomas D, Segal J. Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance. BURNS & TRAUMA 2018; 6:19. [PMID: 29988731 PMCID: PMC6029169 DOI: 10.1186/s41038-018-0121-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Material extrusion additive manufacturing has rapidly grown in use for tissue engineering research since its adoption in the year 2000. It has enabled researchers to produce scaffolds with intricate porous geometries that were not feasible with traditional manufacturing processes. Researchers can control the structural geometry through a wide range of customisable printing parameters and design choices including material, print path, temperature, and many other process parameters. Currently, the impact of these choices is not fully understood. This review focuses on how the position and orientation of extruded filaments, which sometimes referred to as the print path, lay-down pattern, or simply “scaffold design”, affect scaffold properties and biological performance. By analysing trends across multiple studies, new understanding was developed on how filament position affects mechanical properties. Biological performance was also found to be affected by filament position, but a lack of consensus between studies indicates a need for further research and understanding. In most research studies, scaffold design was dictated by capabilities of additive manufacturing software rather than free-form design of structural geometry optimised for biological requirements. There is scope for much greater application of engineering innovation to additive manufacture novel geometries. To achieve this, better understanding of biological requirements is needed to enable the effective specification of ideal scaffold geometries.
Collapse
Affiliation(s)
- Andrew Gleadall
- 1Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU UK
| | - Dafydd Visscher
- Department of Plastic, Reconstructive and Hand Surgery, VU University Medical Center, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jing Yang
- 3Faculty of Science, School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Daniel Thomas
- 3Dynamic Systems, Heol Ty Gwyn Industrial Estate, Bridgend, CF34 0BQ UK
| | - Joel Segal
- 5Advanced Manufacturing Technology Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
19
|
Decellularized Diaphragmatic Muscle Drives a Constructive Angiogenic Response In Vivo. Int J Mol Sci 2018; 19:ijms19051319. [PMID: 29710813 PMCID: PMC5983670 DOI: 10.3390/ijms19051319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/13/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle tissue engineering (TE) aims to efficiently repair large congenital and acquired defects. Biological acellular scaffolds are considered a good tool for TE, as decellularization allows structural preservation of tissue extracellular matrix (ECM) and conservation of its unique cytokine reservoir and the ability to support angiogenesis, cell viability, and proliferation. This represents a major advantage compared to synthetic scaffolds, which can acquire these features only after modification and show limited biocompatibility. In this work, we describe the ability of a skeletal muscle acellular scaffold to promote vascularization both ex vivo and in vivo. Specifically, chicken chorioallantoic membrane assay and protein array confirmed the presence of pro-angiogenic molecules in the decellularized tissue such as HGF, VEGF, and SDF-1α. The acellular muscle was implanted in BL6/J mice both subcutaneously and ortotopically. In the first condition, the ECM-derived scaffold appeared vascularized 7 days post-implantation. When the decellularized diaphragm was ortotopically applied, newly formed blood vessels containing CD31+, αSMA+, and vWF+ cells were visible inside the scaffold. Systemic injection of Evans Blue proved function and perfusion of the new vessels, underlying a tissue-regenerative activation. On the contrary, the implantation of a synthetic matrix made of polytetrafluoroethylene used as control was only surrounded by vWF+ cells, with no cell migration inside the scaffold and clear foreign body reaction (giant cells were visible). The molecular profile and the analysis of macrophages confirmed the tendency of the synthetic scaffold to enhance inflammation instead of regeneration. In conclusion, we identified the angiogenic potential of a skeletal muscle-derived acellular scaffold and the pro-regenerative environment activated in vivo, showing clear evidence that the decellularized diaphragm is a suitable candidate for skeletal muscle tissue engineering and regeneration.
Collapse
|
20
|
Figueiredo L, Pace R, D'Arros C, Réthoré G, Guicheux J, Le Visage C, Weiss P. Assessing glucose and oxygen diffusion in hydrogels for the rational design of 3D stem cell scaffolds in regenerative medicine. J Tissue Eng Regen Med 2018; 12:1238-1246. [DOI: 10.1002/term.2656] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/17/2018] [Accepted: 02/17/2018] [Indexed: 12/14/2022]
Affiliation(s)
- L. Figueiredo
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton; Université de Nantes, ONIRIS; Nantes France
- UFR Odontologie; Université de Nantes; Nantes France
| | - R. Pace
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton; Université de Nantes, ONIRIS; Nantes France
- UFR Odontologie; Université de Nantes; Nantes France
| | - C. D'Arros
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton; Université de Nantes, ONIRIS; Nantes France
- UFR Odontologie; Université de Nantes; Nantes France
| | - G. Réthoré
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton; Université de Nantes, ONIRIS; Nantes France
- UFR Odontologie; Université de Nantes; Nantes France
| | - J. Guicheux
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton; Université de Nantes, ONIRIS; Nantes France
- UFR Odontologie; Université de Nantes; Nantes France
- CHU Nantes, PHU 4 OTONN; Nantes France
| | - C. Le Visage
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton; Université de Nantes, ONIRIS; Nantes France
- UFR Odontologie; Université de Nantes; Nantes France
| | - P. Weiss
- Inserm, UMR 1229, RMeS, Regenerative Medicine and Skeleton; Université de Nantes, ONIRIS; Nantes France
- UFR Odontologie; Université de Nantes; Nantes France
- CHU Nantes, PHU 4 OTONN; Nantes France
| |
Collapse
|
21
|
McQuilling JP, Opara EC. Methods for Incorporating Oxygen-Generating Biomaterials into Cell Culture and Microcapsule Systems. Methods Mol Biol 2017; 1479:135-141. [PMID: 27738932 DOI: 10.1007/978-1-4939-6364-5_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A major obstacle to long-term performance of tissue construct implants in regenerative medicine is the inherent hypoxia to which cells in the engineered construct are exposed prior to vascularization of the implant. Various approaches are currently being designed to address this problem. An emerging area of interest on this issue is the use of peroxide-based materials to generate oxygen during the critical period of extended hypoxia that occurs from the time cells are in culture waiting to be used in tissue engineering devices through the immediate post-implant period. In this chapter we provide protocols that we have developed for using these chemical oxygen generators in cell culture and tissue constructs as illustrated by pancreatic islet cell microencapsulation.
Collapse
Affiliation(s)
- John Patrick McQuilling
- Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC, 27157, USA
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC, 27157, USA
| | - Emmanuel C Opara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering & Sciences (SBES), Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
22
|
Crowley C, Klanrit P, Butler CR, Varanou A, Platé M, Hynds RE, Chambers RC, Seifalian AM, Birchall MA, Janes SM. Surface modification of a POSS-nanocomposite material to enhance cellular integration of a synthetic bioscaffold. Biomaterials 2016; 83:283-93. [PMID: 26790147 PMCID: PMC4762251 DOI: 10.1016/j.biomaterials.2016.01.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 12/27/2015] [Accepted: 01/01/2016] [Indexed: 12/20/2022]
Abstract
Polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) is a versatile nanocomposite biomaterial with growing applications as a bioscaffold for tissue engineering. Integration of synthetic implants with host tissue can be problematic but could be improved by topographical modifications. We describe optimization of POSS-PCU by dispersion of porogens (sodium bicarbonate (NaHCO3), sodium chloride (NaCl) and sucrose) onto the material surface, with the principle aim of increasing surface porosity, thus providing additional opportunities for improved cellular and vascular ingrowth. We assess the effect of the porogens on the material's mechanical strength, surface chemistry, wettability and cytocompatibilty. Surface porosity was characterized by scanning electron microscopy (SEM). There was no alteration in surface chemistry and wettability and only modest changes in mechanical properties were detected. The size of porogens correlated well with the porosity of the construct produced and larger porogens improved interconnectivity of spaces within constructs. Using primary human bronchial epithelial cells (HBECs) we demonstrate moderate in vitro cytocompatibility for all surface modifications; however, larger pores resulted in cellular aggregation. These cells were able to differentiate on POSS-PCU scaffolds. Implantation of the scaffold in vivo demonstrated that larger pore sizes favor cellular integration and vascular ingrowth. These experiments demonstrate that surface modification with large porogens can improve POSS-PCU nanocomposite scaffold integration and suggest the need to strike a balance between the non-porous surfaces required for epithelial coverage and the porous structure required for integration and vascularization of synthetic scaffolds in future construct design.
Collapse
Affiliation(s)
- Claire Crowley
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK; UCL Centre of Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust Hospital and University College London, London, UK
| | - Poramate Klanrit
- UCL Centre of Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust Hospital and University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Aikaterini Varanou
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Manuela Platé
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK; Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, UCL Respiratory, University College London, London, UK
| | - Alexander M Seifalian
- UCL Centre of Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, Royal Free London NHS Foundation Trust Hospital and University College London, London, UK
| | - Martin A Birchall
- UCL Ear Institute, Royal National Throat Nose and Ear Hospital and University College London, London, UK.
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK.
| |
Collapse
|
23
|
Chávez MN, Schenck TL, Hopfner U, Centeno-Cerdas C, Somlai-Schweiger I, Schwarz C, Machens HG, Heikenwalder M, Bono MR, Allende ML, Nickelsen J, Egaña JT. Towards autotrophic tissue engineering: Photosynthetic gene therapy for regeneration. Biomaterials 2016; 75:25-36. [DOI: 10.1016/j.biomaterials.2015.10.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 02/06/2023]
|
24
|
Paquet J, Deschepper M, Moya A, Logeart-Avramoglou D, Boisson-Vidal C, Petite H. Oxygen Tension Regulates Human Mesenchymal Stem Cell Paracrine Functions. Stem Cells Transl Med 2015; 4:809-21. [PMID: 25979862 DOI: 10.5966/sctm.2014-0180] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED : Mesenchymal stem cells (MSCs) have captured the attention and research endeavors of the scientific world because of their differentiation potential. However, there is accumulating evidence suggesting that the beneficial effects of MSCs are predominantly due to the multitude of bioactive mediators secreted by these cells. Because the paracrine potential of MSCs is closely related to their microenvironment, the present study investigated and characterized select aspects of the human MSC (hMSC) secretome and assessed its in vitro and in vivo bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. In contrast to supernatant conditioned media (CM) obtained from hMSCs cultured at either 5% or 21% of O2, CM from hMSCs cultured under near anoxia exhibited significantly (p < .05) enhanced chemotactic and proangiogenic properties and a significant (p < .05) decrease in the inflammatory mediator content. An analysis of the hMSC secretome revealed a specific profile under near anoxia: hMSCs increase their paracrine expression of the angiogenic mediators vascular endothelial growth factor (VEGF)-A, VEGF-C, interleukin-8, RANTES, and monocyte chemoattractant protein 1 but significantly decrease expression of several inflammatory/immunomodulatory mediators. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine and could contribute to improving the efficacy of such therapies. SIGNIFICANCE The present study investigated and characterized select aspects of the human mesenchymal stem cell (hMSC) secretome and assessed its in vitro and in vivo biological bioactivity as a function of oxygen tension, specifically near anoxia (0.1% O2) and hypoxia (5% O2), conditions that reflect the environment to which MSCs are exposed during MSC-based therapies in vivo. The present study provided the first evidence of a shift of the hMSC cytokine signature induced by oxygen tension, particularly near anoxia (0.1% O2). Conditioned media obtained from hMSCs cultured under near anoxia exhibited significantly enhanced chemotactic and proangiogenic properties and a significant decrease in the inflammatory mediator content. These findings provide new evidence that elucidates aspects of great importance for the use of MSCs in regenerative medicine, could contribute to improving the efficacy of such therapies, and most importantly highlighted the interest in using conditioned media in therapeutic modalities.
Collapse
Affiliation(s)
- Joseph Paquet
- Laboratoire de Bioingénierie et Bioimagerie Ostéoarticulaire Unité Mixte de Recherche Centre National de la Recherche Scientifique, Université Denis-Diderot, Faculté de Médecine Lariboisiére-Saint-Louis, Paris, France; Unité Mixte de Rechrche S1140, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Mickael Deschepper
- Laboratoire de Bioingénierie et Bioimagerie Ostéoarticulaire Unité Mixte de Recherche Centre National de la Recherche Scientifique, Université Denis-Diderot, Faculté de Médecine Lariboisiére-Saint-Louis, Paris, France; Unité Mixte de Rechrche S1140, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Adrien Moya
- Laboratoire de Bioingénierie et Bioimagerie Ostéoarticulaire Unité Mixte de Recherche Centre National de la Recherche Scientifique, Université Denis-Diderot, Faculté de Médecine Lariboisiére-Saint-Louis, Paris, France; Unité Mixte de Rechrche S1140, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Delphine Logeart-Avramoglou
- Laboratoire de Bioingénierie et Bioimagerie Ostéoarticulaire Unité Mixte de Recherche Centre National de la Recherche Scientifique, Université Denis-Diderot, Faculté de Médecine Lariboisiére-Saint-Louis, Paris, France; Unité Mixte de Rechrche S1140, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Catherine Boisson-Vidal
- Laboratoire de Bioingénierie et Bioimagerie Ostéoarticulaire Unité Mixte de Recherche Centre National de la Recherche Scientifique, Université Denis-Diderot, Faculté de Médecine Lariboisiére-Saint-Louis, Paris, France; Unité Mixte de Rechrche S1140, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| | - Hervé Petite
- Laboratoire de Bioingénierie et Bioimagerie Ostéoarticulaire Unité Mixte de Recherche Centre National de la Recherche Scientifique, Université Denis-Diderot, Faculté de Médecine Lariboisiére-Saint-Louis, Paris, France; Unité Mixte de Rechrche S1140, Faculté des Sciences Pharmaceutiques et Biologiques, Paris, France
| |
Collapse
|
25
|
Using bimodal MRI/fluorescence imaging to identify host angiogenic response to implants. Proc Natl Acad Sci U S A 2015; 112:5147-52. [PMID: 25825771 DOI: 10.1073/pnas.1502232112] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Therapies that promote angiogenesis have been successfully applied using various combinations of proangiogenic factors together with a biodegradable delivery vehicle. In this study we used bimodal noninvasive monitoring to show that the host response to a proangiogenic biomaterial can be drastically affected by the mode of implantation and the surface area-to-volume ratio of the implant material. Fluorescence/MRI probes were covalently conjugated to VEGF-bearing biodegradable PEG-fibrinogen hydrogel implants and used to document the in vivo degradation and liberation of bioactive constituents in an s.c. rat implantation model. The hydrogel biodegradation and angiogenic host response with three types of VEGF-bearing implant configurations were compared: preformed cylindrical plugs, preformed injectable microbeads, and hydrogel precursor, injected and polymerized in situ. Although all three were made with identical amounts of precursor constituents, the MRI data revealed that in situ polymerized hydrogels were fully degraded within 2 wk; microbead degradation was more moderate, and plugs degraded significantly more slowly than the other configurations. The presence of hydrogel degradation products containing the fluorescent label in the surrounding tissues revealed a distinct biphasic release profile for each type of implant configuration. The purported in vivo VEGF release profile from the microbeads resulted in highly vascularized s.c. tissue containing up to 16-fold more capillaries in comparison with controls. These findings demonstrate that the configuration of an implant can play an important role not only in the degradation and resorption properties of the materials, but also in consequent host angiogenic response.
Collapse
|
26
|
Damous LL, Nakamuta JS, Soares JM, Maciel GAR, Simões RDS, Montero EFDS, Krieger JE, Baracat EC. Females transplanted with ovaries subjected to hypoxic preconditioning show impair of ovarian function. J Ovarian Res 2014; 7:34. [PMID: 24655551 PMCID: PMC3994570 DOI: 10.1186/1757-2215-7-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/10/2014] [Indexed: 12/22/2022] Open
Abstract
Background Cryopreservation of the ovarian tissue has shown promising results. However, there remain controversial issues such as the short half-life of grafts. In this aspect, there are some evidences that preconditioning the ovarian tissue before transplantation is beneficial. Objective To determine the effect of hypoxic preconditioning in vitro on ovarian tissue prior to transplantation. Methods Eighteen female adult Wistar rats, were sorted into three experimental groups. Ovaries were maintained in DMEM low glucose serum free at 37°C with 5% CO2, at atmospheric oxigen concentration (normoxia) or 1% O2 (hypoxia) for 16 hours. Oxigen concentration was determined by injection of nitrogen in the incubator. Animals submitted to ovarian transplantation immediately after oophorectomy were the Control Group (C). After this, the ovaries were implanted in the retroperitoneum with nonabsorbable suture and animals evaluated for thirty days after transplantation. Beginning on postoperative (PO) day 11, a daily collection of vaginal smear was carried out. Analyses comprised morphological, morphometric (counting ovarian follicles and corpora lutea) and immunohistochemistry for cleaved caspase-3 (apoptosis). Results In normoxia and control groups all animals recovered their estrous cycles, while in the hypoxia group, two animals did not ovulate but, among those which did, resumption took longer than in the other groups (p < 0.05). The number of ovarian follicles and corpora lutea decreased significantly in the hypoxia group when compared to the other two groups (p < 0.001) and apoptosis was increased in the few ovarian follicles which remained viable (p < 0.001). Conclusion The hypoxic preconditioning in vitro was not beneficial to the graft and worsened their viability, compromising its functionality or delaying the return of this.
Collapse
Affiliation(s)
- Luciana Lamarão Damous
- Gynecology Division, Department of Obstetrics and Gynecology, Laboratory of Structural and Molecular Gynecology (LIM-58), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Colom A, Galgoczy R, Almendros I, Xaubet A, Farré R, Alcaraz J. Oxygen diffusion and consumption in extracellular matrix gels: implications for designing three-dimensional cultures. J Biomed Mater Res A 2013; 102:2776-84. [PMID: 24027235 DOI: 10.1002/jbm.a.34946] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 08/26/2013] [Accepted: 09/06/2013] [Indexed: 11/10/2022]
Abstract
Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies.
Collapse
Affiliation(s)
- Adai Colom
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Swamydas M, Ricci K, Rego SL, Dréau D. Mesenchymal stem cell-derived CCL-9 and CCL-5 promote mammary tumor cell invasion and the activation of matrix metalloproteinases. Cell Adh Migr 2013; 7:315-24. [PMID: 23722213 DOI: 10.4161/cam.25138] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Stromal chemokine gradients within the breast tissue microenvironment play a critical role in breast cancer cell invasion, a prerequisite to metastasis. To elucidate which chemokines and mechanisms are involved in mammary cell migration we determined whether mesenchymal D1 stem cells secreted specific chemokines that differentially promoted the invasion of mammary tumor cells in vitro. Results indicate that mesenchymal D1 cells produced concentrations of CCL5 and CCL9 4- to 5-fold higher than the concentrations secreted by 4T1 tumor cells (P < 0.01). Moreover, 4T1 tumor cell invasion toward D1 mesenchymal stem cell conditioned media (D1CM), CCL5 alone, CCL9 alone or a combination CCL5 and CCL9 was observed. The invasion of 4T1 cells toward D1 mesenchymal stem CM was dose-dependently suppressed by pre-incubation with the CCR1/CCR5 antagonist met-CCL5 (P < 0.01). Furthermore, the invasion of 4T1 cells toward these chemokines was prevented by incubation with the broad-spectrum MMP inhibitor GM6001. Additionally, the addition of specific MMP9/MMP13 and MMP14 inhibitors prevented the MMP activities of supernatants collected from 4T1 cells incubated with D1CM, CCL5 or CCL9. Taken together these data highlight the role of CCL5 and CCL9 produced by mesenchymal stem cells in mammary tumor cell invasion.
Collapse
Affiliation(s)
- Muthulekha Swamydas
- Cell and Molecular Division; Department of Biology, University of North Carolina, Charlotte, Charlotte, NC, USA
| | | | | | | |
Collapse
|