1
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
2
|
Shi J, Han S, Zhang J, Liu Y, Chen Z, Jia G. Advances in genotoxicity of titanium dioxide nanoparticles in vivo and in vitro. NANOIMPACT 2022; 25:100377. [PMID: 35559883 DOI: 10.1016/j.impact.2021.100377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 12/10/2021] [Indexed: 06/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are currently one of the most widely used nanomaterials. Due to an increasing scope of applications, the exposure of humans to TiO2 NP is inevitable, such as entering the body through the mouth with food additives or drugs, invading the damaged skin with cosmetics, and entering the body through the respiratory tract during the process of production and handling. Compared with TiO2 coarse particles, TiO2 NPs have stronger conductivity, reaction activity, photocatalysis, and permeability, which may lead to greater toxicity to organisms. Given that TiO2 was classified as a category 2B carcinogen (possibly carcinogenic to humans), the genotoxicity of TiO2 NPs has become the focus of attention. There have been a series of previous studies investigating the potential genotoxicity of TiO2 NPs, but the existing research results are still controversial and difficult to conclude. More than half of studies have shown that TiO2 NPs can cause genotoxicity, suggesting that TiO2 NPs are likely to be genotoxic to humans. And the genotoxicity of TiO2 NPs is closely related to the exposure concentration, mode and time, and experimental cells/animals as well as its physicochemical properties (crystal type, size, and shape). This review summarized the latest research progress of related genotoxic effects through in vivo studies and in vitro cell tests, hoping to provide ideas for the evaluation of TiO2 NPs genotoxicity.
Collapse
Affiliation(s)
- Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, PR China
| |
Collapse
|
3
|
Ling C, An H, Li L, Wang J, Lu T, Wang H, Hu Y, Song G, Liu S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vitro: a Systematic Review of the Literature and Meta-analysis. Biol Trace Elem Res 2021; 199:2057-2076. [PMID: 32770326 DOI: 10.1007/s12011-020-02311-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
With the wide use of titanium dioxide nanoparticles (TiO2-NPs), the genotoxicity of TiO2-NPs, which is a factor for safety assessment, has attracted people's attention. However, their genotoxic effects in vitro remain controversial due to inconsistent reports. Therefore, a systematic review was conducted followed by a meta-analysis to reveal whether TiO2-NPs cause genotoxicity in vitro. A total of 59 studies were identified in this review through exhaustive database retrieval and exclusion. Meta-analysis results were presented based on different evaluation methods. The results showed that TiO2-NP exposure considerably increased the percentage of DNA in tail and olive tail moment in comet assay. Gene mutation assay revealed that TiO2-NPs could also induce gene mutation. However, TiO2-NP exposure had no effect on micronucleus (MN) formation in the MN assay. Subgroup analysis showed that normal cells were more vulnerable to toxicity induced by TiO2-NPs. Moreover, mixed form and small particles of TiO2-NPs increased the percentage of DNA in tail. In addition, short-term exposure could detect more DNA damage. The size, coating, duration, and concentration of TiO2-NPs influenced MN formation. This study presented that TiO2-NP exposure could cause genotoxicity in vitro. The physicochemical properties of TiO2-NPs and experimental protocols influence the genotoxic effects in vitro. Comet and gene mutation assays may be more sensitive to the detection of TiO2-NP genotoxic effects.
Collapse
Affiliation(s)
- Chunmei Ling
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Hongmei An
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Li Li
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Jiaqi Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Tianjiao Lu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Haixia Wang
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Yunhua Hu
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China
| | - Guanling Song
- Department of Public Health, School of Medicine, Shihezi University, Shihezi, 832002, Xinjiang, China.
| | - Sixiu Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Abdel-Latif HMR, Dawood MAO, Menanteau-Ledouble S, El-Matbouli M. Environmental transformation of n-TiO 2 in the aquatic systems and their ecotoxicity in bivalve mollusks: A systematic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110776. [PMID: 32474243 DOI: 10.1016/j.ecoenv.2020.110776] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Over the past decades, titanium dioxide nanoparticles (n-TiO2) have been extensively used in several industrial applications and the manufacture of novel consumer products. Although strict regulations have been put in place to limit their release into the aquatic environment, these nanoparticles can still be found at elevated levels within the environment, which can result in toxic effects on exposed organisms and has possible implications in term of public health. Bivalve mollusks are a unique and ideal group of shellfish for the study and monitoring the aquatic pollution by n-TiO2 because of their filter-feeding behaviour and ability to accumulate toxicants in their tissues. In these animals, exposure to n-TiO2 leads to oxidative stress, immunotoxicity, neurotoxicity, and genotoxicity, as well as behavioral and physiological changes. This review summarizes the uptake, accumulation, and fate of n-TiO2 in aquatic environments and the possible interactions between n-TiO2 and other contaminants such as heavy metals and organic pollutants. Moreover, the toxicological impacts and mechanisms of action are discussed for a wide range of bivalve mollusks. This data underlines the pressing need for additional knowledge and future research plans for the development of control strategies to mitigate the release of n-TiO2 to the aquatic environment to prevent the toxicological impacts on bivalves and protect public health.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Behera province, Egypt.
| | - Mahmoud A O Dawood
- Department of Animal Production, Faculty of Agriculture, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt; School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53204, USA.
| | | | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| |
Collapse
|
5
|
Halder AK, Melo A, Cordeiro MNDS. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles. CHEMOSPHERE 2020; 244:125489. [PMID: 31812055 DOI: 10.1016/j.chemosphere.2019.125489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Nanomaterials (NMs) are an ever-increasing field of interest, due to their wide range of applications in science and technology. However, despite providing solutions to many societal problems and challenges, NMs are associated with adverse effects with potential severe damages towards biological species and their ecosystems. Particularly, it has been confirmed that NMs may induce serious genotoxic effects on various biological targets. Given the difficulties of experimental assays for estimating the genotoxicity of many NMs on diverse biological targets, development of alternative methodologies is crucial to establish their level of safety. In silico modelling approaches, such as Quantitative Structure-Toxicity Relationships (QSTR), are now considered a promising solution for such purpose. In this work, a perturbation theory machine learning (PTML) based QSTR approach is proposed for predicting the genotoxicity of metal oxide NMs under various experimental assay conditions. The application of such perturbation approach to 6084 NM-NM pair cases, set up from 78 unique NMs, afforded a final PTML-QSTR model with an accuracy better than 96% for both training and test sets. This model was then used to predict the genotoxicity of some NMs not included in the modelling dataset. The results for this independent data set were in excellent agreement with the experimental ones. Overall, that thus suggests that the derived PTML-QSTR model is a reliable in silico tool to rapidly and cost-efficiently assess the genotoxicity of metal oxide NMs. Finally, and most importantly, the model provides important insights regarding the mechanism of the genotoxicity triggered by these NMs.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal.
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
6
|
Cazenave J, Ale A, Bacchetta C, Rossi AS. Nanoparticles Toxicity in Fish Models. Curr Pharm Des 2019; 25:3927-3942. [DOI: 10.2174/1381612825666190912165413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/29/2019] [Indexed: 12/27/2022]
Abstract
The increasing production and use of nanoparticles (NP) have raised concerns regarding the potential
toxicity to human and environmental health. In this review, we address the up to date information on nanotoxicity
using fish as models. Firstly, we carried out a systematic literature search (articles published up to February 2019
in the Scopus database) in order to quantitatively assess the scientific research on nanoparticles, nanotoxicity and
fish. Next, we carried out a narrative synthesis on the main factors and mechanisms involved in NP toxicity in
fish. According to the bibliometric analysis, there is a low contribution of scientific research on nanotoxicity
compared with the general nanoparticles scientific production. The literature search also showed that silver and
titanium NP are the most studied nanomaterials and Danio rerio is the fish species most used. In comparison with
freshwater fish, the effects of nanomaterials on marine fish have been little studied. After a non-systematic literature
analysis, we identified several factors involved in nanotoxicity, as well as the effects and main toxicity
mechanisms of NP on fish. Finally, we highlighted the knowledge gaps and the need for future research.
Collapse
Affiliation(s)
- Jimena Cazenave
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Analía Ale
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Carla Bacchetta
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| | - Andrea Silvana Rossi
- Instituto Nacional de Limnologia, CONICET, UNL, Santa Fe, Argentina, Paraje El Pozo, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina
| |
Collapse
|
7
|
Müller L, Nunes SM, Villar N, Gelesky M, Tavella RA, da Silva Junior FMR, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J. Genotoxic effect of dimethylarsinic acid and the influence of co-exposure to titanium nanodioxide (nTiO 2) in Laeonereis culveri (Annelida, Polychaeta). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:19-27. [PMID: 31170592 DOI: 10.1016/j.scitotenv.2019.05.259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Few data are available about the effect of dimethylated forms (DMA) on aquatic organisms. As rarely a contaminant occurs alone, studies evaluating the combined effect of different contaminants in aquatic organisms are needed. In fact, the presence of nanomaterials, such as titanium dioxide nanoparticles (nTiO2), in the aquatic environment is now a reality due to its intensive production and use. So, this study evaluated the toxicological effects of DMA in an acute exposure condition and considered the potential influence of nTiO2 on the effects induced by DMA in the polychaete, Laeonereis culveri. The animals were exposed over 48 h to DMA (50 and 500 μg/l) alone or in combination with nTiO2 (1 mg/l). Biochemical parameters such as concentration of reactive oxygen species (ROS), glutathione-S-transferase (GST) activity, levels of reduced glutathione levels (GSH) and macromolecular (lipid and DNA) damage were evaluated, as well the DNA repair system. In addition, the accumulation of total As and the chemical speciation of the metalloid in the organisms was determined. The results showed that: (1) only the group exposed to 500 μg of DMA/l accumulated As and when co-exposed to nTiO2, this accumulation was not observed. (2) The levels of ROS increased in the group exposed to 50 μg/l of DMA alone and the effect was reversed when this group was co-exposed to nTiO2 (3) None of the treatments showed altered GST activity or GSH levels. (4) All groups that received nTiO2 (alone or in combination with DMA) showed lipid peroxidation. (5) The exposure to DMA (both concentrations) alone or in combination with nTiO2 induced DNA damage in L. culveri. These results showed that DMA exhibits a genotoxic effect and that co-exposure to nTiO2 had an influence on its toxicity. So the occurrence of both contaminants simultaneously can represent a threat to aquatic biota.
Collapse
Affiliation(s)
- Larissa Müller
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil.
| | - Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Nágila Villar
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Marcos Gelesky
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Química Tecnológica e Ambiental-FURG, Brazil
| | | | - Flávio Manoel Rodrigues da Silva Junior
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde-FURG, Brazil
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Rio Grande, RS, Brazil.
| |
Collapse
|
8
|
Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech 2019; 9:279. [PMID: 31245243 DOI: 10.1007/s13205-019-1807-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022] Open
Abstract
Blood and the linings of blood vessels may be regarded as a fifth tissue type. The human body contains 5 × 109 red blood cells (RBCs) per ml, a total of 2.5 × 1013 cells in the 5 l of blood present in the body. With an average lifetime of 125 days, human RBCs are destroyed by leukocytes in the spleen and liver. Nowadays red blood cells are extensively used to study various metabolic functions. Nanoparticles (NP) are being widely accepted for drug delivery system. This review summarizes the red blood cells, NPs and their characteristics on the basis of the RBC components along with drug delivery systems through RBCs. Further, we also discussed that how erythrocytes can be used as an efficient in vitro model for evaluating the efficacy of various nanocomposite materials.
Collapse
|
9
|
Manske Nunes S, Josende ME, González-Durruthy M, Pires Ruas C, Gelesky MA, Romano LA, Fattorini D, Regoli F, Monserrat JM, Ventura-Lima J. Different crystalline forms of titanium dioxide nanomaterial (rutile and anatase) can influence the toxicity of copper in golden mussel Limnoperna fortunei? AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 205:182-192. [PMID: 30391727 DOI: 10.1016/j.aquatox.2018.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Although some studies have showed the effects of different crystalline structures of nTiO2 (anatase and rutile) and their applicability in several fields, few studies has analyzed the effect of coexposure with other environmental contaminants such as copper. Thus, the objective of this study was to evaluate if the coexposure to nTiO2 (nominal concentration of 1 mg/L; anatase or rutile) can increase the incorporation and toxic effect induced by Cu (nominal concentration of 56 μg/L) in different tissues of Linmoperna fortunei after 120 h of exposure. Our results showed that the coexposure increased the accumulation of Cu in the gills and adductor muscle independently of the crystalline form and can positively or negatively modulate the antioxidant system, depending on the tissue analyzed. However, exposure only to rutile nTiO2 induced damage in the adductor muscle evidenced by the infiltration of hemocytes in this tissue. Additionally, histomorphometric changes based on fractal dimension analysis showed that coexposure to both forms of nTiO2 induced damage in the same tissue. These results suggest that both crystalline forms exhibited toxicity depending on the analyzed tissue and that coexposure of nTiO2 with Cu may be harmful in L. fortunei, indicating that increased attention to the use and release of nTiO2 in the environment is needed to avoid deleterious effects in aquatic biota.
Collapse
Affiliation(s)
- Silvana Manske Nunes
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Marcelo Estrella Josende
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Michael González-Durruthy
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | | | | | - Luis Alberto Romano
- Instituto de Oceanografia (IO), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche - Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche - Ancona, Italy
| | - José Maria Monserrat
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Juliane Ventura-Lima
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil.
| |
Collapse
|
10
|
Golbamaki A, Golbamaki N, Sizochenko N, Rasulev B, Leszczynski J, Benfenati E. Genotoxicity induced by metal oxide nanoparticles: a weight of evidence study and effect of particle surface and electronic properties. Nanotoxicology 2018; 12:1113-1129. [PMID: 29888633 DOI: 10.1080/17435390.2018.1478999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The genetic toxicology of nanomaterials is a crucial toxicology issue and one of the least investigated topics. Substantially, the genotoxicity of metal oxide nanomaterials' data is resulting from in vitro comet assay. Current contributions to the genotoxicity data assessed by the comet assay provide a case-by-case evaluation of different types of metal oxides. The existing inconsistency in the literature regarding the genotoxicity testing data requires intelligent assessment strategies, such as weight of evidence evaluation. Two main tasks were performed in the present study. First, the genotoxicity data from comet assay for 16 noncoated metal oxide nanomaterials with different core composition were collected. An evaluation criterion was applied to establish which of these individual lines of evidence were of sufficient quality and what weight could have been given to them in inferring genotoxic results. The collected data were surveyed on (1) minimum necessary characterization points for nanomaterials and (2) principals of correct comet assay testing for nanomaterials. Second, in this study the genotoxicity effect of metal oxide nanomaterials was investigated by quantitative nanostructure-activity relationship approach. A set of quantum-chemical descriptors was developed for all investigated metal oxide nanomaterials. A classification model based on decision tree was developed for the investigated dataset. Thus, three descriptors were identified as the most responsible factors for genotoxicity effect: heat of formation, molecular weight, and surface area of the oxide cluster based on the conductor-like screening model. Conclusively, the proposed genotoxicity assessment strategy is useful to prioritize the study of the nanomaterials for further risk assessment evaluations.
Collapse
Affiliation(s)
- Azadi Golbamaki
- a Department of Environmental Health Sciences , Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Nazanin Golbamaki
- a Department of Environmental Health Sciences , Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| | - Natalia Sizochenko
- b Interdisciplinary Center for Nanotoxicity , Jackson State University , Jackson , MS , USA.,c Department of Computer Science , Dartmouth College, Sudikoff Lab , Hanover , NH , USA
| | - Bakhtiyor Rasulev
- b Interdisciplinary Center for Nanotoxicity , Jackson State University , Jackson , MS , USA.,d Department of Coatings and Polymeric Materials , North Dakota State University , Fargo , ND , USA
| | - Jerzy Leszczynski
- b Interdisciplinary Center for Nanotoxicity , Jackson State University , Jackson , MS , USA
| | - Emilio Benfenati
- a Department of Environmental Health Sciences , Laboratory of Environmental Chemistry and Toxicology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri , Milan , Italy
| |
Collapse
|
11
|
Joo HS, Kalbassi MR, Johari SA. Hematological and histopathological effects of silver nanoparticles in rainbow trout (Oncorhynchus mykiss)-how about increase of salinity? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15449-15461. [PMID: 29569194 DOI: 10.1007/s11356-018-1663-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Hematological and histopathological toxicities of silver nanoparticles (Ag-NPs) to rainbow trout were assessed in three water salinities: 0.4 ppt (low salinity), 6 ± 0.3 ppt (moderate salinity), and 12 ± 0.2 ppt (high salinity). The concentrations of Ag-NPs in the low salinity were 0.032, 0.1, 0.32, and 1 ppm, and in the moderate and high salinities were 3.2, 10, 32, and 100 ppm. The results indicated a concentration-dependently increased (thrombocyte, monocyte, and large lymphocyte) and decreased (neutrophil and small lymphocyte) white blood cell count in the Ag-NP treatments in the low salinity than the other ones in the moderate and high salinities. Red blood cell volume significantly increased in all of the experimental groups exposed to higher Ag-NP concentrations, especially those in the low salinity. In the moderate and high salinities, blood plasma total protein decreased in 10 and 32 ppm Ag-NP treatments, but albumin increased in the groups in the low salinity. Blood plasma ions (Cl-, Na+, K+, Ca2+, and Mg2+) showed high changes in the higher Ag-NP treatments. In all treatments, gill histological analysis demonstrated a time- and Ag-NP concentration-dependent extent of abnormalities, with the highest epithelial lifting in 1 ppm Ag-NPs in the low salinity and also the highest necrosis and aneurism in the 32 ppm treatments in other salinities. Lower Ag-NP concentrations in the low salinity led to fibrosis, villus fusion, inflammation, vacuolization, and microvillus hyperplasia in the gut, yet villi lifting and necrosis in 0.32 and 1 ppm of Ag-NPs were the main anomalies. In addition to the mentioned alterations, villi abolitions predominantly occurred in 32 ppm Ag-NP concentrations in the moderate and high salinities. Overall, despite exposing to lower Ag-NP concentrations, the fish kept in the low salinity demonstrated more vulnerability to Ag-NPs than those in the other salinities.
Collapse
Affiliation(s)
- Hamid Salari Joo
- Department of Marine Sciences, Tarbiat Modares University, Mazandaran, Noor, Iran
| | | | - Seyed Ali Johari
- Aquaculture Department, Natural Resources Faculty, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
12
|
Nosaka Y, Nosaka AY. Generation and Detection of Reactive Oxygen Species in Photocatalysis. Chem Rev 2017; 117:11302-11336. [DOI: 10.1021/acs.chemrev.7b00161] [Citation(s) in RCA: 1754] [Impact Index Per Article: 219.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yoshio Nosaka
- Department of Materials Science
and Technology, Nagaoka University of Technology Nagaoka 940-2188, Japan
| | - Atsuko Y. Nosaka
- Department of Materials Science
and Technology, Nagaoka University of Technology Nagaoka 940-2188, Japan
| |
Collapse
|
13
|
Mahaye N, Thwala M, Cowan DA, Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:134-160. [PMID: 28927524 DOI: 10.1016/j.mrrev.2017.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Engineered nanoparticles (ENPs) are an emerging class of environmental contaminants, but are generally found in very low concentrations and are therefore likely to exert sub-lethal effects on aquatic organisms. In this review, we: (i) highlight key mechanisms of metal-based ENP-induced genotoxicity, (ii) identify key nanoparticle and environmental factors which influence the observed genotoxic effects, and (iii) highlight the challenges involved in interpreting reported data and provide recommendations on how these challenges might be addressed. We review the application of eight different genotoxicity assays, where the Comet Assay is generally preferred due to its capacity to detect low levels of DNA damage. Most ENPs have been shown to cause genotoxic responses; e.g., DNA or/and chromosomal fragmentation, or DNA strand breakage, but at unrealistic high concentrations. The genotoxicity of the ENPs was dependent on the inherent physico-chemical properties (e.g. size, coating, surface chemistry, e.tc.), and the presence of co-pollutants. To enhance the value of published genotoxicity data, the role of environmental processes; e.g., dissolution, aggregation and agglomeration, and adsorption of ENPs when released in aquatic systems, should be included, and assay protocols must be standardized. Such data could be used to model ENP genotoxicity processes in open environmental systems.
Collapse
Affiliation(s)
- N Mahaye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa; Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - M Thwala
- Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - N Musee
- Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
14
|
El Yamani N, Collins AR, Rundén-Pran E, Fjellsbø LM, Shaposhnikov S, Zienolddiny S, Dusinska M. In vitro genotoxicity testing of four reference metal nanomaterials, titanium dioxide, zinc oxide, cerium oxide and silver: towards reliable hazard assessment. Mutagenesis 2016; 32:117-126. [PMID: 27838631 DOI: 10.1093/mutage/gew060] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is serious concern about the potential harmful effects of certain nanomaterials (NMs), on account of their ability to penetrate cell membranes and the increased reactivity that results from their increased surface area compared with bulk chemicals. To assess the safety of NMs, reliable tests are needed. We have investigated the possible genotoxicity of four representative NMs, derived from titanium dioxide, zinc oxide, cerium oxide and silver, in two human cell lines, A549 alveolar epithelial cells and lymphoblastoid TK6 cells. A high-throughput version of the comet assay was used to measure DNA strand beaks (SBs) as well as oxidised purines (converted to breaks with the enzyme formamidopyrimidine DNA glycosylase). In parallel, cytotoxicity was measured with the alamarBlue® assay, and the ability of NM-treated cells to survive was assessed by their colony-forming efficiency. TiO2 and CeO2 NMs were only slightly cytotoxic by the alamarBlue® test, and had no long-term effect on colony-forming efficiency. However, both induced DNA damage at non-cytotoxic concentrations; the damage decreased from 3 to 24-h exposure, except in the case of CeO2-treated A549 cells. ZnO and Ag NMs affected cell survival, and induced high levels of DNA damage at cytotoxic concentrations. At lower concentrations, there was significant damage, which tended to persist over 24 h. The implication is that all four reference metal NMs tested-whether cytotoxic or not-are genotoxic. A full assessment of NM toxicity should include tests on different cell types, different times of incubation and a wide range of (especially non-cytotoxic) concentrations; a test for cell viability should be performed in parallel. Inclusion of Fpg in the comet assay allows detection of indirect genotoxic effects via oxidative stress.
Collapse
Affiliation(s)
- Naouale El Yamani
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller 2007, Norway.,Comet Biotech AS, Oslo 0372, Norway
| | - Andrew R Collins
- Comet Biotech AS, Oslo 0372, Norway.,Department of Nutrition, University of Oslo, Oslo 0372, Norway and
| | - Elise Rundén-Pran
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller 2007, Norway
| | - Lise Marie Fjellsbø
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller 2007, Norway
| | | | | | - Maria Dusinska
- Health Effects Group, Department of Environmental Chemistry, NILU- Norwegian Institute for Air Research, Kjeller 2007, Norway,
| |
Collapse
|
15
|
Caballero-Díaz E, Valcárcel Cases M. Analytical methodologies for nanotoxicity assessment. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Morcillo P, Romero D, Meseguer J, Esteban MÁ, Cuesta A. Cytotoxicity and alterations at transcriptional level caused by metals on fish erythrocytes in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:12312-12322. [PMID: 26976014 DOI: 10.1007/s11356-016-6445-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
The in vitro use of fish erythrocytes to test the toxicity of aquatic pollutants could be a valuable alternative to fish bioassays but has received little attention. In this study, erythrocytes from marine gilthead sea bream (Sparus aurata L.) and European sea bass (Dicentrarchus labrax L.) specimens were exposed for 24 h to Cd, Hg, Pb and As and the resulting cytotoxicity was evaluated. Exposure to metals produced a dose-dependent reduction in the viability, and mercury showed the highest toxicity followed by MeHg, Cd, As and Pb. Moreover, fish erythrocytes incubated with each one of the metals exhibited alteration in gene expression profile of metallothionein, superoxide dismutase, catalase, peroxiredoxin, glutathione reductase, heat shock proteins 70 and 90, Bcl2-associated X protein and calpain1 indicating cellular protection, stress and apoptosis death as well as oxidative stress. This study points to the benefits for evaluating the toxicological mechanisms of marine pollution using fish erythrocytes in vitro.
Collapse
Affiliation(s)
- Patricia Morcillo
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Diego Romero
- Department of Toxicology, Faculty of Veterinary, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - José Meseguer
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - M Ángeles Esteban
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Alberto Cuesta
- Fish Innate Immune System Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain.
| |
Collapse
|
17
|
Giovanni M, Tay CY, Setyawati MI, Xie J, Ong CN, Fan R, Yue J, Zhang L, Leong DT. Toxicity profiling of water contextual zinc oxide, silver, and titanium dioxide nanoparticles in human oral and gastrointestinal cell systems. ENVIRONMENTAL TOXICOLOGY 2015; 30:1459-69. [PMID: 24930694 DOI: 10.1002/tox.22015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 05/28/2023]
Abstract
Engineered nanoparticles (ENPs) are increasingly detected in water supply due to environmental release of ENPs as the by-products contained within the effluent of domestic and industrial run-off. The partial recycling of water laden with ENPs, albeit at ultra-low concentrations, may pose an uncharacterized threat to human health. In this study, we investigated the toxicity of three prevalent ENPs: zinc oxide, silver, and titanium dioxide over a wide range of concentrations that encompasses drinking water-relevant concentrations, to cellular systems representing oral and gastrointestinal tissues. Based on published in silico-predicted water-relevant ENPs concentration range from 100 pg/L to 100 µg/L, we detected no cytotoxicity to all the cellular systems. Significant cytotoxicity due to the NPs set in around 100 mg/L with decreasing extent of toxicity from zinc oxide to silver to titanium dioxide NPs. We also found that noncytotoxic zinc oxide NPs level of 10 mg/L could elevate the intracellular oxidative stress. The threshold concentrations of NPs that induced cytotoxic effect are at least two to five orders of magnitude higher than the permissible concentrations of the respective metals and metal oxides in drinking water. Based on these findings, the current estimated levels of NPs in potable water pose little cytotoxic threat to the human oral and gastrointestinal systems within our experimental boundaries.
Collapse
Affiliation(s)
- Marcella Giovanni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Chor Yong Tay
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Magdiel Inggrid Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, MD3 16 Medical Drive, Singapore, 117597, Singapore
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore, 117411, Singapore
| | - Rongli Fan
- PUB, 40 Scotts Road, Singapore, 228231, Singapore
| | - Junqi Yue
- PUB, 40 Scotts Road, Singapore, 228231, Singapore
| | - Lifeng Zhang
- PUB, 40 Scotts Road, Singapore, 228231, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
18
|
Song B, Liu J, Feng X, Wei L, Shao L. A review on potential neurotoxicity of titanium dioxide nanoparticles. NANOSCALE RESEARCH LETTERS 2015; 10:1042. [PMID: 26306536 PMCID: PMC4549355 DOI: 10.1186/s11671-015-1042-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/27/2015] [Indexed: 05/24/2023]
Abstract
As the rapid development of nanotechnology in the past three decades, titanium dioxide nanoparticles (TiO2 NPs), for their peculiar physicochemical properties, are widely applied in consumer products, food additives, cosmetics, drug carriers, and so on. However, little is known about their potential exposure and neurotoxic effects. Once NPs are unintentionally exposed to human beings, they could be absorbed, and then accumulated in the brain regions by passing through the blood-brain barrier (BBB) or through the nose-to-brain pathway, potentially leading to dysfunctions of central nerve system (CNS). Besides, NPs may affect the brain development of embryo by crossing the placental barrier. A few in vivo and in vitro researches have demonstrated that the morphology and function of neuronal or glial cells could be impaired by TiO2 NPs which might induce cell necrosis. Cellular components, such as mitochondrial, lysosome, and cytoskeleton, could also be influenced as well. The recognition ability, spatial memory, and learning ability of TiO2 NPs-treated rodents were significantly impaired, which meant that accumulation of TiO2 NPs in the brain could lead to neurodegeneration. However, conclusions obtained from those studies were not consistent with each other as researchers may choose different experimental parameters, including administration ways, dosage, size, and crystal structure of TiO2 NPs. Therefore, in order to fully understand the potential risks of TiO2 NPs to brain health, figure out research areas where further studies are required, and improve its bio-safety for applications in the near future, how TiO2 NPs interact with the brain is investigated in this review by summarizing the current researches on neurotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Bin Song
- />Guizhou Provincial People’s Hospital, Guiyang, 550002 China
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Limin Wei
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Longquan Shao
- />Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
19
|
Wang H, Fan W, Xue F, Wang X, Li X, Guo L. Chronic effects of six micro/nano-Cu₂O crystals with different structures and shapes on Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 203:60-68. [PMID: 25863883 DOI: 10.1016/j.envpol.2015.03.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 06/04/2023]
Abstract
Six micro/nano-Cu2O crystals evolved from cubes to corner-truncated cubes, vertex-truncated octahedrons and ultimately to octahedrons were synthesized in this work, and the chronic toxicity of these crystal suspensions (10 μg L(-1)) for Daphnia magna was investigated over a 30-day period. Our results indicated that the octahedrons had the most evident toxic effect, but the cubes were minimally toxic. The mortality rate of the octahedral treatment was as high as 86.7%, whereas that of the cubic treatment was only 6.7%. Significant inhibitions in growth and reproduction were observed under octahedral exposure, with reduced impacts from vertex-truncated octahedrons, corner-truncated cubes, and cubic crystals. The chronic effects of different micro/nano-Cu2O crystals were related to their solubility in the gut of the organisms. The solubility of micro/nano-Cu2O crystals was influenced by surface atomic arrangement and diverse surface activity. Thus, the structure and intestinal solubility of nanocrystals should be evaluated for long-term toxicity.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China
| | - Wenhong Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China.
| | - Feng Xue
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaolong Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China
| | - Xiaomin Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China
| | - Lin Guo
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
20
|
Nalika N, Parvez S. Mitochondrial dysfunction in titanium dioxide nanoparticle-induced neurotoxicity. Toxicol Mech Methods 2015; 25:355-63. [DOI: 10.3109/15376516.2015.1020183] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. NANOSCALE 2015; 7:2154-98. [PMID: 25580680 DOI: 10.1039/c4nr06670g] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Collapse
Affiliation(s)
- Nazanin Golbamaki
- Laboratory of Environmental Chemistry and Toxicology at the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Kienzler A, Bony S, Devaux A. DNA repair activity in fish and interest in ecotoxicology: a review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 134-135:47-56. [PMID: 23571068 DOI: 10.1016/j.aquatox.2013.03.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 05/20/2023]
Abstract
The knowledge of DNA repair in a target species is of first importance as it is the primary line of defense against genotoxicants, and a better knowledge of DNA repair capacity in fish could help to interpret genotoxicity data and/or assist in the choice of target species, developmental stage and tissues to focus on, both for environmental biomonitoring studies and DNA repair testing. This review focuses in a first part on what is presently known on a mechanistic basis, about the various DNA repair systems in fish, in vivo and in established cell lines. Data on base excision repair (BER), direct reversal with O⁶-alkylguanine transferase and double strand breaks repair, although rather scarce, are being reviewed, as well as nucleotide excision repair (NER) and photoreactivation repair (PER), which are by far the most studied repair mechanisms in fish. Most of these repair mechanisms seem to be strongly species and tissue dependent; they also depend on the developmental stage of the organisms. BER is efficient in vivo, although no data has been found on in vitro models. NER activity is quite low or even inexistent depending on the studies; however this lack is partly compensated by a strong PER activity, especially in early developmental stage. In a second part, a survey of the ecotoxicological studies integrating DNA repair as a parameter responding to single or mixture of contaminant is realized. Three main approaches are being used: the measurement of DNA repair gene expression after exposure, although it has not yet been clearly established whether gene expression is indicative of repair capacity; the monitoring of DNA damage removal by following DNA repair kinetics; and the modulation of DNA repair activity following exposure in situ, in order to assess the impact of exposure history on DNA repair capacity. Since all DNA repair processes are possible targets for environmental pollutants, we can also wonder at which extent such a modulation of repair capacities in fish could be the base for the development of new biomarkers of genotoxicity. Knowing the importance of the germ cell DNA integrity in the reproductive success of aquatic organisms, the DNA repair capacity of such cells deserve to be more studied, as well as DNA repair capacities of established fish cell lines. The limited amount of available data, which shows low/slow DNA repair capacities of fish cell lines compared with mammalian cell lines, concerned mainly the NER system; thus this point merits to be explored more deeply. Additionally, since some of the DNA repair systems appear more efficient in embryo larval stages, it would be of interest to consider embryonic cell lineages more closely.
Collapse
Affiliation(s)
- Aude Kienzler
- UMR LEHNA 5023, Université de Lyon, F-69518 Vaulx-en-Velin, France.
| | | | | |
Collapse
|