1
|
Bai F, Deng Y, Li L, Lv M, Razzokov J, Xu Q, Xu Z, Chen Z, Chen G, Chen Z. Advancements and challenges in brain cancer therapeutics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230177. [PMID: 39713205 PMCID: PMC11655316 DOI: 10.1002/exp.20230177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/24/2024]
Abstract
Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.
Collapse
Affiliation(s)
- Fan Bai
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
| | - Yueyang Deng
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Long Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
| | - Ming Lv
- Department of Medical EngineeringMedical Supplies Center of Chinese PLA General HospitalBeijingChina
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied ResearchNational Research University TIIAMETashkentUzbekistan
- Laboratory of Experimental BiophysicsCentre for Advanced TechnologiesTashkentUzbekistan
- Department of Biomedical EngineeringTashkent State Technical UniversityTashkentUzbekistan
| | - Qingnan Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhaowei Chen
- Institute of Food Safety and Environment MonitoringMOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhouChina
| | - Guojun Chen
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
- Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| |
Collapse
|
2
|
Sarkar S, Greer J, Marlowe NJ, Medvid A, Ivan ME, Kolishetti N, Dhar S. Stemness, invasion, and immunosuppression modulation in recurrent glioblastoma using nanotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1976. [PMID: 39091260 DOI: 10.1002/wnan.1976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 08/04/2024]
Abstract
The recurrent nature of glioblastoma negatively impacts conventional treatment strategies leading to a growing need for nanomedicine. Nanotherapeutics, an approach designed to deliver drugs to specific sites, is experiencing rapid growth and gaining immense popularity. Having potential in reaching the hard-to-reach disease sites, this field has the potential to show high efficacy in combatting glioblastoma progression. The presence of glioblastoma stem cells (GSCs) is a major factor behind the poor prognosis of glioblastoma multiforme (GBM). Stemness potential, heterogeneity, and self-renewal capacity, are some of the properties that make GSCs invade across the distant regions of the brain. Despite advances in medical technology and MRI-guided maximal surgical resection, not all GSCs residing in the brain can be removed, leading to recurrent disease. The aggressiveness of GBM is often correlated with immune suppression, where the T-cells are unable to infiltrate the cancer initiating GSCs. Standard of care therapies, including surgery and chemotherapy in combination with radiation therapy, have failed to tackle all the challenges of the GSCs, making it increasingly important for researchers to develop strategies to tackle their growth and proliferation and reduce the recurrence of GBM. Here, we will focus on the advancements in the field of nanomedicine that has the potential to show positive impact in managing glioblastoma tumor microenvironment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shrita Sarkar
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Jessica Greer
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Nathaniel J Marlowe
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Angeline Medvid
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Nagesh Kolishetti
- Department of Immunology and Nano-Medicine, Herbert Wertheim, College of Medicine, Florida International University, Miami, Florida, USA
- Herbert Wertheim College of Medicine, Institute of Neuroimmune Pharmacology, Miami, Florida International University, Florida, USA
| | - Shanta Dhar
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, USA
- Department of Chemistry, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
3
|
Cao X, Li J, Ren J, Peng J, Zhong R, He J, Xu T, Yu Z, Jin H, Hao S, Liu R, Xu B. Minimally-invasive implantable device enhances brain cancer suppression. EMBO Mol Med 2024; 16:1704-1716. [PMID: 38902433 PMCID: PMC11250787 DOI: 10.1038/s44321-024-00091-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Current brain tumor treatments are limited by the skull and BBB, leading to poor prognosis and short survival for glioma patients. We introduce a novel minimally-invasive brain tumor suppression (MIBTS) device combining personalized intracranial electric field therapy with in-situ chemotherapeutic coating. The core of our MIBTS technique is a wireless-ultrasound-powered, chip-sized, lightweight device with all functional circuits encapsulated in a small but efficient "Swiss-roll" structure, guaranteeing enhanced energy conversion while requiring tiny implantation windows ( ~ 3 × 5 mm), which favors broad consumers acceptance and easy-to-use of the device. Compared with existing technologies, competitive advantages in terms of tumor suppressive efficacy and therapeutic resolution were noticed, with maximum ~80% higher suppression effect than first-line chemotherapy and 50-70% higher than the most advanced tumor treating field technology. In addition, patient-personalized therapy strategies could be tuned from the MIBTS without increasing size or adding circuits on the integrated chip, ensuring the optimal therapeutic effect and avoid tumor resistance. These groundbreaking achievements of MIBTS offer new hope for controlling tumor recurrence and extending patient survival.
Collapse
Affiliation(s)
- Xiaona Cao
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jie Li
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jinliang Ren
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jiajin Peng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Ruyue Zhong
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Jiahao He
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Ting Xu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China
| | - Zhenhua Yu
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Huawei Jin
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Siqi Hao
- School of Naval Architecture & Ocean Engineering, Guangzhou Maritime University, 101 Hongshan 3rd Road, Huangpu District, Guangzhou, Guangdong, 510725, P.R. China
| | - Ruiwei Liu
- School of Naval Architecture & Ocean Engineering, Guangzhou Maritime University, 101 Hongshan 3rd Road, Huangpu District, Guangzhou, Guangdong, 510725, P.R. China
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P.R. China.
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P.R. China.
| |
Collapse
|
4
|
Dosta P, Dion MZ, Prado M, Hurtado P, Riojas-Javelly CJ, Cryer AM, Soria Y, Andrews Interiano N, Muñoz-Taboada G, Artzi N. Matrix Metalloproteinase- and pH-Sensitive Nanoparticle System Enhances Drug Retention and Penetration in Glioblastoma. ACS NANO 2024; 18:14145-14160. [PMID: 38761153 DOI: 10.1021/acsnano.3c03409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Glioblastoma (GBM) is a primary malignant brain tumor with limited therapeutic options. One promising approach is local drug delivery, but the efficacy is hindered by limited diffusion and retention. To address this, we synthesized and developed a dual-sensitive nanoparticle (Dual-NP) system, formed between a dendrimer and dextran NPs, bound by a dual-sensitive [matrix metalloproteinase (MMP) and pH] linker designed to disassemble rapidly in the tumor microenvironment. The disassembly prompts the in situ formation of nanogels via a Schiff base reaction, prolonging Dual-NP retention and releasing small doxorubicin (Dox)-conjugated dendrimer NPs over time. The Dual-NPs were able to penetrate deep into 3D spheroid models and detected at the tumor site up to 6 days after a single intratumoral injection in an orthotopic mouse model of GBM. The prolonged presence of Dual-NPs in the tumor tissue resulted in a significant delay in tumor growth and an overall increase in survival compared to untreated or Dox-conjugated dendrimer NPs alone. This Dual-NP system has the potential to deliver a range of therapeutics for efficiently treating GBM and other solid tumors.
Collapse
Affiliation(s)
- Pere Dosta
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Michelle Z Dion
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- MIT-Harvard Division of Health Sciences & Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michaela Prado
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Pau Hurtado
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Cristobal J Riojas-Javelly
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | - Alexander M Cryer
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yael Soria
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Nelly Andrews Interiano
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Engineering and Sciences, Tecnológico de Monterrey, Monterrey 64849, Mexico
| | | | - Natalie Artzi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Medicine, Division of Engineering in Medicine Brigham and Women's Hospital Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
- BioDevek Inc., Allston, Massachusetts 02134, United States
| |
Collapse
|
5
|
Wang H, Mills J, Sun B, Cui H. Therapeutic Supramolecular Polymers: Designs and Applications. Prog Polym Sci 2024; 148:101769. [PMID: 38188703 PMCID: PMC10769153 DOI: 10.1016/j.progpolymsci.2023.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The self-assembly of low-molecular-weight building motifs into supramolecular polymers has unlocked a new realm of materials with distinct properties and tremendous potential for advancing medical practices. Leveraging the reversible and dynamic nature of non-covalent interactions, these supramolecular polymers exhibit inherent responsiveness to their microenvironment, physiological cues, and biomolecular signals, making them uniquely suited for diverse biomedical applications. In this review, we intend to explore the principles of design, synthesis methodologies, and strategic developments that underlie the creation of supramolecular polymers as carriers for therapeutics, contributing to the treatment and prevention of a spectrum of human diseases. We delve into the principles underlying monomer design, emphasizing the pivotal role of non-covalent interactions, directionality, and reversibility. Moreover, we explore the intricate balance between thermodynamics and kinetics in supramolecular polymerization, illuminating strategies for achieving controlled sizes and distributions. Categorically, we examine their exciting biomedical applications: individual polymers as discrete carriers for therapeutics, delving into their interactions with cells, and in vivo dynamics; and supramolecular polymeric hydrogels as injectable depots, with a focus on their roles in cancer immunotherapy, sustained drug release, and regenerative medicine. As the field continues to burgeon, harnessing the unique attributes of therapeutic supramolecular polymers holds the promise of transformative impacts across the biomedical landscape.
Collapse
Affiliation(s)
- Han Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Jason Mills
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
6
|
Wang Q, Xin X, Dai Q, Sun M, Chen J, Mostafavi E, Shen Y, Li X. Medulloblastoma targeted therapy: From signaling pathways heterogeneity and current treatment dilemma to the recent advances in development of therapeutic strategies. Pharmacol Ther 2023; 250:108527. [PMID: 37703952 DOI: 10.1016/j.pharmthera.2023.108527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Medulloblastoma (MB) is a major pediatric malignant brain tumor that arises in the cerebellum. MB tumors exhibit highly heterogeneous driven by diverse genetic alterations and could be divided into four major subgroups based on their different biological drivers and molecular features (Wnt, Sonic hedgehog (Shh), group 3, and group 4 MB). Even though the therapeutic strategies for each MB subtype integrate their pathogenesis and were developed to focus on their specific target sites, the unexpected drug non-selective cytotoxicity, low drug accumulation in the brain, and complexed MB tumor microenvironment still be huge obstacles to achieving satisfied MB therapeutic efficiency. This review discussed the current advances in modern MB therapeutic strategy development. Through the recent advances in knowledge of the origin, molecular pathogenesis of MB subtypes and their current therapeutic barriers, we particularly reviewed the current development in advanced MB therapeutic strategy committed to overcome MB treatment obstacles, focusing on novel signaling pathway targeted therapeutic agents and their combination discovery, advanced drug delivery systems design, and MB immunotherapy strategy development.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Qihao Dai
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China
| | - Mengjuan Sun
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhua Chen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| | - Yan Shen
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China.
| | - Xueming Li
- School of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Belhajová M, Vícha A, Burgert L, Brožková I, Michalíčková L, Hrdina R, Moravec T, Netuka D, Musil Z, Hrdina R. En route to local glioblastoma treatment with temozolomide doped hyaluronan fibres: formulation and in vitro cell studies. RSC Med Chem 2023; 14:1662-1666. [PMID: 37731694 PMCID: PMC10507811 DOI: 10.1039/d3md00261f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
We report the preparation, characterisation and in vitro tests of hyaluronan fibres containing up to 50 w/w% of temozolomide for local glyoblastoma treatment. These fibres form a hydrogel upon contact with cerebrospinal fluid on the treatment spot.
Collapse
Affiliation(s)
- Marie Belhajová
- Charles University, Faculty of Medicine, Department of paediatric haematology and oncology V Úvalu 84/1 150 00 Praha 5 Czech Republic
| | - Aleš Vícha
- Charles University, Faculty of Medicine, Department of paediatric haematology and oncology V Úvalu 84/1 150 00 Praha 5 Czech Republic
| | - Ladislav Burgert
- University of Pardubice, Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic
| | - Iveta Brožková
- University of Pardubice, Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic
| | - Ludmila Michalíčková
- University of Pardubice, Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic
| | - Radim Hrdina
- University of Pardubice, Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic
| | - Tomáš Moravec
- Charles University, Faculty of Medicine, Department of neurosurgery and neurooncology U Vojenské nemocnice 1200 Praha 6 Czech Republic
| | - David Netuka
- Charles University, Faculty of Medicine, Department of neurosurgery and neurooncology U Vojenské nemocnice 1200 Praha 6 Czech Republic
| | - Zdeněk Musil
- Charles University, Faculty of Medicine, Institute of biology and medical genetics Albertov 4 Praha 2 Czech Republic
| | - Radim Hrdina
- Charles University, Faculty of Science, Department of Organic Chemistry Hlavova 8 12843 Praha 2 Czech Republic
| |
Collapse
|
8
|
Wu Y, Qian Y, Peng W, Qi X. Functionalized nanoparticles crossing the brain-blood barrier to target glioma cells. PeerJ 2023; 11:e15571. [PMID: 37426416 PMCID: PMC10327649 DOI: 10.7717/peerj.15571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/25/2023] [Indexed: 07/11/2023] Open
Abstract
Glioma is the most common tumor of the central nervous system (CNS), with a 5-year survival rate of <35%. Drug therapy, such as chemotherapeutic and immunotherapeutic agents, remains one of the main treatment modalities for glioma, including temozolomide, doxorubicin, bortezomib, cabazitaxel, dihydroartemisinin, immune checkpoint inhibitors, as well as other approaches such as siRNA, ferroptosis induction, etc. However, the filter function of the blood-brain barrier (BBB) reduces the amount of drugs needed to effectively target CNS tumors, making it one of the main reasons for poor drug efficacies in glioma. Thus, finding a suitable drug delivery platform that can cross the BBB, increase drug aggregation and retainment in tumoral areas and avoid accumulation in non-targeted areas remains an unsolved challenge in glioma drug therapy. An ideal drug delivery system for glioma therapy should have the following features: (1) prolonged drug life in circulation and effective penetration through the BBB; (2) adequate accumulation within the tumor (3) controlled-drug release modulation; (4) good clearance from the body without significant toxicity and immunogenicity, etc. In this regard, due to their unique structural features, nanocarriers can effectively span the BBB and target glioma cells through surface functionalization, providing a new and effective strategy for drug delivery. In this article, we discuss the characteristics and pathways of different nanocarriers for crossing the BBB and targeting glioma by listing different materials for drug delivery platforms, including lipid materials, polymers, nanocrystals, inorganic nanomaterials, etc.
Collapse
Affiliation(s)
- Yongyan Wu
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Yufeng Qian
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| | - Wei Peng
- Medical Research Center, Shaoxing People’s Hospital, Shaoxing, Zhejiang Province, People’s Republic of China
| | - Xuchen Qi
- Department of Neurosurgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Department of Neurosurgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, People’s Republic of China
| |
Collapse
|
9
|
Das D, Narayanan D, Ramachandran R, Gowd GS, Manohar M, Arumugam T, Panikar D, Nair SV, Koyakutty M. Intracranial nanomedicine-gel with deep brain-penetration for glioblastoma therapy. J Control Release 2023; 355:474-488. [PMID: 36739909 DOI: 10.1016/j.jconrel.2023.01.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Glioblastoma Multiforme (GBM) is one of the challenging tumors to treat as it recurs, almost 100%, even after surgery, radiation, and chemotherapy. In many cases, recurrence happens within 2-3cm depth of the resected tumor margin, indicating the inefficacy of current anti-glioma drugs to penetrate deep into the brain tissue. Here, we report an injectable nanoparticle-gel system, capable of providing deep brain penetration of drug up to 4 cm, releasing in a sustained manner up to >15 days. The system consists of ∼222 nm sized PLGA nanoparticles (NP-222) loaded with an anti-glioma drug, Carmustine (BCNU), and coated with a thick layer of polyethylene glycol (PEG). Upon release of the drug from PLGA core, it will interact with the outer PEG-layer leading to the formation of PEG-BCNU nanocomplexes of size ∼33 nm (BCNU-NC-33), which could penetrate >4 cm deep into the brain tissue compared to the free drug (< 5 mm). In vitro drug release showed sustained release of drug for 15 days by BCNU-NP gel, and enhanced cytotoxicity by BCNU-NC-33 drug-nanocomplexes in glioma cell lines. Ex vivo goat-brain phantom studies showed drug diffusion up to 4 cm in tissue and in vivo brain-diffusion studies showed almost complete coverage within the rat brain (∼1.2 cm), with ∼55% drug retained in the tissue by day-15, compared to only ∼5% for free BCNU. Rat orthotopic glioma studies showed excellent anti-tumor efficacy by BCNU-NP gel compared to free drug, indicating the potential of the gel-system for anti-glioma therapy. In effect, we demonstrate a unique method of sustained release of drug in the brain using larger PLGA nanoparticles acting as a reservoir while deep-penetration of the released drug was achieved by in situ formation of drug-nanocomplexes of size <50 nm which is less than the native pore size of brain tissue (> 100 nm). This method will have a major impact on a challenging field of brain drug delivery.
Collapse
Affiliation(s)
- Devika Das
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Dhanya Narayanan
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ranjith Ramachandran
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Genekehal Siddaramana Gowd
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Maneesh Manohar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Thennavan Arumugam
- Central Lab Animal Facility, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Dilip Panikar
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Shantikumar V Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manzoor Koyakutty
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| |
Collapse
|
10
|
Alkahtani S, S. AL-Johani N, Alarifi S, Afzal M. Cytotoxicity Mechanisms of Blue-Light-Activated Curcumin in T98G Cell Line: Inducing Apoptosis through ROS-Dependent Downregulation of MMP Pathways. Int J Mol Sci 2023; 24:ijms24043842. [PMID: 36835252 PMCID: PMC9961595 DOI: 10.3390/ijms24043842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
We examined the photodynamic activation of Curcumin under blue light in glioblastoma T98G cells. The therapeutic effect of Curcumin, in both the absence and presence of blue light, was measured by the MTT assay and apoptosis progression using flow cytometry. Fluorescence imaging was carried out to evaluate Curcumin uptake. Photodynamic activation of Curcumin (10 µM), in the presence of blue light, enhanced its cytotoxic effect, resulting in the activation of ROS-dependent apoptotic pathways in T98G cells. The gene expression studies showed the expression of matrixes metalloproteinase 2 (MMP2) and 9 (MMP9) decrease with Curcumin (10 µM) under blue light exposure, indicating possible proteolytic mechanisms. Moreover, the cytometric appearance displayed that the expressions of NF-κB and Nrf2 were found to be increased upon exposure to blue light, which revealed a significant induction of expression of nuclear factor as a result of blue-light-induced oxidative stress and cell death. These data further demonstrate that Curcumin exhibited a photodynamic effect via induction of ROS-mediated apoptosis in the presence of blue light. Our results suggest that the application of blue light enhances the therapeutic efficacy of Curcumin in glioblastoma because of the phototherapeutic effect.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S. AL-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
11
|
Elastin-like Polypeptide Hydrogels for Tunable, Sustained Local Chemotherapy in Malignant Glioma. Pharmaceutics 2022; 14:pharmaceutics14102072. [PMID: 36297507 PMCID: PMC9608313 DOI: 10.3390/pharmaceutics14102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor that carries a dismal prognosis, which is primarily attributed to tumor recurrence after surgery and resistance to chemotherapy. Since the tumor recurrence appears near the site of surgical resection, a concept of immediate and local application of chemotherapeutic after initial tumor removal could lead to improved treatment outcome. With the ultimate goal of developing a locally-applied, injectable drug delivery vehicle for GBM treatment, we created elastin-like polypeptide (ELP) hydrogels. The ELP hydrogels can be engineered to release anti-cancer drugs over an extended period. The purpose of this study was to evaluate the biomechanical properties of ELP hydrogels, to characterize their ability to release doxorubicin over time, and to investigate, in vitro, the anti-proliferative effect of Dox-laden ELP hydrogels on GBM. Here, we present microstructural differences, swelling ratio measurements, drug release characteristics, and in vitro effects of different ELP hydrogel compositions. We found that manipulation of the ELP–collagen ratio allows for tunable drug release, that the released drug is taken up by cells, and that incubation with a small volume of ELP-Dox hydrogel drastically reduced survival and proliferation of GBM cells in vitro. These results underscore the potential of ELP hydrogels as a local delivery strategy to improve prognosis for GBM patients after tumor resection.
Collapse
|
12
|
Mitusova K, Peltek OO, Karpov TE, Muslimov AR, Zyuzin MV, Timin AS. Overcoming the blood-brain barrier for the therapy of malignant brain tumor: current status and prospects of drug delivery approaches. J Nanobiotechnology 2022; 20:412. [PMID: 36109754 PMCID: PMC9479308 DOI: 10.1186/s12951-022-01610-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 01/06/2023] Open
Abstract
Besides the broad development of nanotechnological approaches for cancer diagnosis and therapy, currently, there is no significant progress in the treatment of different types of brain tumors. Therapeutic molecules crossing the blood-brain barrier (BBB) and reaching an appropriate targeting ability remain the key challenges. Many invasive and non-invasive methods, and various types of nanocarriers and their hybrids have been widely explored for brain tumor treatment. However, unfortunately, no crucial clinical translations were observed to date. In particular, chemotherapy and surgery remain the main methods for the therapy of brain tumors. Exploring the mechanisms of the BBB penetration in detail and investigating advanced drug delivery platforms are the key factors that could bring us closer to understanding the development of effective therapy against brain tumors. In this review, we discuss the most relevant aspects of the BBB penetration mechanisms, observing both invasive and non-invasive methods of drug delivery. We also review the recent progress in the development of functional drug delivery platforms, from viruses to cell-based vehicles, for brain tumor therapy. The destructive potential of chemotherapeutic drugs delivered to the brain tumor is also considered. This review then summarizes the existing challenges and future prospects in the use of drug delivery platforms for the treatment of brain tumors.
Collapse
Affiliation(s)
- Ksenia Mitusova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Timofey E Karpov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
| | - Albert R Muslimov
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation
- Sirius University of Science and Technology, Olympic Ave 1, Sirius, 354340, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation
| | - Alexander S Timin
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg, 195251, Russian Federation.
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg, 191002, Russian Federation.
| |
Collapse
|
13
|
Zhang Z, Conniot J, Amorim J, Jin Y, Prasad R, Yan X, Fan K, Conde J. Nucleic acid-based therapy for brain cancer: Challenges and strategies. J Control Release 2022; 350:80-92. [PMID: 35970297 DOI: 10.1016/j.jconrel.2022.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/26/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Nucleic acid-based therapy emerges as a powerful weapon for the treatment of tumors thanks to its direct, effective, and lasting therapeutic effect. Encouragingly, continuous nucleic acid-based drugs have been approved by the Food and Drug Administration (FDA) and the European Medicines Agency (EMA). Despite the tremendous progress, there are few nucleic acid-based drugs for brain tumors in clinic. The most challenging problems lie on the instability of nucleic acids, difficulty in traversing the biological barriers, and the off-target effect. Herein, nucleic acid-based therapy for brain tumor is summarized considering three aspects: (i) the therapeutic nucleic acids and their applications in clinical trials; (ii) the various administration routes for nucleic acid delivery and the respective advantages and drawbacks. (iii) the strategies and carriers for improving stability and targeting ability of nucleic acid drugs. This review provides thorough knowledge for the rational design of nucleic acid-based drugs against brain tumor.
Collapse
Affiliation(s)
- Zixia Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China
| | - João Conniot
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Joana Amorim
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Yiliang Jin
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rajendra Prasad
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China; Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100408, China; Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - João Conde
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
14
|
Jiménez-Morales JM, Hernández-Cuenca YE, Reyes-Abrahantes A, Ruiz-García H, Barajas-Olmos F, García-Ortiz H, Orozco L, Quiñones-Hinojosa A, Reyes-González J, Del Carmen Abrahantes-Pérez M. MicroRNA delivery systems in glioma therapy and perspectives: A systematic review. J Control Release 2022; 349:712-730. [PMID: 35905783 DOI: 10.1016/j.jconrel.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Gliomas are the deadliest of all primary brain tumors, and they constitute a serious global health problem. MicroRNAs (miRNAs) are gene expression regulators associated with glioma pathogenesis. Thus, miRNAs represent potential therapeutic agents for treating gliomas. However, miRNAs have not been established as part of the regular clinical armamentarium. This systemic review evaluates current molecular and pre-clinical studies with the aim of defining the most appealing supramolecular platform for administering therapeutic miRNA to patients with gliomas. An integrated analysis suggested that cationic lipid nanoparticles, functionalized with octa-arginine peptides, represent a potentially specific, practical, non-invasive intervention for treating gliomas. This supramolecular platform allows loading both hydrophilic (miRNA) and hydrophobic (anti-tumor drugs, like temozolomide) molecules. This systemic review is the first to describe miRNA delivery systems targeted to gliomas that integrate several types of molecules as active ingredients. Further experimental validation is warranted to confirm the practical value of miRNA delivery systems.
Collapse
Affiliation(s)
- José Marcos Jiménez-Morales
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Yanet Elisa Hernández-Cuenca
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Ander Reyes-Abrahantes
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Henry Ruiz-García
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Francisco Barajas-Olmos
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Humberto García-Ortiz
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Lorena Orozco
- Immunogenomics and Metabolic Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico
| | - Alfredo Quiñones-Hinojosa
- Department of Neurosurgery, Mayo Clinic, Jacksonville, United States; Brain Tumor Stem Cell Research Laboratory, Mayo Clinic, Jacksonville, United States
| | - Jesús Reyes-González
- Precision Translational Oncology Laboratory, National Institute of Genomic Medicine (INMEGEN), 14610 Mexico City, Mexico.
| | | |
Collapse
|
15
|
El Kheir W, Marcos B, Virgilio N, Paquette B, Faucheux N, Lauzon MA. Drug Delivery Systems in the Development of Novel Strategies for Glioblastoma Treatment. Pharmaceutics 2022; 14:1189. [PMID: 35745762 PMCID: PMC9227363 DOI: 10.3390/pharmaceutics14061189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a grade IV glioma considered the most fatal cancer of the central nervous system (CNS), with less than a 5% survival rate after five years. The tumor heterogeneity, the high infiltrative behavior of its cells, and the blood-brain barrier (BBB) that limits the access of therapeutic drugs to the brain are the main reasons hampering the current standard treatment efficiency. Following the tumor resection, the infiltrative remaining GBM cells, which are resistant to chemotherapy and radiotherapy, can further invade the surrounding brain parenchyma. Consequently, the development of new strategies to treat parenchyma-infiltrating GBM cells, such as vaccines, nanotherapies, and tumor cells traps including drug delivery systems, is required. For example, the chemoattractant CXCL12, by binding to its CXCR4 receptor, activates signaling pathways that play a critical role in tumor progression and invasion, making it an interesting therapeutic target to properly control the direction of GBM cell migration for treatment proposes. Moreover, the interstitial fluid flow (IFF) is also implicated in increasing the GBM cell migration through the activation of the CXCL12-CXCR4 signaling pathway. However, due to its complex and variable nature, the influence of the IFF on the efficiency of drug delivery systems is not well understood yet. Therefore, this review discusses novel drug delivery strategies to overcome the GBM treatment limitations, focusing on chemokines such as CXCL12 as an innovative approach to reverse the migration of infiltrated GBM. Furthermore, recent developments regarding in vitro 3D culture systems aiming to mimic the dynamic peritumoral environment for the optimization of new drug delivery technologies are highlighted.
Collapse
Affiliation(s)
- Wiam El Kheir
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Bernard Marcos
- Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Nick Virgilio
- Department of Chemical Engineering, Polytechnique Montréal, 2500 Chemin de Polytechnique, Montréal, QC H3T 1J4, Canada;
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Clinical Research Center of the Centre Hospitalier Universitaire de l’Université de Sherbrooke, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Marc-Antoine Lauzon
- Advanced Dynamic Cell Culture Systems Laboratory, Department of Chemical Engineering and Biotechnology Engineering, Faculty of Engineering, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Research Center on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
| |
Collapse
|
16
|
Waqar M, Trifiletti DM, McBain C, O'Connor J, Coope DJ, Akkari L, Quinones-Hinojosa A, Borst GR. Early Therapeutic Interventions for Newly Diagnosed Glioblastoma: Rationale and Review of the Literature. Curr Oncol Rep 2022; 24:311-324. [PMID: 35119629 PMCID: PMC8885508 DOI: 10.1007/s11912-021-01157-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Glioblastoma is the commonest primary brain cancer in adults whose outcomes are amongst the worst of any cancer. The current treatment pathway comprises surgery and postoperative chemoradiotherapy though unresectable diffusely infiltrative tumour cells remain untreated for several weeks post-diagnosis. Intratumoural heterogeneity combined with increased hypoxia in the postoperative tumour microenvironment potentially decreases the efficacy of adjuvant interventions and fails to prevent early postoperative regrowth, called rapid early progression (REP). In this review, we discuss the clinical implications and biological foundations of post-surgery REP. Subsequently, clinical interventions potentially targeting this phenomenon are reviewed systematically. RECENT FINDINGS Early interventions include early systemic chemotherapy, neoadjuvant immunotherapy, local therapies delivered during surgery (including Gliadel wafers, nanoparticles and stem cell therapy) and several radiotherapy techniques. We critically appraise and compare these strategies in terms of their efficacy, toxicity, challenges and potential to prolong survival. Finally, we discuss the most promising strategies that could benefit future glioblastoma patients. There is biological rationale to suggest that early interventions could improve the outcome of glioblastoma patients and they should be investigated in future trials.
Collapse
Affiliation(s)
- Mueez Waqar
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Catherine McBain
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - James O'Connor
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK
| | - David J Coope
- Department of Academic Neurological Surgery, Geoffrey Jefferson Brain Research Centre, Salford Royal Foundation Trust, Manchester, UK
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Oncode Institute, Amsterdam, The Netherlands
| | - Alfredo Quinones-Hinojosa
- Department of Radiation Oncology, Mayo Clinic Florida, 4500 San Pablo Road S, Mayo 1N, Jacksonville, FL, 32224, USA
- Department of Neurological Surgery, Mayo Clinic, Jacksonville, FL, USA
| | - Gerben R Borst
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health and Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Department of Radiotherapy Related Research, The Christie NHS Foundation Trust, Dept 58, Floor 2a, Room 21-2-13, Wilmslow Road, Manchester, M20 4BX, UK.
| |
Collapse
|
17
|
Medulloblastoma: Immune microenvironment and targeted nano-therapy. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Dluska E, Markowska‐Radomska A, Metera A, Rudniak L, Kosicki K. Mass transfer of anti‐cancer drug delivery to brain tumors by a multiple emulsion‐based implant. AIChE J 2021. [DOI: 10.1002/aic.17501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Ewa Dluska
- Faculty of Chemical and Process Engineering Warsaw University of Technology Warsaw Poland
| | | | - Agata Metera
- Faculty of Chemical and Process Engineering Warsaw University of Technology Warsaw Poland
| | - Leszek Rudniak
- Faculty of Chemical and Process Engineering Warsaw University of Technology Warsaw Poland
| | - Konrad Kosicki
- Faculty of Biology, Institute of Genetics & Biotechnology University of Warsaw Warsaw Poland
| |
Collapse
|
19
|
Fonseca LM, Bona NP, Crizel RL, Pedra NS, Stefanello FM, Lim L, Carreño NLV, Dias ARG, Zavareze EDR. Electrospun Starch Nanofibers as a Delivery Carrier for Carvacrol as Anti‐Glioma Agent. STARCH-STARKE 2021. [DOI: 10.1002/star.202100115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Laura Martins Fonseca
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
- Department of Food Science University of Guelph Guelph Ontario N1G2W1 Canada
| | - Natalia Pontes Bona
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Rosane Lopes Crizel
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Nathalia Stark Pedra
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Francieli Moro Stefanello
- Center for Chemical, Pharmaceutical and Food Sciences Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Loong‐Tak Lim
- Department of Food Science University of Guelph Guelph Ontario N1G2W1 Canada
| | | | - Alvaro Renato Guerra Dias
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| | - Elessandra da Rosa Zavareze
- Department of Agroindustrial Science and Technology Federal University of Pelotas Pelotas Rio Grande do Sul 96010‐900 Brazil
| |
Collapse
|
20
|
Gao Y, Wang R, Zhao L, Liu A. Natural polymeric nanocarriers in malignant glioma drug delivery and targeting. J Drug Target 2021; 29:960-973. [PMID: 33745392 DOI: 10.1080/1061186x.2021.1904250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Among all central nervous diseases, malignant glioma is a crucial part that deserves more attention since high fatality and disability rate. There are several therapeutic strategies applied to the treatment of malignant glioma, especially certain chemotherapy-related treatments. However, the existence of the blood-brain barrier (BBB) seriously hinders the strategy's progress, so how to escape from the barriers is a fascinating question. Herein, we comprehensively discussed the details of malignant glioma and the BBB's functional morphology and summarized several routes bypassing the BBB. Additionally, since possessing excellent properties for drug delivery, we provided an insight into various promising natural polymeric materials and highlighted their applications in the treatment of malignant glioma.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rui Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Lixia Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
21
|
Wang L, Liu C, Qiao F, Li M, Xin H, Chen N, Wu Y, Liu J. Analysis of the cytotoxic effects, cellular uptake and cellular distribution of paclitaxel-loaded nanoparticles in glioblastoma cells in vitro. Exp Ther Med 2021; 21:292. [PMID: 33717235 PMCID: PMC7885080 DOI: 10.3892/etm.2021.9723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is the most common and aggressive type of brain tumor. Although treatments for glioblastoma have been improved recently, patients still suffer from local recurrence in addition to poor prognosis. Previous studies have indicated that the efficacy of chemotherapeutic or bioactive agents is severely compromised by the blood-brain barrier and the inherent drug resistance of glioblastoma. The present study developed a delivery system to improve the efficiency of delivering therapeutic agents into glioblastoma cells. The anticancer drug paclitaxel (PTX) was packed into nanoparticles that were composed of amphiphilic poly (γ-glutamic-acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolaminecopolymer conjugated with targeting moiety transferrin (Tf). The Tf nanoparticles (Tf-NPs) may enter glioblastoma cells via transferrin receptor-mediated endocytosis. MTT assay and flow cytometry were used to explore the cytotoxic effects, cellular uptake and cellular distribution of paclitaxel-loaded nanoparticles. The results indicated that both PTX and PTX-Tf-NPs inhibited the viability of rat glioblastoma C6 cells in a dose-dependent manner, but the PTX-Tf-NPs exhibited a greater inhibitory effect compared with PTX, even at higher concentrations (0.4, 2 and 10 µg/ml). However, both PTX and PTX-Tf-NPs exhibited a reduced inhibitory effect on the viability of mouse hippocampal neuronal HT22 cells compared with that on C6 cells. Additionally, in contrast to PTX alone, PTX-Tf-NPs treatment of C6 cells at lower concentrations (0.0032, 0.0160 and 0.0800 µg/ml) induced increased G2/M arrest, although this difference did not occur at a higher drug concentration (0.4 µg/ml). It was observed that FITC-labeled PTX-Tf-NPs were endocytosed by C6 cells within 4 h. Furthermore, FITC-labeled PTX-Tf-NPs or Tf-NPs co-localized with a lysosomal tracker, Lysotracker Red DND-99. These results of the present study indicated that Tf-NPs enhanced the cytotoxicity of PTX in glioblastoma C6 cells, suggesting that PTX-Tf-NPs should be further explored in animal models of glioblastoma.
Collapse
Affiliation(s)
- Lin Wang
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Chunhui Liu
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feng Qiao
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Mingjun Li
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Hua Xin
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Naifeng Chen
- Department of Pathology and Physiology, School of Basic Medical Sciences of Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yan Wu
- Division of Nanomedicine and Nanobiology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Junxing Liu
- Department of Pathology and Physiology, School of Basic Medical Sciences of Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
22
|
Alghamdi M, Chierchini F, Eigel D, Taplan C, Miles T, Pette D, Welzel PB, Werner C, Wang W, Neto C, Gumbleton M, Newland B. Poly(ethylene glycol) based nanotubes for tuneable drug delivery to glioblastoma multiforme. NANOSCALE ADVANCES 2020; 2:4498-4509. [PMID: 36132909 PMCID: PMC9418774 DOI: 10.1039/d0na00471e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/20/2020] [Indexed: 06/16/2023]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive type of malignant brain tumour, which is associated with a poor two-year survival rate and a high rate of fatal recurrence near the original tumour. Focal/local drug delivery devices hold promise for improving therapeutic outcomes for GBM by increasing drug concentrations locally at the tumour site, or by facilitating the use of potent anti-cancer drugs that are poorly permeable across the blood brain barrier (BBB). For inoperable tumours, stereotactic delivery to the tumour necessitates the development of nanoscale/microscale injectable drug delivery devices. Herein we assess the ability of a novel class of polymer nanotube (based on poly(ethylene glycol) (PEG)) to load doxorubicin (a mainstay breast cancer therapeutic with poor BBB permeability) and release it slowly. The drug loading properties of the PEG nanotubes could be tuned by varying the degree of carboxylic acid functionalisation and hence the capacity of the nanotubes to electrostatically bind and load doxorubicin. 70% of the drug was released over the first seven days followed by sustained drug release for the remaining two weeks tested. Unloaded PEG nanotubes showed no toxicity to any of the cell types analysed, whereas doxorubicin loaded nanotubes decreased GBM cell viability (C6, U-87 and U-251) in a dose dependent manner in 2D in vitro culture. Finally, doxorubicin loaded PEG nanotubes significantly reduced the viability of in vitro 3D GBM models whilst unloaded nanotubes showed no cytotoxicity. Taken together, these findings show that polymer nanotubes could be used to deliver alternative anti-cancer drugs for local therapeutic strategies against brain cancers.
Collapse
Affiliation(s)
- Majed Alghamdi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
- School of Pharmacy, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Filippo Chierchini
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Dimitri Eigel
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Christian Taplan
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Thomas Miles
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Dagmar Pette
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Petra B Welzel
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Carsten Werner
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| | - Wenxin Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin Ireland
| | - Catia Neto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Mark Gumbleton
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University King Edward VII Avenue Cardiff CF10 3NB UK
- Leibniz-Institut für Polymerforschung Dresden, Max Bergmann Center of Biomaterials Dresden Hohe Straße 6 D-01069 Dresden Germany
| |
Collapse
|
23
|
Cha GD, Kang T, Baik S, Kim D, Choi SH, Hyeon T, Kim DH. Advances in drug delivery technology for the treatment of glioblastoma multiforme. J Control Release 2020; 328:350-367. [PMID: 32896613 DOI: 10.1016/j.jconrel.2020.09.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
Glioblastoma multiforme (GBM) is a particularly aggressive and malignant type of brain tumor, notorious for its high recurrence rate and low survival rate. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. These obstacles originate from a variety of factors such as genetics, anatomy, and cytology, all of which collectively hinder the treatment of GBM. Recent advances in materials and device engineering have presented new perspectives with regard to unconventional drug administration methods for GBM treatment. Such novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In this review, we first recapitulate the first-line therapy and clinical challenges in the current treatment of GBM. Afterwards, we introduce the latest technological advances in drug delivery strategies to improve the efficiency for GBM treatment, mainly focusing on materials and devices. We describe such efforts by classifying them into two categories, systemic and local drug delivery. Finally, we discuss unmet challenges and prospects for the clinical translation of these drug delivery technologies.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dokyoon Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Bionano Engineering and Bionanotechnology, Hanyang University, Ansan 15588, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
24
|
Asil SM, Ahlawat J, Barroso GG, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci 2020; 8:4109-4128. [PMID: 32638706 PMCID: PMC7439575 DOI: 10.1039/d0bm00809e] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
With an aging population that has been increasing in recent years, the need for the development of therapeutic approaches for treatment of neurodegenerative disorders (ND) has increased. ND, which are characterized by the progressive loss of the structure or function of neurons, are often associated with neuronal death. In spite of screening numerous drugs, currently there is no specific treatment that can cure these diseases or slow down their progression. Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia, Huntington's disease, and prion diseases belong to ND which affect enormous numbers of people globally. There are some main possible reasons for failure in the treatment of neurodegenerative diseases such as limitations introduced by the Blood-Brain Barrier (BBB), the Blood-Cerebrospinal Fluid Barrier (BCFB) and P-glycoproteins. Current advances in nanotechnology present opportunities to overcome the mentioned limitations by using nanotechnology and designing nanomaterials improving the delivery of active drug candidates. Some of the basic and developing strategies to overcome drug delivery impediments are the local delivery of drugs, receptor-mediated transcytosis, physicochemical disruption of the BBB, cell-penetrating peptides and magnetic disruption. Recently, the application of nanoparticles has been developed to improve the efficiency of drug delivery. Nanoengineered particles as nanodrugs possess the capacity to cross the BBB and also show decreased invasiveness. Examples include inorganic, magnetic, polymeric and carbonic nanoparticles that have been developed to improve drug delivery efficiency. Despite numerous papers published in this filed, there are some unsolved issues that need to be addressed for successful treatment of neurodegenerative diseases. These are discussed herein.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- The Department of Environmental Science & Engineering, The University of Texas at El Paso, USA
| | - Jyoti Ahlawat
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| | | | - Mahesh Narayan
- Department of Chemistry & Biochemistry, The University of Texas at El Paso, USA
| |
Collapse
|
25
|
Bhargav AG, Mondal SK, Garcia CA, Green JJ, Quiñones‐Hinojosa A. Nanomedicine Revisited: Next Generation Therapies for Brain Cancer. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Adip G. Bhargav
- Mayo Clinic College of Medicine and Science Mayo Clinic 200 First Street SW Rochester MN 55905 USA
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Sujan K. Mondal
- Department of Pathology University of Pittsburgh School of Medicine 200 Lothrop Street Pittsburgh PA 15213 USA
| | - Cesar A. Garcia
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| | - Jordan J. Green
- Departments of Biomedical Engineering, Neurosurgery, Oncology, Ophthalmology, Materials Science and Engineering, and Chemical and Biomolecular Engineering, Translational Tissue Engineering Center, Bloomberg‐Kimmel Institute for Cancer Immunotherapy, Institute for Nanobiotechnology Johns Hopkins University School of Medicine 400 N. Broadway, Smith 5017 Baltimore MD 21231 USA
| | - Alfredo Quiñones‐Hinojosa
- Department of Neurologic Surgery Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
- Departments of Otolaryngology‐Head and Neck Surgery/Audiology Neuroscience, Cancer Biology, and Anatomy Mayo Clinic 4500 San Pablo Rd. Jacksonville FL 32224 USA
| |
Collapse
|
26
|
Liu J, Tagami T, Ozeki T. Fabrication of 3D-Printed Fish-Gelatin-Based Polymer Hydrogel Patches for Local Delivery of PEGylated Liposomal Doxorubicin. Mar Drugs 2020; 18:md18060325. [PMID: 32575787 PMCID: PMC7344981 DOI: 10.3390/md18060325] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
3D printing technology has been applied to various fields and its medical applications are expanding. Here, we fabricated implantable 3D bio-printed hydrogel patches containing a nanomedicine as a future tailored cancer treatment. The patches were prepared using a semi-solid extrusion-type 3D bioprinter, a hydrogel-based printer ink, and UV-LED exposure. We focused on the composition of the printer ink and semi-synthesized fish gelatin methacryloyl (F-GelMA), derived from cold fish gelatin, as the main component. The low viscosity of F-GelMA due to its low melting point was remarkably improved by the addition of carboxymethyl cellulose sodium (CMC), a pharmaceutical excipient. PEGylated liposomal doxorubicin (DOX), as a model nanomedicine, was incorporated into the hydrogel and liposome stability after photo-polymerization was evaluated. The addition of CMC inhibited particle size increase. Three types of 3D-designed patches (cylinder, torus, gridlines) were produced using a 3D bioprinter. Drug release was dependent on the shape of the 3D-printed patches and UV-LED exposure time. The current study provides useful information for the preparation of 3D printed nanomedicine-based objects.
Collapse
|
27
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. J Control Release 2020; 319:311-321. [DOI: 10.1016/j.jconrel.2020.01.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 01/01/2023]
|
29
|
Mazza M, Ahmad H, Hadjidemetriou M, Agliardi G, Pathmanaban ON, King AT, Bigger BW, Vranic S, Kostarelos K. Hampering brain tumor proliferation and migration using peptide nanofiber:si PLK1/ MMP2 complexes. Nanomedicine (Lond) 2019; 14:3127-3142. [PMID: 31855120 DOI: 10.2217/nnm-2019-0298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a nonviral tool for the delivery of siRNA to brain tumor cells using peptide nanofibers (PNFs). Materials & methods: Uptake of PNFs was evaluated by confocal microscopy and flow cytometry. Gene silencing was determined by RT-qPCR and cell invasion assay. Results: PNFs enter phagocytic (BV-2) and nonphagocytic (U-87 MG) cells via endocytosis and passive translocation. siPLK1 delivered using PNFs reduced the expression of polo-like kinase 1 mRNA and induced cell death in a panel of immortalized and glioblastoma-derived stem cells. Moreover, targeting MMP2 using PNF:siMMP2 reduced the invasion capacity of U-87 MG cells. We show that stereotactic intra-tumoral administration of PNF:siPLK1 significantly extends the survival of tumor bearing mice comparing with the untreated tumor bearing animals. Conclusion: Our results suggest that this nanomedicine-based RNA interference approach deserves further investigation as a potential brain tumor therapeutic tool.
Collapse
Affiliation(s)
- Mariarosa Mazza
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Hassan Ahmad
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Giulia Agliardi
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Omar N Pathmanaban
- Department of Neurosurgery, Salford Royal Hospital, Manchester Academic Health Science Centre, University of Manchester, Manchester, M6 8HD, UK
| | - Andrew T King
- Department of Neurosurgery, Salford Royal Hospital, Manchester Academic Health Science Centre, University of Manchester, Manchester, M6 8HD, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies Group, School of Biological Sciences, Faculty of Biology Medicine & Health, Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, Manchester, M13 9PT, UK
| | - Sandra Vranic
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- National Graphene Institute, The University of Manchester, Booth Street East, Manchester, M13 9PL, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
- National Graphene Institute, The University of Manchester, Booth Street East, Manchester, M13 9PL, UK
| |
Collapse
|
30
|
Parikh SD, Dave S, Huang L, Wang W, Mukhopadhyay SM, Mayes DA. Multi-walled carbon nanotube carpets as scaffolds for U87MG glioblastoma multiforme cell growth. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110345. [PMID: 31924041 DOI: 10.1016/j.msec.2019.110345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Carbon Nanotubes (CNTs) are known for effective adhesion, growth, and differentiation of bone, muscle, and cardiac cells. CNTs can provide excellent mechanical and electrical properties for cell scaffolding; however, loose CNTs can cause in-vivo toxicity. To suppress this risk, our team has developed biomimetic scaffolds with multiscale hierarchy where carpet-like CNT arrays are covalently bonded to larger biocompatible substrates. In this study, we investigated the interaction between glioblastoma multiforme (GBM) cells (U87MG) and our unique hierarchical CNT-coated scaffolds upon brain tumor cell proliferation. U87MG cells grown on un-modified carbon scaffolds grew in a bi-phasic fashion. Initially, the scaffolds prevented GBM cell growth; however, prolonged growth on such scaffolds significantly increased GBM cell proliferation. We further defined the importance of the hydrophobicity/hydrophilicity of the CNT-coated scaffolds in this cellular response by utilizing sodium-hypochlorite based bleach treatment prior to cellular exposure. This surface modification increased the hydrophilicity of the CNT-coated scaffolds and ameliorated the biphasic response of U87MG cells allowing for a normal growth curve. Findings highlight the importance of surface modification and wettability of the CNT-coated scaffolds for cell growth applications. The focus for this study was to determine whether scaffold surface features could modulate tumor-scaffold interactions, and thus to improve our understanding of and optimize successful development of future scaffold-based chemotherapy applications. Overall, it appears that the wettability of carbon scaffolds coated with CNTs is an important regulator of U87MG cellular growth. These findings will be important to consider when developing a potential chemotherapy-attached implant to be used post-surgical resection for GBM patient treatment.
Collapse
Affiliation(s)
- Soham D Parikh
- Center for Nanoscale Multifunctional Materials, Department of Mechanical & Materials Engineering, Wright State University; 3640 Col. Glen Hwy, Dayton, OH, 45435, USA; Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Soham Dave
- Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Luping Huang
- Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Wenhu Wang
- Center for Nanoscale Multifunctional Materials, Department of Mechanical & Materials Engineering, Wright State University; 3640 Col. Glen Hwy, Dayton, OH, 45435, USA
| | - Sharmila M Mukhopadhyay
- Center for Nanoscale Multifunctional Materials, Department of Mechanical & Materials Engineering, Wright State University; 3640 Col. Glen Hwy, Dayton, OH, 45435, USA.
| | - Debra A Mayes
- Department of Neuroscience, Cell Biology and Physiology, Translational Neuroscience Institute, Wright State University, Boonshoft School of Medicine, College of Science and Math, 3640 Col. Glen Hwy, Dayton, OH, 45435, USA.
| |
Collapse
|
31
|
Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1586. [PMID: 31602823 DOI: 10.1002/wnan.1586] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
Abstract
Respiratory illnesses are prevalent around the world, and inhalation-based therapies provide an attractive, noninvasive means of directly delivering therapeutic agents to their site of action to improve treatment efficacy and limit adverse systemic side effects. Recent trends in medicine and nanoscience have prompted the development of inhalable nanomedicines to further enhance effectiveness, patient compliance, and quality of life for people suffering from lung cancer, chronic pulmonary diseases, and tuberculosis. Herein, we discuss recent advancements in the development of inhalable nanomaterial-based drug delivery systems and analyze several representative systems to illustrate their key design principles that can translate to improved therapeutic efficacy for prevalent respiratory diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Maria E Grimmett
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Christopher J Domalewski
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
32
|
Xie J, Shen Z, Anraku Y, Kataoka K, Chen X. Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials 2019; 224:119491. [PMID: 31546096 DOI: 10.1016/j.biomaterials.2019.119491] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/31/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Increasing attention has been paid to the diseases of central nervous system (CNS). The penetration efficiency of most CNS drugs into the brain parenchyma is rather limited due to the existence of blood-brain barrier (BBB). Thus, BBB crossing for drug delivery to CNS remains a significant challenge in the development of neurological therapeutics. Because of the advantageous properties (e.g., relatively high drug loading content, controllable drug release, excellent passive and active targeting, good stability, biodegradability, biocompatibility, and low toxicity), nanomaterials with BBB-crossability have been widely developed for the treatment of CNS diseases. This review summarizes the current understanding of the physiological structure of BBB, and provides various nanomaterial-based BBB-crossing strategies for brain delivery of theranostic agents, including intranasal delivery, temporary disruption of BBB, local delivery, cell penetrating peptide (CPP) mediated BBB-crossing, receptor mediated BBB-crossing, shuttle peptide mediated BBB-crossing, and cells mediated BBB-crossing. Clinicians, biologists, material scientists and chemists are expected to be interested in this review.
Collapse
Affiliation(s)
- Jinbing Xie
- Jiangsu Key Laboratory of Molecular Imaging and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, 210009, China; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Yasutaka Anraku
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
33
|
Zanganeh S, Georgala P, Corbo C, Arabi L, Ho JQ, Javdani N, Sepand MR, Cruickshank K, Campesato LF, Weng C, Hemayat S, Andreou C, Alvim R, Hutter G, Rafat M, Mahmoudi M. Immunoengineering in glioblastoma imaging and therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1575. [DOI: 10.1002/wnan.1575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Steven Zanganeh
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Claudia Corbo
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Leila Arabi
- Department of Pharmaceutical Nanotechnology School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| | - Jim Q. Ho
- Albert Einstein College of Medicine Bronx New York
| | - Najme Javdani
- Institute De Recherche Clinique De Montreal Montreal Quebec Canada
| | | | | | | | - Chien‐Huan Weng
- Sloan Kettering Institute for Cancer Research New York New York
| | | | - Chrysafis Andreou
- Department of Electrical and Computer Engineering University of Cyprus Nicosia Cyprus
| | - Ricardo Alvim
- Sloan Kettering Institute for Cancer Research New York New York
| | - Gregor Hutter
- School of Medicine and Surgery, Nanomedicine Center NANOMIB University of Milano‐Bicocca Milan Italy
| | - Marjan Rafat
- Department of Chemical and Biomolecular Engineering Vanderbilt University Nashville Tennessee
- Department of Biomedical Engineering Vanderbilt University Nashville Tennessee
- Department of Radiation Oncology Vanderbilt University Medical Center Nashville Tennessee
| | - Morteza Mahmoudi
- Precision Health Program Michigan State University East Lansing Michigan
| |
Collapse
|
34
|
Chakroun RW, Wang F, Lin R, Wang Y, Su H, Pompa D, Cui H. Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. ACS NANO 2019; 13:7780-7790. [PMID: 31117370 DOI: 10.1021/acsnano.9b01689] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One key design feature in the development of any local drug delivery system is the controlled release of therapeutic agents over a certain period of time. In this context, we report the characteristic feature of a supramolecular filament hydrogel system that enables a linear and sustainable drug release over the period of several months. Through covalent linkage with a short peptide sequence, we are able to convert an anticancer drug, paclitaxel (PTX), to a class of prodrug hydrogelators with varying critical gelation concentrations. These self-assembling PTX prodrugs associate into filamentous nanostructures in aqueous conditions and consequently percolate into a supramolecular filament network in the presence of appropriate counterions. The intriguing linear drug release profile is rooted in the supramolecular nature of the self-assembling filaments which maintain a constant monomer concentration at the gelation conditions. We found that molecular engineering of the prodrug design, such as varying the number of oppositely charged amino acids or through the incorporation of hydrophobic segments, allows for the fine-tuning of the PTX linear release rate. In cell studies, these PTX prodrugs can exert effective cytotoxicity against glioblastoma cell lines and also primary brain cancer cells derived from patients and show enhanced tumor penetration in a cancer spheroid model. We believe this drug-bearing hydrogel platform offers an exciting opportunity for the local treatment of human diseases.
Collapse
Affiliation(s)
- Rami W Chakroun
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Yin Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Danielle Pompa
- Department of Biomedical Engineering , University of Utah , 201 Presidents Circle , Salt Lake City , Utah 84112 , United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
- Center for Nanomedicine, The Wilmer Eye Institute , Johns Hopkins University School of Medicine , 400 North Broadway , Baltimore , Maryland 21231 , United States
| |
Collapse
|
35
|
Zhao M, Bozzato E, Joudiou N, Ghiassinejad S, Danhier F, Gallez B, Préat V. Codelivery of paclitaxel and temozolomide through a photopolymerizable hydrogel prevents glioblastoma recurrence after surgical resection. J Control Release 2019; 309:72-81. [PMID: 31306678 DOI: 10.1016/j.jconrel.2019.07.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/02/2019] [Accepted: 07/11/2019] [Indexed: 01/03/2023]
Abstract
A photopolymerizable hydrogel-based local drug delivery system was developed for the postsurgical treatment of glioblastoma (GBM). We aimed for a local drug combination therapy with paclitaxel (PTX) and temozolomide (TMZ) within a hydrogel to synergistically inhibit tumor growth. The in vitro cytotoxicity of TMZ was assessed in U87MG cells. We demonstrated the synergistic effect of PTX and TMZ on U87MG cells by clonogenic assay. Treatment with TMZ did not induce O6-methylguanine-DNA methyltransferase related drug resistance in tumor-bearing mice. PTX had sustained release for at least 1 month in vivo in healthy mice brains. The drug combination was tolerable and suppressed tumor growth more efficiently than the single drugs in the U87MG orthotopic tumor model. The PTX and TMZ codelivery hydrogel showed superior antitumor effects and can be considered a promising approach for the postsurgical treatment of GBM.
Collapse
Affiliation(s)
- Mengnan Zhao
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, 1200 Brussels, Belgium
| | - Elia Bozzato
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, 1200 Brussels, Belgium
| | - Nicolas Joudiou
- Université catholique de Louvain, Louvain Drug Research Institute, Nuclear and Electron Spin Technologies Platform (NEST), Avenue Mounier, 73, B1.73.08, 1200 Brussels, Belgium
| | - Sina Ghiassinejad
- Université catholique de Louvain, Institute of Condensed Matter and Nanoscience (IMCN), Bio and Soft Matter, Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium
| | - Fabienne Danhier
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, 1200 Brussels, Belgium
| | - Bernard Gallez
- Université catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Research Group, Avenue Mounier, 73, B1.73.08, 1200 Brussels, Belgium
| | - Véronique Préat
- Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Avenue Mounier, 73, B1.73.12, 1200 Brussels, Belgium.
| |
Collapse
|
36
|
Astell AJ, Bouranis N, Hoey J, Lindauer A, Mihailidis A, Nugent C, Robillard JM. Technology and Dementia: The Future is Now. Dement Geriatr Cogn Disord 2019; 47:131-139. [PMID: 31247624 PMCID: PMC6643496 DOI: 10.1159/000497800] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Technology has multiple potential applications to dementia from diagnosis and assessment to care delivery and supporting ageing in place. OBJECTIVES To summarise key areas of technology development in dementia and identify future directions and implications. METHOD Members of the US Alzheimer's Association Technology Professional Interest Area involved in delivering the annual pre-conference summarised existing knowledge on current and future technology developments in dementia. RESULTS The main domains of technology development are as follows: (i) diagnosis, assessment and monitoring, (ii) maintenance of functioning, (iii) leisure and activity, (iv) caregiving and management. CONCLUSIONS The pace of technology development requires urgent policy, funding and practice change, away from a narrow medical approach, to a holistic model that facilitates future risk reduction and prevention strategies, enables earlier detection and supports implementation at scale for a meaningful and fulfilling life with dementia.
Collapse
Affiliation(s)
- Arlene J. Astell
- Department of Occupational Sciences and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada,Toronto Rehabilitation Institute, Toronto, Toronto, Ontario, Canada,School of Psychology and Clinical Language Sciences, University of Reading, Reading, United Kingdom,*Arlene J. Astell, School of Psychology & Clinical Language Sciences, University of Reading, Reading (UK), E-Mail
| | - Nicole Bouranis
- Layton Aging and Alzheimer's Disease Center, Oregon Health and Science University, Portland, Oregon, USA
| | - Jesse Hoey
- David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
| | - Allison Lindauer
- Oregon Roybal Center for Aging and Technology (ORCATECH), Oregon Health and Science University, Portland, Oregon, USA
| | - Alex Mihailidis
- Department of Occupational Sciences and Occupational Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Chris Nugent
- School of Computing, Ulster University, Northern Ireland, United Kingdom
| | - Julie M. Robillard
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
37
|
Thorat ND, Townely H, Brennan G, Parchur AK, Silien C, Bauer J, Tofail SA. Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics. ACS Biomater Sci Eng 2019; 5:2669-2687. [DOI: 10.1021/acsbiomaterials.8b01173] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nanasaheb D. Thorat
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Helen Townely
- Nuffield Department of Obstetrics and Gynaecology, Medical Science Division, John Radcliffe Hospital University of Oxford, Oxford OX3 9DU United Kingdom
| | - Grace Brennan
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Abdul K. Parchur
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, Wisconsin 53226, United States
| | - Christophe Silien
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Syed A.M. Tofail
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
38
|
Clavreul A, Pourbaghi-Masouleh M, Roger E, Menei P. Nanocarriers and nonviral methods for delivering antiangiogenic factors for glioblastoma therapy: the story so far. Int J Nanomedicine 2019; 14:2497-2513. [PMID: 31040671 PMCID: PMC6461002 DOI: 10.2147/ijn.s194858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels, is an essential component of glioblastoma (GB) progression. The development of angiogenesis inhibitor therapy, including treatments targeting vascular endothelial growth factor (VEGF) in particular, raised new hopes for the treatment of GB, but no Phase III clinical trial to date has reported survival benefits relative to standard treatment. There are several possible reasons for this limited efficacy, including VEGF-independent angiogenesis, induction of tumor invasion, and inefficient antiangiogenic factor delivery to the tumor. Efforts have been made to overcome these limitations by identifying new angiogenesis inhibitors that target angiogenesis through different mechanisms of action without inducing tumor invasion, and through the development of viral and nonviral delivery methods to improve antiangiogenic activity. Herein, we describe the nonviral methods, including convection-enhanced delivery devices, implantable polymer devices, nanocarriers, and cellular vehicles, to deliver antiangiogenic factors. We focus on those evaluated in intracranial (orthotopic) animal models of GB, the most relevant models of this disease, as they reproduce the clinical scenario of tumor progression and therapy response encountered in GB patients.
Collapse
Affiliation(s)
- Anne Clavreul
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| | - Milad Pourbaghi-Masouleh
- CRCINA, INSERM, University of Nantes, University of Angers, Angers, France, .,Division of Drug Delivery and Tissue Engineering, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Emilie Roger
- MINT, INSERM 1066, CNRS 6021, University of Angers, Angers, France
| | - Philippe Menei
- Department of Neurosurgery, CHU, Angers, France, .,CRCINA, INSERM, University of Nantes, University of Angers, Angers, France,
| |
Collapse
|
39
|
Arami H, Patel CB, Madsen SJ, Dickinson PJ, Davis RM, Zeng Y, Sturges BK, Woolard KD, Habte FG, Akin D, Sinclair R, Gambhir SS. Nanomedicine for Spontaneous Brain Tumors: A Companion Clinical Trial. ACS NANO 2019; 13:2858-2869. [PMID: 30714717 PMCID: PMC6584029 DOI: 10.1021/acsnano.8b04406] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Nanoparticles' enhanced permeation and retention (EPR) variations due to tumor heterogeneity in naturally occurring brain tumors are commonly neglected in preclinical nanomedicine studies. Recent pathological studies have shown striking similarities between brain tumors in humans and dogs, indicating that canine brain tumors may be a valuable model to evaluate nanoparticles' EPR in this context. We recruited canine clinical cases with spontaneous brain tumors to investigate nanoparticles' EPR in different brain tumor pathologies using surface-enhanced Raman spectroscopy (SERS). We used gold nanoparticles due to their surface plasmon effect that enables their sensitive and microscopic resolution detection using the SERS technique. Raman microscopy of the resected tumors showed heterogeneous EPR of nanoparticles into oligodendrogliomas and meningiomas of different grades, without any detectable traces in necrotic parts of the tumors or normal brain. Raman observations were confirmed by scanning electron microscopy (SEM) and X-ray elemental analyses, which enabled localization of individual nanoparticles embedded in tumor tissues. Our results demonstrate nanoparticles' EPR and its variations in clinically relevant, spontaneous brain tumors. Such heterogeneities should be considered alongside routine preoperative imaging and histopathological analyses in order to accelerate clinical management of brain tumors using nanomedicine approaches.
Collapse
Affiliation(s)
- Hamed Arami
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Chirag B. Patel
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Steven J. Madsen
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, University of California at Davis, Davis, California 95616, United States
| | - Ryan M. Davis
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Beverly K. Sturges
- Department of Surgical and Radiological Sciences, University of California at Davis, Davis, California 95616, United States
| | - Kevin D. Woolard
- Department of Pathology, Microbiology and Immunology, University of California, Davis, California 95616, United States
| | - Frezghi G. Habte
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Demir Akin
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
| | - Robert Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Sanjiv S. Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
- Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, California 94305, United States
- Corresponding Author (Sanjiv S. Gambhir).
| |
Collapse
|
40
|
Sulforaphane from Cruciferous Vegetables: Recent Advances to Improve Glioblastoma Treatment. Nutrients 2018; 10:nu10111755. [PMID: 30441761 PMCID: PMC6267435 DOI: 10.3390/nu10111755] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 02/07/2023] Open
Abstract
Sulforaphane (SFN), an isothiocyanate (ITC) derived from cruciferous vegetables, particularly broccoli and broccoli sprouts, has been widely investigated due to its promising health-promoting properties in disease, and low toxicity in normal tissue. Although not yet fully understood, many mechanisms of anticancer activity at each step of cancer development have been attributed to this ITC. Given the promising data available regarding SFN, this review aimed to provide an overview on the potential activities of SFN related to the cellular mechanisms involved in glioblastoma (GBM) progression. GBM is the most frequent malignant brain tumor among adults and is currently an incurable disease due mostly to its highly invasive phenotype, and the poor efficacy of the available therapies. Despite all efforts, the median overall survival of GBM patients remains approximately 1.5 years under therapy. Therefore, there is an urgent need to provide support for translating the progress in understanding the molecular background of GBM into more complex, but promising therapeutic strategies, in which SFN may find a leading role.
Collapse
|
41
|
Ji Y, Xiao Y, Xu L, He J, Qian C, Li W, Wu L, Chen R, Wang J, Hu R, Zhang X, Gu Z, Chen Z. Drug-Bearing Supramolecular MMP Inhibitor Nanofibers for Inhibition of Metastasis and Growth of Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700867. [PMID: 30128224 PMCID: PMC6097146 DOI: 10.1002/advs.201700867] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/07/2018] [Indexed: 05/19/2023]
Abstract
Treatment of hepatocellular carcinoma (HCC) requires sustained suppression of tumor cell growth and metastasis for long-term efficacy. However, traditional intratumoral drug delivery system always exhibits burst release with less therapeutic outcomes. Here, a new self-assembling amphiphilic peptide drug conjugate (SAAPDC) is fabricated as a "two-in-one" nanofiber system comprising a hexapeptide as a matrix metalloproteinases (MMP) inhibitor and doxorubicin (DOX) for the treatment of HCC. The results indicate that doxorubicin-conjugated peptide (DOX-KGFRWR) self-assembles to form long nanofibers showing sustained release property for inhibiting the enzymatic activities of MMP-2 and MMP-9. This nanofiber not only inhibits tumor growth in situ but also effectively prevents pulmonary metastasis in an SMMC7721 cell line-based mouse model. In summary, this hexapeptide-based supermolecule system represents a promising nanoscale platform to sustain drug release with high loading capacity for intratumoral administration. Moreover, the delivery of chemotherapeutic drugs via drug-bearing supramolecular MMP inhibitor nanofibers simultaneously inhibits metastasis and tumor growth to achieve synergistic effects for metastatic HCC therapy.
Collapse
Affiliation(s)
- Yujie Ji
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Yanyu Xiao
- Department of PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Liu Xu
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Jiayu He
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Chen Qian
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Weidong Li
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Li Wu
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Rui Chen
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Jingjing Wang
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| | - Rongfeng Hu
- Key Laboratory of Xin'an MedicineMinistry of EducationAnhui Province Key Laboratory of R&D of Chinese MedicineAnhui University of Traditional Chinese MedicineHefeiAnhui230038China
| | - Xudong Zhang
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Zhen Gu
- Joint Department of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695USA
| | - Zhipeng Chen
- Department of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Functional Substance of Chinese MedicineNanjing210023China
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023China
| |
Collapse
|
42
|
Chemotherapeutic Delivery from a Self-Assembling Peptide Nanofiber Hydrogel for the Management of Glioblastoma. Pharm Res 2018; 35:166. [DOI: 10.1007/s11095-018-2442-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/07/2018] [Indexed: 01/04/2023]
|
43
|
Nam L, Coll C, Erthal LCS, de la Torre C, Serrano D, Martínez-Máñez R, Santos-Martínez MJ, Ruiz-Hernández E. Drug Delivery Nanosystems for the Localized Treatment of Glioblastoma Multiforme. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E779. [PMID: 29751640 PMCID: PMC5978156 DOI: 10.3390/ma11050779] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme is one of the most prevalent and malignant forms of central nervous system tumors. The treatment of glioblastoma remains a great challenge due to its location in the intracranial space and the presence of the blood⁻brain tumor barrier. There is an urgent need to develop novel therapy approaches for this tumor, to improve the clinical outcomes, and to reduce the rate of recurrence and adverse effects associated with present options. The formulation of therapeutic agents in nanostructures is one of the most promising approaches to treat glioblastoma due to the increased availability at the target site, and the possibility to co-deliver a range of drugs and diagnostic agents. Moreover, the local administration of nanostructures presents significant additional advantages, since it overcomes blood⁻brain barrier penetration issues to reach higher concentrations of therapeutic agents in the tumor area with minimal side effects. In this paper, we aim to review the attempts to develop nanostructures as local drug delivery systems able to deliver multiple agents for both therapeutic and diagnostic functions for the management of glioblastoma.
Collapse
Affiliation(s)
- L Nam
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C Coll
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - L C S Erthal
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| | - C de la Torre
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - D Serrano
- Departamento de Farmacia Galenica y Tecnologia Alimentaria, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - R Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, 46010 València, Spain.
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| | - M J Santos-Martínez
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
- School of Medicine, Trinity College Dublin (TCD), Dublin 2, Ireland.
| | - E Ruiz-Hernández
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin (TCD), Dublin 2, Ireland.
- Trinity Biomedical Sciences Institute, TCD, Dublin 2, Ireland.
| |
Collapse
|
44
|
Li Y, Lock LL, Wang Y, Ou SH, Stern D, Schön A, Freire E, Xu X, Ghose S, Li ZJ, Cui H. Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G. Biomaterials 2018; 178:448-457. [PMID: 29706234 DOI: 10.1016/j.biomaterials.2018.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 01/14/2023]
Abstract
Many one-dimensional (1D) nanostructures are constructed by self-assembly of peptides or peptide conjugates containing a short β-sheet sequence as the core building motif essential for the intermolecular hydrogen bonding that promotes directional, anisotropic growth of the resultant assemblies. While this molecular engineering strategy has led to the successful production of a plethora of bioactive filamentous β-sheet assemblies for interfacing with biomolecules and cells, concerns associated with effective presentation of α-helical epitopes and their function preservation have yet to be resolved. In this context, we report on the direct conjugation of the protein A mimicking peptide Z33, a motif containing two α-helices, to linear hydrocarbons to create self-assembling immuno-amphiphiles (IAs). Our results suggest that the resulting amphiphilic peptides can, despite lacking the essential β-sheet segment, effectively associate under physiological conditions into supramolecular immunofibers (IFs) while preserving their native α-helical conformation. Isothermal titration calorimetry (ITC) measurements confirmed that these self-assembling immunofibers can bind to the human immunoglobulin G class 1 (IgG1) with high specificity at pH 7.4, but with significantly weakened binding at pH 2.8. We further demonstrated the accessibility of Z33 ligand in the immunofibers using transmission electron microscopy (TEM) and confocal imaging. We believe these results shed important light into the supramolecular engineering of α-helical peptides into filamentous assemblies that may possess an important potential for antibody isolation.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Yuzhu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
45
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017. [PMID: 28958854 DOI: 10.1016/jjc0nrel.2017.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
46
|
Wang F, Porter M, Konstantopoulos A, Zhang P, Cui H. Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. J Control Release 2017; 267:100-118. [PMID: 28958854 PMCID: PMC5723209 DOI: 10.1016/j.jconrel.2017.09.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 12/28/2022]
Abstract
Paclitaxel (PTX) is one of the most successful drugs ever used in cancer chemotherapy, acting against a variety of cancer types. Formulating PTX with Cremophor EL and ethanol (Taxol®) realized its clinical potential, but the formulation falls short of expectations due to side effects such as peripheral neuropathy, hypotension, and hypersensitivity. Abraxane®, the albumin bound PTX, represents a superior replacement of Taxol® that mitigates the side effects associated with Cremophor EL. While Abraxane® is now considered a gold standard in chemotherapy, its 21% response rate leaves much room for further improvement. The quest for safer and more effective cancer treatments has led to the development of a plethora of innovative PTX formulations, many of which are currently undergoing clinical trials. In this context, we review recent development of PTX drug delivery systems and analyze the design principles underpinning each delivery strategy. We chose several representative examples to highlight the opportunities and challenges of polymeric systems, lipid-based formulations, as well as prodrug strategies.
Collapse
Affiliation(s)
- Feihu Wang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Michael Porter
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Alexandros Konstantopoulos
- Department of Biomedical Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States; Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, MD 21231, United States; Institute for NanoBiotechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
47
|
Abstract
Covalent modification of therapeutic compounds is a clinically proven strategy to devise prodrugs with enhanced treatment efficacies. This prodrug strategy relies on the modified drugs that possess advantageous pharmacokinetic properties and administration routes over their parent drug. Self-assembling prodrugs represent an emerging class of therapeutic agents capable of spontaneously associating into well-defined supramolecular nanostructures in aqueous solutions. The self-assembly of prodrugs expands the functional space of conventional prodrug design, affording a possible pathway to more effective therapies as the assembled nanostructure possesses distinct physicochemical properties and interaction potentials that can be tailored to specific administration routes and disease treatment. In this review, we will discuss the various types of self-assembling prodrugs in development, providing an overview of the methods used to control their structure and function and, ultimately, our perspective on their current and future potential.
Collapse
Affiliation(s)
- Andrew G Cheetham
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Eastern Road, Zhengzhou 450052, Henan, China
| | | | | | | |
Collapse
|
48
|
Wadajkar AS, Dancy JG, Roberts NB, Connolly NP, Strickland DK, Winkles JA, Woodworth GF, Kim AJ. Decreased non-specific adhesivity, receptor targeted (DART) nanoparticles exhibit improved dispersion, cellular uptake, and tumor retention in invasive gliomas. J Control Release 2017; 267:144-153. [PMID: 28887134 DOI: 10.1016/j.jconrel.2017.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 08/26/2017] [Accepted: 09/04/2017] [Indexed: 12/15/2022]
Abstract
The most common and deadly form of primary brain cancer, glioblastoma (GBM), is characterized by significant intratumoral heterogeneity, microvascular proliferation, immune system suppression, and brain tissue invasion. Delivering effective and sustained treatments to the invasive GBM cells intermixed with functioning neural elements is a major goal of advanced therapeutic systems for brain cancer. Previously, we investigated the nanoparticle characteristics that enable targeting of invasive GBM cells. This revealed the importance of minimizing non-specific binding within the relatively adhesive, 'sticky' microenvironment of the brain and brain tumors in particular. We refer to such nanoformulations with decreased non-specific adhesivity and receptor targeting as 'DART' therapeutics. In this work, we applied this information toward the design and characterization of biodegradable nanocarriers, and in vivo testing in orthotopic experimental gliomas. We formulated particulate nanocarriers using poly(lactic-co-glycolic acid) (PLGA) and PLGA-polyethylene glycol (PLGA-PEG) polymers to generate sub-100nm nanoparticles with minimal binding to extracellular brain components and strong binding to the Fn14 receptor - an upregulated, conserved component in invasive GBM. Multiple particle tracking in brain tissue slices and in vivo testing in orthotopic murine malignant glioma revealed preserved nanoparticle diffusivity and increased uptake in brain tumor cells. These combined characteristics also resulted in longer retention of the DART nanoparticles within the orthotopic tumors compared to non-targeted versions. Taken together, these results and nanoparticle design considerations offer promising new methods to optimize therapeutic nanocarriers for improving drug delivery and treatment for invasive brain tumors.
Collapse
Affiliation(s)
- Aniket S Wadajkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jimena G Dancy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nathan B Roberts
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina P Connolly
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dudley K Strickland
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|