1
|
Planelló R, Aquilino M, Beaugeard L, Llorente L, Herrero Ó, Siaussat D, Lécureuil C. Unveiling Molecular Effects of the Secondary Metabolite 2-Dodecanone in the Model Hymenopteran Nasonia vitripennis. TOXICS 2024; 12:159. [PMID: 38393254 PMCID: PMC10892068 DOI: 10.3390/toxics12020159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Over the past decade, multiple studies have suggested that the secondary metabolites produced by plants against herbivorous insects could be used as biopesticides. However, as the molecular mechanism of action of these compounds remains unknown, it is difficult to predict how they would affect non-target insects; thus, their innocuity needs to be clarified. Here, we investigate, from the molecular level to the organism, the responses of a useful parasitic insect Nasonia vitripennis (Walker, 1836) being exposed at the pupae stage for 48 h (up to 6 days) to sublethal doses (5 µg/L and 500 µg/L) of 2-Dodecanone. 2-Dodecanone altered the gene expression of genes related to ecdysone-related pathways, biotransformation, and cell homeostasis. A significant induction of ecdysone response-genes (EcR, usp, E78, Hr4, Hr38) was detected, despite no significant differences in ecdysteroid levels. Regarding the cell homeostasis processes, the gene l(2)efl was differentially altered in both experimental conditions, and a dose-dependent induction of hex81 was observed. 2-Dodecanone also triggered an induction of Cyp6aQ5 activity. Finally, 2-Dodecanone exposure had a significant effect on neither development time, energy reserves, nor egg-laying capacity; no potential genotoxicity was detected. For the first time, this study shows evidence that 2-Dodecanone can modulate gene expression and interfere with the ecdysone signalling pathway in N. vitripennis. This could lead to potential endocrine alterations and highlight the suitability of this organism to improve our general understanding of the molecular effects of plant defences in insects. Our findings provide new insights into the toxicity of 2-Dodecanone that could potentially be explored in other species and under field conditions for plant protection and pest management as a means to reduce reliance on synthetic pesticides.
Collapse
Affiliation(s)
- Rosario Planelló
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Mónica Aquilino
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Laureen Beaugeard
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| | - Lola Llorente
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - Óscar Herrero
- Molecular Entomology, Biomarkers and Environmental Stress Group, Faculty of Science, National Distance education University (UNED), 28232 Las Rozas de Madrid, Spain; (M.A.); (L.L.); (Ó.H.)
| | - David Siaussat
- Institute of Ecology and Environmental Sciences of Paris, Department of Sensory Ecology, Sorbonne Université, Campus Pierre et Marie Curie, 75005 Paris, France;
| | - Charlotte Lécureuil
- Institut de Recherche sur la Biologie de l’Insecte (IRBI), CNRS-Université de Tours, 37200 Tours, France;
| |
Collapse
|
2
|
Llorente L, Aquilino M, Herrero Ó, de la Peña E, Planelló R. Characterization and expression of heat shock and immune genes in natural populations of Prodiamesa olivacea (Diptera) exposed to thermal stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115359. [PMID: 37595349 DOI: 10.1016/j.ecoenv.2023.115359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
This paper characterizes the heat stress response (HSR) and explores the impact of temperatures on the immune response of larvae from two chironomid species, Prodiamesa olivacea and Chironomus riparius. Genes involved in crucial metabolic pathways were de novo identified in P. olivacea: Hsp27, Hsp60, Hsp70, Hsc70, Cdc37, and HSF for the heat stress response (HSR) and TOLL, PGRP, C-type lectin, and JAK/hopscotch for the immune system response (ISR). Quantitative real-time PCR was used to evaluate the expression levels of the selected genes in short-term treatments (up to 120') at high temperatures (35 °C and 39 °C). Exposing P. olivacea to elevated temperatures resulted in HSR induction with increased expression of specific heat shock genes, suggesting the potential of HSPs as early indicators of acute thermal stress. Surprisingly, we found that heat shock represses multiple immune genes, revealing the antagonist relation between the heat shock response and the innate immune response in P. olivacea. Our results also showed species-dependent gene responses, with more significant effects in P. olivacea, for most of the biomarkers studied, demonstrating a higher sensitivity in this species to environmental stress conditions than that of C. riparius. This work shows a multi-species approach that enables a deeper understanding of the effects of heat stress at the molecular level in aquatic dipterans.
Collapse
Affiliation(s)
- Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Mónica Aquilino
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain; School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain
| | - Eduardo de la Peña
- Institute for Subtropical and Mediterranean Horticulture (IHSM-UMA-CSIC), Spanish National Research Council (CSIC), Finca Experimental La Mayora, Algarrobo-Costa, 29750 Malaga, Spain; Department of Plants and Crops, Faculty of Bio-science Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), 28232, Las Rozas, Madrid, Spain.
| |
Collapse
|
3
|
Pinto TJDS, Moreira RA, Freitas JSS, da Silva LCM, Yoshii MPC, de Palma Lopes LF, Ogura AP, de Mello Gabriel GV, Rosa LMT, Schiesari L, do Carmo JB, Montagner CC, Daam MA, Espindola ELG. Responses of Chironomus sancticaroli to the simulation of environmental contamination by sugarcane management practices: Water and sediment toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159643. [PMID: 36306835 DOI: 10.1016/j.scitotenv.2022.159643] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/08/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane management practices include the application of pesticides, including the herbicide 2,4-D and the insecticide fipronil. In addition, a by-product from the ethanol industry, called vinasse, is commonly applied to fertilize sugarcane areas. The potential risks of these practices to the edge-of-field aquatic ecosystems were assessed in the present study. This was done by contaminating mesocosms with (single and mixtures of) both pesticides and vinasse and evaluating the effects on the midge Chironomus sancticaroli through in-situ and laboratory bioassays. To this end, outdoor mesocosms were treated with fipronil (F), 2,4-D (D), and vinasse (V) alone and with the mixture of fipronil and 2,4-D (M), as well as with both pesticides and vinasse (MV). C. sancticaroli was deployed in mesocosms before contamination in cages, which were taken out 4- and 8-days-post-contamination. Water and sediment samples were also taken for laboratory bioassays on the first day of contamination, as well as 7-, 14-, 21-, 30-, 45-, and 75-days post-contamination. The responses assessed in subchronic assays (8-day) were survival, growth, head capsule width, development, and mentum deformities. Low survival occurred in the in-situ experiments of all treatments due to the low oxygen levels. In the laboratory tests, effects on survival occurred for F, V, and M over time after exposure to both water and sediment. All organisms died post-exposure to water samples from the MV treatment, even 75-days-post-contamination. Impairments in body length and head capsule width occurred for F, V, and M for water and F, V, M, and MV for sediment samples over time. All treatments increased mentum deformities in exposed larvae for any of the sampling periods. The negative effects observed were more significant in the mixture mesocosms (M and MV), thus indicating increased risks from management practices applying these compounds together or with a short time interval in crops.
Collapse
Affiliation(s)
- Thandy Junio da Silva Pinto
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil.
| | - Raquel Aparecida Moreira
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Juliane Silber Schmidt Freitas
- Department of Biological Sciences, Minas Gerais State University (UEMG), R. Ver. Geraldo Moisés da Silva, s/n - Universitário, 38302-192 Ituiutaba, MG, Brazil
| | - Laís Conceição Menezes da Silva
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Maria Paula Cardoso Yoshii
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Laís Fernanda de Palma Lopes
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Allan Pretti Ogura
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| | - Gabriele Verônica de Mello Gabriel
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luana Maria Tavares Rosa
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Luis Schiesari
- EACH, USP - School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bétio 1000, São Paulo, SP 03828-000, Brazil
| | - Janaina Braga do Carmo
- Federal University of São Carlos (UFSCar), Department of Physics, Chemistry and Mathematics, Rodovia João Leme dos Santos, SP-264, km 110, Sorocaba, São Paulo 18052-780, Brazil
| | - Cassiana Carolina Montagner
- Analytical Chemistry Department, Institute of Chemistry, University of Campinas, Campinas, São Paulo, Brazil
| | - Michiel Adriaan Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, 2829-516 Caparica, Portugal
| | - Evaldo Luiz Gaeta Espindola
- PPG-SEA and NEEA/CRHEA/SHS, São Carlos Engineering School, University of São Paulo, Av. Trabalhador São Carlense, 400, São Carlos 13560-970, Brazil
| |
Collapse
|
4
|
Frat L, Chertemps T, Pesce E, Bozzolan F, Dacher M, Planello R, Herrero O, Llorente L, Moers D, Siaussat D. Impact of single and combined exposure to priority pollutants on gene expression and post-embryonic development in Drosophila melanogaster. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114491. [PMID: 36603486 DOI: 10.1016/j.ecoenv.2022.114491] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Many priority pollutants are concentrated in the environment due to human activity. Most are highly toxic to various organisms, including endocrine disruptors EDCs, aromatic polycyclic hydrocarbons PAHs, pesticides. While the effects of single and binary exposure have been widely explored, several pollutants can be simultaneously present at the same time in the environment, in in more or less polluted matrices. Effective pollution control requires the presence and sources of contamination to be identified. Previously we used Drosophila melanogaster to investigate metal pollution. Here, we re-used Drosophila to identify the biomarkers of pollution, and to determine if they can be used for specific types of pollution. Single and combined exposure of Bis(2-ethylhexyl) phthalate (DEHP), bisphenol A, nonylphenol, benzo(a)pyrene, and glyphosate was investigated. The impact of these pollutants on post-embryonic development and the expression pattern of 38 molecular targets were examined using qPCR. During single exposure, different profiles were observed at the molecular level. In complex mixtures, the expression profile resembled that of bisphenol A. In contrast, relatively specific gene expression profiles were obtained for the effects of each pollutant separately. While direct pollutant-gene profiling remains difficult in mixtures, molecular biology analyses enhance pollution monitoring, and should be incorporated in toxicological studies.
Collapse
Affiliation(s)
- Laëtitia Frat
- Syndicat Intercommunal pour l'Assainissement de la Région de Pontoise (SIARP), 95000 Pontoise, France; Sorbonne Université, INRAE, CNRS, IRD, UPEC, Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005 Paris, France
| | - Thomas Chertemps
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005 Paris, France
| | - Elise Pesce
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005 Paris, France
| | - Françoise Bozzolan
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005 Paris, France
| | - Matthieu Dacher
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005 Paris, France; Sorbonne Université, INRAE, CNRS, IRD, UPEC, Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), 78026 Versailles, France
| | - Rosario Planello
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Oscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Lola Llorente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Didier Moers
- Syndicat Intercommunal pour l'Assainissement de la Région de Pontoise (SIARP), 95000 Pontoise, France
| | - David Siaussat
- Sorbonne Université, INRAE, CNRS, IRD, UPEC, Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), F75005 Paris, France.
| |
Collapse
|
5
|
Factors Controlling Morphotaxa Distributions of Diptera Chironomidae in Freshwaters. WATER 2022. [DOI: 10.3390/w14071014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many hydrobiological studies have dealt with the autecology of species within the family Chironomidae and discussed factors affecting species distribution. The aim of the present research is to consider the most important factors affecting chironomid species distribution. Habitat type (lentic, lotic, krenal, rhithral, etc.), water temperature, conductivity, and trophic status are confirmed key factors controlling their assemblage structure. Here, we introduce the term “morphotaxon” as the taxonomic level, intermediate between genus and species, more suitable to describe the ecological responses of Chironomidae. The present uncertainty related to species identification is at the base of the proposal, with the assumption that species belonging to the same morphotaxon have similar ecological needs. In this study, this hypothesis was found to be valid, with few exceptions represented by species-rich genera (e.g., Tanytarsus, Paratanytarsus). The morphotaxon can be viewed as an interim measure waiting for the implementation of new complementary approaches, such as species identification with molecular methods.
Collapse
|
6
|
Blanco-Sánchez L, Planelló R, Llorente L, Díaz-Pendón JA, Ferrero V, Fernández-Muñoz R, Herrero Ó, de la Peña E. Characterization of the detrimental effects of type IV glandular trichomes on the aphid Macrosiphum euphorbiae in tomato. PEST MANAGEMENT SCIENCE 2021; 77:4117-4127. [PMID: 33914389 DOI: 10.1002/ps.6437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 04/04/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Glandular trichomes are essential in plants' defence against pests however, the mechanisms of action are not completely understood. While there is considerable evidence of feeding and movement impairment by trichomes, the effect on other traits is less clear. We combined laboratory and greenhouse experiments with molecular analysis to understand how glandular trichomes affect the behavior, population growth, and the expression of biomarkers involved in detoxification, primary metabolism, and developmental pathways of the aphid Macrosiphum euphorbiae. We used two isogenic tomato lines that differ in the presence of type IV glandular trichomes and production of acylsucroses; i.e.,Solanum lycopersicum cv. 'Moneymaker' and an introgressed line from Solanum pimpinellifolium (with trichomes type IV). RESULTS Type IV glandular trichomes affected host selection and aphid proliferation with aphids avoiding, and showing impaired multiplication on the genotype with trichomes. The exposure to type IV glandular trichomes resulted in the overexpression of detoxication markers (i.e., Hsp70, Hsp17, Hsp10); the repression of the energetic metabolism (GAPDH), and the activation of the ecdysone pathway; all these, underlying the key adaptations and metabolic trade-offs in aphids exposed to glandular trichomes. CONCLUSION Our results demonstrate the detrimental effect of glandular trichomes (type IV) on the aphid and put forward their mode of action. Given the prevalence of glandular trichomes in wild and cultivated Solanaceae; and of the investigated molecular biomarkers in insects in general, our results provide relevant mechanisms to understand the effect of trichomes not only on herbivorous insects but also on other trophic levels.
Collapse
Affiliation(s)
- Lidia Blanco-Sánchez
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", Málaga, Spain
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan A Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", Málaga, Spain
| | - Victoria Ferrero
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", Málaga, Spain
- Centro de Ecología Funcional, Departamento de Ciencias de la Vida, Universidade de Coimbra, Coimbra, Portugal
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", Málaga, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Eduardo de la Peña
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora", Málaga, Spain
- Department of Biology, Faculty of Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
7
|
Park K, Kwak IS. Multi-Level Gene Expression in Response to Environmental Stress in Aquatic Invertebrate Chironomids: Potential Applications in Water Quality Monitoring. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 259:77-122. [PMID: 34661753 DOI: 10.1007/398_2021_79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In freshwater ecosystems, aquatic invertebrates are influenced continuously by both physical stress and xenobiotics. Chironomids (Diptera; Chironomidae), or non-biting midges, are the most diverse and abundant invertebrates in freshwater habitats. They are a fundamental link in food chains of aquatic ecosystems. Chironomid larvae tolerate stress factors in their environments via various physiological processes. At the molecular level, environmental pollutants induce multi-level gene responses in Chironomus that regulate cellular protection through the activation of defense processes. This paper reviews literature on the transcriptional responses of biomarker genes to environmental stress in chironomids at the molecular level, in studies conducted from 1991 to 2020 (120 selected literatures of 374 results with the keywords "Chironomus and gene expression" by PubMed search tool). According to these studies, transcriptional responses in chironomids vary depending on the type of stress factor and defensive responses associated with antioxidant activity, the endocrine system, detoxification, homeostasis and stress response, energy metabolism, ribosomal machinery, apoptosis, DNA repair, and epigenetics. These data could provide a comprehensive overview of how Chironomus species respond to pollutants in aquatic environments. Furthermore, the transcriptomic data could facilitate the development of genetic tools for water quality and environmental monitoring based on resident chironomid species.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, South Korea
| | - Ihn-Sil Kwak
- Department of Ocean Integrated Science and Fisheries Science Institute, Chonnam National University, Yeosu, South Korea.
| |
Collapse
|
8
|
Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. WATER 2020. [DOI: 10.3390/w12112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contaminants of emerging concern (CECs) present a threat to the functioning of freshwater ecosystems. Their spread in the environment can affect both plant and animal health. Ecohydrology serves as a solution for assessment approaches (i.e., threat identification, ecotoxicological assessment, and cause–effect relationship analysis) and solution approaches (i.e., the elaboration of nature-based solutions: NBSs), mitigating the toxic effect of CECs. However, the wide array of potential molecular analyses are not fully exploited in ecohydrological research. Although the number of publications considering the application of molecular tools in freshwater studies has been steadily growing, no paper has reviewed the most prominent studies on the potential use of molecular technologies in ecohydrology. Therefore, the present article examines the role of molecular methods and novel omics technologies as essential tools in the ecohydrological approach to CECs management in freshwater ecosystems. It considers DNA, RNA and protein-level analyses intended to provide an overall view on the response of organisms to stress factors. This is compliant with the principles of ecohydrology, which emphasize the importance of multiple indicator measurements and correlation analysis in order to determine the effects of contaminants, their interaction with other environmental factors and their removal using NBS in freshwater ecosystems.
Collapse
|
9
|
Llorente L, Herrero Ó, Aquilino M, Planelló R. Prodiamesa olivacea: de novo biomarker genes in a potential sentinel organism for ecotoxicity studies in natural scenarios. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105593. [PMID: 32861021 DOI: 10.1016/j.aquatox.2020.105593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Along with traditional ecotoxicological approaches in model organisms, toxicological studies in non-model organisms are being taken into consideration in order to complement them and contribute to more robust approaches. This allows us to figure out the complexity of the exposures involved in natural ecosystems. In this context, in the present research we have used the model species Chironomus riparius (Chironomidae, Diptera) and the non-model species Prodiamesa olivacea (Chironomidae, Diptera) to assess the aquatic toxic effects of acute 4-h and 24-h exposures to 1 μgL-1 of three common environmental pollutants: butyl benzyl phthalate (BBP), bisphenol A (BPA), and benzophenone 3 (BP3). Individuals of both species were collected from a contaminated river (Sar) in Galicia (Spain). Regarding Chironomus, there are four OECD standardized tests for the evaluation of water and sediment toxicity, in which different species in this genus can be used to assess classical toxicity parameters such as survival, immobilization, reproduction, and development. In contrast, Prodiamesa is rarely used in toxicity studies, even though it is an interesting toxicological species because it shares habitats with Chironomus but requires less extreme conditions (e.g., contamination) and higher oxygen levels. These different requirements are particularly interesting in assessing the different responses of both species to pollutant exposure. Quantitative real-time PCR was used to evaluate the transcriptional changes caused by xenobiotics in different genes of interest. Since information about P. olivacea in genomic databases is scarce, its transcriptome was obtained using de novo RNAseq. Genes involved in biotransformation pathways and the oxidative stress response (MnSOD, CAT, PHGPx, Cyp4g15, Cyp6a14-like and Cyp6a2-like) were de novo identified in this species. Our results show differential toxic responses depending on the species and the xenobiotic, being P. olivacea the dipteran that showed the most severe effects in most of the studied biomarker genes. This work represents a multi-species approach that allows us to deepen in the toxicity of BBP, BPA, and BP3 at the molecular level. Besides, it provides an assessment of the tolerance/sensitivity of natural populations of model and non-model insect species chronically exposed to complex mixtures of pollutants in natural scenarios. These findings may have important implications for understanding the adverse biological effects of xenobiotics on P. olivacea, providing new sensitive biomarkers of exposure to BBP, BPA, and BP3. It also highlights the suitability of Prodiamesa for ecotoxicological risk assessment, especially in aquatic ecosystems.
Collapse
Affiliation(s)
- Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Mónica Aquilino
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Sciences, Universidad Nacional de Educación a Distancia (UNED), Paseo de la Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Planelló R, Herrero O, García P, Beltrán EM, Llorente L, Sánchez-Argüello P. Developmental/reproductive effects and gene expression variations in Chironomus riparius after exposure to reclaimed water and its fortification with carbamazepine and triclosan. WATER RESEARCH 2020; 178:115790. [PMID: 32334179 DOI: 10.1016/j.watres.2020.115790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/31/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
The potential benefits of reclaimed water (RW) uses for environmental enhancement and restoration could become adverse impacts if RW does not meet the quality criteria that ensure wildlife preservation. RW can contain complex mixtures of micropollutants that may accumulate in sediment after environmental uses and affect benthic fauna. Therefore, we designed this study to assess the effects of RW on a sediment insect species used mainly in ecotoxicology (Chironomus riparius). Whole organism effects and gene expression were measured in a water sediment system after spiking RW as overlying water, which was renewed 3 times during the test. Development rate, emergence rate and fecundity were monitored after the 21-day exposure. Endocrine-related genes (EcR, ERR, E75, Vtg), cellular stress genes (hsp70, hsc70, hsp24, hsp10) and biotransformation genes (gp93, GSTd3, GPx, cyp4g) were assessed in larvae after the 10-day exposure. The experimental design also included single or binary fortifications of both test medium and RW, obtained by adding two emerging pollutants: carbamazepine (100 μg/L CBZ) and triclosan (20 μg/L TCS). The chemical characterisation of RW showed that 20 of the 23 screened emerging pollutants fell within the detection limit, 10 exceeded 0.01 μg/L (including CBZ) and three exceeded 0.1 μg/L (hydrochlorothiazide, atenolol, ibuprofen). The analytical measures of sediment (day 21) and overlying water (days 7, 14 and 21) were taken to know the water-sediment distribution of CBZ and TCS added to fortifications. CBZ distributed mainly in overlying water (110-164 μg/L and 73-100 μg/kg), while TCS showed a higher affinity to sediment (2.8-5.1 μg/L and 36-55 μg/kg). RW had significant effects in molecular terms (Vtg, hsp70, hsc70), but had no significant effects on the whole organism. Nevertheless, the single RW fortifications impaired both the development rate and fecundity, while the binary RW fortification impaired only fecundity. The most marked increase in EcR expression was observed for the binary RW fortification. Hsps, GSTd3 and cyp4g showed a similar tendency to that observed for EcR and Vtg in the binary and single RW fortifications. The binary mixture (CBZ and TCS together) in RW was toxic, but not in the medium tests. Therefore, the major concern of RW uses is apparently related to the interactivity between this complex matrix and any other pollutants possibly present in the environment where RW is applied. Our results underscore the need for raising awareness about RW effects, which can be achieved by ecotoxicological testing.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040, Madrid, Spain
| | - Oscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040, Madrid, Spain
| | - Pilar García
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040, Madrid, Spain
| | - Eulalia María Beltrán
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040, Madrid, Spain
| | - Lola Llorente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Senda del Rey 9, 28040, Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Crta A Coruña Km 7, 28040, Madrid, Spain.
| |
Collapse
|
11
|
Park K, Kwak IS. Cadmium-induced developmental alteration and upregulation of serine-type endopeptidase transcripts in wild freshwater populations of Chironomus plumosus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110240. [PMID: 32014723 DOI: 10.1016/j.ecoenv.2020.110240] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Cadmium, a toxic heavy metal, is a persistent environmental contaminant with irreversible toxicity to aquatic organisms. Chironomus plumosus, a natural species, is the largest sediment-burrowing aquatic midge in freshwater environments. In this study, we evaluated developmental defects in C. plumosus resulting from Cd exposure. In C. plumosus larvae, Cd exposure induced decreased survival and growth rates, reduction of emergence rate and sex ratio, and delayed emergence, as well as elevating the incidence of split tooth deformities. To identify potential biomarker genes to assess environmental pollutants such as Cd, we identified differentially expressed genes (DEGs) in C. plumosus exposed to various Cd concentrations. Among fourteen characterized DEGs, serine-type endopeptidase (SP) and heat shock protein 70 (HSP70) genes exhibited significant upregulation in C. plumosus larvae after Cd exposure. Therefore, we evaluated SP and HSP70 responses in natural C. plumosus populations collected from three sites of a Korean river and analyzed their correlations with eighteen environmental quality characteristics using principal component analysis. The highest expression of SP and HSP70 transcripts was observed in C. plumosus populations from Yeosu in Korea, which has high concentrations of polluting heavy metals. SP transcript expression was positively correlated with concentrations of Cd, Pb, Al, Fe, NO2, and NO3. These results suggested that environmental pollutants such as Cd can impair proteolytic activity in the digestive system of C. plumosus and may ultimately induce developmental alterations. We therefore suggest SP as a potential biomarker to assess the effects of environmental pollutants in aquatic ecosystems.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Faculty of Marine Technology, Chonnam National University, Yeosu, 550-749, South Korea.
| |
Collapse
|
12
|
Arambourou H, Llorente L, Moreno-Ocio I, Herrero Ó, Barata C, Fuertes I, Delorme N, Méndez-Fernández L, Planelló R. Exposure to heavy metal-contaminated sediments disrupts gene expression, lipid profile, and life history traits in the midge Chironomus riparius. WATER RESEARCH 2020; 168:115165. [PMID: 31614238 DOI: 10.1016/j.watres.2019.115165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/28/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
Despite the concern about anthropogenic heavy metal accumulation, there remain few multi-level ecotoxicological studies to evaluate their effects in fluvial ecosystems. The toxicity of field-collected sediments exhibiting a gradient of heavy metal contamination (Cd, Pb, and Zn) was assessed in Chironomus riparius. For this purpose, larvae were exposed throughout their entire life cycle to these sediments, and toxic effects were measured at different levels of biological organization, from the molecular (lipidomic analysis and transcriptional profile) to the whole organism response (respiration rate, shape markers, and emergence rate). Alterations in the activity of relevant genes, as well as an increase of storage lipids and decrease in membrane fluidity, were detected in larvae exposed to the most contaminated sediments. Moreover, reduced larval and adult mass, decrease of larval respiration rate, and delayed emergence were observed, along with increased mentum and mandible size in larvae and decreased wing loading in adults. This study points out the deleterious effects of heavy metal exposure at various levels of biological organization and provides some clues regarding the mode of toxic action. This integrative approach provides new insights into the multi-level effects on aquatic insects exposed to heavy metal mixtures in field sediments, providing useful tools for ecological risk assessment in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Lola Llorente
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Iñigo Moreno-Ocio
- Department of Zoology and Animal Cellular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Óscar Herrero
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Leire Méndez-Fernández
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Rosario Planelló
- Biology and Environmental Toxicology Group, Faculty of Science, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| |
Collapse
|
13
|
de Baat ML, Wieringa N, Droge STJ, van Hall BG, van der Meer F, Kraak MHS. Smarter Sediment Screening: Effect-Based Quality Assessment, Chemical Profiling, and Risk Identification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14479-14488. [PMID: 31714076 PMCID: PMC6921687 DOI: 10.1021/acs.est.9b02732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 11/01/2019] [Accepted: 11/12/2019] [Indexed: 05/27/2023]
Abstract
Sediments play an essential role in the functioning of aquatic ecosystems but simultaneously retain harmful compounds. However, sediment quality assessment methods that consider the risks caused by the combined action of all sediment-associated contaminants to benthic biota are still underrepresented in water quality assessment strategies. Significant advancements have been made in the application of effect-based methods, but methodological improvements can still advance sediment risk assessment. The present study aimed to explore such improvements by integrating effect-monitoring and chemical profiling of sediment contamination. To this end, 28 day life cycle bioassays with Chironomus riparius using intact whole sediment cores from contaminated sites were performed in tandem with explorative chemical profiling of bioavailable concentrations of groups of legacy and emerging sediment contaminants to investigate ecotoxicological risks to benthic biota. All contaminated sediments caused effects on the resilient midge C. riparius, stressing that sediment contamination is ubiquitous and potentially harmful to aquatic ecosystems. However, bioassay responses were not in line with any of the calculated toxicity indices, suggesting that toxicity was caused by unmeasured compounds. Hence, this study underlines the relevance of effect-based sediment quality assessment and provides smarter ways to do so.
Collapse
Affiliation(s)
- Milo L. de Baat
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nienke Wieringa
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Steven T. J. Droge
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bart G. van Hall
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Michiel H. S. Kraak
- Department
of Freshwater and Marine Ecology (FAME), Institute for Biodiversity
and Ecosystem Dynamics (IBED), University
of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Arambourou H, Planelló R, Llorente L, Fuertes I, Barata C, Delorme N, Noury P, Herrero Ó, Villeneuve A, Bonnineau C. Chironomus riparius exposure to field-collected contaminated sediments: From subcellular effect to whole-organism response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 671:874-882. [PMID: 30947058 DOI: 10.1016/j.scitotenv.2019.03.384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 06/09/2023]
Abstract
The toxicity of three field-collected sediments differentially contaminated with pesticides, heavy metals, phtalates and polycyclic aromatic hydrocarbons (PAHs), was assessed in Chironomus riparius. For this purpose, C. riparius larvae were exposed throughout their entire life cycle to sediments collected in three sites along the Saulx river in France, and the toxic effects were measured at different levels of biological organization: from the molecular (lipidomic analysis and transcriptional variations) to the whole organism response (respiration rate, shape markers and emergence rate). In the sediment characterized by an intermediate level of contamination with PAHs and phtalates, we detected an increase of the cell stress response and delayed emergence of males. In the group exposed to the most contaminated sediment with PAHs, phtalates and pesticides, genes related to endocrine pathways, cell stress response and biotransformation processes were overexpressed, while female wing shape was affected. Field-collected sediment exposure did not induce significant effects on mentum shape markers or on the lipid profile. The present study provides new insights into the multilevel effects of differentially contaminated sediments in insects. This integrative approach will certainly contribute to improved assessment of the risk that complex mixtures of pollutants pose to the aquatic ecosystem.
Collapse
Affiliation(s)
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain.
| | - Lola Llorente
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Inmaculada Fuertes
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Research Council (CSIC), Barcelona, Spain
| | | | - Patrice Noury
- Irstea Lyon, Riverly Research Unit, Villeurbanne, France
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | | | | |
Collapse
|
15
|
Monteiro HR, Pestana JLT, Novais SC, Soares AMVM, Lemos MFL. Toxicity of the insecticides spinosad and indoxacarb to the non-target aquatic midge Chironomus riparius. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1283-1291. [PMID: 30970493 DOI: 10.1016/j.scitotenv.2019.02.303] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Spinosad and indoxacarb are two relatively new insecticides mainly used in agriculture to control insect pests. However, at their current application rates, non-target aquatic insect species may also be impacted. In this study, larvae of the non-biting midge Chironomus riparius were exposed in the laboratory to both insecticides and their effects evaluated at the organismal level, using standard ecotoxicological tests, and at the biochemical level, by monitoring specific oxidative stress, neuronal, and energy metabolism biomarkers. Chronic exposure to both insecticides compromised growth and emergence of C. riparius. Short-term exposures revealed alterations at biochemical level that might be related to the toxicological targets of both insecticides. Growth and development time were the most sensitive endpoints at individual level for both pesticides, while at the biochemical level, the electron transport system activity was the most sensitive biomarker for spinosad exposure, suggesting an increase in energy demands associated with the activation of defense mechanisms. Glutathione-S-transferase was the most sensitive biomarker for indoxacarb exposure, underlining the role of this enzyme in the detoxification of indoxacarb. Additionally, changes in lactate dehydrogenase and glutathione peroxidase activities were observed for both insecticides, and evidences of oxidative damage were found for spinosad. This study contributes to the growing knowledge on sublethal effects of novel insecticides on non-target aquatic invertebrates and strengthens the usefulness of biochemical biomarkers to support the interpretation of their potentially deleterious effects on aquatic insects near agricultural fields.
Collapse
Affiliation(s)
- Hugo R Monteiro
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal; MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal; Department of Biochemistry and Microbiology, Laboratory for Microbiology, Ghent University, Ghent, Belgium.
| | - João L T Pestana
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| | | | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, Peniche, Portugal
| |
Collapse
|
16
|
Deliberalli W, Cansian RL, Mielniczki Pereira AA, Loureiro RC, Hepp LU, Restello RM. The effects of heavy metals on the incidence of morphological deformities in Chironomidae (Diptera). ZOOLOGIA 2018. [DOI: 10.3897/zoologia.35.e12947] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Streams in urban areas are strongly impacted by the input of organic matter and metals, for instance copper (Cu) and zinc (Zn). These metals are essential for the aquatic biota, but when absorbed in excess they are toxic. In Chironomidae larvae, the deleterious effects of heavy metals can be ascertained by analyzing the morphological deformities of the larval mentum, a structure of the oral cavity. In this study, we evaluated I) the bioavailability of Cu and Zn in urban stream sediments and II) the relationship between Cu and Zn concentrations and the incidence of deformities in the mentum of Chironomus larvae. Chironomid flies were collected from four locations in two streams at an urban area in southern Brazil. They were identified and the incidence of deformities in the mentum was quantified. Sediment samples were collected at the same locations where larvae were collected, to quantify the bioavailable fractions of Cu and Zn. The concentrations of Cu in the sediment were similar between the collection sites. However, Zn concentrations varied among sites, being greater in the stretch directly influenced by the input of the organic waste. In total, 2,895 Chironomid larvae were collected. The incidence of deformities in the mentum was above 30% and was correlated with the concentrations of Cu (r = 0.68) and Zn (r = 0.87). This correlation indicates that the municipal waste that is thrown into the city’s streams has influenced the occurrence of deformities.
Collapse
|
17
|
de Souza Beghelli FG, Lopez-Dovál JC, Rosa AH, Pompêo M, Carlos VM. Lethal and sublethal effects of metal-polluted sediments on Chironomus sancticaroli Strixino and Strixino, 1981. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:286-299. [PMID: 29372366 DOI: 10.1007/s10646-018-1894-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
The Cantareira Complex is one of the most important water supplies of the metropolitan region of São Paulo, Brazil. Previously, it was demonstrated that the sediments in this complex were polluted with metals and that Paiva Castro Reservoir-the last reservoir in the sequence, which receives water from the five previous reservoirs-was the reservoir with the greatest concentration of pollutants. Based on field data, it was noticed that copper concentrations in sediments were related to morphological alterations in chironomids. The present study provides novel monitoring methods and results for the complex by isolating the environmental and biological sources of variation. An adaptation of the in situ assay proposed by Soares et al. (Arch Environ Contam Toxicol 49:163-172, 2005), which uses a native tropical Chironomus species and low-cost materials, is also provided. The aim of this study was to isolate the effects of sediments from Paiva Castro on controlled populations of C. sancticaroli larvae using an in situ assay. A seven-day experiment was performed in triplicate. Third instar larvae were inoculated in chambers containing sediments from two distinct regions of Paiva Castro reservoir and a control site with sand. Five biological responses were considered: mouthpart alterations, larval length, width of cephalic capsule, mortality and total damage. The results suggest the effects of sediment toxicity on larvae include a reduction in length and a higher occurrence of total damage.
Collapse
Affiliation(s)
- Frederico Guilherme de Souza Beghelli
- Programa de Pós-Graduação em Ciências Ambientais - Instituto de Ciência e Tecnologia de Sorocaba, UNESP, Avenida Três de Março, 511 - Alto da Boa Vista, Rio de Janeiro, 18087-180, Brazil.
| | - Julio César Lopez-Dovál
- Departamento de Ecologia - Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, travessa 14 - Cidade Universitária, São Paulo, 05508-090, Brazil
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, Girona, 17003, Spain
| | - André Henrique Rosa
- Programa de Pós-Graduação em Ciências Ambientais - Instituto de Ciência e Tecnologia de Sorocaba, UNESP, Avenida Três de Março, 511 - Alto da Boa Vista, Rio de Janeiro, 18087-180, Brazil
| | - Marcelo Pompêo
- Programa de Pós-Graduação em Ciências Ambientais - Instituto de Ciência e Tecnologia de Sorocaba, UNESP, Avenida Três de Março, 511 - Alto da Boa Vista, Rio de Janeiro, 18087-180, Brazil
- Departamento de Ecologia - Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, travessa 14 - Cidade Universitária, São Paulo, 05508-090, Brazil
| | - Viviane Moschini Carlos
- Programa de Pós-Graduação em Ciências Ambientais - Instituto de Ciência e Tecnologia de Sorocaba, UNESP, Avenida Três de Março, 511 - Alto da Boa Vista, Rio de Janeiro, 18087-180, Brazil
| |
Collapse
|
18
|
Arimoro FO, Auta YI, Odume ON, Keke UN, Mohammed AZ. Mouthpart deformities in Chironomidae (Diptera) as bioindicators of heavy metals pollution in Shiroro Lake, Niger State, Nigeria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:96-100. [PMID: 29154140 DOI: 10.1016/j.ecoenv.2017.10.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
In this study, mouthpart deformities in Chironomid larvae (Diptera) were investigated in relation to sediment contamination in the Shiroro Lake in Nigeria. Metals and chironomids were sampled monthly at three stations (A-C) between August 2013 and January 2014. Across the stations, zinc ranged (3.9-75mg/g), manganese (1.29-1.65mg/g), lead (0.00-0.10mg/g), iron (101-168mg/g) and copper (0.13-0.17mg/g). The metal ions did not differ significantly (P > 0.05) between the sampling stations. However, zinc and iron ions were significantly different between the sampling seasons (P < 0.05). Thirteen chironomid species were recorded, with Chironomus sp., Polypedilum sp. and Ablabesmyia sp. dominating the assemblage structure. Mouthpart deformities were significantly higher at Station A compared with Station C, and seasonally significantly higher during dry season compared with wet season. Elevated incidences of deformity were recorded in Chironomus spp larvae as compared to other genera therefore for further studies in this region assessments should be based solely on Chironomus species and ignoring the rest. Strategies need to be developed to reduce the contaminations and the biological effects.
Collapse
Affiliation(s)
- Francis O Arimoro
- Applied Hydrobiology Unit, Department of Biological Sciences, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria.
| | - Yohanna I Auta
- Applied Hydrobiology Unit, Department of Biological Sciences, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria; Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown, South Africa
| | - Oghenekaro N Odume
- Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown, South Africa
| | - Unique N Keke
- Applied Hydrobiology Unit, Department of Biological Sciences, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria; Unilever Centre for Environmental Water Quality, Institute for Water Research, Rhodes University, P.O. Box 94, Grahamstown, South Africa
| | - Adamu Z Mohammed
- Applied Hydrobiology Unit, Department of Biological Sciences, Federal University of Technology, P.M.B. 65, Minna, Niger State, Nigeria
| |
Collapse
|
19
|
Herrero Ó, Aquilino M, Sánchez-Argüello P, Planelló R. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae). PLoS One 2018; 13:e0193387. [PMID: 29466445 PMCID: PMC5821402 DOI: 10.1371/journal.pone.0193387] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/11/2018] [Indexed: 01/19/2023] Open
Abstract
Bisphenol S (BPS) is an industrial alternative to the endocrine disruptor bisphenol A (BPA), and can be found in many products labeled “BPA-free”. Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1) crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3) that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13) which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control) were EcR (3.8), ERR (2), E74 (2.4), cyp18a1 (2.5), hsp70 (1.7), hsp40 (2.5), cyp4g (6.4), GPx (1.8), and GST (2.1), while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.
Collapse
Affiliation(s)
- Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| | - Paloma Sánchez-Argüello
- Laboratorio de Ecotoxicología, Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Madrid, Spain
| |
Collapse
|
20
|
Park K, Kwak IS. Disrupting effects of antibiotic sulfathiazole on developmental process during sensitive life-cycle stage of Chironomus riparius. CHEMOSPHERE 2018; 190:25-34. [PMID: 28972920 DOI: 10.1016/j.chemosphere.2017.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 05/26/2023]
Abstract
Antibiotics in the environment are a concern due to their potential to harm humans and interrupt ecosystems. Sulfathiazole (STZ), a sulfonamide antibiotic, is commonly used in aquaculture and is typically found in aquatic ecosystems. We evaluated the ecological risk of STZ by examining biological, molecular and biochemical response in Chironomus riparius. Samples were exposed to STZ for 12, 24 and 96 h, and effects of STZ were evaluated at the molecular level by analyzing changes in gene expression related to the endocrine system, cellular stress response and enzyme activity of genes on antioxidant and detoxification pathways. STZ exposure induced significant effects on survival, growth and sex ratio of emergent adults and mouthpart deformity in C. riparius. STZ caused concentration and time-dependent toxicity in most of the selected biomarkers. STZ exposure leads to significant heat-shock response of protein genes (HSP70, HSP40, HSP90 and HSP27) and to disruption by up-regulating selected genes, including the ecdysone receptor gene, estrogen-related receptors, ultraspiracle and E74 early ecdysone-responsive gene. Furthermore, STZ induced alteration of enzyme activities on antioxidant and detoxification responses (catalase, superoxide dismutase, glutathione peroxidase and peroxidase) in C. riparius. By inducing oxidative stress, antibiotic STZ disturbs the endocrine system and produces adverse effects in growth processes of invertebrates.
Collapse
Affiliation(s)
- Kiyun Park
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea
| | - Ihn-Sil Kwak
- Faculty of Marine Technology, Chonnam National University, Yeosu 550-749, South Korea.
| |
Collapse
|
21
|
Chiesa S, Chainho P, Almeida Â, Figueira E, Soares AMVM, Freitas R. Metals and As content in sediments and Manila clam Ruditapes philippinarum in the Tagus estuary (Portugal): Impacts and risk for human consumption. MARINE POLLUTION BULLETIN 2018; 126:281-292. [PMID: 29421099 DOI: 10.1016/j.marpolbul.2017.10.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/06/2017] [Accepted: 10/30/2017] [Indexed: 06/08/2023]
Abstract
The Manila clam is emerging as a relevant species for the Portuguese market. The present work was conducted in the Tagus estuary to evaluate 1) the metals and As content in the sediments of the Tagus estuary, especially on those areas subjected to Manila clam harvesting 2) the metals and As content in clams, and the risk associated with their consumption 3) the physiological and biochemical responses of the clam to metals and As contamination, and its possible role as a pollution bioindicator in the estuarine environment. The most contaminated sediments were identified nearby industrial areas, nevertheless clams collected in low contaminated areas showed high metals and As concentrations. The condition index, glycogen content, membrane oxidative damage, biotransformation enzymes and metallothioneins showed consistent responses to metals and As content in clams. Results emphasize the need for the development of a management plan for the species exploitation in the Tagus estuary.
Collapse
Affiliation(s)
- Stefania Chiesa
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Paula Chainho
- MARE, Marine and Environmental Sciences Centre, Faculty of Sciences, Lisbon University, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ângela Almeida
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, CESAM, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
22
|
Park SY, Choi J. Molecular Characterization and Expression Analysis of P38 MAPK Gene and Protein in Aquatic Midge, Chironomus riparius (Diptera: Chironomidae), Exposed to Environmental Contaminants. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:428-438. [PMID: 28144697 DOI: 10.1007/s00244-017-0366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
P38 Mitogen-activated protein kinase (MAPK), an important signaling protein involved in various cellular processes, including stress responses, has been well characterized in model organisms. P38 has been identified in a number of insects, including the genus Drosophila; however, its homologue in Chironomus riparius has not yet been identified. In this study, we identified and characterized p38 MAPK (Crp38) gene in C. riparius using a transcriptome database that was previously generated 454 GS-FLX pyrosequencing. Comparative and phylogenetic analyses were performed using the p38 homologue of other species, such as Drosophila melanogaster, Aedes aegypti, Bombyx mori, Caenorhabditis elegans, Homo sapiens, etc. Furthermore, to test its potential as a biomarker of environmental contamination, Crp38 gene expression was analyzed upon exposure to nonylphenol (NP), silver nanoparticles (AgNPs), and cadmium (Cd). Crp38 gene expression was up- or down-regulated depending on the concentration and exposure duration of chemicals. These results show the role of Crp38 gene in defense against environmental stresses, as well as its potential use as a biomarker for various environmental pollutants. We further synthesized p38 antibody based on the predicted amino acid sequence deduced from Crp38 cDNA and, using this customized antibody, examined p38 protein expression in Cd exposed C. riparius. Although transcriptional alteration was not translated to the protein level, this result showed the possible application of a protein level functional study using cDNA sequence information from next-generation sequencing database in nonmodel organisms.
Collapse
Affiliation(s)
- Sun-Young Park
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
- Risk Assessment Division, National Institute of Environmental Research, Incheon, 22689, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
23
|
Pedrosa J, Gravato C, Campos D, Cardoso P, Figueira E, Nowak C, Soares AMVM, Barata C, Pestana JLT. Investigating heritability of cadmium tolerance in Chironomus riparius natural populations: A physiological approach. CHEMOSPHERE 2017; 170:83-94. [PMID: 28006760 DOI: 10.1016/j.chemosphere.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/06/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Physiological responses allow populations to cope with metal contamination and can be involved in the evolution of tolerance under historical metal contamination scenarios. Here we investigate physiological aspects that might be underlying the heritable high tolerance to cadmium (Cd) in two Chironomus riparius populations collected from historically metal contaminated sites in comparison to two populations from reference sites. To evaluate differences in the physiological response to short-term Cd exposure, protein expression profiles, metallothioneins [MTs] and several antioxidant defences such as total glutathione (GSHt), catalase (CAT) and glutathione-S-transferases [GSTs], were measured in all four populations reared for at least 8 generations under laboratory clean conditions. Cd-induced oxidative damage in lipids and energy related parameters (energy consumption and energy reserves) were also assessed. Results showed two major gradients of protein profiles according to Cd concentration and population tolerance. Furthermore, Cd-tolerant populations showed higher baseline levels of MTs and GSHt while Cd-sensitive populations, collected from reference sites, showed significant induction of GSHt levels with Cd exposure that were nonetheless insufficient to avoid increased oxidative damage to lipids. Cd exposure had no clear effects on the antioxidant enzymes or energy reserves but triggered a general increase in energy consumption. Finally, energy consumption was higher in Cd-tolerant populations across experimental conditions. Altogether, results demonstrate that inherited Cd-tolerance in these midge populations is related, at least in part, with different constitutive levels and plasticity of different defence mechanisms confirming the validity of using multiple physiological traits when studying evolution of tolerance.
Collapse
Affiliation(s)
- João Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Carlos Gravato
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
24
|
Ozáez I, Aquilino M, Morcillo G, Martínez-Guitarte JL. UV filters induce transcriptional changes of different hormonal receptors in Chironomus riparius embryos and larvae. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:239-247. [PMID: 27089421 DOI: 10.1016/j.envpol.2016.04.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Organic ultraviolet (UV) filters are emerging contaminants that are ubiquitous in fresh and marine aquatic systems due to their extensive use in cosmetics, plastics, paints, textiles, and many other industrial products. The estrogenic effects of organic UV filters have been long demonstrated in vertebrates, and other hormonal activities may be altered, according to more recent reports. The impact of UV filters on the endocrine system of invertebrates is largely unknown. We have previously reported that some UV filters may affect ecdysone-related genes in the aquatic insect Chironomus riparius, an ecotoxicologically important model organism. To further analyze other possible effects on endocrine pathways, we first characterized four pivotal genes related with hormonal pathways in insects; thereafter, these genes were assessed for alterations in transcriptional activity after exposure to 4-methylbenzylidene camphor (4MBC) or benzophenone-3 (BP-3), two extensively used sunscreens. We found that both chemicals disturbed the expression of all four genes analyzed: hormonal receptor 38 (HR38), methoprene-tolerant (Met), membrane-associate progesterone receptor (MAPR) and insulin-like receptor (INSR), measured by changes in mRNA levels by real-time PCR. An upregulatory effect at the genomic level was detected in different developmental stages. Interestingly, embryos appeared to be more sensitive to the action of the UV filters than larvae. Our results suggest that the risk of disruption through different endocrine routes is not negligible, considering the significant effects of UV filters on key hormonal receptor and regulatory genes. Further effort is needed to develop environmental risk assessment studies on these pollutants, particularly for aquatic invertebrate model organisms.
Collapse
Affiliation(s)
- Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Mónica Aquilino
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - Gloria Morcillo
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain
| | - José-Luis Martínez-Guitarte
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Senda del Rey 9, 28040 Madrid, Spain.
| |
Collapse
|
25
|
Brinke A, Buchinger S. Toxicogenomics in Environmental Science. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 157:159-186. [DOI: 10.1007/10_2016_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Planelló R, Herrero Ó, Gómez-Sande P, Ozáez I, Cobo F, Servia MJ. Ecdysone-Related Biomarkers of Toxicity in the Model Organism Chironomus riparius: Stage and Sex-Dependent Variations in Gene Expression Profiles. PLoS One 2015; 10:e0140239. [PMID: 26448051 PMCID: PMC4598127 DOI: 10.1371/journal.pone.0140239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 09/23/2015] [Indexed: 12/26/2022] Open
Abstract
Despite being considered a model organism in toxicity studies, particularly in assessing the environmental impact of endocrine disrupting compounds (EDCs) and other chemicals, the molecular basis of development is largely unknown in Chironomus riparius. We have characterized the expression patterns of important genes involved in the ecdysone pathway from embryos to pupa, but specially during the different phases of C. riparius fourth larval instar, according to the development of genital and thoracic imaginal discs. Real-Time PCR was used to analyze: EcR and usp, two genes encoding the two dimerizing partners of the functional ecdysone receptor; E74, an early response gene induced by ecdysteroids; vg (vitellogenin), an effector gene; hsp70 and hsc70, two heat-shock genes involved in the correct folding of the ecdysone receptor; and rpL13, as a part of the ribosomal machinery. Our results show for the first time stage and sex-dependent variations in ecdysone-responsive genes, specially during the late larval stage of C. riparius. The induction in the expression of EcR and usp during the VII-VIII phase of the fourth instar is concomitant with a coordinated response in the activity of the other genes analyzed, suggesting the moment where larvae prepare for pupation. This work is particularly relevant given that most of the analyzed genes have been proposed previously in this species as sensitive biomarkers for the toxicological evaluation of aquatic ecosystems. Identifying the natural regulation of these molecular endpoints throughout the Chironomus development will contribute to a more in-depth and accurate evaluation of the disrupting effects of EDCs in ecotoxicological studies.
Collapse
Affiliation(s)
- Rosario Planelló
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
- * E-mail:
| | - Óscar Herrero
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Pablo Gómez-Sande
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - Irene Ozáez
- Grupo de Biología y Toxicología Ambiental, Facultad de Ciencias, Universidad Nacional de Educación a Distancia, UNED, Paseo de la Senda del Rey 9, 28040 Madrid, Spain
| | - Fernando Cobo
- Departamento de Zoología y Antropología Física, Universidad de Santiago de Compostela, USC, Campus Sur s/n, 15782 Santiago de Compostela, Spain
- Estación de Hidrobioloxía “Encoro do Con”, EHEC, Universidad de Santiago de Compostela, USC, Castroagudín s/n, 36617 Vilagarcía de Arousa, Pontevedra, Spain
| | - María J. Servia
- Departamento de Biología Animal, Biología Vegetal y Ecología, Facultad de Ciencias, Universidade da Coruña, UDC, Campus da Zapateira s/n, 15008 A Coruña, Spain
| |
Collapse
|
27
|
Salmelin J, Vuori KM, Hämäläinen H. Inconsistency in the analysis of morphological deformities in chironomidae (Insecta: Diptera) larvae. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1891-8. [PMID: 26061223 DOI: 10.1002/etc.3010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/02/2015] [Accepted: 04/03/2015] [Indexed: 05/07/2023]
Abstract
The incidence of morphological deformities of chironomid larvae as an indicator of sediment toxicity has been studied for decades. However, standards for deformity analysis are lacking. The authors evaluated whether 25 experts diagnosed larval deformities in a similar manner. Based on high-quality digital images, the experts rated 211 menta of Chironomus spp. larvae as normal or deformed. The larvae were from a site with polluted sediments or from a reference site. The authors revealed this to a random half of the experts, and the rest conducted the assessment blind. The authors quantified the interrater agreement by kappa coefficient, tested whether open and blind assessments differed in deformity incidence and in differentiation between the sites, and identified those deformity types rated most consistently or inconsistently. The total deformity incidence varied greatly, from 10.9% to 66.4% among experts. Kappa coefficient across rater pairs averaged 0.52, indicating insufficient agreement. The deformity types rated most consistently were those missing teeth or with extra teeth. The open and blind assessments did not differ, but differentiation between sites was clearest for raters who counted primarily absolute deformities such as missing and extra teeth and excluded apparent mechanical aberrations or deviations in tooth size or symmetry. The highly differing criteria in deformity assignment have likely led to inconsistent results in midge larval deformity studies and indicate an urgent need for standardization of the analysis.
Collapse
Affiliation(s)
- Johanna Salmelin
- Department of Biological and Environmental Science, University of Jyväskylaä, Jyväskylä, Finland
| | - Kari-Matti Vuori
- Laboratory Centre/Ecotoxicology and Risk Assessment, Finnish Environment Institute, Jyväskylä, Finland
- South Karelia Institute, Lappeenranta University of Technology, Lappeenranta, Finland
| | - Heikki Hämäläinen
- Department of Biological and Environmental Science, University of Jyväskylaä, Jyväskylä, Finland
| |
Collapse
|
28
|
Giusto A, Ferrari L. Biochemical responses of ecological importance in males of the austral South America amphipod Hyalella curvispina Shoemaker, 1942 exposed to waterborne cadmium and copper. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 100:193-200. [PMID: 24325969 DOI: 10.1016/j.ecoenv.2013.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 10/09/2013] [Accepted: 11/04/2013] [Indexed: 06/03/2023]
Abstract
The use of physiological parameters as sensitive indicators of toxic stress from exposure to different pollutants is an important issue to be studied. Hyalella curvispina is a Neotropical amphipod often used in ecotoxicological evaluations. This work aimed to quantify biochemical responses of ecological importance in H. curvispina males under stress exposure to sublethal concentrations of waterborne copper (Cu) and cadmium (Cd); in order to obtain basic physiological data as indicators of early effect on this species, on track to its standardization. In order to evaluate the physiological, biochemical and energetic status of the exposed animals, the following endpoints were selected: content of glycogen, total proteins, total lipids, triglycerides, glycerol, arginine, arginine phosphate, levels of lipid peroxidation (TBARS), and Na(+)/K(+)ATPase, catalase (CAT) and superoxide dismutase (SOD) activities. Our results show that the concentrations of Cu (135 and 175 µg/L) and Cd (6.5 and 10.5 µg/L) tested altered most of the biochemical variables measured (glycogen, total proteins, total lipids, triglycerides, arginine phosphate, TBARS, and SOD and Na(+)/K(+)ATPase activities). In addition, neither the levels of glycerol and arginine nor CAT activity were affected by exposure to either metal. Energy metabolism was similarly affected both by exposure to Cu and exposure to Cd. The results obtained show the existence of an energy imbalance associated with oxidative damage, suggesting a comprehensive response. This work represents a first contribution of the evaluation of the effect of two heavy metals in some parameters of oxidative stress and energy metabolism of H. curvispina males. The results indicate these parameters can provide a sensitive criterion for the assessment of early ecotoxicological effects of Cu and Cd in laboratory assays, on a native species representative of the zoobenthic and epiphytic communities of South America.
Collapse
Affiliation(s)
- Anabella Giusto
- Applied Ecophysiology Program, Basic Sciences Department, Institute of Ecology and Sustainable Development (INEDES), National University of Luján, mailbox 221, B6700ZBA Luján, Argentina
| | - Lucrecia Ferrari
- Applied Ecophysiology Program, Basic Sciences Department, Institute of Ecology and Sustainable Development (INEDES), National University of Luján, mailbox 221, B6700ZBA Luján, Argentina; Scientific Research Commission (CIC), La Plata, Buenos Aires, Argentina.
| |
Collapse
|