1
|
Hsu HF, Li YC, Shen YH, Yang CH. PaWOX3 and PaWOX3B Regulate Flower Number and the Lip Symmetry of Phalaenopsis. PLANT & CELL PHYSIOLOGY 2024; 65:1328-1343. [PMID: 38903045 DOI: 10.1093/pcp/pcae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024]
Abstract
The standout characteristic of the orchid perianth is the transformation of the upper median petal into a distinctively formed lip, which gives orchid flowers their typically zygomorphic symmetry and makes them the most popular ornamental plants worldwide. To study orchid flower development, two WUSCHEL-related homeobox (WOX) genes, PaWOX3 and PaWOX3B, were identified in Phalaenopsis. PaWOX3 and PaWOX3B mRNAs accumulate abundantly during early reproductive development and perianths of young buds, significantly decreasing in mature flowers and absent in vegetative leaves and roots. PaWOX3 and PaWOX3B virus-induced gene silencing (VIGS) knockdown in Phalaenopsis significantly reduces floral bud numbers, suggesting that PaWOX3/PaWOX3B may be involved in flower initiation. Transgenic Arabidopsis ectopically expressing repressor forms of PaWOX3/PaWOX3B and their Oncidium ortholog, OnPRS, exhibit lateral organ development defects, implicating these genes likely have function in regulating growth and differentiation for lateral organs. Neither PaWOX3, PaWOX3B single nor PaWOX3/PaWOX3B double VIGS Phalaenopsis altered the flower morphology. Interestingly, double silencing of PaWOX3 or PaWOX3B with OAGL6-2, which controlled the identity/formation of lips, altered the symmetry of 'BigLip' produced in OAGL6-2 VIGS. This result indicated that the levels of PaWOX3/PaWOX3B are still sufficient to maintain the symmetry for the OAGL6-2 VIGS 'BigLip'. However, the symmetry of the OAGL6-2 VIGS 'BigLip' cannot be maintained once the expression of PaWOX3 or PaWOX3B is further reduced. Thus, in addition to controlling lip identity, this study further found that OAGL6-2 could cooperate with functionally redundant PaWOX3/PaWOX3B in maintaining the symmetric axis of lip.
Collapse
Affiliation(s)
- Hsing-Fun Hsu
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Ya-Chun Li
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Hsuan Shen
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Chang-Hsien Yang
- Institute of Biotechnology, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| |
Collapse
|
2
|
Zhang H, Mu Y, Zhang H, Yu C. Maintenance of stem cell activity in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1302046. [PMID: 38155857 PMCID: PMC10754534 DOI: 10.3389/fpls.2023.1302046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Stem cells residing in plant apical meristems play an important role during postembryonic development. These stem cells are the wellspring from which tissues and organs of the plant emerge. The shoot apical meristem (SAM) governs the aboveground portions of a plant, while the root apical meristem (RAM) orchestrates the subterranean root system. In their sessile existence, plants are inextricably bound to their environment and must adapt to various abiotic stresses, including osmotic stress, drought, temperature fluctuations, salinity, ultraviolet radiation, and exposure to heavy metal ions. These environmental challenges exert profound effects on stem cells, potentially causing severe DNA damage and disrupting the equilibrium of reactive oxygen species (ROS) and Ca2+ signaling in these vital cells, jeopardizing their integrity and survival. In response to these challenges, plants have evolved mechanisms to ensure the preservation, restoration, and adaptation of the meristematic stem cell niche. This enduring response allows plants to thrive in their habitats over extended periods. Here, we presented a comprehensive overview of the cellular and molecular intricacies surrounding the initiation and maintenance of the meristematic stem cell niche. We also delved into the mechanisms employed by stem cells to withstand and respond to abiotic stressors.
Collapse
Affiliation(s)
- Huankai Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| | - Yangwei Mu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Caiyu Yu
- College of Life Sciences, Zaozhuang University, Zaozhuang, China
| |
Collapse
|
3
|
Lee PF, Zhan YX, Wang JC, Cheng YH, Hsu WH, Hsu HF, Chen WH, Yang CH. The AtERF19 gene regulates meristem activity and flower organ size in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1338-1352. [PMID: 36932949 DOI: 10.1111/tpj.16196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/17/2023]
Abstract
Ethylene-responsive factors (ERFs) have diverse functions in the regulation of various plant developmental processes. Here, we demonstrate the dual role of an Arabidopsis ERF gene, AtERF19, in regulating reproductive meristem activity and flower organ size through the regulation of genes involved in CLAVATA-WUSCHEL (CLV-WUS) and auxin signaling, respectively. We found that AtERF19 stimulated the formation of flower primordia and controlled the number of flowers produced by activating WUS and was negatively regulated by CLV3. 35S::AtERF19 expression resulted in significantly more flowers, whereas 35S::AtERF19 + SRDX dominant-negative mutants produced fewer flowers. In addition, AtERF19 also functioned to control flower organ size by promoting the division/expansion of the cells through activating Small Auxin Up RNA Gene 32 (SAUR32), which positively regulated MYB21/24 in the auxin signaling pathway. 35S::AtERF19 and 35S::SAUR32 resulted in similarly larger flowers, whereas 35S::AtERF19 + SRDX and 35S::SAUR32-RNAi mutants produced smaller flowers than the wild type. The functions of AtERF19 were confirmed by the production of similarly more and larger flowers in 35S::AtERF19 transgenic tobacco (Nicotiana benthamiana) and in transgenic Arabidopsis which ectopically expressed the orchid gene (Nicotiana benthamiana) PaERF19 than in wild-type plants. The finding that AtERF19 regulates genes involved in both CLV-WUS and auxin signaling during flower development significantly expands the current knowledge of the multifunctional evolution of ERF genes in plants. The results presented in this work indicate a dual role for the transcription factor AtERF19 in controlling the number of flowers produced and flower organ size through the regulation of genes involved in CLV-WUS and auxin signaling, respectively. Our findings expand the knowledge of the roles of ERF genes in the regulation of reproductive development.
Collapse
Affiliation(s)
- Pei-Fang Lee
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yong-Xiang Zhan
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Jou-Chen Wang
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yen-Hsuan Cheng
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Han Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsing-Fun Hsu
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Wei-Han Chen
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chang-Hsien Yang
- Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
4
|
Grall E, Tschopp P. A sense of place, many times over ‐ pattern formation and evolution of repetitive morphological structures. Dev Dyn 2019; 249:313-327. [DOI: 10.1002/dvdy.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
|
5
|
Jamieson PA, Shan L, He P. Plant cell surface molecular cypher: Receptor-like proteins and their roles in immunity and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:242-251. [PMID: 30080610 PMCID: PMC6297115 DOI: 10.1016/j.plantsci.2018.05.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 05/21/2023]
Abstract
Plant receptor-like proteins (RLPs) are a family of transmembrane receptors which are distinguished from receptor-like kinases (RLKs) by their lack of a cytoplasmic kinase domain. RLPs continue to be implicated in a broad range of plant immunological and developmental processes as critical sensors or participants in receptor complexes on the plasma membrane. RLPs often associate with RLKs to activate or attenuate signal perception and relay. Some RLPs also physically cluster with RLKs and bear similar expression patterns. Here, we discuss the characteristics, function, and expression of characterized RLPs in the context of their associated RLKs in plant immunity and development.
Collapse
Affiliation(s)
- Pierce A Jamieson
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Adibi M, Yoshida S, Weijers D, Fleck C. Centering the Organizing Center in the Arabidopsis thaliana Shoot Apical Meristem by a Combination of Cytokinin Signaling and Self-Organization. PLoS One 2016; 11:e0147830. [PMID: 26872130 PMCID: PMC4752473 DOI: 10.1371/journal.pone.0147830] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 01/08/2016] [Indexed: 12/15/2022] Open
Abstract
Plants have the ability to continously generate new organs by maintaining populations of stem cells throught their lives. The shoot apical meristem (SAM) provides a stable environment for the maintenance of stem cells. All cells inside the SAM divide, yet boundaries and patterns are maintained. Experimental evidence indicates that patterning is independent of cell lineage, thus a dynamic self-regulatory mechanism is required. A pivotal role in the organization of the SAM is played by the WUSCHEL gene (WUS). An important question in this regard is that how WUS expression is positioned in the SAM via a cell-lineage independent signaling mechanism. In this study we demonstrate via mathematical modeling that a combination of an inhibitor of the Cytokinin (CK) receptor, Arabidopsis histidine kinase 4 (AHK4) and two morphogens originating from the top cell layer, can plausibly account for the cell lineage-independent centering of WUS expression within SAM. Furthermore, our laser ablation and microsurgical experiments support the hypothesis that patterning in SAM occurs at the level of CK reception and signaling. The model suggests that the interplay between CK signaling, WUS/CLV feedback loop and boundary signals can account for positioning of the WUS expression, and provides directions for further experimental investigation.
Collapse
Affiliation(s)
- Milad Adibi
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- * E-mail: (MA); (CF)
| | - Saiko Yoshida
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, the Netherlands
| | - Christian Fleck
- Laboratory of Systems and Synthetic Biology, Wageningen University, Wageningen, the Netherlands
- * E-mail: (MA); (CF)
| |
Collapse
|
7
|
Shemer O, Landau U, Candela H, Zemach A, Eshed Williams L. Competency for shoot regeneration from Arabidopsis root explants is regulated by DNA methylation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:251-61. [PMID: 26259192 DOI: 10.1016/j.plantsci.2015.06.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/08/2015] [Accepted: 06/14/2015] [Indexed: 05/11/2023]
Abstract
Plants exhibit high capacity to regenerate in three alternative pathways: tissue repair, somatic embryogenesis and de novo organogenesis. For most plants, de novo organ initiation can be easily achieved in tissue culture by exposing explants to auxin and/or cytokinin, yet the competence to regenerate varies among species and within tissues from the same plant. In Arabidopsis, root explants incubated directly on cytokinin-rich shoot inducing medium (SIM-direct), are incapable of regenerating shoots, and a pre-incubation step on auxin-rich callus inducing medium (CIM) is required to acquire competency to regenerate on the SIM. However the mechanism underlying competency acquisition still remains elusive. Here we show that the chromomethylase 3 (cmt3) mutant which exhibits significant reduction in CHG methylation, shows high capacity to regenerate on SIM-direct and that regeneration occurs via direct organogenesis. In WT, WUSCHEL (WUS) promoter, an essential gene for shoot formation, is highly methylated, and its expression on SIM requires pre-incubation on CIM. However, in cmt3, WUS expression induced by SIM-direct. We propose that pre-incubation on CIM is required for the re-activation of cell division. Following the transfer of roots to SIM, the intensive cell division activity continues, and in the presence of cytokinin leads to a dilution in DNA methylation that allows certain genes required for shoot regeneration to respond to SIM, thereby advancing shoot formation.
Collapse
Affiliation(s)
- Or Shemer
- The Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Udi Landau
- The Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Assaf Zemach
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences & Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
8
|
Lee C, Clark SE. A WUSCHEL-Independent Stem Cell Specification Pathway Is Repressed by PHB, PHV and CNA in Arabidopsis. PLoS One 2015; 10:e0126006. [PMID: 26011610 PMCID: PMC4444308 DOI: 10.1371/journal.pone.0126006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 03/12/2015] [Indexed: 12/22/2022] Open
Abstract
The homeostatic maintenance of stem cells that carry out continuous organogenesis at the shoot meristem is crucial for plant development. Key known factors act to signal between the stem cells and an underlying group of cells thought to act as the stem cell niche. In Arabidopsis thaliana the homeodomain transcription factor WUSCHEL (WUS) is essential for stem cell initiation and maintenance at shoot and flower meristems. Recent data suggest that the WUS protein may move from the niche cells directly into the stem cells to maintain stem cell identity. Here we provide evidence for a second, previously unknown, pathway for stem cell specification at shoot and flower meristems that bypasses the requirement for WUS. We demonstrate that this novel stem cell specification pathway is normally repressed by the activity of the HD-zip III transcription factors PHABULOSA (PHB), PHAVOLUTA (PHV) and CORONA (CNA). When de-repressed, this second stem cell pathway leads to an accumulation of stem cells and an enlargement of the stem cell niche. When de-repressed in a wus mutant background, this second stem cell pathway leads to functional meristems with largely normal cell layering and meristem morphology, activation of WUS cis regulatory elements, and extensive, but not indeterminate, organogenesis. Thus, WUS is largely dispensable for stem cell specification and meristem function, suggesting a set of key stem cell specification factors, competitively regulated by WUS and PHB/PHV/CNA, remain unidentified.
Collapse
Affiliation(s)
- Chunghee Lee
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Steven E. Clark
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
9
|
Hisanaga T, Miyashima S, Nakajima K. Small RNAs as positional signal for pattern formation. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:37-42. [PMID: 25005923 DOI: 10.1016/j.pbi.2014.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Pattern formation in plant relies on intimate cell-cell communication exchanging positional information. While ligand-receptor interaction is commonly used by plants and animals as a means to transmit positional information, plant cells can directly exchange regulatory molecules such as transcription factors through a cytoplasmic continuum called the plasmodesmata. Recently endogenous small RNAs (sRNAs) of various biogenetic origins have been shown to function non-cell-autonomously. To date, non-cell-autonomous sRNAs have been shown to regulate leaf polarity, root vascular patterning, meristem formation in embryos, shoot meristem maintenance and female gametogenesis. All these developmental processes are fundamental to the life cycle and architecture of flowering plants, suggesting that sRNA-mediated cell-to-cell signaling has been adopted to achieve novel morphology in the course of plant evolution.
Collapse
Affiliation(s)
- Tetsuya Hisanaga
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shunsuke Miyashima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Keiji Nakajima
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
10
|
Kajala K, Ramakrishna P, Fisher A, C. Bergmann D, De Smet I, Sozzani R, Weijers D, Brady SM. Omics and modelling approaches for understanding regulation of asymmetric cell divisions in arabidopsis and other angiosperm plants. ANNALS OF BOTANY 2014; 113:1083-1105. [PMID: 24825294 PMCID: PMC4030820 DOI: 10.1093/aob/mcu065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/06/2014] [Indexed: 05/23/2023]
Abstract
BACKGROUND Asymmetric cell divisions are formative divisions that generate daughter cells of distinct identity. These divisions are coordinated by either extrinsic ('niche-controlled') or intrinsic regulatory mechanisms and are fundamentally important in plant development. SCOPE This review describes how asymmetric cell divisions are regulated during development and in different cell types in both the root and the shoot of plants. It further highlights ways in which omics and modelling approaches have been used to elucidate these regulatory mechanisms. For example, the regulation of embryonic asymmetric divisions is described, including the first divisions of the zygote, formative vascular divisions and divisions that give rise to the root stem cell niche. Asymmetric divisions of the root cortex endodermis initial, pericycle cells that give rise to the lateral root primordium, procambium, cambium and stomatal cells are also discussed. Finally, a perspective is provided regarding the role of other hormones or regulatory molecules in asymmetric divisions, the presence of segregated determinants and the usefulness of modelling approaches in understanding network dynamics within these very special cells. CONCLUSIONS Asymmetric cell divisions define plant development. High-throughput genomic and modelling approaches can elucidate their regulation, which in turn could enable the engineering of plant traits such as stomatal density, lateral root development and wood formation.
Collapse
Affiliation(s)
- Kaisa Kajala
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Priya Ramakrishna
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Adam Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dominique C. Bergmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, B-9052 Ghent, Belgium
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703HA Wageningen, The Netherlands
| | - Siobhan M. Brady
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| |
Collapse
|