1
|
Nemati H, de Graaf J. The cellular Potts model on disordered lattices. SOFT MATTER 2024; 20:8337-8352. [PMID: 39283268 PMCID: PMC11404401 DOI: 10.1039/d4sm00445k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024]
Abstract
The cellular Potts model, also known as the Glazier-Graner-Hogeweg model, is a lattice-based approach by which biological tissues at the level of individual cells can be numerically studied. Traditionally, a square or hexagonal underlying lattice structure is assumed for two-dimensional systems, and this is known to introduce artifacts in the structure and dynamics of the model tissues. That is, on regular lattices, cells can assume shapes that are dictated by the symmetries of the underlying lattice. Here, we developed a variant of this method that can be applied to a broad class of (ir)regular lattices. We show that on an irregular lattice deriving from a fluid-like configuration, two types of artifacts can be removed. We further report on the transition between a fluid-like disordered and a solid-like hexagonally ordered phase present for monodisperse confluent cells as a function of their surface tension. This transition shows the hallmarks of a first-order phase transition and is different from the glass/jamming transitions commonly reported for the vertex and active Voronoi models. We emphasize this by analyzing the distribution of shape parameters found in our state space. Our analysis provides a useful reference for the future study of epithelia using the (ir)regular cellular Potts model.
Collapse
Affiliation(s)
- Hossein Nemati
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| | - J de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands.
| |
Collapse
|
2
|
Ramírez-Olivares AI, Vargas-Abúndez JA, Capparelli MV. Microplastics impair the reproductive behavior and life history traits of the amphipod Parhyale hawaiensis. MARINE POLLUTION BULLETIN 2024; 205:116630. [PMID: 38925027 DOI: 10.1016/j.marpolbul.2024.116630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
We investigated the distribution and effects of waterborne microplastic (MP) (polyethylene microspheres, 53-63 um) on the emergent model for ecotoxicology, the amphipod Parhyale hawaiensis, during 30 days of exposure. The following life-history traits were measured: (1) survival, (2) specific growth rate (SGR), (3) reproductive performance (precopulatory pairing behavior, fecundity, and time to release neonates), (4) molting frequency, (5) F1 newborn offspring survival and (6) MP bioaccumulation. No significant mortality or molt was seen in any of the treatments. MP caused a reduction in SGR, being more pronounced in females. The time for precopulatory pairing was 3-fold longer in amphipods exposed to MP. Fecundity decreased by 50 %, and the time to release juveniles was 6.7 days longer for amphipods exposed to MP. Finally, neonate survival decreased by 80 % after ten days of release. MP disrupts the reproductive mechanisms and triggers adverse effects on life history traits in P. hawaiensis.
Collapse
Affiliation(s)
| | - Jorge Arturo Vargas-Abúndez
- Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Universidad Nacional Autónoma de México, Puerto de Abrigo s/n, Sisal, Yucatán, Mexico
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
3
|
Glaviano F, Esposito R, Somma E, Sagi A, Aflalo ED, Costantini M, Zupo V. Molecular Approaches Detect Early Signals of Programmed Cell Death in Hippolyte inermis Leach. Curr Issues Mol Biol 2024; 46:6169-6185. [PMID: 38921039 PMCID: PMC11202572 DOI: 10.3390/cimb46060368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The protandric shrimp Hippolyte inermis is the only known marine invertebrate whose sex determination is strongly influenced by the composition of its food. In H. inermis, a sex reversal is triggered by the ingestion of diatoms of the genus Cocconeis associated with leaves of the seagrass Posidonia oceanica. These diatoms contain compounds that promote programmed cell death (PCD) in H. inermis and also in human cancer cells. Transcriptomic analyses suggested that ferroptosis is the primary trigger of the shrimp's sex reversal, leading to the rapid destruction of the androgen gland (AG) followed by a chain of apoptotic events transforming the testes into ovaries. Here, we propose a molecular approach to detect the effects of compounds stimulating the PCD. An RNA extraction method, suitable for young shrimp post-larvae (five days after metamorphosis; PL5 stage), was established. In addition, six genes involved in apoptosis, four involved in ferroptosis, and seven involved in the AG switch were mined from the transcriptome, and their expression levels were followed using real-time qPCR in PL5 fed on Cocconeis spp., compared to PL5 fed on a basic control feed. Our molecular approach, which detected early signals of sex reversal, represents a powerful instrument for investigating physiological progression and patterns of PCD in marine invertebrates. It exemplifies the physiological changes that may start a few days after the settlement of post-larvae and determine the life destiny of an individual.
Collapse
Affiliation(s)
- Francesca Glaviano
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
| | - Roberta Esposito
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton n. 55, 80133 Naples, Italy;
| | - Emanuele Somma
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
- Department of Life Science, University of Trieste, Via L. Giorgieri, 10, 34127 Trieste, Italy
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (A.S.); (E.D.A.)
| | - Eliahu D. Aflalo
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel; (A.S.); (E.D.A.)
- Department of Life Sciences, Achva Academic College, Arugot 7980400, Israel
| | - Maria Costantini
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton n. 55, 80133 Naples, Italy;
| | - Valerio Zupo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, 80077 Ischia, Italy; (F.G.); (E.S.)
| |
Collapse
|
4
|
Angst P, Dexter E, Stillman JH. Genome assemblies of two species of porcelain crab, Petrolisthes cinctipes and Petrolisthes manimaculis (Anomura: Porcellanidae). G3 (BETHESDA, MD.) 2024; 14:jkad281. [PMID: 38079165 PMCID: PMC10849366 DOI: 10.1093/g3journal/jkad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/09/2023] [Indexed: 02/09/2024]
Abstract
Crabs are a large subtaxon of the Arthropoda, the most diverse and species-rich metazoan group. Several outstanding questions remain regarding crab diversification, including about the genomic capacitors of physiological and morphological adaptation, that cannot be answered with available genomic resources. Physiologically and ecologically diverse Anomuran porcelain crabs offer a valuable model for investigating these questions and hence genomic resources of these crabs would be particularly useful. Here, we present the first two genome assemblies of congeneric and sympatric Anomuran porcelain crabs, Petrolisthes cinctipes and Petrolisthes manimaculis from different microhabitats. Pacific Biosciences high-fidelity sequencing led to genome assemblies of 1.5 and 0.9 Gb, with N50s of 706.7 and 218.9 Kb, respectively. Their assembly length difference can largely be attributed to the different levels of interspersed repeats in their assemblies: The larger genome of P. cinctipes has more repeats (1.12 Gb) than the smaller genome of P. manimaculis (0.54 Gb). For obtaining high-quality annotations of 44,543 and 40,315 protein-coding genes in P. cinctipes and P. manimaculis, respectively, we used RNA-seq as part of a larger annotation pipeline. Contrarily to the large-scale differences in repeat content, divergence levels between the two species as estimated from orthologous protein-coding genes are moderate. These two high-quality genome assemblies allow future studies to examine the role of environmental regulation of gene expression in the two focal species to better understand physiological response to climate change, and provide the foundation for studies in fine-scale genome evolution and diversification of crabs.
Collapse
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology, University of Basel, 4051 Basel, Switzerland
| | - Eric Dexter
- Department of Environmental Sciences, Zoology, University of Basel, 4051 Basel, Switzerland
| | - Jonathon H Stillman
- Department of Environmental Sciences, Zoology, University of Basel, 4051 Basel, Switzerland
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Raspe S, Kümmerlen K, Harzsch S. Immunolocalization of SIFamide-like neuropeptides in the adult and developing central nervous system of the amphipod Parhyale hawaiensis (Malacostraca, Peracarida, Amphipoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101309. [PMID: 37879171 DOI: 10.1016/j.asd.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023]
Abstract
Immunohistochemical analyses on the distribution of neuropeptides in the pancrustacean brain in the past have focussed mostly on representatives of the decapod ("ten-legged") pancrustaceans whereas other taxa are understudied in this respect. The current report examines the post-embryogenic and adult brain and ventral nerve cord of the amphipod pancrustacean Parhyale hawaiensis (Dana. 1853; Peracarida, Amphipoda, Hyalide), a subtropical species with a body size of 1.5 cm and a direct post-embryonic development using immunohistochemistry to label the neuropeptide SIFamide and synaptic proteins (synapsins). We found strong SIFamide-like labelling in proto-, deuto- and tritocerebrum, especially in the lamina, the lateral protocerebrum, lateral assessory lobe, the central body, olfactory lobe, medial antenna 1 neuropil and antenna 2 neuropil. Out of a total of 28 ± 5 (N = 12) SIFamide-positive neurons in the central brain of adult P. hawaiensis, we found three individually identifiable somata which were consistently present within the brain of adult and subadult animals. Additionally, the subesophageal and two adjacent thoracic ganglia were analysed in only adult animals and also showed a strong SIFamide-like immunoreactivity. We compare our findings to other pancrustaceans including hexapods and discuss them in an evolutionary context.
Collapse
Affiliation(s)
- Sophie Raspe
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Katja Kümmerlen
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany
| | - Steffen Harzsch
- University of Greifswald, Zoological Institute and Museum, Department of Cytology and Evolutionary Biology, Soldmannstrasse 23, D-17498 Greifswald, Germany.
| |
Collapse
|
6
|
Gaunt SJ. Seeking Sense in the Hox Gene Cluster. J Dev Biol 2022; 10:48. [PMID: 36412642 PMCID: PMC9680502 DOI: 10.3390/jdb10040048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/31/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The Hox gene cluster, responsible for patterning of the head-tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head-tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head-tail axis?
Collapse
Affiliation(s)
- Stephen J Gaunt
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
7
|
Otomo Y, Shinji J, Kohtsuka H, Miura T. Ontogenetic Expressions of Sexually Dimorphic Traits in the Skeleton Shrimp Caprella scaura (Crustacea: Amphipoda). Zoolog Sci 2022; 39:431-445. [DOI: 10.2108/zs220038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Yohei Otomo
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Junpei Shinji
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Hisanori Kohtsuka
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Toru Miura
- Misaki Marine Biological Station, School of Science, The University of Tokyo, Misaki, Miura, Kanagawa 238-0225, Japan
| |
Collapse
|
8
|
Fujiwara M, Akiyama-Oda Y, Oda H. Virtual spherical-shaped multicellular platform for simulating the morphogenetic processes of spider-like body axis formation. Front Cell Dev Biol 2022; 10:932814. [PMID: 36036016 PMCID: PMC9411422 DOI: 10.3389/fcell.2022.932814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022] Open
Abstract
Remodeling of multicellular architecture is a critical developmental process for shaping the axis of a bilaterally symmetric animal body and involves coordinated cell–cell interactions and cell rearrangement. In arthropods, the early embryonic process that leads to the segmented body axis varies at the cellular and molecular levels depending on the species. Developmental studies using insect and spider model species have provided specific examples of these diversified mechanisms that regulate axis formation and segmentation in arthropod embryos. However, there are few theoretical models for how diversity in the early embryonic process occurred during evolution, in part because of a limited computational infrastructure. We developed a virtual spherical-shaped multicellular platform to reproduce body axis-forming processes. Each virtual cell behaves according to the cell vertex model, with the computational program organized in a hierarchical order from cells and tissues to whole embryos. Using an initial set of two different mechanical states for cell differentiation and global directional signals that are linked to the planar polarity of each cell, the virtual cell assembly exhibited morphogenetic processes similar to those observed in spider embryos. We found that the development of an elongating body axis is achieved through implementation of an interactive cell polarity parameter associated with edge tension at the cell–cell adhesion interface, with no local control of the cell division rate and direction. We also showed that modifying the settings can cause variation in morphogenetic processes. This platform also can embed a gene network that generates waves of gene expression in a virtual dynamic multicellular field. This study provides a computational platform for testing the development and evolution of animal body patterns.
Collapse
Affiliation(s)
- Motohiro Fujiwara
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Japan
- *Correspondence: Motohiro Fujiwara, ; Hiroki Oda,
| | - Yasuko Akiyama-Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Japan
- Department of Microbiology and Infection Control, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, Takatsuki, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, Toyonaka, Japan
- *Correspondence: Motohiro Fujiwara, ; Hiroki Oda,
| |
Collapse
|
9
|
McAndry C, Collins M, Tills O, Spicer JI, Truebano M. Regulation of gene expression during ontogeny of physiological function in the brackishwater amphipod Gammarus chevreuxi. Mar Genomics 2022; 63:100948. [PMID: 35427917 DOI: 10.1016/j.margen.2022.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
Embryonic development is a complex process involving the co-ordinated onset and integration of multiple morphological features and physiological functions. While the molecular basis of morphological development in embryos is relatively well known for traditional model species, the molecular underpinning of the development of physiological functions is not. Here, we used global gene expression profiling to investigate the transcriptional changes associated with the development of morphological and physiological function in the amphipod crustacean Gammarus chevreuxi. We compared the transcriptomes at three timepoints during the latter half of development, characterised by different stages of the development of heart form and function: 10 days post fertilisation (dpf, Early: no heart structure visible), 15 dpf (Middle: heart present but not fully functional), and 18 dpf (Late: regular heartbeat). Gene expression profiles differed markedly between developmental stages, likely representing a change in the activity of different processes throughout the latter period of G. chevreuxi embryonic development. Differentially expressed genes belonged to one of three distinct clusters based on their expression patterns across development. One of these clusters, which included key genes relating to cardiac contractile machinery and calcium handling, displayed a pattern of sequential up-regulation throughout the developmental period studied. Further analyses of these transcripts could reveal genes that may influence the onset of a regular heartbeat. We also identified morphological and physiological processes that may occur alongside heart development, such as development of digestive caeca and the cuticle. Elucidating the mechanisms underpinning morphological and physiological development of non-model organisms will support improved understanding of conserved mechanisms, addressing the current phylogenetic gap between relatively well known model species.
Collapse
Affiliation(s)
- C McAndry
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - M Collins
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - O Tills
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - J I Spicer
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - M Truebano
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
10
|
Sun DA, Bredeson JV, Bruce HS, Patel NH. Identification and classification of cis-regulatory elements in the amphipod crustacean Parhyale hawaiensis. Development 2022; 149:275484. [PMID: 35608283 DOI: 10.1242/dev.200793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/21/2022] [Indexed: 12/13/2022]
Abstract
Emerging research organisms enable the study of biology that cannot be addressed using classical 'model' organisms. New data resources can accelerate research in such animals. Here, we present new functional genomic resources for the amphipod crustacean Parhyale hawaiensis, facilitating the exploration of gene regulatory evolution using this emerging research organism. We use Omni-ATAC-seq to identify accessible chromatin genome-wide across a broad time course of Parhyale embryonic development. This time course encompasses many major morphological events, including segmentation, body regionalization, gut morphogenesis and limb development. In addition, we use short- and long-read RNA-seq to generate an improved Parhyale genome annotation, enabling deeper classification of identified regulatory elements. We discover differential accessibility, predict nucleosome positioning, infer transcription factor binding, cluster peaks based on accessibility dynamics, classify biological functions and correlate gene expression with accessibility. Using a Minos transposase reporter system, we demonstrate the potential to identify novel regulatory elements using this approach. This work provides a platform for the identification of novel developmental regulatory elements in Parhyale, and offers a framework for performing such experiments in other emerging research organisms.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Jessen V Bredeson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA 02543, USA.,Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Paris M, Wolff C, Patel NH, Averof M. The crustacean model Parhyale hawaiensis. Curr Top Dev Biol 2022; 147:199-230. [PMID: 35337450 DOI: 10.1016/bs.ctdb.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Arthropods are the most abundant and diverse animals on earth. Among them, pancrustaceans are an ancient and morphologically diverse group, comprising a wide range of aquatic and semi-aquatic crustaceans as well as the insects, which emerged from crustacean ancestors to colonize most terrestrial habitats. Within insects, Drosophila stands out as one of the most powerful animal models, making major contributions to our understanding of development, physiology and behavior. Given these attributes, crustaceans provide a fertile ground for exploring biological diversity through comparative studies. However, beyond insects, few crustaceans are developed sufficiently as experimental models to enable such studies. The marine amphipod Parhyale hawaiensis is currently the best established crustacean system, offering year-round accessibility to developmental stages, transgenic tools, genomic resources, and established genetics and imaging approaches. The Parhyale research community is small but diverse, investigating the evolution of development, regeneration, aspects of sensory biology, chronobiology, bioprocessing and ecotoxicology.
Collapse
Affiliation(s)
- Mathilde Paris
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France
| | - Carsten Wolff
- Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nipam H Patel
- Marine Biological Laboratory, Woods Hole, MA, United States; Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States.
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, Lyon, France; Centre National de la Recherche Scientifique (CNRS), France.
| |
Collapse
|
12
|
Vargas-Abúndez JA, Martínez-Moreno GL, Simões N, Noreña-Barroso E, Mascaró M. Marine amphipods ( Parhyale hawaiensis) as an alternative feed for the lined seahorse ( Hippocampus erectus, Perri 1810): nutritional value and feeding trial. PeerJ 2021; 9:e12288. [PMID: 34721977 PMCID: PMC8532987 DOI: 10.7717/peerj.12288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022] Open
Abstract
Finding new alternatives to traditional live preys such as Artemia and rotifers, which do not always promote optimal fish growth and survival, is required for the successful aquaculture of highly specialized predatory species, including seahorses. The present study assessed the nutritional value of an interesting marine amphipod (Parhyale hawaiensis), and evaluates through a feeding trial its potential use as a natural prey for 10-months lined seahorse, Hippocampus erectus. P. hawaiensis showed high levels of valuable lipids (20.4–26.7% on dry matter basis) and polyunsaturated fatty acids (PUFAs) ( 26.4–41% of total FAs), including the long-chain PUFAs (LC-PUFAs) arachidonic acid (ARA) (2.9–7.7%), eicosapentaenoic acid (EPA) (4.3–6.5%) and docosahexaenoic acid (DHA) (2.1–6.2%). A comparison between wild-captured and cultured amphipods revealed a significant improvement of the amphipod FA profile in terms of DHA%, total omega-3 (n3) FAs and n3/n6 ratio when employing both a conventional amphipod culture based on a commercial shrimp diet, and, to a lesser extent, a large (3,500 L) biofloc system. Seahorses fed with frozen/wild amphipods, either singly or in combination with Artemia enriched with Super Selco® (INVE Aquaculture, Belgium) for 57 days, substantially improved seahorse growth and FA profiles in terms of ARA, EPA and DHA%, including indices associated to marine sources, such as Σn3 and n3/n6, compared to a diet based solely on enriched Artemia. These results support the use of marine amphipods as an alternative food organism for juvenile H. erectus and suggest a potential use for general marine aquaculture.
Collapse
Affiliation(s)
| | - Gemma Leticia Martínez-Moreno
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Nuno Simões
- Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Yucatán, Mexico.,International Chair for Coastal and Marine Studies in Mexico, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Cristi, Texas, United States of America
| | - Elsa Noreña-Barroso
- Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Yucatán, Mexico.,Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigación (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Sisal, Yucatán, Mexico
| |
Collapse
|
13
|
Hajirnis N, Mishra RK. Homeotic Genes: Clustering, Modularity, and Diversity. Front Cell Dev Biol 2021; 9:718308. [PMID: 34458272 PMCID: PMC8386295 DOI: 10.3389/fcell.2021.718308] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hox genes code for transcription factors and are evolutionarily conserved. They regulate a plethora of downstream targets to define the anterior-posterior (AP) body axis of a developing bilaterian embryo. Early work suggested a possible role of clustering and ordering of Hox to regulate their expression in a spatially restricted manner along the AP axis. However, the recent availability of many genome assemblies for different organisms uncovered several examples that defy this constraint. With recent advancements in genomics, the current review discusses the arrangement of Hox in various organisms. Further, we revisit their discovery and regulation in Drosophila melanogaster. We also review their regulation in different arthropods and vertebrates, with a significant focus on Hox expression in the crustacean Parahyale hawaiensis. It is noteworthy that subtle changes in the levels of Hox gene expression can contribute to the development of novel features in an organism. We, therefore, delve into the distinct regulation of these genes during primary axis formation, segment identity, and extra-embryonic roles such as in the formation of hair follicles or misregulation leading to cancer. Toward the end of each section, we emphasize the possibilities of several experiments involving various organisms, owing to the advancements in the field of genomics and CRISPR-based genome engineering. Overall, we present a holistic view of the functioning of Hox in the animal world.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | - Rakesh K. Mishra
- CSIR – Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
- AcSIR – Academy of Scientific and Innovative Research, Ghaziabad, India
- Tata Institute for Genetics and Society (TIGS), Bangalore, India
| |
Collapse
|
14
|
Vargas-Abúndez JA, López-Vázquez HI, Mascaró M, Martínez-Moreno GL, Simões N. Marine amphipods as a new live prey for ornamental aquaculture: exploring the potential of Parhyale hawaiensis and Elasmopus pectenicrus. PeerJ 2021; 9:e10840. [PMID: 33614288 PMCID: PMC7881717 DOI: 10.7717/peerj.10840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/05/2021] [Indexed: 01/28/2023] Open
Abstract
Marine amphipods are gaining attention in aquaculture as a natural live food alternative to traditional preys such as brine shrimps (Artemia spp.). The use of Artemia is convenient for the culture of many marine species, but often problematic for some others, such as seahorses and other marine ornamental species. Unlike Artemia, marine amphipods are consumed by fish in their natural environment and show biochemical profiles that better match the nutritional requirements of marine fish, particularly of polyunsaturated fatty acids (PUFA), including eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Despite their potentially easy culture, there are no established culture techniques and a deeper knowledge on the reproductive biology, nutritional profiles and culture methodologies is still needed to potentiate the optimization of mass production. The present study assessed, for the first time, the aquaculture potential of Parhyale hawaiensis and Elasmopus pectenicrus, two cosmopolitan marine gammarids (as per traditional schemes of classification) that naturally proliferate in the wild and in aquaculture facilities. For that purpose, aspects of the population and reproductive biology of the species were characterized and then a series of laboratory-scale experiments were conducted to determine amphipod productivity, the time needed to reach sexual maturity by hatchlings (generation time), cannibalism degree, the effects of sex ratio on fecundity and the effects of diet (shrimp diet, plant-based diet and commercial fish diet) on fecundity and juvenile growth. P. hawaiensis, unlike E. pectenicrus, was easily maintained and propagated in laboratory conditions. P. hawaiensis showed a higher total length (9.3 ± 1.3 mm), wet weight (14.4 ± 6.2 mg), dry weight (10.5 ± 4.4 mg), females/males sex ratio (2.24), fecundity (12.8 ± 5.7 embryos per female), and gross energy content (16.71 ± 0.67 kJ g-1) compared to E. pectenicrus (7.9 ± 1.2 mm total length; 8.4 ± 4.3 mg wet weight; 5.7 ± 3.2 mg dry weight; 1.34 females/males sex ratio; 6.5 ± 3.9 embryos per female; 12.86 ± 0.82 kJ g−1 gross energy content). P. hawaiensis juvenile growth showed a small, but significant, reduction by the use of a plant-based diet compared to a commercial shrimp and fish diet; however, fecundity was not affected, supporting the possible use of inexpensive diets to mass produce amphipods as live or frozen food. Possible limitations of P. hawaiensis could be their quite long generation times (50.9 ± 5.8 days) and relatively low fecundity levels (12.8 ± 5.7 embryos per female). With an observed productivity rate of 0.36 ± 0.08 juveniles per amphipod couple per day, P. hawaiensis could become a specialty feed for species that cannot easily transition to a formulated diet such as seahorses and other highly priced marine ornamental species.
Collapse
Affiliation(s)
- Jorge Arturo Vargas-Abúndez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Ciudad de Mexico, Mexico
| | - Humberto Ivan López-Vázquez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Ciudad de Mexico, Mexico
| | - Maite Mascaró
- Unidad Multidisciplinaria de Docencia e Investigacion de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Gemma Leticia Martínez-Moreno
- Unidad Multidisciplinaria de Docencia e Investigacion de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Nuno Simões
- Unidad Multidisciplinaria de Docencia e Investigacion de Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,Laboratorio de Resiliencia Costera (LANRESC, CONACYT), Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico.,International Chair for Coastal and Marine Studies in Mexico, Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX, United States of America
| |
Collapse
|
15
|
Toyota K, Miyakawa H, Hiruta C, Sato T, Katayama H, Ohira T, Iguchi T. Sex Determination and Differentiation in Decapod and Cladoceran Crustaceans: An Overview of Endocrine Regulation. Genes (Basel) 2021; 12:genes12020305. [PMID: 33669984 PMCID: PMC7924870 DOI: 10.3390/genes12020305] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanisms underlying sex determination and differentiation in animals are known to encompass a diverse array of molecular clues. Recent innovations in high-throughput sequencing and mass spectrometry technologies have been widely applied in non-model organisms without reference genomes. Crustaceans are no exception. They are particularly diverse among the Arthropoda and contain a wide variety of commercially important fishery species such as shrimps, lobsters and crabs (Order Decapoda), and keystone species of aquatic ecosystems such as water fleas (Order Branchiopoda). In terms of decapod sex determination and differentiation, previous approaches have attempted to elucidate their molecular components, to establish mono-sex breeding technology. Here, we overview reports describing the physiological functions of sex hormones regulating masculinization and feminization, and gene discovery by transcriptomics in decapod species. Moreover, this review summarizes the recent progresses of studies on the juvenile hormone-driven sex determination system of the branchiopod genus Daphnia, and then compares sex determination and endocrine systems between decapods and branchiopods. This review provides not only substantial insights for aquaculture research, but also the opportunity to re-organize the current and future trends of this field.
Collapse
Affiliation(s)
- Kenji Toyota
- Marine Biological Station, Sado Center for Ecological Sustainability, Niigata University, Sado, Niigata 952-2135, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo 125-8585, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hitoshi Miyakawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi 321-8505, Japan;
| | - Chizue Hiruta
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan;
| | - Tomomi Sato
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| | - Hidekazu Katayama
- Department of Applied Biochemistry, School of Engineering, Tokai University, Kanagawa 259-1292, Japan;
| | - Tsuyoshi Ohira
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Hiratsuka, Kanagawa 259-1293, Japan;
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Correspondence: (K.T.); (T.S.); (T.I.)
| |
Collapse
|
16
|
Clark-Hachtel CM, Tomoyasu Y. Two sets of candidate crustacean wing homologues and their implication for the origin of insect wings. Nat Ecol Evol 2020; 4:1694-1702. [PMID: 32747770 DOI: 10.1038/s41559-020-1257-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
The origin of insect wings is a biological mystery that has fascinated scientists for centuries. Identification of tissues homologous to insect wings from lineages outside of Insecta will provide pivotal information to resolve this conundrum. Here, through expression and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) functional analyses in Parhyale, we show that a gene network similar to the insect wing gene network (preWGN) operates both in the crustacean terga and in the proximal leg segments, suggesting that the evolution of a preWGN precedes the emergence of insect wings, and that from an evo-devo perspective, both of these tissues qualify as potential crustacean wing homologues. Combining these results with recent wing origin studies in insects, we discuss the possibility that both tissues are crustacean wing homologues, which supports a dual evolutionary origin of insect wings (that is, novelty through a merger of two distinct tissues). These outcomes have a crucial impact on the course of the intellectual battle between the two historically competing wing origin hypotheses.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Department of Biology, Miami University, Oxford, OH, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
17
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
18
|
Sun DA, Patel NH. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e355. [PMID: 31183976 PMCID: PMC6772994 DOI: 10.1002/wdev.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Nipam H Patel
- Marine Biological Laboratory, University of Chicago, Chicago, Illinois
| |
Collapse
|