1
|
Pishghadam M, Haizler-Cohen L, Ngwa JS, Yao W, Kapse K, Iqbal SN, Limperopoulos C, Andescavage NN. Placental quantitative susceptibility mapping and T2* characteristics for predicting birth weight in healthy and high-risk pregnancies. Eur Radiol Exp 2025; 9:18. [PMID: 39966316 PMCID: PMC11836258 DOI: 10.1186/s41747-025-00565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The human placenta is critical in supporting fetal development, and placental dysfunction may compromise maternal-fetal health. Early detection of placental dysfunction remains challenging due to the lack of reliable biomarkers. This study compares placental quantitative susceptibility mapping and T2* values between healthy and high-risk pregnancies and investigates their association with maternal and fetal parameters and their ability to predict birth weight (BW). METHODS A total of 105 pregnant individuals were included: 68 healthy controls and 37 high-risk due to fetal growth restriction (FGR), chronic or gestational hypertension, and pre-eclampsia. Placental magnetic resonance imaging data were collected using a three-dimensional multi-echo radiofrequency-spoiled gradient-echo, and mean susceptibility and T2* values were calculated. To analyze associations and estimate BW, we employed linear regression and regression forest models. RESULTS No significant differences were found in susceptibility between high-risk pregnancies and controls (p = 0.928). T2* values were significantly lower in high-risk pregnancies (p = 0.013), particularly in pre-eclampsia and FGR, emerging as a predictor of BW. The regression forest model showed placental T2* as a promising mode for BW estimation. CONCLUSION Our findings underscore the potential of mean placental T2* as a more sensitive marker for detecting placental dysfunction in high-risk pregnancies than mean placental susceptibility. Moreover, the high-risk status emerged as a significant predictor of BW. These results call for further research with larger and more diverse populations to validate these findings and enhance prediction models for improved pregnancy management. RELEVANCE STATEMENT This study highlights the potential of placental T2* magnetic resonance imaging measurements as reliable indicators for detecting placental dysfunction in high-risk pregnancies, aiding in improved prenatal care and birth weight prediction. KEY POINTS Placental dysfunction in high-risk pregnancies is evaluated using MRI T2* values. Lower T2* values significantly correlate with pre-eclampsia and fetal growth restriction. T2* MRI may predict birth weight, enhancing prenatal care outcomes.
Collapse
Affiliation(s)
- Morteza Pishghadam
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Lylach Haizler-Cohen
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Julius S Ngwa
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Wu Yao
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Kushal Kapse
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - Sara N Iqbal
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, DC, USA
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
- Department of Radiology, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA
| | - Nickie N Andescavage
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA.
- Division of Neonatology, Children's National Hospital, Washington, DC, USA.
- Department of Pediatrics, School of Medicine, and Health Sciences, George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Payette K, Uus AU, Aviles Verdera J, Hall M, Egloff A, Deprez M, Tomi-Tricot R, Hajnal JV, Rutherford MA, Story L, Hutter J. Fetal body organ T2* relaxometry at low field strength (FOREST). Med Image Anal 2025; 99:103352. [PMID: 39326224 DOI: 10.1016/j.media.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Fetal Magnetic Resonance Imaging (MRI) at low field strengths is an exciting new field in both clinical and research settings. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artifacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population). However, the lack of standard automated image processing tools such as segmentation and reconstruction hampers wider clinical use. In this study, we present the Fetal body Organ T2* RElaxometry at low field STrength (FOREST) pipeline that analyzes ten major fetal body organs. Dynamic multi-echo multi-gradient sequences were acquired and automatically reoriented to a standard plane, reconstructed into a high-resolution volume using deformable slice-to-volume reconstruction, and then automatically segmented into ten major fetal organs. We extensively validated FOREST using an inter-rater quality analysis. We then present fetal T2* body organ growth curves made from 100 control subjects from a wide gestational age range (17-40 gestational weeks) in order to investigate the relationship of T2* with gestational age. The T2* values for all organs except the stomach and spleen were found to have a relationship with gestational age (p<0.05). FOREST is robust to fetal motion, and can be used for both normal and fetuses with pathologies. Low field fetal MRI can be used to perform advanced MRI analysis, and is a viable option for clinical scanning.
Collapse
Affiliation(s)
- Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Alena U Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Alexia Egloff
- Department of Women & Children's Health, King's College London, London, UK
| | - Maria Deprez
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | - Joseph V Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
3
|
Hall M, Suff N, Slator P, Rutherford M, Shennan A, Hutter J, Story L. Placental multimodal MRI prior to spontaneous preterm birth <32 weeks' gestation: An observational study. BJOG 2024; 131:1782-1792. [PMID: 38956748 PMCID: PMC11801328 DOI: 10.1111/1471-0528.17901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/04/2024]
Abstract
OBJECTIVE To utilise combined diffusion-relaxation MRI techniques to interrogate antenatal changes in the placenta prior to extreme preterm birth among both women with PPROM and membranes intact, and compare this to a control group who subsequently delivered at term. DESIGN Observational study. SETTING Tertiary Obstetric Unit, London, UK. POPULATION Cases: pregnant women who subsequently spontaneously delivered a singleton pregnancy prior to 32 weeks' gestation without any other obstetric complications. CONTROLS pregnant women who delivered an uncomplicated pregnancy at term. METHODS All women consented to an MRI examination. A combined diffusion-relaxation MRI of the placenta was undertaken and analysed using fractional anisotropy, a combined T2*-apparent diffusion coefficient model and a combined T2*-intravoxel incoherent motion model, in order to provide a detailed placental phenotype associated with preterm birth. Subgroup analyses based on whether women in the case group had PPROM or intact membranes at time of scan, and on latency to delivery were performed. MAIN OUTCOME MEASURES Fractional anisotropy, apparent diffusion coefficients and T2* placental values, from two models including a combined T2*-IVIM model separating fast- and slow-flowing (perfusing and diffusing) compartments. RESULTS This study included 23 women who delivered preterm and 52 women who delivered at term. Placental T2* was lower in the T2*-apparent diffusion coefficient model (p < 0.001) and in the fast- and slow-flowing compartments (p = 0.001 and p < 0.001) of the T2*-IVIM model. This reached a higher level of significance in the preterm prelabour rupture of the membranes group than in the membranes intact group. There was a reduced perfusion fraction among the cases with impending delivery. CONCLUSIONS Placental diffusion-relaxation reveals significant changes in the placenta prior to preterm birth with greater effect noted in cases of preterm prelabour rupture of the membranes. Application of this technique may allow clinically valuable interrogation of histopathological changes before preterm birth. In turn, this could facilitate more accurate antenatal prediction of preterm chorioamnionitis and so aid decisions around the safest time of delivery. Furthermore, this technique provides a research tool to improve understanding of the pathological mechanisms associated with preterm birth in vivo.
Collapse
Affiliation(s)
- Megan Hall
- Centre for the Developing Brain, St Thomas' HospitalKing's College LondonLondonUK
- Department of Women and Children's Health, St Thomas' HospitalKing's College LondonLondonUK
| | - Natalie Suff
- Department of Women and Children's Health, St Thomas' HospitalKing's College LondonLondonUK
| | - Paddy Slator
- Cardiff University Brain Research Imaging CentreCardiff UniversityCardiffUK
- School of Computer Science and InformaticsCardiff UniversityCardiffUK
| | - Mary Rutherford
- Centre for the Developing Brain, St Thomas' HospitalKing's College LondonLondonUK
| | - Andrew Shennan
- Department of Women and Children's Health, St Thomas' HospitalKing's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing Brain, St Thomas' HospitalKing's College LondonLondonUK
- Smart Imaging Lab, Radiological InstituteUniversity Hospital ErlangenErlangenGermany
| | - Lisa Story
- Centre for the Developing Brain, St Thomas' HospitalKing's College LondonLondonUK
- Department of Women and Children's Health, St Thomas' HospitalKing's College LondonLondonUK
| |
Collapse
|
4
|
Hall M, Verdera JA, Cromb D, Silva SN, Rutherford M, Counsell SJ, Hajnal JV, Story L, Hutter J. Placental T2* as a measure of placental function across field strength from 0.55T to 3T. Sci Rep 2024; 14:28594. [PMID: 39562648 PMCID: PMC11577033 DOI: 10.1038/s41598-024-77406-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024] Open
Abstract
Placental MRI is increasingly implemented in clinical obstetrics and research. Functional imaging, especially T2*, has been shown to vary across gestation and in pathology. Translation into the clinical arena has been slow because of time taken to mask the region of interest and owing to differences in T2* results depending on field strength. This paper contributes methodology to remove these barriers by utilising data from 0.55, 1.5 and 3T MRI to provide a fully automated segmentation tool; determining field strength dependency of placental assessment techniques; and deriving normal ranges for T2* by gestational age but independent of field strength. T2* datasets were acquired across field strengths. Automatic quantification including fully automatic masking was achieved and tested in 270 datasets across fields. Normal curves for quantitative placental mean T2*, volume and other derived measurements were obtained in 273 fetal MRI scans and z-scores calculated. The fully automatic segmentation achieved excellent quantification results (Dice scores of 0.807 at 3T, 0.796 at 1.5T and 0.815 at 0.55T.). Similar changes were seen between placental T2* and gestational age across all three field strengths (p < 0.05). Z-scores were generated. This study provides confidence in the translatability of T2* trends across field strengths in fetal imaging.
Collapse
Affiliation(s)
- Megan Hall
- Department of Early Life Imaging, King's College London, London, UK.
- Department of Women's and Children's Health, King's College London, London, UK.
- St Thomas' Hospital, 1st Floor, South Wing Westminster Bridge Road, SE1 7EH, London, UK.
| | - Jordina Aviles Verdera
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
| | - Daniel Cromb
- Department of Early Life Imaging, King's College London, London, UK
| | - Sara Neves Silva
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
| | - Mary Rutherford
- Department of Early Life Imaging, King's College London, London, UK
| | | | - Joseph V Hajnal
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
| | - Lisa Story
- Department of Early Life Imaging, King's College London, London, UK
- Department of Women's and Children's Health, King's College London, London, UK
- St Thomas' Hospital, 1st Floor, South Wing Westminster Bridge Road, SE1 7EH, London, UK
| | - Jana Hutter
- Department of Early Life Imaging, King's College London, London, UK
- Centre for Medical Engineering, King's College London, London, UK
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, FAU Erlangen, Bavaria, Germany
| |
Collapse
|
5
|
Pishghadam M, Ngwa JS, Wu Y, Kapse K, Haizler-Cohen L, Bulas D, Limperopoulos C, Andescavage NN. Single vs. multi-slice assessments of in vivo placental T2∗ measurements. Placenta 2024; 156:92-97. [PMID: 39293186 PMCID: PMC11515947 DOI: 10.1016/j.placenta.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/27/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
INTRODUCTION Placental health is vital for maternal and fetal well-being, and placental T2∗ has been suggested to identify in vivo placental dysfunction prior to delivery. However, ideal regions of interest to best inform functional assessments of the placenta remain unknown. The aim of this study is to compare global and slice-wise measures of in-vivo placental T2∗ assessments. METHODS This prospective study recruited pregnant people with singleton pregnancies between December 2017 and February 2022.3D multi-echo RF-spoiled gradient echo sequences were acquired, and placental T2∗ values were derived from global and slice-wise approaches. Statistical analyses included Pearson correlation coefficients, concordance correlation coefficients (CCC), intraclass correlation coefficients (ICC), and Bland-Altman analyses. RESULTS Of 115 participants (mean gestational age, 29.25 ± 5.05 weeks), 68 were healthy controls, and 47 were high-risk pregnancies. Global and slice-wise placental T2∗ assessments for the entire cohort showed no significant difference nor for individual subgroups (healthy controls or high-risk). Pearson correlation values ranged between 0.88 and 0.99 for mean global and slice-wise placental T2∗. CCC analyses ranged from 0.88 to 0.99 for mean T2∗, and ICC analyses ranged between 0.88 and 0.99 for mean T2∗, showing a strong agreement between measurements. Bland-Altman analyses depicted T2∗ differences across coverage methods, and groups resided within the 95 % limits of agreement. DISCUSSION Single-slice placental assessments offer robust, comparable T2∗ values to global assessments, with the added benefit of reducing post-processing time and SAR exposure. This supports slice-wise approaches as valid alternatives for assessing placental health in various pregnancies.
Collapse
Affiliation(s)
- Morteza Pishghadam
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA.
| | - Julius S Ngwa
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA.
| | - Yao Wu
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA.
| | - Kushal Kapse
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA.
| | - Lylach Haizler-Cohen
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA; Department of Obstetrics & Gynecology, MedStar Washington Hospital Center, Washington, DC, USA.
| | - Dorothy Bulas
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA; Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington DC, USA; Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington DC, USA.
| | - Catherine Limperopoulos
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA; Department of Radiology, School of Medicine and Health Sciences, George Washington University, Washington DC, USA; Department of Pediatrics, School of Medicine and Health Sciences, George Washington University, Washington DC, USA.
| | - Nickie Niforatos Andescavage
- Developing Brain Institute, Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington DC, USA; Division of Neonatology, Children's National Hospital, Washington DC, USA.
| |
Collapse
|
6
|
Nakaki A, Denaro E, Crimella M, Castellani R, Vellvé K, Izquierdo N, Basso A, Paules C, Casas R, Benitez L, Casas I, Larroya M, Genero M, Castro‐Barquero S, Gomez‐Gomez A, Pozo ÓJ, Vieta E, Estruch R, Nadal A, Gratacós E, Crovetto F, Crispi F, Youssef L. Effect of Mediterranean diet or mindfulness-based stress reduction during pregnancy on placental volume and perfusion: A subanalysis of the IMPACT BCN randomized clinical trial. Acta Obstet Gynecol Scand 2024; 103:2042-2052. [PMID: 39037192 PMCID: PMC11426209 DOI: 10.1111/aogs.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION The IMPACT BCN trial-a parallel-group randomized clinical trial where 1221 pregnant women at high risk for small-for-gestational age (SGA) newborns were randomly allocated at 19- to 23-week gestation into three groups: Mediterranean diet, Mindfulness-based Stress reduction or non-intervention-has demonstrated a positive effect of Mediterranean diet and Stress reduction in the prevention of SGA. However, the mechanism of action of these interventions remains still unclear. The aim of this study is to investigate the effect of Mediterranean diet and Stress reduction on placental volume and perfusion. MATERIAL AND METHODS Participants in the Mediterranean diet group received monthly individual and group educational sessions, and free provision of extra-virgin olive oil and walnuts. Women in the Stress reduction group underwent an 8-week Stress reduction program adapted for pregnancy, consisting of weekly 2.5-h and one full-day sessions. Non-intervention group was based on usual care. Placental volume and perfusion were assessed in a subgroup of randomly selected women (n = 165) using magnetic resonance (MR) at 36-week gestation. Small placental volume was defined as MR estimated volume <10th centile. Perfusion was assessed by intravoxel incoherent motion. RESULTS While mean MR placental volume was similar among the study groups, both interventions were associated with a lower prevalence of small placental volume (3.9% Mediterranean diet and 5% stress reduction vs. 17% non-intervention; p = 0.03 and p = 0.04, respectively). Logistic regression showed that small placental volume was significantly associated with higher risk of SGA in both study groups (OR 7.48 [1.99-28.09] in Mediterranean diet and 20.44 [5.13-81.4] in Stress reduction). Mediation analysis showed that the effect of Mediterranean diet on SGA can be decomposed by a direct effect and an indirect effect (56.6%) mediated by a small placental volume. Similarly, the effect of Stress reduction on SGA is partially mediated (45.3%) by a small placental volume. Results on placental intravoxel incoherent motion perfusion fraction and diffusion coefficient were similar among the study groups. CONCLUSIONS Structured interventions during pregnancy based on Mediterranean diet or Stress reduction are associated with a lower proportion of small placentas, which is consistent with the previously observed beneficial effects of these interventions on fetal growth.
Collapse
Affiliation(s)
- Ayako Nakaki
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
| | - Eugenio Denaro
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
| | - Maddalena Crimella
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
| | - Roberta Castellani
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
| | - Kilian Vellvé
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
| | - Nora Izquierdo
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
| | - Annachiara Basso
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Department of Obstetrics and Pediatrics ASST LeccoA. Manzoni HospitalLeccoItaly
| | - Cristina Paules
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Instituto de Investigación Sanitaria Aragón (IISAragon), Red de Salud Materno Infantil y del Desarrollo (SAMID), RETICS, Instituto de Salud Carlos III (ISCIII)Subdirección General de Evaluación y Fomento de la Investigación y Fondo Europeo de Desarrollo Regional (FEDER)ZaragozaSpain
| | - Rosa Casas
- Department of Internal Medicine Hospital Clinic, IDIBAPSUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Institute de Salud Carlos IIIMadridSpain
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA‐UB)University of BarcelonaBarcelonaSpain
| | - Leticia Benitez
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
| | - Irene Casas
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
| | - Marta Larroya
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
| | - Mariona Genero
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
| | - Sara Castro‐Barquero
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Department of Internal Medicine Hospital Clinic, IDIBAPSUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Institute de Salud Carlos IIIMadridSpain
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA‐UB)University of BarcelonaBarcelonaSpain
| | - Alex Gomez‐Gomez
- Integrative Pharmacology and Systems Neuroscience GroupIMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Óscar J. Pozo
- Integrative Pharmacology and Systems Neuroscience GroupIMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
- Department of Psychiatry and Psychology, Hospital Clinic, Neuroscience InstituteUniversity of Barcelona, CIBERSAMBarcelonaSpain
| | - Ramon Estruch
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
- Department of Internal Medicine Hospital Clinic, IDIBAPSUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN)Institute de Salud Carlos IIIMadridSpain
- Institut de Recerca en Nutrició i Seguretat Alimentaria (INSA‐UB)University of BarcelonaBarcelonaSpain
| | - Alfons Nadal
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
- Department of Pathology, Hospital ClinicUniversity of BarcelonaBarcelonaSpain
| | - Eduard Gratacós
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
- Center for Biomedical Research on Rare Diseases (CIBER‐ER)MadridSpain
| | - Francesca Crovetto
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
- Primary Care Interventions to Prevent Maternal and Child Chronic Diseases of Perinatal and Developmental Origin RD21/0012/0003Instituto de Salud Carlos IIIMadridSpain
| | - Fàtima Crispi
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
- Center for Biomedical Research on Rare Diseases (CIBER‐ER)MadridSpain
| | - Lina Youssef
- BCNatal – Barcelona Center for Maternal‐Fetal and Neonatal Medicine (Hospital Clínic and Hospital Sant Joan de Deu)University of BarcelonaBarcelonaSpain
- Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
- Institut de Recerca Sant Joan de DéuEsplugues de LlobregatSpain
- Josep Carreras Leukemia Research InstituteHospital Clinic/University of Barcelona CampusBarcelonaSpain
| |
Collapse
|
7
|
Al Darwish FM, Coolen BF, van Kammen CM, Alles LK, de Vos J, Schiffelers RM, Lely TA, Strijkers GJ, Terstappen F. Assessment of feto-placental oxygenation and perfusion in a rat model of placental insufficiency using T2* mapping and 3D dynamic contrast-enhanced MRI. Placenta 2024; 151:19-25. [PMID: 38657321 DOI: 10.1016/j.placenta.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/26/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION Placental insufficiency may lead to preeclampsia and fetal growth restriction. There is no cure for placental insufficiency, emphasizing the need for monitoring fetal and placenta health. Current monitoring methods are limited, underscoring the necessity for imaging techniques to evaluate fetal-placental perfusion and oxygenation. This study aims to use MRI to evaluate placental oxygenation and perfusion in the reduced uterine perfusion pressure (RUPP) model of placental insufficiency. METHODS Pregnant rats were randomized to RUPP (n = 11) or sham surgery (n = 8) on gestational day 14. On gestational day 19, rats imaged using a 7T MRI scanner to assess oxygenation and perfusion using T2* mapping and 3D-DCE MRI sequences, respectively. The effect of the RUPP on the feto-placental units were analyzed from the MRI images. RESULTS RUPP surgery led to reduced oxygenation in the labyrinth (24.7 ± 1.8 ms vs. 28.0 ± 2.1 ms, P = 0.002) and junctional zone (7.0 ± 0.9 ms vs. 8.1 ± 1.1 ms, P = 0.04) of the placenta, as indicated by decreased T2* values. However, here were no significant differences in fetal organ oxygenation or placental perfusion between RUPP and sham animals. DISCUSSION The reduced placental oxygenation without a corresponding decrease in perfusion suggests an adaptive response to placental ischemia. While acute reduction in placental perfusion may cause placental hypoxia, persistence of this condition could indicate chronic placental insufficiency after ischemic reperfusion injury. Thus, placental oxygenation may be a more reliable biomarker for assessing fetal condition than perfusion in hypertensive disorders of pregnancies including preeclampsia and FGR.
Collapse
Affiliation(s)
- Fatimah M Al Darwish
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Bram F Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Caren M van Kammen
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands; Department of CDL Research, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| | - Lindy K Alles
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Judith de Vos
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Raymond M Schiffelers
- Department of CDL Research, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| | - Titia A Lely
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| | - Gustav J Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105, AZ, Amsterdam, Netherlands.
| | - Fieke Terstappen
- Department of Obstetrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, 3584, EA, Utrecht, Netherlands.
| |
Collapse
|
8
|
Vestergaard T, Julsgaard M, Helmig RB, Faunø E, Vendelboe T, Kelsen J, Laurberg TB, Sørensen A, Pedersen BG. Reduced T2*-weighted placental MRI predicts foetal growth restriction in women with chronic rheumatic disease-a Danish explorative study. Clin Rheumatol 2024; 43:1989-1997. [PMID: 38671260 PMCID: PMC11111562 DOI: 10.1007/s10067-024-06889-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/27/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVES Women with chronic rheumatic disease (CRD) are at greater risk of foetal growth restriction than their healthy peers. T2*-weighted magnetic resonance imaging of placenta (T2*P-MRI) is superior to conventional ultrasonography in predicting birth weight and works as a proxy metabolic mirror of the placental function. We aimed to compare T2*P-MRI in pregnant women with CRD and healthy controls. In addition, we aimed to investigate the correlation between T2*P-MRI and birth weight. METHODS Using a General Electric (GE) 1.5 Tesla, we consecutively performed T2*-weighted placental MRI in 10 women with CRD and 18 healthy controls at gestational week (GW)24 and GW32. We prospectively collected clinical parameters during pregnancy including birth outcome and placental weight. RESULTS Women with CRD had significantly lower T2*P-MRI values at GW24 than healthy controls (median T2*(IQR) 92.1 ms (81.6; 122.4) versus 118.6 ms (105.1; 129.1), p = 0.03). T2*P-MRI values at GW24 showed a significant correlation with birth weight, as the T2*P-MRI value was reduced in all four pregnancies complicated by SGA at birth. Three out of four pregnancies complicated by SGA at birth remained undetected by routine antenatal ultrasound. CONCLUSION This study demonstrates reduced T2*P-MRI values and a high proportion of SGA at birth in CRD pregnancies compared to controls, suggesting an increased risk of placental dysfunction in CRD pregnancies. T2*P-MRI may have the potential to focus clinical vigilance by identifying pregnancies at risk of SGA as early as GW24. Key Points • Placenta-related causes of foetal growth restriction in women with rheumatic disease remain to be investigated. • T2*P-MRI values at gestational week 24 predicted foetuses small for gestational age at birth. • T2*P-MRI may indicate pregnant women with chronic rheumatic disease (CRD) in need of treatment optimization.
Collapse
Affiliation(s)
- Thea Vestergaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark.
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Mette Julsgaard
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Aalborg, Copenhagen, Denmark
| | - Rikke Bek Helmig
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Obstetrics and Gynaecology, Aarhus University Hospital, Aarhus, Denmark
| | - Emilie Faunø
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
| | - Tau Vendelboe
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Radiology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Kelsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Palle Juul-Jensens, Boulevard 99, Entrance C, Level 1, Fix-Point C117, 8200, Aarhus, Denmark
- Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Anne Sørensen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark
| | | |
Collapse
|
9
|
Jacquier M, Chalouhi G, Marquant F, Bussieres L, Grevent D, Picone O, Mandelbrot L, Mahallati H, Briand N, Elie C, Siauve N, Salomon LJ. Placental T2* and BOLD effect in response to hyperoxia in normal and growth-restricted pregnancies: multicenter cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 63:472-480. [PMID: 37743665 DOI: 10.1002/uog.27496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/06/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
OBJECTIVES Blood-oxygen-level-dependent (BOLD) magnetic resonance imaging (MRI) facilitates the non-invasive in-vivo evaluation of placental oxygenation. The aims of this study were to identify and quantify a relative BOLD effect in response to hyperoxia in the human placenta and to compare it between pregnancies with and those without fetal growth restriction (FGR). METHODS This was a prospective multicenter study (NCT02238301) of 19 pregnancies with FGR (estimated fetal weight (EFW) on ultrasound < 5th centile) and 75 non-FGR pregnancies (controls) recruited at two centers in Paris, France. Using a 1.5-Tesla MRI system, the same multi-echo gradient-recalled echo (GRE) sequences were performed at both centers to obtain placental T2* values at baseline and in hyperoxic conditions. The relative BOLD effect was calculated according to the equation 100 × (hyperoxic T2* - baseline T2*)/baseline T2*. Baseline T2* values and relative BOLD effect were compared according to EFW (FGR vs non-FGR), presence/absence of Doppler anomalies and birth weight (small-for-gestational age (SGA) vs non-SGA). RESULTS We observed a relative BOLD effect in response to hyperoxia in the human placenta (median, 33.8% (interquartile range (IQR), 22.5-48.0%)). The relative BOLD effect did not differ significantly between pregnancies with and those without FGR (median, 34.4% (IQR, 24.1-48.5%) vs 33.7% (22.7-47.4%); P = 0.95). Baseline T2* Z-score adjusted for gestational age at MRI was significantly lower in FGR pregnancies compared with non-FGR pregnancies (median, -1.27 (IQR, -4.87 to -0.10) vs 0.33 (IQR, -0.81 to 1.02); P = 0.001). Baseline T2* Z-score was also significantly lower in those pregnancies that subsequently delivered a SGA neonate (n = 23) compared with those that delivered a non-SGA neonate (n = 62) (median, -0.75 (IQR, -3.48 to 0.29) vs 0.35 (IQR, -0.79 to 1.05); P = 0.01). CONCLUSIONS Our study confirms a BOLD effect in the human placenta and that baseline T2* values are significantly lower in pregnancies with FGR. Further studies are needed to evaluate whether such parameters may detect placental insufficiency before it has a clinical impact on fetal growth. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- M Jacquier
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
| | - G Chalouhi
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
- Centre SFFERe (Spécialistes Fœtus, Femme Enceinte et Reproduction), Boulogne-Billancourt, France
| | - F Marquant
- Clinical Unit Research/Clinic Investigation Center, Paris Descartes University, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - L Bussieres
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
| | - D Grevent
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
- Radiology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - O Picone
- Obstetrics and Gynecology Department, Hôpital Louis-Mourier, AP-HP, Colombes, France
- Inserm IAME-U1137, Paris, France
- FHU PREMA, Paris, France
| | - L Mandelbrot
- Obstetrics and Gynecology Department, Hôpital Louis-Mourier, AP-HP, Colombes, France
- Inserm IAME-U1137, Paris, France
- FHU PREMA, Paris, France
| | - H Mahallati
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - N Briand
- Clinical Unit Research/Clinic Investigation Center, Paris Descartes University, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - C Elie
- Clinical Unit Research/Clinic Investigation Center, Paris Descartes University, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - N Siauve
- Radiology Department, Hôpital Louis-Mourier, AP-HP, Colombes, France
- INSERM-U970, Paris Cardiovascular Research Center (PARCC), Sorbonne Paris Cité, Paris, France
| | - L J Salomon
- Obstetrics and Gynecology Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
- EA FETUS 7328 and LUMIERE Unit, Université de Paris-Cité, Paris, France
| |
Collapse
|
10
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O’Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Preeclampsia Associated Differences in the Placenta, Fetal Brain, and Maternal Heart Can Be Demonstrated Antenatally: An Observational Cohort Study Using MRI. Hypertension 2024; 81:836-847. [PMID: 38314606 PMCID: PMC7615760 DOI: 10.1161/hypertensionaha.123.22442] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2023] [Accepted: 01/02/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Preeclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multiorgan approach to magnetic resonance imaging (MRI) investigation of preeclampsia, with the acquisition of maternal cardiac, placental, and fetal brain anatomic and functional imaging. METHODS An observational study was performed recruiting 3 groups of pregnant women: those with preeclampsia, chronic hypertension, or no medical complications. All women underwent a cardiac MRI, and pregnant women underwent a placental-fetal MRI. Cardiac analysis for structural, morphological, and flow data were undertaken; placenta and fetal brain volumetric and T2* (which describes relative tissue oxygenation) data were obtained. All results were corrected for gestational age. A nonpregnant cohort was identified for inclusion in the statistical shape analysis. RESULTS Seventy-eight MRIs were obtained during pregnancy. Cardiac MRI analysis demonstrated higher left ventricular mass in preeclampsia with 3-dimensional modeling revealing additional specific characteristics of eccentricity and outflow track remodeling. Pregnancies affected by preeclampsia demonstrated lower placental and fetal brain T2*. Within the preeclampsia group, 23% placental T2* results were consistent with controls, these were the only cases with normal placental histopathology. Fetal brain T2* results were consistent with normal controls in 31% of cases. CONCLUSIONS We present the first holistic assessment of the immediate implications of preeclampsia on maternal heart, placenta, and fetal brain. As well as having potential clinical implications for the risk stratification and management of women with preeclampsia, this gives an insight into the disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Antonio de Marvao
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Ronny Schweitzer
- School of Cardiovascular Medicine (A.d.M., R.S.), King’s College London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Daniel Cromb
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Kathleen Colford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Priya Jandu
- GKT School of Medical Education (P.J.), King’s College London, United Kingdom
| | - Declan P O’Regan
- MRC London Institute of Medical Sciences, Imperial College London, United Kingdom (A.d.M., R.S., D.P.O.)
| | - Alison Ho
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Anthony Price
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Lucy C. Chappell
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
| | - Mary A. Rutherford
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Lisa Story
- Department of Women and Children’s Health (M.H., A.d.M., A.H., L.C.C., L.S.), King’s College London, United Kingdom
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
| | - Pablo Lamata
- Centre for Medical Engineering (A.P., P.L.), King’s College London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain (M.H., D.C., K.C., A.H., A.P., M.A.R., L.S., J.H.), King’s College London, United Kingdom
- Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Germany (J.H.)
| |
Collapse
|
11
|
Preston M, Hall M, Shennan A, Story L. The role of placental insufficiency in spontaneous preterm birth: A literature review. Eur J Obstet Gynecol Reprod Biol 2024; 295:136-142. [PMID: 38359634 DOI: 10.1016/j.ejogrb.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Preterm Birth (delivery before 37 weeks of gestation) is the leading cause of childhood mortality and is also associated with significant morbidity both in the neonatal period and beyond. The aetiology of spontaneous preterm birth is unclear and likely multifactorial incorporating factors such as infection/inflammation and cervical injury. Placental insufficiency is emerging as an additional contributor to spontaneous preterm delivery; however, the mechanisms by which this occurs are not fully understood. Serum biomarkers and imaging techniques have been investigated as potential predictors of placental insufficiency, however none have yet been found to have a sufficient predictive value. This review examines the evidence for the role of the placenta in preterm birth, preterm prelabour rupture of the membranes and abruption as well as highlighting areas where further research is required.
Collapse
Affiliation(s)
- Megan Preston
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK
| | - Megan Hall
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK; Department of Perinatal Imaging, St Thomas' Hospital, King's College, London, UK
| | - Andrew Shennan
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK
| | - Lisa Story
- Department of Women and Children's Health, St Thomas' Hospital, King's College, London, UK; Department of Perinatal Imaging, St Thomas' Hospital, King's College, London, UK.
| |
Collapse
|
12
|
Neves Silva S, Aviles Verdera J, Tomi‐Tricot R, Neji R, Uus A, Grigorescu I, Wilkinson T, Ozenne V, Lewin A, Story L, De Vita E, Rutherford M, Pushparajah K, Hajnal J, Hutter J. Real-time fetal brain tracking for functional fetal MRI. Magn Reson Med 2023; 90:2306-2320. [PMID: 37465882 PMCID: PMC10952752 DOI: 10.1002/mrm.29803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE To improve motion robustness of functional fetal MRI scans by developing an intrinsic real-time motion correction method. MRI provides an ideal tool to characterize fetal brain development and growth. It is, however, a relatively slow imaging technique and therefore extremely susceptible to subject motion, particularly in functional MRI experiments acquiring multiple Echo-Planar-Imaging-based repetitions, for example, diffusion MRI or blood-oxygen-level-dependency MRI. METHODS A 3D UNet was trained on 125 fetal datasets to track the fetal brain position in each repetition of the scan in real time. This tracking, inserted into a Gadgetron pipeline on a clinical scanner, allows updating the position of the field of view in a modified echo-planar imaging sequence. The method was evaluated in real-time in controlled-motion phantom experiments and ten fetal MR studies (17 + 4-34 + 3 gestational weeks) at 3T. The localization network was additionally tested retrospectively on 29 low-field (0.55T) datasets. RESULTS Our method achieved real-time fetal head tracking and prospective correction of the acquisition geometry. Localization performance achieved Dice scores of 84.4% and 82.3%, respectively for both the unseen 1.5T/3T and 0.55T fetal data, with values higher for cephalic fetuses and increasing with gestational age. CONCLUSIONS Our technique was able to follow the fetal brain even for fetuses under 18 weeks GA in real-time at 3T and was successfully applied "offline" to new cohorts on 0.55T. Next, it will be deployed to other modalities such as fetal diffusion MRI and to cohorts of pregnant participants diagnosed with pregnancy complications, for example, pre-eclampsia and congenital heart disease.
Collapse
Affiliation(s)
- Sara Neves Silva
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Jordina Aviles Verdera
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Raphael Tomi‐Tricot
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUK
| | - Radhouene Neji
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- MR Research CollaborationsSiemens Healthcare LimitedCamberleyUK
| | - Alena Uus
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Irina Grigorescu
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Thomas Wilkinson
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Valery Ozenne
- CNRS, CRMSB, UMR 5536, IHU LirycUniversité de BordeauxBordeauxFrance
| | - Alexander Lewin
- Institute of Neuroscience and Medicine 11, INM‐11Forschungszentrum JülichJülichGermany
- RWTHAachen UniversityAachenGermany
| | - Lisa Story
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Department of Women & Children's HealthKing's College LondonLondonUK
| | - Enrico De Vita
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- MRI Physics GroupGreat Ormond Street HospitalLondonUK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Kuberan Pushparajah
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Jo Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
- Biomedical Engineering Department, School of Biomedical Engineering & Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
13
|
Slator PJ, Cromb D, Jackson LH, Ho A, Counsell SJ, Story L, Chappell LC, Rutherford M, Hajnal JV, Hutter J, Alexander DC. Non-invasive mapping of human placenta microenvironments throughout pregnancy with diffusion-relaxation MRI. Placenta 2023; 144:29-37. [PMID: 37952367 DOI: 10.1016/j.placenta.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/10/2023] [Revised: 10/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023]
Abstract
INTRODUCTION In-vivo measurements of placental structure and function have the potential to improve prediction, diagnosis, and treatment planning for a wide range of pregnancy complications, such as fetal growth restriction and pre-eclampsia, and hence inform clinical decision making, ultimately improving patient outcomes. MRI is emerging as a technique with increased sensitivity to placental structure and function compared to the current clinical standard, ultrasound. METHODS We demonstrate and evaluate a combined diffusion-relaxation MRI acquisition and analysis pipeline on a sizable cohort of 78 normal pregnancies with gestational ages ranging from 15 + 5 to 38 + 4 weeks. Our acquisition comprises a combined T2*-diffusion MRI acquisition sequence - which is simultaneously sensitive to oxygenation, microstructure and microcirculation. We analyse our scans with a data-driven unsupervised machine learning technique, InSpect, that parsimoniously identifies distinct components in the data. RESULTS We identify and map seven potential placental microenvironments and reveal detailed insights into multiple microstructural and microcirculatory features of the placenta, and assess their trends across gestation. DISCUSSION By demonstrating direct observation of micro-scale placental structure and function, and revealing clear trends across pregnancy, our work contributes towards the development of robust imaging biomarkers for pregnancy complications and the ultimate goal of a normative model of placental development.
Collapse
Affiliation(s)
- Paddy J Slator
- Cardiff University Brain Research Imaging Centre, School of Psychology, Maindy Road, Cardiff, CF24 4HQ, UK; School of Computer Science and Informatics, Cardiff University, Cardiff, UK; Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK.
| | - Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Laurence H Jackson
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Alison Ho
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Lucy C Chappell
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, UK
| |
Collapse
|
14
|
Aviles Verdera J, Story L, Hall M, Finck T, Egloff A, Seed PT, Malik SJ, Rutherford MA, Hajnal JV, Tomi-Tricot R, Hutter J. Reliability and Feasibility of Low-Field-Strength Fetal MRI at 0.55 T during Pregnancy. Radiology 2023; 309:e223050. [PMID: 37847139 PMCID: PMC10623193 DOI: 10.1148/radiol.223050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/30/2022] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 10/18/2023]
Abstract
Background The benefits of using low-field-strength fetal MRI to evaluate antenatal development include reduced image artifacts, increased comfort, larger bore size, and potentially reduced costs, but studies about fetal low-field-strength MRI are lacking. Purpose To evaluate the reliability and feasibility of low-field-strength fetal MRI to assess anatomic and functional measures in pregnant participants using a commercially available 0.55-T MRI scanner and a comprehensive 20-minute protocol. Materials and Methods This prospective study was performed at a large teaching hospital (St Thomas' Hospital; London, England) from May to November 2022 in healthy pregnant participants and participants with pregnancy-related abnormalities using a commercially available 0.55-T MRI scanner. A 20-minute protocol was acquired including anatomic T2-weighted fast-spin-echo, quantitative T2*, and diffusion sequences. Key measures like biparietal diameter, transcerebellar diameter, lung volume, and cervical length were evaluated by two radiologists and an MRI-experienced obstetrician. Functional organ-specific mean values were given. Comparison was performed with existing published values and higher-field MRI using linear regression, interobserver correlation, and Bland-Altman plots. Results A total of 79 fetal MRI examinations were performed (mean gestational age, 29.4 weeks ± 5.5 [SD] [age range, 17.6-39.3 weeks]; maternal age, 34.4 years ± 5.3 [age range, 18.4-45.5 years]) in 47 healthy pregnant participants (control participants) and in 32 participants with pregnancy-related abnormalities. The key anatomic two-dimensional measures for the 47 healthy participants agreed with large cross-sectional 1.5-T and 3-T control studies. The interobserver correlations for the biparietal diameter in the first 40 consecutive scans were 0.96 (95% CI: 0.7, 0.99; P = .002) for abnormalities and 0.93 (95% CI: 0.86, 0.97; P < .001) for control participants. Functional features, including placental and brain T2* and placental apparent diffusion coefficient values, strongly correlated with gestational age (mean placental T2* in the control participants: 5.2 msec of decay per week; R2 = 0.66; mean T2* at 30 weeks, 176.6 msec; P < .001). Conclusion The 20-minute low-field-strength fetal MRI examination protocol was capable of producing reliable structural and functional measures of the fetus and placenta in pregnancy. Clinical trial registration no. REC 21/LO/0742 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Gowland in this issue.
Collapse
Affiliation(s)
- Jordina Aviles Verdera
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Lisa Story
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Megan Hall
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Tom Finck
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Alexia Egloff
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Paul T. Seed
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Shaihan J. Malik
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Mary A. Rutherford
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Joseph V. Hajnal
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Raphaël Tomi-Tricot
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| | - Jana Hutter
- From the Centre for the Developing Brain, School of Biomedical
Engineering & Imaging Sciences, King's College London, 1st Floor
South Wing, St Thomas’ Hospital, Westminster Bridge Road SE1 7EH London,
United Kingdom (J.A.V., L.S., M.H., P.T.S., S.J.M., M.A.R., J.V.H, J.H.); Centre
for Medical Biomedical Engineering Department, School of Biomedical Engineering
and Imaging Sciences, King's College London, London, UK (J.A.V., L.S.,
A.E., S.J.M., M.A.R., J.V.H., J.H.); Women's Health, GSTT, London, UK
(L.S., M.H., T.F., P.T.S.); Technical University Munich, Munich, Germany (T.F.);
MR Research Collaborations, Siemens Healthcare Limited, Camberley, UK (R.T.T.);
and Radiological Institute, University Hospital Erlangen, Erlangen, Germany
(J.H.)
| |
Collapse
|
15
|
Aertsen M, Melbourne A, Couck I, King E, Ourselin S, De Keyzer F, Dymarkowski S, Deprest J, Lewi L. Placental differences between uncomplicated and complicated monochorionic diamniotic pregnancies on diffusion and multicompartment Magnetic Resonance Imaging. Placenta 2023; 142:106-114. [PMID: 37683336 DOI: 10.1016/j.placenta.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/27/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
INTRODUCTION Twin-twin transfusion syndrome (TTTS) and selective fetal growth restriction (sFGR) are common complications in monochorionic diamniotic (MCDA) pregnancies. The Diffusion-rElaxation Combined Imaging for Detailed Placental Evaluation (DECIDE) model, a placental-specific model, separates the T2 values of the fetal and maternal blood from the background tissue and estimates the fetal blood oxygen saturation. This study investigates diffusion and relaxation differences in uncomplicated MCDA pregnancies and MCDA pregnancies complicated by TTTS and sFGR in mid-pregnancy. METHODS This prospective monocentric cohort study included uncomplicated MCDA pregnancies and pregnancies complicated by TTTS and sFGR. We performed MRI with conventional diffusion-weighted imaging (DWI) and combined relaxometry - DWI-intravoxel incoherent motion. DECIDE analysis was used to quantify different parameters within the placenta related to the fetal, placental, and maternal compartments. RESULTS We included 99 pregnancies, of which 46 were uncomplicated, 12 were complicated by sFGR and 41 by TTTS. Conventional DWI did not find differences between or within cohorts. On DECIDE imaging, fetoplacental oxygen saturation was significantly lower in the smaller member of sFGR (p = 0.07) and in both members of TTTS (p = 0.01 and p = 0.004) compared to the uncomplicated pairs. Additionally, average T2 relaxation time was significantly lower in the smaller twin of the sFGR (p = 0.004) compared to the uncomplicated twins (p = 0.03). CONCLUSION Multicompartment functional MRI showed significant differences in several MRI parameters between the placenta of uncomplicated MCDA pregnancies and those complicated by sFGR and TTTS in mid-pregnancy.
Collapse
Affiliation(s)
- M Aertsen
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium.
| | - A Melbourne
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Medical Physics and Biomedical Engineering, University College London, UK
| | - I Couck
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium
| | - E King
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK
| | - S Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, UK; Medical Physics and Biomedical Engineering, University College London, UK
| | - F De Keyzer
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - S Dymarkowski
- Department of Radiology, University Hospitals KU Leuven, Leuven, Belgium
| | - J Deprest
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium; Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, Perinatal Imaging and Health, King's College London, King's Health Partners, St.Thomas' Hospital, 1st Floor South Wing, London, SE1 7EH, UK
| | - L Lewi
- Department of Obstetrics and Gynaecology, University Hospitals Leuven, Leuven, Belgium; Department of Development and Regeneration, Cluster Woman and Child, Biomedical Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Cromb D, Slator PJ, De La Fuente M, Price AN, Rutherford M, Egloff A, Counsell SJ, Hutter J. Assessing within-subject rates of change of placental MRI diffusion metrics in normal pregnancy. Magn Reson Med 2023; 90:1137-1150. [PMID: 37183839 PMCID: PMC10962570 DOI: 10.1002/mrm.29665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Studying placental development informs when development is abnormal. Most placental MRI studies are cross-sectional and do not study the extent of individual variability throughout pregnancy. We aimed to explore how diffusion MRI measures of placental function and microstructure vary in individual healthy pregnancies throughout gestation. METHODS Seventy-nine pregnant, low-risk participants (17 scanned twice and 62 scanned once) were included. T2 -weighted anatomical imaging and a combined multi-echo spin-echo diffusion-weighted sequence were acquired at 3 T. Combined diffusion-relaxometry models were performed using both aT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -ADC and a bicompartmentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel-incoherent-motion (T 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ ) model fit. RESULTS There was a significant decline in placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC (both P < 0.01) over gestation. These declines are consistent in individuals forT 2 * $$ {\mathrm{T}}_2^{\ast } $$ (covariance = -0.47), but not ADC (covariance = -1.04). TheT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model identified a consistent decline in individuals over gestation inT 2 * $$ {\mathrm{T}}_2^{\ast } $$ from both the perfusing and diffusing placental compartments, but not in ADC values from either. The placental perfusing compartment fraction increased over gestation (P = 0.0017), but this increase was not consistent in individuals (covariance = 2.57). CONCLUSION Whole placentalT 2 * $$ {\mathrm{T}}_2^{\ast } $$ and ADC values decrease over gestation, although onlyT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values showed consistent trends within subjects. There was minimal individual variation in rates of change ofT 2 * $$ {\mathrm{T}}_2^{\ast } $$ values from perfusing and diffusing placental compartments, whereas trends in ADC values from these compartments were less consistent. These findings probably relate to the increased complexity of the bicompartmentalT 2 * IVIM $$ {\mathrm{T}}_2^{\ast}\;\mathrm{IVIM} $$ model, and differences in how different placental regions evolve at a microstructural level. These placental MRI metrics from low-risk pregnancies provide a useful benchmark for clinical cohorts.
Collapse
Affiliation(s)
- Daniel Cromb
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Paddy J. Slator
- Centre for Medical Image Computing, Department of Computer ScienceUniversity College LondonLondonUK
| | - Miguel De La Fuente
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Anthony N. Price
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| | - Mary Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- MRC Centre for Neurodevelopmental DisordersKing's College LondonLondonUK
| | - Alexia Egloff
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Serena J. Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
- Centre for Medical EngineeringSchool of Biomedical Engineering and Imaging Sciences, King's College LondonLondonUK
| |
Collapse
|
17
|
Al Darwish FM, Meijerink L, Coolen BF, Strijkers GJ, Bekker M, Lely T, Terstappen F. From Molecules to Imaging: Assessment of Placental Hypoxia Biomarkers in Placental Insufficiency Syndromes. Cells 2023; 12:2080. [PMID: 37626890 PMCID: PMC10452979 DOI: 10.3390/cells12162080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Placental hypoxia poses significant risks to both the developing fetus and the mother during pregnancy, underscoring the importance of early detection and monitoring. Effectively identifying placental hypoxia and evaluating the deterioration in placental function requires reliable biomarkers. Molecular biomarkers in placental tissue can only be determined post-delivery and while maternal blood biomarkers can be measured over time, they can merely serve as proxies for placental function. Therefore, there is an increasing demand for non-invasive imaging techniques capable of directly assessing the placental condition over time. Recent advancements in imaging technologies, including photoacoustic and magnetic resonance imaging, offer promising tools for detecting and monitoring placental hypoxia. Integrating molecular and imaging biomarkers may revolutionize the detection and monitoring of placental hypoxia, improving pregnancy outcomes and reducing long-term health complications. This review describes current research on molecular and imaging biomarkers of placental hypoxia both in human and animal studies and aims to explore the benefits of an integrated approach throughout gestation.
Collapse
Affiliation(s)
- Fatimah M. Al Darwish
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Lotte Meijerink
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Bram F. Coolen
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Gustav J. Strijkers
- Department of Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (G.J.S.)
| | - Mireille Bekker
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Titia Lely
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| | - Fieke Terstappen
- Department of Obstetrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (L.M.); (M.B.); (T.L.); (F.T.)
| |
Collapse
|
18
|
Hutter J, Al-Wakeel A, Kyriakopoulou V, Matthew J, Story L, Rutherford M. Exploring the role of a time-efficient MRI assessment of the placenta and fetal brain in uncomplicated pregnancies and these complicated by placental insufficiency. Placenta 2023; 139:25-33. [PMID: 37295055 DOI: 10.1016/j.placenta.2023.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/21/2022] [Revised: 02/24/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The development of placenta and fetal brain are intricately linked. Placental insufficiency is related to poor neonatal outcomes with impacts on neurodevelopment. This study sought to investigate whether simultaneous fast assessment of placental and fetal brain oxygenation using MRI T2* relaxometry can play a complementary role to US and Doppler US. METHODS This study is a retrospective case-control study with uncomplicated pregnancies (n = 99) and cases with placental insufficiency (PI) (n = 49). Participants underwent placental and fetal brain MRI and contemporaneous ultrasound imaging, resulting in quantitative assessment including a combined MRI score called Cerebro-placental-T2*-Ratio (CPTR). This was assessed in comparison with US-derived Cerebro-Placental-Ratio (CPR), placental histopathology, assessed using the Amsterdam criteria [1], and delivery details. RESULTS Pplacental and fetal brain T2* decreased with increasing gestational age in both low and high risk pregnancies and were corrected for gestational-age alsosignificantly decreased in PI. Both CPR and CPTR score were significantly correlated with gestational age at delivery for the entire cohort. CPTR was, however, also correlated independently with gestational age at delivery in the PI cohort. It furthermore showed a correlation to birth-weight-centile in healthy controls. DISCUSSION This study indicates that MR analysis of the placenta and brain may play a complementary role in the investigation of fetal development. The additional correlation to birth-weight-centile in controls may suggest a role in the determination of placental health even in healthy controls. To our knowledge, this is the first study assessing quantitatively both placental and fetal brain development over gestation in a large cohort of low and high risk pregnancies. Future larger prospective studies will include additional cohorts.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK.
| | - Ayman Al-Wakeel
- GKT School of Medical Education, King's College London, London, UK
| | - Vanessa Kyriakopoulou
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Jacqueline Matthew
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| | - Lisa Story
- Centre for the Developing Brain, King's College London, UK; Institute for Women's and Children's Health, King's College London, UK; Fetal Medicine Unit, St Thomas' Hospital, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, UK; Centre for Medical Engineering, King's College London, UK
| |
Collapse
|
19
|
Dyhr JJ, Linderoth IR, Hansen DN, Frøkjaer JB, Peters DA, Sinding M, Sørensen A. Confined placental mosaicism: placental size and function evaluated on magnetic resonance imaging. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 62:130-136. [PMID: 36730148 DOI: 10.1002/uog.26174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVES Evidence regarding placental function in pregnancies complicated by confined placental mosaicism (CPM) is conflicting. We aimed to compare placental function between CPM and non-CPM pregnancies prenatally and at birth. A secondary objective was to evaluate the relationship between placental function and chromosomal subtype of CPM. METHODS This was a retrospective study of pregnancies with CPM and control pregnancies delivered at a tertiary hospital in Denmark between 2014 and 2017. Placental volume and placental transverse relaxation time (T2*) were estimated on magnetic resonance imaging (MRI), fetal weight and uterine artery pulsatility index (UtA-PI) were estimated on ultrasound and fetoplacental ratio was assessed on MRI and at birth. These estimates of placental function were adjusted for gestational age and compared between groups using the Wilcoxon rank-sum test. Within the group of CPM pregnancies, measures of placental function were compared between those at high risk (chromosome numbers 2, 3, 7, 13 and 16) and those at low risk (chromosome numbers 5, 18 and 45X). RESULTS A total of 90 pregnancies were included, of which 12 had CPM and 78 were controls. MRI and ultrasound examinations were performed at a median gestational age of 32.6 weeks (interquartile range, 24.7-35.3 weeks). On MRI assessment, CPM placentae were characterized by a lower placental T2* Z-score (P = 0.004), a lower fetoplacental ratio (P = 0.03) and a higher UtA-PI Z-score (P = 0.03), compared with non-CPM placentae. At birth, the fetoplacental ratio was significantly lower (P = 0.02) and placental weight Z-score was higher (P = 0.01) in CPM pregnancies compared with non-CPM pregnancies. High-risk CPM pregnancies showed a reduced placental T2* Z-score (P = 0.003), lower birth-weight Z-score (P = 0.041), earlier gestational age at delivery (P = 0.019) and higher UtA-PI Z-score (P = 0.028) compared with low-risk CPM pregnancies. Low-risk CPM pregnancies did not differ in any of these parameters from non-CPM pregnancies. CONCLUSIONS CPM pregnancies are characterized by an enlarged and dysfunctional placenta. Placental function was highly related to the chromosomal type of CPM; placental dysfunction was seen predominantly in high-risk CPM pregnancies in which chromosomes 2, 3, 7, 13 or 16 were involved. © 2023 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- J J Dyhr
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - I R Linderoth
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - D N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - J B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - D A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - M Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - A Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
20
|
Slator PJ, Verdera JA, Tomi-Tricot R, Hajnal JV, Alexander DC, Hutter J. Low-Field Combined Diffusion-Relaxation MRI for Mapping Placenta Structure and Function. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.06.23290983. [PMID: 37333076 PMCID: PMC10274995 DOI: 10.1101/2023.06.06.23290983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/20/2023]
Abstract
Purpose Demonstrating quantitative multi-parametric mapping in the placenta with combined T 2 ∗ -diffusion MRI at low-field (0.55T). Methods We present 57 placental MRI scans performed on a commercially available 0.55T scanner. We acquired the images using a combined T 2 ∗ -diffusion technique scan that simultaneously acquires multiple diffusion preparations and echo times. We processed the data to produce quantitative T 2 ∗ and diffusivity maps using a combined T 2 ∗ -ADC model. We compared the derived quantitative parameters across gestation in healthy controls and a cohort of clinical cases. Results Quantitative parameter maps closely resemble those from previous experiments at higher field strength, with similar trends in T 2 ∗ and ADC against gestational age observed. Conclusion Combined T 2 ∗ -diffusion placental MRI is reliably achievable at 0.55T. The advantages of lower field strength - such as cost, ease of deployment, increased accessibility and patient comfort due to the wider bore, and increased T 2 ∗ for larger dynamic ranges - can support the widespread roll out of placental MRI as an adjunct to ultrasound during pregnancy.
Collapse
Affiliation(s)
- Paddy J Slator
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
- School of Computer Science and Informatics, Cardiff University, Cardiff, UK
| | - Jordina Aviles Verdera
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Raphael Tomi-Tricot
- MR Research Collaborations, Siemens Healthcare Limited, Camberley, United Kingdom
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Biomedical Engineering Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
21
|
Hall M, de Marvao A, Schweitzer R, Cromb D, Colford K, Jandu P, O'Regan DP, Ho A, Price A, Chappell LC, Rutherford MA, Story L, Lamata P, Hutter J. Characterisation of placental, fetal brain and maternal cardiac structure and function in pre-eclampsia using MRI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.24.23289069. [PMID: 37163073 PMCID: PMC10168502 DOI: 10.1101/2023.04.24.23289069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/11/2023]
Abstract
Background Pre-eclampsia is a multiorgan disease of pregnancy that has short- and long-term implications for the woman and fetus, whose immediate impact is poorly understood. We present a novel multi-system approach to MRI investigation of pre-eclampsia, with acquisition of maternal cardiac, placental, and fetal brain anatomical and functional imaging. Methods A prospective study was carried out recruiting pregnant women with pre-eclampsia, chronic hypertension, or no medical complications, and a non-pregnant female cohort. All women underwent a cardiac MRI, and pregnant women underwent a fetal-placental MRI. Cardiac analysis for structural, morphological and flow data was undertaken; placenta and fetal brain volumetric and T2* data were obtained. All results were corrected for gestational age. Results Seventy-eight MRIs were obtained during pregnancy. Pregnancies affected by pre-eclampsia demonstrated lower placental and fetal brain T2*. Within the pre-eclampsia group, three placental T2* results were within the normal range, these were the only cases with normal placental histopathology. Similarly, three fetal brain T2* results were within the normal range; these cases had no evidence of cerebral redistribution on fetal Dopplers. Cardiac MRI analysis demonstrated higher left ventricular mass in pre-eclampsia with 3D modelling revealing additional specific characteristics of eccentricity and outflow track remodelling. Conclusions We present the first holistic assessment of the immediate implications of pre-eclampsia on the placenta, maternal heart, and fetal brain. As well as having potential clinical implications for the risk-stratification and management of women with pre-eclampsia, this gives an insight into disease mechanism.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Antonio de Marvao
- Department of Women and Children’s Health, King’s College London, UK
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Ronny Schweitzer
- School of Cardiovascular Medicine, King’s College London, UK
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Daniel Cromb
- Centre for the Developing Brain, King’s College London, UK
| | | | - Priya Jandu
- GKT School of Medical Education, King’s College London, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, UK
| | - Alison Ho
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Anthony Price
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| | - Lucy C. Chappell
- Department of Women and Children’s Health, King’s College London, UK
| | | | - Lisa Story
- Department of Women and Children’s Health, King’s College London, UK
- Centre for the Developing Brain, King’s College London, UK
| | - Pablo Lamata
- Centre for Medical Engineering, King’s College London, UK
| | - Jana Hutter
- Centre for the Developing Brain, King’s College London, UK
- Centre for Medical Engineering, King’s College London, UK
| |
Collapse
|
22
|
Song F, Li R, Lin J, Lv M, Qian Z, Wang L, Wu W. Predicting the risk of fetal growth restriction by radiomics analysis of the placenta on T2WI: A retrospective case-control study. Placenta 2023; 134:15-22. [PMID: 36863127 DOI: 10.1016/j.placenta.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
INTRODUCTION Fetal growth restriction (FGR) is associated with placental abnormalities, and its precise diagnosis is challenging. This study aimed to explore the role of radiomics based on placental MRI in predicting FGR. METHODS A retrospective study using T2-weighted placental MRI data were conducted. A total of 960 radiomic features were automatically extracted. Features were selected using three-step machine learning methods. A combined model was constructed by combining MRI-based radiomic features and ultrasound-based fetal measurements. The receiver operating characteristic curves (ROC) were conducted to assess model performance. Additionally, decision curves and calibration curves were performed to evaluate prediction consistency of different models. RESULTS Among the study participants, pregnant women who delivered from January 2015 to June 2021 were randomly divided into training (n = 119) and test (n = 40) sets. Forty-three other pregnant women who delivered from July 2021 to December 2021 were used as the time-independent validation set. After training and testing, three radiomic features that were strongly correlated with FGR were selected. The area under the ROC curves (AUCs) of the MRI-based radiomics model reached 0.87 (95% confidence interval [CI]: 0.74-0.96) and 0.87 (95% CI: 0.76-0.97) in the test and validation sets, respectively. Moreover, the AUCs for the model comprising MRI-based radiomic features and ultrasound-based measurements were 0.91 (95% CI: 0.83-0.97) and 0.94 (95% CI: 0.86-0.99) in the test and validation sets, respectively. DISCUSSION MRI-based placental radiomics could accurately predict FGR. Moreover, combining placental MRI-based radiomic features with ultrasound indicators of the fetus could improve the diagnostic accuracy of FGR.
Collapse
Affiliation(s)
- Fuzhen Song
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Ruikun Li
- Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Lin
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Mingli Lv
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University, Shanghai, China
| | - Zhaoxia Qian
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University, Shanghai, China.
| | - Lisheng Wang
- Institute of Image Processing and Pattern Recognition, Department of Automation, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China.
| | - Weibin Wu
- The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Institute of Birth Defects and Rare Diseases, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
23
|
Hutter J, Slator PJ, Avena Zampieri C, Hall M, Rutherford M, Story L. Multi-modal MRI reveals changes in placental function following preterm premature rupture of membranes. Magn Reson Med 2023; 89:1151-1159. [PMID: 36255151 PMCID: PMC10091779 DOI: 10.1002/mrm.29483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/02/2023]
Abstract
PURPOSE Preterm premature rupture of membranes complicates up to 40% of premature deliveries. Fetal infection may occur in the absence of maternal symptoms, delaying diagnosis and increasing morbidity and mortality. A noninvasive antenatal assessment of early signs of placental inflammation is therefore urgently required. METHODS Sixteen women with preterm premature rupture of membranes < 34 weeks gestation and 60 women with uncomplicated pregnancies were prospectively recruited. A modified diffusion-weighted spin-echo single shot EPI sequence with a diffusion preparation acquiring 264 unique parameter combinations in < 9 min was obtained on a clinical 3 Tesla MRI scanner. The data was fitted to a 2-compartment T 2 * $$ {\mathrm{T}}_2^{\ast } $$ -intravoxel incoherent motion model comprising fast and slowly circulating fluid pools to obtain quantitative information on perfusion, density, and tissue composition. Z values were calculated, and correlation with time from between the rupture of membranes and the scan, gestational age at delivery, and time between scan and delivery assessed. RESULTS Placental T 2 * $$ {\mathrm{T}}_2^{\ast } $$ was significantly reduced in preterm premature rupture of membranes, and the 2-compartmental model demonstrated that this decline is mainly linked to the perfusion component observed in the placental parenchyma. Multi-modal MRI measurement of placental function is linked to gestational age at delivery and time from membrane rupture. CONCLUSION More complex models and data acquisition can potentially improve fitting of the underlying etiology of preterm birth compared with individual single-contrast models and contribute to additional insights in the future. This will need validation in larger cohorts. A multi-modal MRI acquisition between rupture of the membranes and delivery can be used to measure placental function and is linked to gestational age at delivery.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Centre for Medical Engineering, King's College London, London, United Kingdom
| | | | - Carla Avena Zampieri
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Centre for Medical Engineering, King's College London, London, United Kingdom
| | - Megan Hall
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Institute for Women's and Children's Health, King's College London, London, United Kingdom.,Fetal Medicine Unit, St Thomas' Hospital, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Centre for Medical Engineering, King's College London, London, United Kingdom
| | - Lisa Story
- Centre for the Developing Brain, King's College London, London, United Kingdom.,Institute for Women's and Children's Health, King's College London, London, United Kingdom.,Fetal Medicine Unit, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
24
|
Mydtskov ND, Sinding M, Aarøe KK, Thaarup LV, Madsen SBB, Hansen DN, Frøkjær JB, Peters DA, Sørensen ANW. Placental volume, thickness and transverse relaxation time (T2*) estimated by magnetic resonance imaging in relation to small for gestational age at birth. Eur J Obstet Gynecol Reprod Biol 2023; 282:72-76. [PMID: 36669243 DOI: 10.1016/j.ejogrb.2023.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/25/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Placental magnetic resonance imaging (MRI) may be a valuable tool in the prediction of small for gestational age (SGA) at birth. MRI provides reliable estimates of placental volume and thickness. In addition, placental transverse relaxation time (T2*) may be directly related to placental function. This study aimed to explore and compare the predictive performance of three placental MRI parameters - volume, thickness and T2* - in relation to SGA at birth. METHODS A mixed cohort of 85 pregnancies was retrieved from the placental MRI database at the study hospital. MRI was performed in a 1.5 T system at gestational weeks 15-41. In normal birthweight (BW) pregnancies [BW > -22 % of expected for gestational age (GA)], the correlation between each of the MRI parameters and GA was investigated by linear regression. The prediction of SGA was investigated by logistic regression analysis adjusted for GA at MRI. RESULTS In normal BW pregnancies, a significant linear correlation was found between GA and each of the MRI parameters. Univariate analysis demonstrated that placental volume [odds ratio (OR) 0.97, p = 0.001] and placental T2* (OR 0.79, p = 0.003), but not placental thickness (OR 0.92, p = 0.862) were significant predictors of SGA. A multi-variate model including all three MRI parameters found that placental T2* was the only independent predictor of SGA (OR 0.81, p = 0.04). CONCLUSION Among the MRI parameters investigated in this study, placental T2* was the only independent predictor of SGA in a multi-variate model. This finding underlines the strong position of T2*-weighted placental MRI in the prediction of SGA.
Collapse
Affiliation(s)
- N D Mydtskov
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark
| | - M Sinding
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - K K Aarøe
- Department of Surgery, North Denmark Regional Hospital, Hjørring, Denmark
| | - L V Thaarup
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - S B B Madsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - D N Hansen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - J B Frøkjær
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - D A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus N, Denmark
| | - A N W Sørensen
- Department of Obstetrics and Gynaecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
25
|
Sun Z, Wu W, Zhao P, Wang Q, Woodard PK, Nelson DM, Odibo A, Cahill A, Wang Y. Association of intraplacental oxygenation patterns on dual-contrast MRI with placental abnormality and fetal brain oxygenation. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2023; 61:215-223. [PMID: 35638228 PMCID: PMC9708928 DOI: 10.1002/uog.24959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/13/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 05/27/2023]
Abstract
OBJECTIVES Most human in-vivo placental imaging techniques are unable to distinguish and characterize various placental compartments, such as the intervillous space (IVS), placental vessels (PV) and placental tissue (PT), limiting their specificity. We describe a method that employs T2* and diffusion-weighted magnetic resonance imaging (MRI) data to differentiate automatically placental compartments, quantify their oxygenation properties and identify placental lesions (PL) in vivo. We also investigate the association between placental oxygenation patterns and fetal brain oxygenation. METHODS This was a prospective study conducted between 2018 and 2021 in which dual-contrast clinical MRI data (T2* and diffusion-weighted MRI) were acquired from patients between 20 and 38 weeks' gestation. We trained a fuzzy clustering method to analyze T2* and diffusion-weighted MRI data and assign placental voxels to one of four clusters, based on their distinct imaging domain features. The new method divided automatically the placenta into IVS, PV, PT and PL compartments and characterized their oxygenation changes throughout pregnancy. RESULTS A total of 27 patients were recruited, of whom five developed pregnancy complications. Total placental oxygenation level and T2* did not demonstrate a statistically significant temporal correlation with gestational age (GA) (R2 = 0.060, P = 0.27). In contrast, the oxygenation level reflected by T2* values in the placental IVS (R2 = 0.51, P = 0.0002) and PV (R2 = 0.76, P = 1.1 × 10-7 ) decreased significantly with advancing GA. Oxygenation levels in the PT did not show any temporal change during pregnancy (R2 = 0.00044, P = 0.93). A strong spatial-dependent correlation between PV oxygenation level and GA was observed. The strongest negative correlation between PV oxygenation and GA (R2 = 0.73, P = 4.5 × 10-7 ) was found at the fetal-vessel-dominated region close to the chorionic plate. The location and extent of the placental abnormality were automatically delineated and quantified in the five women with clinically confirmed placental pathology. Compared to the averaged total placental oxygenation, placental IVS oxygenation level best reflected fetal brain oxygenation level during fetal development. CONCLUSION Based on clinically feasible dual-MRI, our method enables accurate spatiotemporal quantification of placental compartment and fetal brain oxygenation across different GAs. This information should improve our knowledge of human placenta development and its relationship with normal and abnormal pregnancy. © 2022 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- Z. Sun
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - W. Wu
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - P. Zhao
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - Q. Wang
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - P. K. Woodard
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - D. M. Nelson
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - A. Odibo
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
| | - A. Cahill
- Department of Women's HealthUniversity of Texas at Austin, Dell Medical SchoolAustinTXUSA
| | - Y. Wang
- Department of Biomedical EngineeringWashington University in St LouisSt LouisMOUSA
- Department of Obstetrics and GynecologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
- Mallinckrodt Institute of RadiologyWashington University School of Medicine, Washington University in St LouisSt LouisMOUSA
- Department of Electrical & Systems EngineeringWashington University in St LouisSt LouisMOUSA
| |
Collapse
|
26
|
Baadsgaard K, Hansen DN, Peters DA, Frøkjær JB, Sinding M, Sørensen A. T2* weighted fetal MRI and the correlation with placental dysfunction. Placenta 2023; 131:90-97. [PMID: 36565490 DOI: 10.1016/j.placenta.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 08/28/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Transverse relaxation time (T2*) is related to tissue oxygenation and morphology. We aimed to describe T2* weighted MRI in selected fetal organs in normal pregnancies, and to investigate the correlation between fetal organ T2* and placental T2*, birthweight (BW) deviation, and redistribution of fetal blood flow. METHODS T2*-weighted MRI was performed in 126 singleton pregnancies between 23+6- and 41+3-weeks' gestation. The T2* value was obtained from the placenta and fetal organs (brain, lungs, heart, liver, kidneys, and spleen). In normal BW pregnancies (BW > 10th centile), the correlation between the T2* value and gestational age (GA) at MRI was estimated by linear regression. The correlation between fetal organ Z-score and BW group was demonstrated by boxplots and investigated by analysis of variance (ANOVA) for each organ. RESULTS In normal BW pregnancies fetal organ T2* was negatively correlated with GA. We found a significant correlation between BW group and fetal organ T2* z-score in the fetal heart, kidney, lung and spleen. A positive linear correlation was demonstrated between fetal organ T2* and outcomes related to placental function such as BW deviation and placenta T2* in all investigated fetal organs except for the fetal liver. In the fetal heart, kidneys, and spleen the T2* value showed a significant correlation with fetal redistribution of blood flow (Middle cerebral artery Pulsatility Index) before delivery. DISCUSSION Fetal T2* is correlated with BW, placental function, and redistribution of fetal blood flow, suggesting that fetal organ T2* reflects fetal oxygenation and morphological changes related to placental dysfunction.
Collapse
Affiliation(s)
- Kirstine Baadsgaard
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Universitetsbyen 25, 8000, Aarhus C, Denmark
| | - Jens B Frøkjær
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| | - Marianne Sinding
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| | - Anne Sørensen
- Department of Clinical Medicine Aalborg University, Søndre Skovvej 15, 9000, Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark
| |
Collapse
|
27
|
Hutter J, Kohli V, Dellschaft N, Uus A, Story L, Steinweg JK, Gowland P, Hajnal JV, Rutherford MA. Dynamics of T2* and deformation in the placenta and myometrium during pre-labour contractions. Sci Rep 2022; 12:18542. [PMID: 36329074 PMCID: PMC9633703 DOI: 10.1038/s41598-022-22008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/12/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Pre-labour uterine contractions, occurring throughout pregnancy, are an important phenomenon involving the placenta in addition to the myometrium. They alter the uterine environment and thus potentially the blood supply to the fetus and may thus provide crucial insights into the processes of labour. Assessment in-vivo is however restricted due to their unpredictability and the inaccessible nature of the utero-placental compartment. While clinical cardiotocography (CTG) only allows global, pressure-based assessment, functional magnetic resonance imaging (MRI) provides an opportunity to study contractile activity and its effects on the placenta and the fetus in-vivo. This study aims to provide both descriptive and quantitative structural and functional MR assessments of pre-labour contractions in the human uterus. A total of 226 MRI scans (18-41 weeks gestation) from ongoing research studies were analysed, focusing on free-breathing dynamic quantitative whole uterus dynamic T2* maps. These provide an indirect measure of tissue properties such as oxygenation. 22 contractile events were noted visually and both descriptive and quantitative analysis of the myometrial and placental changes including volumetric and T2* variations were undertaken. Processing and analysis was successfully performed, qualitative analysis shows distinct and highly dynamic contraction related characteristics including; alterations in the thickness of the low T2* in the placental bed and other myometrial areas, high intensity vessel-like structures in the myometrium, low-intensity vessel structures within the placental parenchyma and close to the chorionic plate. Quantitative evaluation shows a significant negative correlation between T2* in both contractile and not-contractile regions with gestational age (p < 0.05) as well as a significant reduction in T2* during contractions. The T2* values in the myometrium were however not correlated to gestational age (p > 0.5). The quantitative and qualitative description of uterine pre-labour contractions including dynamic changes and key characteristics aims to contribute to the sparsely available in-vivo information and to provide an in-vivo tool to study this important phenomenon. Further work is required to analyse the origins of these subclinical contractions, their effects in high-risk pregnancies and their ability to determine the likelihood of a successful labour. Assessing T2* distribution as a marker for placental oxygenation could thus potentially complement clinically used cardiotocography measurements in the future.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for the Developing Brain, King's College London, London, UK.
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Science, King's College London, London, UK.
| | - Vikram Kohli
- GKT School of Medicine, King's College London, London, UK
| | - Neele Dellschaft
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Alena Uus
- Centre for the Developing Brain, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - Lisa Story
- Academic Women's Health Department, King's College London, London, UK
- Fetal Medicine Department, GSTT, London, UK
| | - Johannes K Steinweg
- Department of Cardiovascular Imaging, School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre, University of Nottingham, Nottingham, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| | - Mary A Rutherford
- Centre for the Developing Brain, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Science, King's College London, London, UK
| |
Collapse
|
28
|
King VJ, Bennet L, Stone PR, Clark A, Gunn AJ, Dhillon SK. Fetal growth restriction and stillbirth: Biomarkers for identifying at risk fetuses. Front Physiol 2022; 13:959750. [PMID: 36060697 PMCID: PMC9437293 DOI: 10.3389/fphys.2022.959750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is a major cause of stillbirth, prematurity and impaired neurodevelopment. Its etiology is multifactorial, but many cases are related to impaired placental development and dysfunction, with reduced nutrient and oxygen supply. The fetus has a remarkable ability to respond to hypoxic challenges and mounts protective adaptations to match growth to reduced nutrient availability. However, with progressive placental dysfunction, chronic hypoxia may progress to a level where fetus can no longer adapt, or there may be superimposed acute hypoxic events. Improving detection and effective monitoring of progression is critical for the management of complicated pregnancies to balance the risk of worsening fetal oxygen deprivation in utero, against the consequences of iatrogenic preterm birth. Current surveillance modalities include frequent fetal Doppler ultrasound, and fetal heart rate monitoring. However, nearly half of FGR cases are not detected in utero, and conventional surveillance does not prevent a high proportion of stillbirths. We review diagnostic challenges and limitations in current screening and monitoring practices and discuss potential ways to better identify FGR, and, critically, to identify the “tipping point” when a chronically hypoxic fetus is at risk of progressive acidosis and stillbirth.
Collapse
Affiliation(s)
- Victoria J. King
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Peter R. Stone
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Alys Clark
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
- Auckland Biomedical Engineering Institute, The University of Auckland, Auckland, New Zealand
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- *Correspondence: Simerdeep K. Dhillon,
| |
Collapse
|
29
|
Evaluation of placental oxygenation in fetal growth restriction using blood oxygen level-dependent magnetic resonance imaging. Placenta 2022; 126:40-45. [PMID: 35750000 DOI: 10.1016/j.placenta.2022.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/12/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Abnormalities in placental function can lead to fetal growth restriction (FGR), but there is no consensus on their evaluation. Using blood oxygen level-dependent magnetic resonance imaging (BOLD MRI), we compared placental oxygenation between FGR cases and previously reported normal pregnancies. METHODS Eight singleton pregnant women (>32 weeks of gestation) diagnosed with fetal growth failure during pregnancy were recruited. BOLD MRI was consecutively performed under normoxia (21% O2), hyperoxia (100% O2), and normoxia for 4 min each. Each placental time-activity curve was evaluated to calculate the peak score (peakΔR2*) and the time from the start of maternal oxygen administration to the time of peakΔR2* (time to peakΔR2*). In six of the eight FGR cases, placental FGR-related pathological findings were evaluated after delivery. RESULTS The parameter peakΔR2* was significantly decreased in the FGR group (8 ± 3 vs 6 ± 1, p < 0.001), but there was no significant difference in time to peakΔR2* (458 ± 74 s vs 468 ± 57 s, p = 0.750). The findings in the six FGR cases assessed for placental pathologies included chorangiosis in two cases, avascular chorions in two cases, placental infarction in two cases, and syncytial knot formation in one case. DISCUSSION The peakΔR2* values were lower in the FGR group than in the normal pregnancy group. This suggests that oxygenation of the placenta is decreased in the FGR group compared to the normal group, and this may be related to FGR. Placental pathology also revealed findings possibly related to FGR, suggesting that low peakΔR2* values in the FGR group may reflect placental dysfunction.
Collapse
|
30
|
Hall M, Hutter J, Suff N, Zampieri CA, Tribe RM, Shennan A, Rutherford M, Story L. Antenatal diagnosis of chorioamnionitis: A review of the potential role of fetal and placental imaging. Prenat Diagn 2022; 42:1049-1058. [PMID: 35670265 PMCID: PMC9543023 DOI: 10.1002/pd.6188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/12/2022]
Abstract
Chorioamnionitis is present in up to 70% of spontaneous preterm births. It is defined as an acute inflammation of the chorion, with or without involvement of the amnion, and is evidence of a maternal immunological response to infection. A fetal inflammatory response can coexist and is diagnosed on placental histopathology postnatally. Fetal inflammatory response syndrome (FIRS) is associated with poorer fetal and neonatal outcomes. The only antenatal diagnostic test is amniocentesis which carries risks of miscarriage or preterm birth. Imaging of the fetal immune system, in particular the thymus and the spleen, and the placenta may give valuable information antenatally regarding the diagnosis of fetal inflammatory response. While ultrasound is largely limited to structural information, MRI can complement this with functional information that may provide insight into the metabolic activities of the fetal immune system and placenta. This review discusses fetal and placental imaging in pregnancies complicated by chorioamnionitis and their potential future use in achieving non-invasive antenatal diagnosis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Megan Hall
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK.,Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Jana Hutter
- Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Natalie Suff
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK
| | - Carla Avena Zampieri
- Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Rachel M Tribe
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK
| | - Andrew Shennan
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| | - Lisa Story
- Department of Women and Children's Health, St Thomas' Hospital, King's College London, London, UK.,Centre for the Developing Brain, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
31
|
Lo G, Jacques A, Dickinson JE. Magnetic resonance imaging (MRI) of normal human placentae. J Med Imaging Radiat Oncol 2022; 67:232-241. [PMID: 35665447 DOI: 10.1111/1754-9485.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2022] [Accepted: 05/22/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The MRI appearances of the human placenta in the absence of maternal or fetal pathology have not been extensively studied, with only a few studies reporting findings in the uncomplicated pregnancy. The purpose of this study is to review the placental MRI appearances in low-risk pregnancies in a prospective study. METHODS A prospective observational study of placental MRI in low-risk pregnancies was initially planned, however recruitment was terminated early due to the COVID19 pandemic. The protocol was subsequently modified to compare the placental appearances in the enrolled cohort with pregnancies having had MRI for non-placental pathologies. The data from the two groups were then pooled to assess the range of normal placental appearances. RESULTS Eighty-three pregnancies were prospectively assessed with MRI at a median gestation of 29 weeks (range 14-39) from a mixed group of prospective cases (n = 28) and retrospectively recruited obstetric MRI (n = 55). Placental thickness in the third trimester ranged from 18 to 35 mm. T2 heterogeneity was seen in 75% (25/33) at second trimester and by the third trimester 50% (25/50) were moderately or markedly heterogenous. T2 dark bands (>6 mm) were seen in 9% (3/33) and 20% (10/50) of second and third trimester pregnancies, respectively. Undetectable myometrium or loss of the subplacental myometrial plane was present in 15% (5/33) of second and 38% (19/50) of third trimester placentae. CONCLUSION This qualitative study of normal placental MRI appearances expands the current knowledge base by confirming they vary, evolve with gestation, and can overlap with signs of placenta accreta spectrum.
Collapse
Affiliation(s)
- Glen Lo
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,King Edward Memorial Hospital, Perth, Western Australia, Australia.,The University of Western Australia, Nedlands, Western Australia, Australia.,Curtin University, Perth, Western Australia, Australia
| | - Angela Jacques
- Department of Research, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia.,Institute for Health Research, The University of Notre Dame, Fremantle, Western Australia, Australia
| | - Jan E Dickinson
- King Edward Memorial Hospital, Perth, Western Australia, Australia.,The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
32
|
Colford K, Price AN, Sigurdardottir J, Fotaki A, Steinweg J, Story L, Ho A, Chappell LC, Hajnal JV, Rutherford M, Pushparajah K, Lamata P, Hutter J. Cardiac and placental imaging (CARP) in pregnancy to assess aetiology of preeclampsia. Placenta 2022; 122:46-55. [PMID: 35430505 PMCID: PMC9810538 DOI: 10.1016/j.placenta.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/25/2021] [Revised: 02/12/2022] [Accepted: 03/01/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The CARP study aims to investigate placental function, cardiac function and fetal growth comprehensively during pregnancy, a time of maximal cardiac stress, to work towards disentangling the complex cardiac and placental interactions presenting in the aetiology of pre-eclampsia as well as predicting maternal Cardiovascular Disease (CVD) risk in later life. BACKGROUND The involvement of the cardiovascular system in pre-eclampsia, one of the most serious complications of pregnancy, is evident. While the manifestations of pre-eclampsia during pregnancy (high blood pressure, multi-organ disease, and placental dysfunction) resolve after delivery, a lifelong elevated CVD risk remains. METHOD An assessment including both cardiac and placental Magnetic Resonance Imaging (MRI) optimised for use in pregnancy and bespoke to the expected changes was developed. Simultaneous structural and functional MRI data from the placenta, the heart and the fetus were obtained in a total of 32 pregnant women (gestational ages from 18.1 to 37.5 weeks), including uncomplicated pregnancies and five cases with early onset pre-eclampsia. RESULTS The achieved comprehensive MR acquisition was able to demonstrate a phenotype associated with pre-eclampsia linking both placental and cardiac factors, reduced mean T2* (p < 0.005), increased heterogeneity (p < 0.005) and a trend towards an increase in cardiac work, larger average mass (109.4 vs 93.65 gr), wall thickness (7.0 vs 6.4 mm), blood pool volume (135.7 vs 127.48 mL) and mass to volume ratio (0.82 vs 0.75). The cardiac output in the controls was, controlling for gestational age, positively correlated with placental volume (p < 0.05). DISCUSSION The CARP study constitutes the first joint assessment of functional and structural properties of the cardiac system and the placenta during pregnancy. Early indications of cardiac remodelling in pre-eclampsia were demonstrated paving the way for larger studies.
Collapse
Affiliation(s)
- Kathleen Colford
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Anthony N. Price
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Julie Sigurdardottir
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Anastasia Fotaki
- Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Johannes Steinweg
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Lisa Story
- Academic Women's Health Department, King's College London, London, UK
| | - Alison Ho
- Academic Women's Health Department, King's College London, London, UK
| | - Lucy C. Chappell
- Academic Women's Health Department, King's College London, London, UK
| | - Joseph V. Hajnal
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Mary Rutherford
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK
| | - Kuberan Pushparajah
- Centre for Medical Engineering, King's College London, London, UK,Department of Congenital Heart Disease, Evelina Children's Hospital, London, United Kingdom
| | - Pablo Lamata
- Centre for Medical Engineering, King's College London, London, UK
| | - Jana Hutter
- Centre for Medical Engineering, King's College London, London, UK,Centre for the Developing Brain, King's College London, London, UK,Corresponding author. Perinatal Imaging, 1st Floor South Wing, St THomas' Hospital, Westminster Bridge Road, SE17EH, London, UK.
| |
Collapse
|
33
|
Knieling F, Cesnjevar R, Regensburger AP, Wagner AL, Purbojo A, Dittrich S, Münch F, Neubert A, Woelfle J, Jüngert J, Rüffer A. Transfontanellar Contrast-enhanced US for Intraoperative Imaging of Cerebral Perfusion during Neonatal Arterial Switch Operation. Radiology 2022; 304:164-173. [PMID: 35380495 DOI: 10.1148/radiol.212044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/11/2022]
Abstract
Background Brain injury and subsequent neurodevelopmental disorders are major determinants for later-life outcomes in neonates with transposition of the great arteries (TGA). Purpose To quantitatively assess cerebral perfusion in neonates with TGA undergoing arterial switch operation (ASO) using transfontanellar contrast-enhanced US (T-CEUS). Materials and Methods In a prospective single-center cross-sectional diagnostic study, neonates with TGA scheduled for ASO were recruited from February 2018 to February 2020. Measurements were performed at five time points before, during, and after surgery (T1-T5), and 11 perfusion parameters were derived per cerebral hemisphere. Neonate clinical characteristics, heart rate, mean arterial pressure, central venous pressure, near-infrared spectroscopy, blood gas analyses, ventilation time, time spent in the pediatric intensive care unit, and time in hospital were correlated with imaging parameters. Analysis of variance or a mixed-effects model were used for groupwise comparisons. Results A total of 12 neonates (mean gestational age, 39 6/7 weeks ± 1/7 [SD]) were included and underwent ASO a mean of 6.9 days ± 3.4 after birth. When compared with baseline values, T-CEUS revealed a longer mean time-to-peak (right hemisphere, 4.3 seconds ± 2.1 vs 17 seconds ± 6.4 [P < .001]; left hemisphere, 4.0 seconds ± 2.3 vs 21 seconds ± 8.7 [P < .001]) and rise time (right hemisphere, 3.5 seconds ± 1.7 vs 11 seconds ± 5.1 [P = .002]; left hemisphere, 3.4 seconds ± 2.0 vs 22 seconds ± 7.8 [P = .004]) in both cerebral hemispheres during low-flow cardiopulmonary bypass and hypothermia (T4) for all neonates. Neonate age at surgery negatively correlated with T-CEUS parameters during ASO, as calculated with the area under the flow curve (AUC) during wash-in (R = -0.60, P = .020), washout (R = -0.82, P = .002), and both wash-in and washout (R = -0.79, P = .004). Mean AUC values were lower in neonates older than 7 days compared with younger neonates during wash-in ([87 arbitrary units {au} ± 77] × 102 vs [270 au ± 164] × 102, P = .049]), washout ([15 au ± 11] × 103 vs [65 au ± 38] × 103, P = .020]) and both wash-in and washout ([24 au ± 18] × 103 vs [92 au ± 53] × 103, P = .023). Conclusion Low-flow hypothermic conditions resulted in reduced cerebral perfusion, as measured with transfontanellar contrast-enhanced US, which inversely correlated with age at surgery. Clinical trial registration no. NCT03215628 © RSNA, 2022 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Ferdinand Knieling
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Robert Cesnjevar
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Adrian P Regensburger
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Alexandra L Wagner
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Ariawan Purbojo
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Sven Dittrich
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Frank Münch
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Antje Neubert
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Joachim Woelfle
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - Jörg Jüngert
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| | - André Rüffer
- From the Departments of Pediatrics and Adolescent Medicine (F.K., A.P.R., A.L.W., A.N., J.W., J.J.), Congenital Heart Surgery (R.C., A.P., F.M.), and Pediatric Cardiology (S.D.), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Loschgestrasse 15, 91054 Erlangen, Germany; and Section for Congenital and Pediatric Cardiac Surgery, University Heart Center Hamburg, University Hospital Hamburg, Eppendorf, Hamburg, Germany (A.R.)
| |
Collapse
|
34
|
Abulnaga SM, Turk EA, Bessmeltsev M, Grant PE, Solomon J, Golland P. Volumetric Parameterization of the Placenta to a Flattened Template. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:925-936. [PMID: 34784274 PMCID: PMC9069541 DOI: 10.1109/tmi.2021.3128743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
We present a volumetric mesh-based algorithm for parameterizing the placenta to a flattened template to enable effective visualization of local anatomy and function. MRI shows potential as a research tool as it provides signals directly related to placental function. However, due to the curved and highly variable in vivo shape of the placenta, interpreting and visualizing these images is difficult. We address interpretation challenges by mapping the placenta so that it resembles the familiar ex vivo shape. We formulate the parameterization as an optimization problem for mapping the placental shape represented by a volumetric mesh to a flattened template. We employ the symmetric Dirichlet energy to control local distortion throughout the volume. Local injectivity in the mapping is enforced by a constrained line search during the gradient descent optimization. We validate our method using a research study of 111 placental shapes extracted from BOLD MRI images. Our mapping achieves sub-voxel accuracy in matching the template while maintaining low distortion throughout the volume. We demonstrate how the resulting flattening of the placenta improves visualization of anatomy and function. Our code is freely available at https://github.com/mabulnaga/placenta-flattening.
Collapse
|
35
|
HANSEN DN, SINDING M, PETERSEN A, CHRISTIANSEN OB, ULDBJERG N, PETERS MDA, FRØKJÆR JB, SØRENSEN A. T2* weighted placental MRI: A biomarker of placental dysfunction in small-for-gestational-age pregnancies. Am J Obstet Gynecol MFM 2022; 4:100578. [DOI: 10.1016/j.ajogmf.2022.100578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2021] [Revised: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 11/27/2022]
|
36
|
Ho A, Chappell LC, Story L, Al-Adnani M, Egloff A, Routledge E, Rutherford M, Hutter J. Visual assessment of the placenta in antenatal magnetic resonance imaging across gestation in normal and compromised pregnancies: Observations from a large cohort study. Placenta 2022; 117:29-38. [PMID: 34768166 PMCID: PMC8761363 DOI: 10.1016/j.placenta.2021.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/20/2020] [Revised: 09/12/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Visual assessment of the placenta in antenatal magnetic resonance imaging is important to confirm healthy appearances or to identify pathology complicating fetal anomaly or maternal disease. METHODS We assessed the placenta in a large cohort of 228 women with low and high risk pregnancies across gestation. All women gave written informed consent and were imaged using either a 3T Philips Achieva or 1.5T Philips Ingenia scanner. Images were acquired with a T2-weighted single shot turbo spin echo sequence of the whole uterus (thereby including placenta) for anatomical information. RESULTS A structured approach to visual assessment of the placenta on T2-weighted imaging has been provided including determination of key anatomical landmarks to aid orientation, placental shape, signal intensity, lobularity and granularity. Transient factors affecting imaging are shown including the effect of fetal movement, gross fetal motion and contractions. Placental appearances across gestation in low risk pregnancies are shown and compared to pregnancies complicated by preeclampsia and chronic hypertension. The utility of other magnetic resonance techniques (T2* mapping as an indirect marker for quantifying oxygenation) and histological assessment alongside visual assessment of placental T2-weighted imaging are demonstrated. DISCUSSION A systematic approach with qualitative descriptors for placental visual assessment using T2-weighted imaging allows confirmation of normal placental development and can detect placental abnormalities in pregnancy complications. T2-weighted imaging can be visually assessed alongside functional imaging (such as T2* maps) in order to further probe the visual characteristics seen.
Collapse
Affiliation(s)
- Alison Ho
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lucy C. Chappell
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Lisa Story
- Department of Women and Children’s Health, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - Mudher Al-Adnani
- Department of Cellular Pathology, Guy’s and St Thomas’ Hospital, London, United Kingdom
| | - Alexia Egloff
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Emma Routledge
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King’s College London, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, King’s College London, London, United Kingdom,Biomedical Engineering Department, King’s College London, London, United Kingdom
| |
Collapse
|
37
|
Slator PJ, Palombo M, Miller KL, Westin C, Laun F, Kim D, Haldar JP, Benjamini D, Lemberskiy G, de Almeida Martins JP, Hutter J. Combined diffusion-relaxometry microstructure imaging: Current status and future prospects. Magn Reson Med 2021; 86:2987-3011. [PMID: 34411331 PMCID: PMC8568657 DOI: 10.1002/mrm.28963] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2020] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Microstructure imaging seeks to noninvasively measure and map microscopic tissue features by pairing mathematical modeling with tailored MRI protocols. This article reviews an emerging paradigm that has the potential to provide a more detailed assessment of tissue microstructure-combined diffusion-relaxometry imaging. Combined diffusion-relaxometry acquisitions vary multiple MR contrast encodings-such as b-value, gradient direction, inversion time, and echo time-in a multidimensional acquisition space. When paired with suitable analysis techniques, this enables quantification of correlations and coupling between multiple MR parameters-such as diffusivity, T 1 , T 2 , and T 2 ∗ . This opens the possibility of disentangling multiple tissue compartments (within voxels) that are indistinguishable with single-contrast scans, enabling a new generation of microstructural maps with improved biological sensitivity and specificity.
Collapse
Affiliation(s)
- Paddy J. Slator
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Marco Palombo
- Centre for Medical Image ComputingDepartment of Computer ScienceUniversity College LondonLondonUK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Carl‐Fredrik Westin
- Department of RadiologyBrigham and Women’s HospitalHarvard Medical SchoolBostonMAUSA
| | - Frederik Laun
- Institute of RadiologyUniversity Hospital ErlangenFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Daeun Kim
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Justin P. Haldar
- Ming Hsieh Department of Electrical and Computer EngineeringUniversity of Southern CaliforniaLos AngelesCAUSA
- Signal and Image Processing InstituteUniversity of Southern CaliforniaLos AngelesCAUSA
| | - Dan Benjamini
- The Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentBethesdaMDUSA
- The Center for Neuroscience and Regenerative MedicineUniformed Service University of the Health SciencesBethesdaMDUSA
| | | | - Joao P. de Almeida Martins
- Division of Physical Chemistry, Department of ChemistryLund UniversityLundSweden
- Department of Radiology and Nuclear MedicineSt. Olav’s University HospitalTrondheimNorway
| | - Jana Hutter
- Centre for Biomedical EngineeringSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
- Centre for the Developing BrainSchool of Biomedical Engineering and ImagingKing’s College LondonLondonUK
| |
Collapse
|
38
|
Link-Sourani D, Avisdris N, Harel S, Ben-Sira L, Ganot T, Gordon Z, Many A, Ben Bashat D. Ex-Vivo MRI of the Normal Human Placenta: Structural-Functional Interplay and the Association With Birth Weight. J Magn Reson Imaging 2021; 56:134-144. [PMID: 34799945 DOI: 10.1002/jmri.28002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Advanced magnetic resonance imaging (MRI) methods are increasingly being used to assess the human placenta. Yet, the structure-function interplay in normal placentas and their associations with pregnancy risks are not fully understood. PURPOSE To characterize the normal human placental structure (volume and umbilical cord centricity index (CI)) and function (perfusion) ex-vivo using MRI, to assess their association with birth weight (BW), and identify imaging-markers for placentas at risk for dysfunction. STUDY TYPE Prospective. POPULATION Twenty normal term ex-vivo placentas. FIELD STRENGTH/SEQUENCE 3 T/ T1 and T2 weighted (T1 W, T2 W) turbo spin-echo, three-dimensional susceptibility-weighted image, and time-resolved angiography with interleaved stochastic trajectories (TWIST), during passage of a contrast agent using MRI compatible perfusion system that mimics placental flow. ASSESSMENT Placental volume and CI were manually extracted from the T1 W images by a fetal-placental MRI scientist (D.L., 7 years of experience). Perfusion maps including bolus arrival-time and full-width at half maximum were calculated from the TWIST data. Mean values, entropy, and asymmetries were calculated from each perfusion map, relating to both the whole placenta and volumes of interest (VOIs) within the umbilical cord and its daughter blood vessels. STATISTICAL TESTS Pearson correlations with correction for multiple comparisons using false discovery rate were performed between structural and functional parameters, and with BW, with P < 0.05 considered significant. RESULTS All placentas were successfully perfused and scanned. Significant correlations were found between whole placenta and VOIs perfusion parameters (mean R = 0.76 ± 0.06, range = 0.67-0.89), which were also significantly correlated with CI (mean R = 0.72 ± 0.05, range = 0.65-0.79). BW was correlated with placental volume (R = 0.62), but not with CI (P = 0.40). BW was also correlated with local perfusion asymmetry (R = -0.71). DATA CONCLUSION Results demonstrate a gradient of placental function, associated with CI and suggest several ex-vivo imaging-markers that might indicate an increased risk for placental dysfunction. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
| | - Netanell Avisdris
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shaul Harel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Liat Ben-Sira
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Division of Pediatric Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tuvia Ganot
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Zoya Gordon
- Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Medical Engineering, Afeka, Tel Aviv Academic College of Engineering, Tel Aviv, Israel
| | - Ariel Many
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dafna Ben Bashat
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
39
|
Andescavage N, Limperopoulos C. Emerging placental biomarkers of health and disease through advanced magnetic resonance imaging (MRI). Exp Neurol 2021; 347:113868. [PMID: 34562472 DOI: 10.1016/j.expneurol.2021.113868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022]
Abstract
Placental dysfunction is a major cause of fetal demise, fetal growth restriction, and preterm birth, as well as significant maternal morbidity and mortality. Infant survivors of placental dysfunction are at elevatedrisk for lifelong neuropsychiatric morbidity. However, despite the significant consequences of placental disease, there are no clinical tools to directly and non-invasively assess and measure placental function in pregnancy. In this work, we will review advanced MRI techniques applied to the study of the in vivo human placenta in order to better detail placental structure, architecture, and function. We will discuss the potential of these measures to serve as optimal biomarkers of placental dysfunction and review the evidence of these tools in the discrimination of health and disease in pregnancy. Efforts to advance our understanding of in vivo placental development are necessary if we are to optimize healthy pregnancy outcomes and prevent brain injury in successive generations. Current management of many high-risk pregnancies cannot address placental maldevelopment or injury, given the standard tools available to clinicians. Once accurate biomarkers of placental development and function are constructed, the subsequent steps will be to introduce maternal and fetal therapeutics targeting at optimizing placental function. Applying these biomarkers in future studies will allow for real-time assessments of safety and efficacy of novel interventions aimed at improving maternal-fetal well-being.
Collapse
Affiliation(s)
- Nickie Andescavage
- Developing Brain Institute, Department of Radiology, Children's National, Washington DC, USA; Department of Neonatology, Children's National, Washington DC, USA
| | | |
Collapse
|
40
|
Hutter J, Jackson L, Ho A, Avena Zampieri C, Hajnal JV, Al-Adnani M, Nanda S, Shennan AH, Tribe RM, Gibbons D, Rutherford MA, Story L. The use of functional placental magnetic resonance imaging for assessment of the placenta after prolonged preterm rupture of the membranes in vivo: A pilot study. Acta Obstet Gynecol Scand 2021; 100:2244-2252. [PMID: 34546571 DOI: 10.1111/aogs.14267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Preterm prelabor rupture of membranes (PPROM) complicates 3% of pregnancies in the UK. Where delivery does not occur spontaneously, expectant management until 37 weeks of gestation is advocated, unless signs of maternal infection develop. However, clinical presentation of maternal infection can be a late sign and injurious fetal inflammatory responses may already have been activated. There is therefore a need for more sensitive markers to aid optimal timing of interventions. At present there is no non-invasive test in clinical practice to assess for infection in the fetal compartment and definitive diagnosis of chorioamnionitis is by histological assessment of the placenta after delivery. This study presents comprehensive functional placental magnetic resonance imaging (MRI) quantification, already used in other organ systems, to assess for infection/inflammation, in women with and without PPROM aiming to explore its use as a biomarker for inflammation within the feto-placental compartment in vivo. MATERIAL AND METHODS Placental MRI scans were performed in a cohort of 12 women (with one having two scans) with PPROM before 34 weeks of gestation (selected because of their high risk of infection), and in a control group of 87 women. Functional placental assessment was performed with magnetic resonance techniques sensitive to changes in the microstructure (diffusion) and tissue composition (relaxometry), with quantification performed both over the entire organ and in regions of interest between the basal and chorionic plate. Placental histology was analyzed after delivery where available. RESULTS Normative evolution of functional magnetic resonance biomarkers over gestation was studied. Cases of inflammation, as assessed by histological presence of chorioamnionitis, and umbilical cord vasculitis with or without funisitis, were associated with lower T2* (mean T2* at 30 weeks 50 ms compared with 58 ms in controls) and higher fractional anisotropy (mean at 30 weeks 0.55 compared with 0.45 in controls). These differences did not reach significance and there was substantial heterogeneity both in T2* and Apparent Diffusivitiy across the cohort. CONCLUSIONS This first exploration of functional placental assessment in a cohort of women with PPROM demonstrates that functional placental MRI can reveal a range of placental changes associated with inflammatory processes. It is a promising tool to gain information and in the future to identify inflammation in vivo, and could therefore assist in improving optimal timing for interventions designed to prevent fetal injury.
Collapse
Affiliation(s)
- Jana Hutter
- Centre for Medical Engineering, King's College London, London, UK
| | - Laurence Jackson
- Centre for Medical Engineering, King's College London, London, UK
| | - Alison Ho
- Centre for Medical Engineering, King's College London, London, UK.,Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Carla Avena Zampieri
- Centre for Medical Engineering, King's College London, London, UK.,Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for Medical Engineering, King's College London, London, UK
| | | | - Surabhi Nanda
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | - Andrew H Shennan
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Rachel M Tribe
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK
| | - Deena Gibbons
- Peter Gorer Department of Immunobiology, King's College London, London, UK
| | | | - Lisa Story
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, UK.,Fetal Medicine Unit, St Thomas' Hospital, London, UK
| |
Collapse
|
41
|
Andersen AS, Anderson KB, Hansen DN, Sinding M, Petersen AC, Peters DA, Frøkjær JB, Sørensen A. Placental MRI: Longitudinal relaxation time (T1) in appropriate and small for gestational age pregnancies. Placenta 2021; 114:76-82. [PMID: 34482232 DOI: 10.1016/j.placenta.2021.08.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/17/2020] [Revised: 06/08/2021] [Accepted: 08/05/2021] [Indexed: 01/26/2023]
Abstract
OBJECTIVE The antenatal detection of small for gestational age (SGA) pregnancies is a challenge, which may be improved by placental MRI. The longitudinal relaxation time (T1) is a tissue constant related to tissue morphology and tissue oxygenation, thereby placental T1 may be related to placental function. The aim of this study is to investigate placental T1 in appropriate for gestational age (AGA) and SGA pregnancies. METHODS A total of 132 singleton pregnancies were retrieved from our MRI research database. MRI and ultrasound estimated fetal weight (EFW) was performed at gestational week 20.6-41.7 in a 1.5 T system. SGA was defined as BW ≤ -15% of the expected for gestational age (≤10th centile). A subgroup of SGA pregnancies underwent postnatal placental histological examination (PHE) and abnormal PHE was defined as vascular malperfusion. The placental T1 values were converted into Z-scores adjusted for gestational age at MRI. The predictive performance of placental T1 and EFW was compared by receiver operating curves (ROC). RESULTS In AGA pregnancies, placental T1 showed a negative linear correlation with gestational age (r = -0.36, p = 0.004) Placental T1 was significantly reduced in SGA pregnancies (mean Z-score = -0.34) when compared to AGA pregnancies, p = 0.03. Among SGA pregnancies placental T1 was not reduced in cases with abnormal PHE, p = 0.84. The predictive performance of EFW (AUC = 0.84, 95% CI, 0.77-0.91) was significantly stronger than placental T1 (AUC = 0.62, 95% CI, 0.52-0.72) (p = 0.002). DISCUSSION A low placental T1 relaxation time is associated with SGA at birth. However, the predictive performance of placental T1 is not as strong as EFW.
Collapse
Affiliation(s)
- Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark.
| | - Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Ladegaardsgade 3, 9000, Aalborg, Denmark.
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Nørrebrogade 44, 8000, Aarhus C, Denmark.
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Reberbansgade 15, 9000, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Sdr. Skovvej 15, 9000, Aalborg, Denmark.
| |
Collapse
|
42
|
Sinding M, Sørensen A, Hansen DN, Peters DA, Frøkjær JB, Petersen AC. T2* weighted placental MRI in relation to placental histology and birth weight. Placenta 2021; 114:52-55. [PMID: 34461455 DOI: 10.1016/j.placenta.2021.07.304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/16/2020] [Revised: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Placental dysfunction may be found among normal birth weight (BW) pregnancies, as indicated by abnormal histological findings in postnatal placental examination in some of these pregnancies. T2* weighted placental MRI provides non-invasive information on placental oxygenation and thereby placental function. The aim of this study was to investigate the correlation between placental T2*, BW and placental histology. METHODS A total of 63 pregnant women underwent T2* weighted placental MRI at 15-40 week's gestation and a standardized placental histological examination (PHE). Abnormal PHE was defined by vascular malperfusion according to the Amsterdam workshop consensus. The correlation between PHE, BW z-score and T2* z-score was analyzed by logistic regression. RESULTS Abnormal PHE was revealed in 28 pregnancies. Multiple logistic regression revealed a significant correlation between abnormal PHE and T2* z-score (OR = 0.34, p = 0.008), whereas BW z-score did not add significantly to the correlation of placental histology (OR = 0.52, p = 0.115). In BW z-score≥0, PHE was normal in 100% of pregnancies. In BW z-score ≤ -2, PHE was abnormal in 89% of pregnancies. In intermediate BW (z-score between -2 and 0), PPE was abnormal in 35% of pregnancies. In this intermediate group, placental T2* z-score was reduced (-1.52 ± 1.22 (mean SD)) when compared to normal PHE pregnancies (-0.28 ± 1.17), p = 0.006. DISCUSSION This study demonstrates a correlation between abnormal placental histology and low placental T2* value regardless of fetal size. This indicates that T2* provides information of placental function in vivo even when fetal size is normal. This finding highlights that fetal size alone is not a valid marker of placental dysfunction.
Collapse
Affiliation(s)
- Marianne Sinding
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| | - Anne Sørensen
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| | - Ditte N Hansen
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Obstetrics and Gynecology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark Nørrebrogade 44, 8000 Aarhus C, Denmark.
| | - Jens B Frøkjær
- Department of Clinical Medicine, Aalborg University, Denmark Sdr. Skovvej 15, 9000 Aalborg, Denmark; Department of Radiology, Aalborg University Hospital, Denmark Hobrovej 18-22, 9100 Aalborg, Denmark.
| | - Astrid C Petersen
- Department of Pathology, Aalborg University Hospital, Denmark Reberbansgade 15, 9000 Aalborg, Denmark.
| |
Collapse
|
43
|
Pietsch M, Ho A, Bardanzellu A, Zeidan AMA, Chappell LC, Hajnal JV, Rutherford M, Hutter J. APPLAUSE: Automatic Prediction of PLAcental health via U-net Segmentation and statistical Evaluation. Med Image Anal 2021; 72:102145. [PMID: 34229190 PMCID: PMC8350147 DOI: 10.1016/j.media.2021.102145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Revised: 04/26/2021] [Accepted: 06/21/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE Artificial-intelligence population-based automated quantification of placental maturation and health from a rapid functional Magnetic Resonance scan. The placenta plays a crucial role for any successful human pregnancy. Deviations from the normal dynamic maturation throughout gestation are closely linked to major pregnancy complications. Antenatal assessment in-vivo using T2* relaxometry has shown great promise to inform management and possible interventions but clinical translation is hampered by time consuming manual segmentation and analysis techniques based on comparison against normative curves over gestation. METHODS This study proposes a fully automatic pipeline to predict the biological age and health of the placenta based on a free-breathing rapid (sub-30 second) T2* scan in two steps: Automatic segmentation using a U-Net and a Gaussian process regression model to characterize placental maturation and health. These are trained and evaluated on 108 3T MRI placental data sets, the evaluation included 20 high-risk pregnancies diagnosed with pre-eclampsia and/or fetal growth restriction. An independent cohort imaged at 1.5 T is used to assess the generalization of the training and evaluation pipeline. RESULTS Across low- and high-risk groups, automatic segmentation performs worse than inter-rater performance (mean Dice coefficients of 0.58 and 0.68, respectively) but is sufficient for estimating placental mean T2* (0.986 Pearson Correlation Coefficient). The placental health prediction achieves an excellent ability to differentiate cases of placental insufficiency between 27 and 33 weeks. High abnormality scores correlate with low birth weight, premature birth and histopathological findings. Retrospective application on a different cohort imaged at 1.5 T illustrates the ability for direct clinical translation. CONCLUSION The presented automatic pipeline facilitates a fast, robust and reliable prediction of placental maturation. It yields human-interpretable and verifiable intermediate results and quantifies uncertainties on the cohort-level and for individual predictions. The proposed machine-learning pipeline runs in close to real-time and, deployed in clinical settings, has the potential to become a cornerstone of diagnosis and intervention of placental insufficiency. APPLAUSE generalizes to an independent cohort imaged at 1.5 T, demonstrating robustness to different operational and clinical environments.
Collapse
Affiliation(s)
- Maximilian Pietsch
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK.
| | - Alison Ho
- Department of Women and Children's Health, King's College London, London, UK
| | - Alessia Bardanzellu
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Aya Mutaz Ahmad Zeidan
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Lucy C Chappell
- Department of Women and Children's Health, King's College London, London, UK
| | - Joseph V Hajnal
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Mary Rutherford
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| | - Jana Hutter
- Centre for Medical Engineering, King's College London, London, UK; Centre for the Developing Brain, King's College London, London, UK
| |
Collapse
|
44
|
On the use of multicompartment models of diffusion and relaxation for placental imaging. Placenta 2021; 112:197-203. [PMID: 34392172 DOI: 10.1016/j.placenta.2021.07.302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/11/2021] [Revised: 04/27/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Multi-compartment models of diffusion and relaxation are ubiquitous in magnetic resonance research especially applied to neuroimaging applications. These models are increasingly making their way into the world of placental imaging. This review provides a framework for their motivation and implementation and describes some of the outstanding questions that need to be answered before they can be routinely adopted.
Collapse
|
45
|
Srinivasan V, Melbourne A, Oyston C, James JL, Clark AR. Multiscale and multimodal imaging of utero-placental anatomy and function in pregnancy. Placenta 2021; 112:111-122. [PMID: 34329969 DOI: 10.1016/j.placenta.2021.07.290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/13/2020] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Placental structures at the nano-, micro-, and macro scale each play important roles in contributing to its function. As such, quantifying the dynamic way in which placental structure evolves during pregnancy is critical to both clinical diagnosis of pregnancy disorders, and mechanistic understanding of their pathophysiology. Imaging the placenta, both exvivo and invivo, can provide a wealth of structural and/or functional information. This review outlines how imaging across modalities and spatial scales can ultimately come together to improve our understanding of normal and pathological pregnancies. We discuss how imaging technologies are evolving to provide new insights into placental physiology across disciplines, and how advanced computational algorithms can be used alongside state-of-the-art imaging to obtain a holistic view of placental structure and its associated functions to improve our understanding of placental function in health and disease.
Collapse
Affiliation(s)
| | - Andrew Melbourne
- School of Biomedical Engineering & Imaging Sciences, Kings College London, UK
| | - Charlotte Oyston
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, New Zealand
| |
Collapse
|
46
|
He J, Chen Z, Chen C, Liu P. Comparative study of placental T2* and intravoxel incoherent motion in the prediction of fetal growth restriction. Placenta 2021; 111:47-53. [PMID: 34157440 DOI: 10.1016/j.placenta.2021.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/17/2021] [Revised: 04/30/2021] [Accepted: 06/13/2021] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Both transverse relaxation time (T2*) and intravoxel incoherent motion (IVIM) on magnetic resonance imaging (MRI) are promising for discriminating fetal growth restriction (FGR). We aimed to compare the utility of these two parameters and their combination in the same cohort. METHODS Twenty-seven FGR and 24 control pregnancies after 28 weeks of gestation in which both T2* and IVIM scans were performed on a 3.0 T MRI were recruited. We compared the T2* Z-score, perfusion fraction (f), diffusion coefficient (D) and pseudodiffusion coefficient (D*) between groups. Binary logistic regression analysis and areas under the curve (AUCs) with receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficacy of these parameters and their combination. RESULTS Compared with normal pregnancies, T2* Z-score (0.036 ± 0.95 vs. -2.479 ± 1.56, p < 0.001), f (0.2753 ± 0.035 vs. 0.3304 ± 0.035, p < 0.001), D* (48279.82 ± 7497.36 μm2/s vs. 56167.92 ± 8549.87 μm2/s, p = 0.001) and D (1664.32 ± 288.53 μm2/s vs. 1887.15 ± 204.08 μm2/s, p = 0.002) were significantly decreased in FGR pregnancies. However, only AUC(T2* Z-score) (0.903) and AUC(f) (0.873) were good predictors of FGR. The AUC(T2* Z-score-IVIM) (0.937), calculated with the combination of T2* Z-score and f, was similar to AUC(T2* Z-score) and ACU(f). DISCUSSION Both T2* and f were effective in discriminating FGR. However, the combination of the two parameters did not further improve diagnostic efficacy. We suggest that T2* might be more suitable for evaluating placental dysfunction, as it is fast to obtain and easy to measure.
Collapse
Affiliation(s)
- Junshen He
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhao Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
47
|
Slator PJ, Hutter J, Marinescu RV, Palombo M, Jackson LH, Ho A, Chappell LC, Rutherford M, Hajnal JV, Alexander DC. Data-Driven multi-Contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping. Med Image Anal 2021; 71:102045. [PMID: 33934005 PMCID: PMC8543043 DOI: 10.1016/j.media.2021.102045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2020] [Revised: 02/08/2021] [Accepted: 03/16/2021] [Indexed: 11/19/2022]
Abstract
Unsupervised learning technique for spectroscopic analysis of quantitative MRI. Shares information across voxels to improve estimation of multi-dimensional or single-dimensional spectra. Spectral maps are dramatically improved compared to existing approaches. Can potentially identify and map tissue environments; in placental diffusion-relaxometry MRI we demonstrate that it identifies components that correspond to distinct tissue types.
We introduce and demonstrate an unsupervised machine learning technique for spectroscopic analysis of quantitative MRI experiments. Our algorithm supports estimation of one-dimensional spectra from single-contrast data, and multidimensional correlation spectra from simultaneous multi-contrast data. These spectrum-based approaches allow model-free investigation of tissue properties, but require regularised inversion of a Laplace transform or Fredholm integral, which is an ill-posed calculation. Here we present a method that addresses this limitation in a data-driven way. The algorithm simultaneously estimates a canonical basis of spectral components and voxelwise maps of their weightings, thereby pooling information across whole images to regularise the ill-posed problem. We show in simulations that our algorithm substantially outperforms current voxelwise spectral approaches. We demonstrate the method on multi-contrast diffusion-relaxometry placental MRI scans, revealing anatomically-relevant sub-structures, and identifying dysfunctional placentas. Our algorithm vastly reduces the data required to reliably estimate spectra, opening up the possibility of quantitative MRI spectroscopy in a wide range of new applications. Our InSpect code is available at github.com/paddyslator/inspect.
Collapse
Affiliation(s)
- Paddy J Slator
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK.
| | - Jana Hutter
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Razvan V Marinescu
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| | - Laurence H Jackson
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Alison Ho
- Women's Health Department, King's College London, London, UK
| | - Lucy C Chappell
- Women's Health Department, King's College London, London, UK
| | - Mary Rutherford
- Centre for the Developing Brain, Kings College London, London, UK
| | - Joseph V Hajnal
- Centre for the Developing Brain, Kings College London, London, UK; Biomedical Engineering Department, Kings College London, London, UK
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, UK
| |
Collapse
|
48
|
Sethi S, Giza SA, Goldberg E, Empey MEET, de Ribaupierre S, Eastabrook GDM, de Vrijer B, McKenzie CA. Quantification of 1.5 T T 1 and T 2 * Relaxation Times of Fetal Tissues in Uncomplicated Pregnancies. J Magn Reson Imaging 2021; 54:113-121. [PMID: 33586269 DOI: 10.1002/jmri.27547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Despite its many advantages, experience with fetal magnetic resonance imaging (MRI) is limited, as is knowledge of how fetal tissue relaxation times change with gestational age (GA). Quantification of fetal tissue relaxation times as a function of GA provides insight into tissue changes during fetal development and facilitates comparison of images across time and subjects. This, therefore, can allow the determination of biophysical tissue parameters that may have clinical utility. PURPOSE To demonstrate the feasibility of quantifying previously unknown T1 and T2 * relaxation times of fetal tissues in uncomplicated pregnancies as a function of GA at 1.5 T. STUDY TYPE Pilot. POPULATION Nine women with singleton, uncomplicated pregnancies (28-38 weeks GA). FIELD STRENGTH/SEQUENCE All participants underwent two iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL-IQ) acquisitions at different flip angles (6° and 20°) at 1.5 T. ASSESSMENT Segmentations of the lungs, liver, spleen, kidneys, muscle, and adipose tissue (AT) were conducted using water-only images and proton density fat fraction maps. Driven equilibrium single pulse observation of T1 (DESPOT1 ) was used to quantify the mean water T1 of the lungs, intraabdominal organs, and muscle, and the mean water and lipid T1 of AT. IDEAL T2 * maps were used to quantify the T2 * values of the lungs, intraabdominal organs, and muscle. STATISTICAL TESTS F-tests were performed to assess the T1 and T2 * changes of each analyzed tissue as a function of GA. RESULTS No tissue demonstrated a significant change in T1 as a function of GA (lungs [P = 0.89]; liver [P = 0.14]; spleen [P = 0.59]; kidneys [P = 0.97]; muscle [P = 0.22]; AT: water [P = 0.36] and lipid [P = 0.14]). Only the spleen and muscle T2 * showed a significant decrease as a function of GA (lungs [P = 0.67); liver [P = 0.05]; spleen [P < 0.05]; kidneys [P = 0.70]; muscle [P < 0.05]). DATA CONCLUSION These preliminary data suggest that the T1 of the investigated tissues is relatively stable over 28-38 weeks GA, while the T2 * change in spleen and muscle decreases significantly in that period. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Simran Sethi
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Stephanie A Giza
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Estee Goldberg
- Department of Biomedical Engineering, Western University, London, Ontario, Canada
| | | | - Sandrine de Ribaupierre
- Department of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Clinical Neurological Sciences, London Health Sciences Centre, London, Ontario, Canada.,Brain and Mind Institute, Western University, London, Ontario, Canada.,Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada
| | - Genevieve D M Eastabrook
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada
| | - Barbra de Vrijer
- Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada.,Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Department of Obstetrics & Gynaecology, Western University, London, Ontario, Canada
| | - Charles A McKenzie
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Division of Maternal, Fetal and Newborn Health, Children's Health Research Institute, London, Ontario, Canada
| |
Collapse
|
49
|
Ho A, Hutter J, Slator P, Jackson L, Seed PT, Mccabe L, Al-Adnani M, Marnerides A, George S, Story L, Hajnal JV, Rutherford M, Chappell LC. Placental magnetic resonance imaging in chronic hypertension: A case-control study. Placenta 2021; 104:138-145. [PMID: 33341490 PMCID: PMC7921773 DOI: 10.1016/j.placenta.2020.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/20/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION We aimed to explore the use of magnetic resonance imaging (MRI) in vivo as a tool to elucidate the placental phenotype in women with chronic hypertension. METHODS In case-control study, women with chronic hypertension and those with uncomplicated pregnancies were imaged using either a 3T Achieva or 1.5T Ingenia scanner. T2-weighted images, diffusion weighted and T1/T2* relaxometry data was acquired. Placental T2*, T1 and apparent diffusion coefficient (ADC) maps were calculated. RESULTS 129 women (43 with chronic hypertension and 86 uncomplicated pregnancies) were imaged at a median of 27.7 weeks' gestation (interquartile range (IQR) 23.9-32.1) and 28.9 (IQR 26.1-32.9) respectively. Visual analysis of T2-weighted imaging demonstrated placentae to be either appropriate for gestation or to have advanced lobulation in women with chronic hypertension, resulting in a greater range of placental mean T2* values for a given gestation, compared to gestation-matched controls. Both skew and kurtosis (derived from histograms of T2* values across the whole placenta) increased with advancing gestational age at imaging in healthy pregnancies; women with chronic hypertension had values overlapping those in the control group range. Upon visual assessment, the mean ADC declined in the third trimester, with a corresponding decline in placental mean T2* values and showed an overlap of values between women with chronic hypertension and the control group. DISCUSSION A combined placental MR examination including T2 weighted imaging, T2*, T1 mapping and diffusion imaging demonstrates varying placental phenotypes in a cohort of women with chronic hypertension, showing overlap with the control group.
Collapse
Affiliation(s)
- Alison Ho
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, United Kingdom.
| | - Jana Hutter
- Centre for the Developing Brain, King's College London, London, United Kingdom; Biomedical Engineering Department, King's College London, London, United Kingdom
| | - Paddy Slator
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Laurence Jackson
- Centre for the Developing Brain, King's College London, London, United Kingdom; Biomedical Engineering Department, King's College London, London, United Kingdom
| | - Paul T Seed
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Laura Mccabe
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Mudher Al-Adnani
- Department of Cellular Pathology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Andreas Marnerides
- Department of Cellular Pathology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Simi George
- Department of Cellular Pathology, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Lisa Story
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, United Kingdom
| | - Joseph V Hajnal
- Centre for the Developing Brain, King's College London, London, United Kingdom; Biomedical Engineering Department, King's College London, London, United Kingdom
| | - Mary Rutherford
- Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Lucy C Chappell
- Department of Women and Children's Health, School of Life Course Sciences, King's College London, London, United Kingdom
| |
Collapse
|
50
|
Anderson KB, Andersen AS, Hansen DN, Sinding M, Peters DA, Frøkjaer JB, Sørensen A. Placental transverse relaxation time (T2) estimated by MRI: Normal values and the correlation with birthweight. Acta Obstet Gynecol Scand 2020; 100:934-940. [PMID: 33258106 DOI: 10.1111/aogs.14057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Placental transverse relaxation time (T2) assessed by MRI may have the potential to improve the antenatal identification of small for gestational age. The aims of this study were to provide normal values of placental T2 in relation to gestational age at the time of MRI and to explore the correlation between placental T2 and birthweight. MATERIAL AND METHODS A mixed cohort of 112 singleton pregnancies was retrieved from our placental MRI research database. MRI was performed at 23.6-41.3 weeks of gestation in a 1.5T system (TE (8): 50-440 ms, TR: 4000 ms). Normal pregnancies were defined by uncomplicated pregnancies with normal obstetric outcome and birthweight deviation within ±1 SD of the expected for gestational age. The correlation between placental T2 and birthweight was investigated using the following outcomes; small for gestational age (birthweight ≤-2 SD of the expected for gestational age) and birthweight deviation (birthweight Z-scores). RESULTS In normal pregnancies (n = 27), placenta T2 showed a significant negative linear correlation with gestational age (r = -.91, P = .0001) being 184 ms ± 15.94 ms (mean ± SD) at 20 weeks of gestation and 89 ms ± 15.94 ms at 40 weeks of gestation. Placental T2 was significantly reduced among small-for-gestational-age pregnancies (mean Z-score -1.95, P < .001). Moreover, we found a significant positive correlation between placenta T2 deviation (Z-score) and birthweight deviation (Z-score) (R2 = .26, P = .0001). CONCLUSIONS This study provides normal values of placental T2 to be used in future studies on placental MRI. Placental T2 is closely related to birthweight and may improve the antenatal identification of small-for-gestational-age pregnancies.
Collapse
Affiliation(s)
- Kristi B Anderson
- Department of Pathology, Aalborg University Hospital, Aalborg, Denmark
| | - Anna S Andersen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark
| | - Ditte N Hansen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Marianne Sinding
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David A Peters
- Department of Clinical Engineering, Central Denmark Region, Aarhus, Denmark
| | - Jens B Frøkjaer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark.,Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|