1
|
Fang Y, Hu F, Ren W, Xiang L, Wang T, Zhu C, He R, Dong X, Liu C, Ding H, Zhang K. Nanomedicine-unlocked radiofrequency dynamic therapy dampens incomplete radiofrequency ablation-arised immunosuppression to suppress cancer relapse. Biomaterials 2025; 317:123087. [PMID: 39778271 DOI: 10.1016/j.biomaterials.2025.123087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Incomplete radiofrequency ablation (iRFA) not only leaves residual tumor, but also render the residual tumor highly self-adaptable and immunosuppressive, consequently expediting residual tumor progression including relapse. To address it, radiofrequency dynamic therapy (RFDT) with identical trigger (namely radiofrequency) has been established and enabled by polyethylene glycol (PEG)-modified Fe-based single atom nanozyme (P@Fe SAZ). P@Fe SAZ can respond to radiofrequency field to produce reactive oxygen species (ROS), attaining the nanomedicine-unlocked low-temperature RFDT. Systematic experiments reveal that ROS further remodels iRFA-potentiated immunosuppressive microenvironment, e.g., expediting tumor-associated macrophages (TAMs) polarization into TAMs-M1, rejecting the intratumoral infiltrations of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Coincidently, they have been demonstrated to stimulate dendritic cells (DCs) maturation and encourage the proliferations and infiltrations of effector T cells, consequently boosting anti-tumor immune responses and attenuating iRFA-enhanced plasticity, treatment resistance and self-adaptation of residual hepatocellular carcinoma (HCC) after iRFA. Thanks to them, such a nanomedicine-unlocked low-temperature RFDT exerts powerful actions on residual HCC model after iRFA with rapid expansion inhibition, relapse repression, survival prolongation, apoptosis promotion, etc. This low-temperature RFDT opens a window to address the iRFA-enhanced immunosuppression.
Collapse
Affiliation(s)
- Yan Fang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China. No. 12 Urumqi Middle Road, Shanghai 200040, China; Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Feixiang Hu
- Department of Radiology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, No. 270 Dong'an Road, Xuhui District, Shanghai, 200032, China
| | - Weiwei Ren
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China; Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China
| | - Lihua Xiang
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China; Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China
| | - Taixia Wang
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Chunyan Zhu
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Ruiqing He
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China
| | - Xiulin Dong
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China
| | - Chang Liu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301, Yanchangzhong Road, Shanghai, 200072, China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, 200040, China. No. 12 Urumqi Middle Road, Shanghai 200040, China.
| | - Kun Zhang
- Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
2
|
Keum H, Cevik E, Kim J, Demirlenk YM, Atar D, Saini G, Sheth RA, Deipolyi AR, Oklu R. Tissue Ablation: Applications and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310856. [PMID: 38771628 PMCID: PMC11309902 DOI: 10.1002/adma.202310856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.
Collapse
Affiliation(s)
- Hyeongseop Keum
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Enes Cevik
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Jinjoo Kim
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Yusuf M Demirlenk
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Dila Atar
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Gia Saini
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
| | - Rahul A Sheth
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Amy R Deipolyi
- Interventional Radiology, Department of Surgery, West Virginia University, Charleston Area Medical Center, Charleston, WV 25304, USA
| | - Rahmi Oklu
- Laboratory for Patient Inspired Engineering, Mayo Clinic, 13400 East Shea Blvd., Scottsdale, Arizona 85259, USA
- Division of Vascular & Interventional Radiology, Mayo Clinic, 5777 E Mayo Blvd, Phoenix, Arizona 85054, USA
| |
Collapse
|
3
|
Yang Y, Wang N, Yan F, Shi Z, Feng S. Metal-organic frameworks as candidates for tumor sonodynamic therapy: Designable structures for targeted multifunctional transformation. Acta Biomater 2024; 181:67-97. [PMID: 38697383 DOI: 10.1016/j.actbio.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Sonodynamic therapy (SDT), utilizing ultrasound (US) as the trigger, has gained popularity recently as a therapeutic approach with significant potential for treating various diseases. Metal-organic frameworks (MOFs), characterized by structural flexibility, are prominently emerging in the SDT realm as an innovative type of sonosensitizer, offering functional tunability and biocompatibility. However, due to the inherent limitations of MOFs, such as low reactivity to reactive oxygen species and challenges posed by the complex tumor microenvironment, MOF-based sonosensitizers with singular functions are unable to demonstrate the desired therapeutic efficacy and may pose risks of toxicity, limiting their biological applications to superficial tissues. MOFs generally possess distinctive crystalline structures and properties, and their controlled coordination environments provide a flexible platform for exploring structure-effect relationships and guiding the design and development of MOF-based nanomaterials to unlock their broader potential in biological fields. The primary focus of this paper is to summarize cases involving the modification of different MOF materials and the innovative strategies developed for various complex conditions. The paper outlines the diverse application areas of functionalized MOF-based sonosensitizers in tumor synergistic therapies, highlighting the extensive prospects of SDT. Additionally, challenges confronting SDT are briefly summarized to stimulate increased scientific interest in the practical application of MOFs and the successful clinical translation of SDT. Through these discussions, we strive to foster advancements that lead to early-stage clinical benefits for patients. STATEMENT OF SIGNIFICANCE: 1. An overview for the progresses in SDT explored from a novel and fundamental perspective. 2. Different modification strategies to improve the MOFs-mediated SDT efficacy are provided. 3. Guidelines for the design of multifunctional MOFs-based sonosensitizers are offered. 4. Powerful tumor ablation potential is reflected in SDT-led synergistic therapies. 5. Future challenges in the field of MOFs-based SDT in clinical translation are suggested.
Collapse
Affiliation(s)
- Yilin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
4
|
Qin W, Yang Q, Zhu C, Jiao R, Lin X, Fang C, Guo J, Zhang K. A Distinctive Insight into Inorganic Sonosensitizers: Design Principles and Application Domains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311228. [PMID: 38225708 DOI: 10.1002/smll.202311228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Sonodynamic therapy (SDT) as a promising non-invasive anti-tumor means features the preferable penetration depth, which nevertheless, usually can't work without sonosensitizers. Sonosensitizers produce reactive oxygen species (ROS) in the presence of ultrasound to directly kill tumor cells, and concurrently activate anti-tumor immunity especially after integration with tumor microenvironment (TME)-engineered nanobiotechnologies and combined therapy. Current sonosensitizers are classified into organic and inorganic ones, and current most reviews only cover organic sonosensitizers and highlighted their anti-tumor applications. However, there have few specific reviews that focus on inorganic sonosensitizers including their design principles, microenvironment regulation, etc. In this review, inorganic sonosensitizers are first classified according to their design rationales rather than composition, and the action rationales and underlying chemistry features are highlighted. Afterward, what and how TME is regulated based on the inorganic sonosensitizers-based SDT nanoplatform with an emphasis on the TME targets-engineered nanobiotechnologies are elucidated. Additionally, the combined therapy and their applications in non-cancer diseases are also outlined. Finally, the setbacks and challenges, and proposed the potential solutions and future directions is pointed out. This review provides a comprehensive and detailed horizon on inorganic sonosensitizers, and will arouse more attentions on SDT.
Collapse
Affiliation(s)
- Wen Qin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Qiaoling Yang
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chunyan Zhu
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Rong Jiao
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Xia Lin
- State Key Laboratory of Targeting Oncology, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, National Center for International Research of Biotargeting Theranostics, Guangxi Key Laboratory of Biotargeting Theranostics, Guangxi Medical University, Nanning, Guangxi, 530021, P. R. China
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| | - Chao Fang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No. 301 Yanchangzhong Road, Shanghai, 200072, P. R. China
| | - Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, No. 800 Xiangyin Road, Shanghai, 200433, P. R. China
| | - Kun Zhang
- Department of Pharmacy and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, Sichuan, 610072, P. R. China
| |
Collapse
|
5
|
Zhou Y, Shu G, Luo Y, Wang F, Jing X, Pan J, Sun SK. Achieving Complete Tumor Clearance: A Minimalist Manganese Hydrogel for Magnetic Resonance Imaging-Guided Synergetic Microwave Ablation and Chemodynamic Therapy. Adv Healthc Mater 2024; 13:e2303268. [PMID: 38140916 DOI: 10.1002/adhm.202303268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/29/2023] [Indexed: 12/24/2023]
Abstract
The combination of microwave ablation (MWA) and chemodynamic therapy (CDT) presents a promising strategy for complete eradication of residual tumor after MWA. However, it remains challenging and urgent to develop a facile, biocompatible, and imaging-guided platform for the achievement of this goal. Herein, a minimalist manganese hydrogel (ALG-Mn hydrogel) is proposed for synergistic MWA and CDT to completely eradicate tumor in vivo. The ALG-Mn hydrogel is prepared using a simple mixing method and exhibits excellent syringeability, remarkable microwave sensitivity, and potent Fenton-like activity. By assisting in MWA procedures, the ALG-Mn hydrogel enables both elimination of primary tumor mass through enhanced MWA efficacy and eradication of potential residual tumor tissues via robust CDT. This approach achieves complete tumor clearance without additional drug loading. Furthermore, the paramagnetic Mn2+ component allows real-time dynamic visualization of the ALG-Mn hydrogel at the tumor site via magnetic resonance imaging. To the best of knowledge, the proposed ALG-Mn hydrogel represents the minimalist biocompatible platform for imaging-guided synergistic MWA and CDT toward achieving complete tumor clearance.
Collapse
Affiliation(s)
- Yan Zhou
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Gang Shu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Fengmei Wang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
- Tianjin Key Laboratory of Molecular Diagnosis and Treatment of Liver Cancer, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| |
Collapse
|
6
|
Li XT, Peng SY, Feng SM, Bao TY, Li SZ, Li SY. Recent Progress in Phage-Based Nanoplatforms for Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307111. [PMID: 37806755 DOI: 10.1002/smll.202307111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/18/2023] [Indexed: 10/10/2023]
Abstract
Nanodrug delivery systems have demonstrated a great potential for tumor therapy with the development of nanotechnology. Nonetheless, traditional drug delivery systems are faced with issues such as complex synthetic procedures, low reproducibility, nonspecific distribution, impenetrability of biological barrier, systemic toxicity, etc. In recent years, phage-based nanoplatforms have attracted increasing attention in tumor treatment for their regular structure, fantastic carrying property, high transduction efficiency and biosafety. Notably, therapeutic or targeting peptides can be expressed on the surface of the phages through phage display technology, enabling the phage vectors to possess multifunctions. As a result, the drug delivery efficiency on tumor will be vastly improved, thereby enhancing the therapeutic efficacy while reducing the side effects on normal tissues. Moreover, phages can overcome the hindrance of biofilm barrier to elicit antitumor effects, which exhibit great advantages compared with traditional synthetic drug delivery systems. Herein, this review not only summarizes the structure and biology of the phages, but also presents their potential as prominent nanoplatforms against tumor in different pathways to inspire the development of effective nanomedicine.
Collapse
Affiliation(s)
- Xiao-Tong Li
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shu-Yi Peng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Shao-Mei Feng
- Department of Anesthesiology, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Ting-Yu Bao
- Department of Clinical Medicine, the Third Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Sheng-Zhang Li
- Department of Clinical Medicine, the Second Clinical School of Guangzhou Medical University, Guangzhou, 511436, China
| | - Shi-Ying Li
- Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| |
Collapse
|
7
|
Yu M, Li S, Ren X, Liu N, Guo W, Xue J, Tan L, Fu C, Wu Q, Niu M, Du Y, Meng X. Magnetic Bimetallic Heterointerface Nanomissiles with Enhanced Microwave Absorption for Microwave Thermal/Dynamics Therapy of Breast Cancer. ACS NANO 2024; 18:3636-3650. [PMID: 38227493 DOI: 10.1021/acsnano.3c11433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Microwave thermotherapy (MWT) has shown great potential in cancer treatment due to its deep tissue penetration and minimally invasive nature. However, the poor microwave absorption (MA) properties of the microwave thermal sensitizer in the medical frequency band significantly limit the thermal effect of MWT and then weaken the therapeutic efficacy. In this paper, a Ni-based multilayer heterointerface nanomissile of MOFs-Ni-Ru@COFs (MNRC) with improved MA performance in the desired frequency band via introducing magnetic loss and dielectric loss is developed for MWT-based treatment. The loading of the Ni nanoparticle in MNRC mediates the magnetic loss, introducing the MA in the medical frequency band. The heterointerface formed in the MNRC by nanoengineering induces significant interfacial polarization, increasing the dielectric loss and then enhancing the generated MA performance. Moreover, MNRC with the strong MA performance in the desired frequency range not only enhances the MW thermal effect of MWT but also facilitates the electron and energy transfer, generating reactive oxygen species (ROS) at tumor sites to mediate microwave dynamic therapy (MDT). The strategy of strengthening the MA performance of the sensitizer in the medical frequency band to improve MWT-MDT provides a direction for expanding the clinical application of MWT in tumor treatment.
Collapse
Affiliation(s)
- Min Yu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shimei Li
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiangling Ren
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Nan Liu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenna Guo
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Xue
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Longfei Tan
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Changhui Fu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiong Wu
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yongxing Du
- School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xianwei Meng
- Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing,100190, China
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
8
|
Wang D, Qiu G, Zhu X, Wang Q, Zhu C, Fang C, Liu J, Zhang K, Liu Y. Macrophage-inherited exosome excise tumor immunosuppression to expedite immune-activated ferroptosis. J Immunother Cancer 2023; 11:e006516. [PMID: 37192783 PMCID: PMC10193064 DOI: 10.1136/jitc-2022-006516] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Immunosuppressive tumor microenvironment (ITM) remains an obstacle that jeopardizes clinical immunotherapy. METHODS To address this concern, we have engineered an exosome inherited from M1-pheototype macrophages, which thereby retain functions and ingredients of the parent M1-phenotype macrophages. The delivered RSL3 that serves as a common ferroptosis inducer can reduce the levels of ferroptosis hallmarkers (eg, glutathione and glutathione peroxidase 4), break the redox homeostasis to magnify oxidative stress accumulation, promote the expression of ferroptosis-related proteins, and induce robust ferroptosis of tumor cells, accompanied with which systematic immune response activation can bbe realized. M1 macrophage-derived exosomes can inherit more functions and genetic substances than nanovesicles since nanovesicles inevitably suffer from substance and function loss caused by extrusion-arised structural damage. RESULTS Inspired by it, spontaneous homing to tumor and M2-like macrophage polarization into M1-like ones are attained, which not only significantly magnify oxidative stress but also mitigate ITM including M2-like macrophage polarization and regulatory T cell decrease, and regulate death pathways. CONCLUSIONS All these actions accomplish a synergistic antitumor enhancement against tumor progression, thus paving a general route to mitigate ITM, activate immune responses, and magnify ferroptosis.
Collapse
Affiliation(s)
- Duo Wang
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Qin Wang
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Chunyan Zhu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Chao Fang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Junjie Liu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Liu
- Department of Medical Ultrasound, Department of Breast, Bone and Soft Tissue Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Wang D, Zhang M, Qiu G, Rong C, Zhu X, Qin G, Kong C, Zhou J, Liang X, Bu Z, Liu J, Luo T, Yang J, Zhang K. Extracellular Matrix Viscosity Reprogramming by In Situ Au Bioreactor-Boosted Microwavegenetics Disables Tumor Escape in CAR-T Immunotherapy. ACS NANO 2023; 17:5503-5516. [PMID: 36917088 DOI: 10.1021/acsnano.2c10845] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Incomplete microwave ablation (iMWA) caused by uncontrollable heat diffusion enhances the immunosuppressive tumor microenvironment (ITM), consequently disabling the prevalent immune checkpoint blockade-combined immunotherapy against tumor recurrence. Herein, we successfully constructed an intratumorally synthesized Au bioreactor to disperse heat in thermally sensitive hydrogel-filled tumors and improve the energy utilization efficiency, which magnified the effective ablation zone (EAZ), counteracted iMWA, and simultaneously established and enhanced multiple biological process-regulated microwavegenetics. More significantly, we identified the extracellular matrix (ECM) viscosity as a general immune escape "target". After remodeling ECM, including ECM ingredients and cell adhesion molecules, this physical target was blocked by viscosity reprogramming, furnishing an effective tool to regulate the viscosity target. Thereby, such in situ Au bioreactor-enlarged EAZ and enhanced microwavegenetics reversed the immune-desert tumor microenvironment, mitigated ITM, secreted immune cell-attracting chemokines, recruited and polarized various immune cells, and activated or reactivated them like dendritic cells, natural killing cells, M1-type macrophages, and effector CD8+ or CAR-T cells. Contributed by these multiple actions, the in situ oncolytic Au bioreactors evoked CAR-T immunotherapy to acquire a considerably increased inhibition effect against tumor progression and recurrence after iMWA, thus providing a general method to enhance iMWA and CAR-T immunotherapy.
Collapse
Affiliation(s)
- Duo Wang
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Mengqi Zhang
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Chao Rong
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Guchun Qin
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Cunqing Kong
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Jing Zhou
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
- Central Laboratory, Department of Medical Ultrasound, and Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University. No. 301 Yanchangzhong Road, Shanghai 200072, P.R. China
| | - Xiayi Liang
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
- Central Laboratory, Department of Medical Ultrasound, and Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University. No. 301 Yanchangzhong Road, Shanghai 200072, P.R. China
| | - Zhaoting Bu
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
- Central Laboratory, Department of Medical Ultrasound, and Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University. No. 301 Yanchangzhong Road, Shanghai 200072, P.R. China
| | - Junjie Liu
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Tao Luo
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
| | - Jianjun Yang
- Central Laboratory, Department of Medical Ultrasound, and Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University. No. 301 Yanchangzhong Road, Shanghai 200072, P.R. China
| | - Kun Zhang
- Department of Medical Ultrasound, Department of Gastrointestinal Surgery, National Center for International Research of Bio-targeting Theranostics, Guangxi Medical University Cancer Hospital, Guangxi Medical University. No. 71 Hedi Road, Nanning 530021, Guangxi, P.R. China
- Central Laboratory, Department of Medical Ultrasound, and Shanghai Tenth People's Hospital, Tongji University School of Medicine, Tongji University. No. 301 Yanchangzhong Road, Shanghai 200072, P.R. China
| |
Collapse
|
10
|
Zhu Y, Li Q, Wang C, Hao Y, Yang N, Chen M, Ji J, Feng L, Liu Z. Rational Design of Biomaterials to Potentiate Cancer Thermal Therapy. Chem Rev 2023. [PMID: 36912061 DOI: 10.1021/acs.chemrev.2c00822] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Cancer thermal therapy, also known as hyperthermia therapy, has long been exploited to eradicate mass lesions that are now defined as cancer. With the development of corresponding technologies and equipment, local hyperthermia therapies such as radiofrequency ablation, microwave ablation, and high-intensity focused ultrasound, have has been validated to effectively ablate tumors in modern clinical practice. However, they still face many shortcomings, including nonspecific damages to adjacent normal tissues and incomplete ablation particularly for large tumors, restricting their wide clinical usage. Attributed to their versatile physiochemical properties, biomaterials have been specially designed to potentiate local hyperthermia treatments according to their unique working principles. Meanwhile, biomaterial-based delivery systems are able to bridge hyperthermia therapies with other types of treatment strategies such as chemotherapy, radiotherapy and immunotherapy. Therefore, in this review, we discuss recent progress in the development of functional biomaterials to reinforce local hyperthermia by functioning as thermal sensitizers to endow more efficient tumor-localized thermal ablation and/or as delivery vehicles to synergize with other therapeutic modalities for combined cancer treatments. Thereafter, we provide a critical perspective on the further development of biomaterial-assisted local hyperthermia toward clinical applications.
Collapse
Affiliation(s)
- Yujie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Quguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Chunjie Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Yu Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Nailin Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang, P.R. China
| | - Liangzhu Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, P.R. China
| |
Collapse
|
11
|
Lin Q, Peng Y, Wen Y, Li X, Du D, Dai W, Tian W, Meng Y. Recent progress in cancer cell membrane-based nanoparticles for biomedical applications. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:262-279. [PMID: 36895440 PMCID: PMC9989677 DOI: 10.3762/bjnano.14.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Immune clearance and insufficient targeting have limited the efficacy of existing therapeutic strategies for cancer. Toxic side effects and individual differences in response to treatment have further limited the benefits of clinical treatment for patients. Biomimetic cancer cell membrane-based nanotechnology has provided a new approach for biomedicine to overcome these obstacles. Biomimetic nanoparticles exhibit various effects (e.g., homotypic targeting, prolonging drug circulation, regulating the immune system, and penetrating biological barriers) after encapsulation by cancer cell membranes. The sensitivity and specificity of diagnostic methods will also be improved by utilizing the properties of cancer cell membranes. In this review, different properties and functions of cancer cell membranes are presented. Utilizing these advantages, nanoparticles can exhibit unique therapeutic capabilities in various types of diseases, such as solid tumors, hematological malignancies, immune system diseases, and cardiovascular diseases. Furthermore, cancer cell membrane-encapsulated nanoparticles show improved effectiveness and efficiency in combination with current diagnostic and therapeutic methods, which will contribute to the development of individualized treatments. This strategy has promising clinical translation prospects, and the associated challenges are discussed.
Collapse
Affiliation(s)
- Qixiong Lin
- The Ninth Clinical Medical School of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yueyou Peng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Yanyan Wen
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Xiaoqiong Li
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Donglian Du
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Weibin Dai
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| | - Wei Tian
- Department of General Surgery, Shanxi Cardiovascular Hospital, Taiyuan, Shanxi 030024, China
| | - Yanfeng Meng
- Department of MRI, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi 030009, China
| |
Collapse
|
12
|
Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Mater Today Bio 2023; 19:100559. [PMID: 36798535 PMCID: PMC9926023 DOI: 10.1016/j.mtbio.2023.100559] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/07/2023] [Accepted: 01/19/2023] [Indexed: 01/22/2023] Open
Abstract
With the widespread prevalence of drug-resistant pathogens, traditional antibiotics have limited effectiveness and do not yield the desired outcomes. Recently, alternative antibacterial therapies based on ultrasound (US) have been explored to overcome the crisis of bacterial pathogens. Antimicrobial sonodynamic therapy (aSDT) offers an excellent solution that relies on US irradiation to produce reactive oxygen species (ROS) and achieve antibiotic-free mediated antimicrobial effects. In addition, aSDT possesses the advantage of superior tissue penetrability of US compared to light irradiation, demonstrating great feasibility in treating deep infections. Although existing conventional sonosensitizers can produce ROS for antimicrobial activity, some limitations, such as low penetration rate, nonspecific distribution and poor ROS production under hypoxic conditions, result in suboptimal sterilization in aSDT. Recently, emerging nanosonosensitizers have enormous advantages as high-performance agents in aSDT, which overcome the deficiencies of conventional sonosensitizers as described above. Thus, nanosonosensitizer-mediated aSDT has a bright future for the management of bacterial infections. This review classifies the current available nanosonosensitizers and provides an overview of the mechanisms, biomedical applications, recent advances and perspectives of aSDT.
Collapse
|
13
|
Guo HL, Xie XY, Xu M. Application of nanomaterials in combined thermal ablation and immunotherapy for liver tumors. Shijie Huaren Xiaohua Zazhi 2022; 30:829-837. [DOI: 10.11569/wcjd.v30.i19.829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Thermal ablation is one of the important treatments for liver tumors, but the postoperative recurrence rate is high. Thermal ablation has been reported to trigger the release of tumor-associated antigens, which in turn initiates antitumor immune response. However, this anti-tumor immune effect cannot effectively suppress tumor recurrence due to the obstacles of antigen presentation, the formation of tumor-suppressive immune microenvironment, and the hypoxic and hypovascular tumor microenvironment. Therefore, using immunotherapy to enhance the antitumor immune effect after thermal ablation is a potential strategy to improve the prognosis of tumor patients. However, free immune drugs have the disadvantages of poor targeting and short half-life. Nanomaterials have the advantages of strong modifiability, controllable drug ratio, and excellent targeting. Based on the characteristics of the tumor immune microenvironment after thermal ablation, scholars have designed nano-immunopharmaceuticals that can increase the tumor permeability of immune drugs, stimulate antigen presentation, and reshape the tumor immune microenvironment. This review focuses on the role of nanomaterials in tumor ablation combined with immunotherapy for liver tumors.
Collapse
Affiliation(s)
- Huan-Ling Guo
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| | - Xiao-Yan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| | - Ming Xu
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, Guangdong Province. China
| |
Collapse
|
14
|
Lu L, Wang T, Fang C, Song L, Qian C, Lv Z, Fang Y, Liu X, Yu X, Xu X, Su C, Chen F, Zhang K. Oncolytic Impediment/Promotion Balance Disruption by Sonosensitizer-Free Nanoplatforms Unfreezes Autophagy-Induced Resistance to Sonocatalytic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36462-36472. [PMID: 35939287 DOI: 10.1021/acsami.2c09443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Autophagy as a double-edged sword features an oncolytic impediment/promotion balance, which manipulates tumor progression. From this perspective, a sonosensitizer-free targeting oncolytic nanoplatform (SFTON) consisting of chloroquine (CQ) and porphyrin-structured metal centers (PMCS) was engineered to break this balance for enhancing antitumor activity. Porphyrin structure retention in a ZIF-8-derived hydrophobic carbon skeleton retained high stability and high sonocatalytic activity, and the hydrophobic carbon skeleton capable of adsorbing air provided cavitation nuclei for further elevating sonocatalytic activity. More significantly, the encapsulated CQ as the autophagy inhibitor reprogrammed autophagy, terminated the autophagy-induced self-protection or self-detoxification, and unfroze the resistances to reactive oxygen species (ROS) therapy associated with ROS accumulation and ROS activity. Systematic experiments reveal the action principles and validate that the induced apoptosis and blockaded autophagosome escalation into the autolysosome were two activated pathways to magnify the antitumor sonocatalytic therapy. Contributed by these actions, the SFTON-unlocked oncolytic impediment/promotion balance disruption strategy acquired considerable antitumor outcomes in vivo and in vitro against liver tumor progression, especially after combining with AS1411-mediated active targeting. This impediment/promotion balance disruption enabled by the SFTON can serve as a general method to elevate ROS-based antitumor activity.
Collapse
Affiliation(s)
- Lu Lu
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
- Department of Medical Ultrasound, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue, Zhanjiang 524000, Guangdong Province, P. R. China
| | - Taixia Wang
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Chao Fang
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Li Song
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Cheng Qian
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Zheng Lv
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Yujia Fang
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Xinyu Liu
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Xin Yu
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Xiaohong Xu
- Department of Medical Ultrasound, Affiliated Hospital of Guangdong Medical University, No. 57 Peoples Avenue, Zhanjiang 524000, Guangdong Province, P. R. China
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Thoracic Cancer Institute, Tongji University School of Medicine, No. 507 Zheng-Min Road, Shanghai 200433, P. R. China
| | - Fubo Chen
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Kun Zhang
- Central Laboratory, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| |
Collapse
|
15
|
Zhang Y, Du D, Fang C, Yu X, Fang Y, Liu X, Ou D, Yin H, Liu H, Wang T, Lu L, Li X, Zhang K. Epigenetics disruptions enabled by porphyrin-derived metal-organic frameworks disarm resistances to sonocatalytic ROS anti-tumor actions. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
16
|
Hou Q, Zhang K, Chen S, Chen J, Zhang Y, Gong N, Guo W, Fang C, Wang L, Jiang J, Dou J, Liang X, Yu J, Liang P. Physical & Chemical Microwave Ablation (MWA) Enabled by Nonionic MWA Nanosensitizers Repress Incomplete MWA-Arised Liver Tumor Recurrence. ACS NANO 2022; 16:5704-5718. [PMID: 35352557 DOI: 10.1021/acsnano.1c10714] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionic liquid (IL)-loaded or metal ions-enriched nanoparticles have been witnessed to assist microwave ablation (MWA) and heighten heat utilization for tumor treatment, which, however, inevitably brings about cell dys-homeostasis and severely endangers normal cells or tissues. In this report, a nonionic MWA sensitizer that encapsulates ethyl formate (EF) and doxorubicin (DOX) in liposomes (EF-DOX-Lips) was constructed to reinforce MWA and combined therapy against incomplete MWA-induced tumor recurrence. EF in EF-DOX-Lips as the nonionic liquid can perform like IL to accelerate energy transformation from electromagnetic energy to heat for strengthening MWA. More significantly, EF metabolite, that is, ethanol, also enables chemical ablation, which further enhances MWA. As well, the EF gasification-enhanced lipid rupture and cavitation can promote DOX delivery into a liver tumor for magnifying MWA & chemotherapy combined therapy. By virtue of these contributions, this nonionic MWA nanosensitizer exerts robust antitumor effects to inhibit tumor proliferation and angiogenesis for repressing tumor growth and recurrence or metastasis via downregulating the Epha2 gene and unconventional PI3K/Akt & MAPK signal pathways that the incomplete MWA activated, which provides an avenue to elevate an MWA-based antitumor outcome.
Collapse
Affiliation(s)
- Qidi Hou
- Department of Medical Ultrasound, Fifth Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, P. R. China
- Department of clinical laboratory, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, No. 1 New City Road, Dongguan 523808, P. R. China
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine. No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Sitong Chen
- Department of Medical Ultrasound, Fifth Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Jie Chen
- Central Laboratory and Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine. No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Yan Zhang
- Central Laboratory and Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine. No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Ningqiang Gong
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China
| | - Weisheng Guo
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University School of Medicine. No. 301 Yan-chang-zhong Road, Shanghai 200072, P. R. China
| | - Luo Wang
- Department of Medical Ultrasound, Fifth Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Jian Jiang
- Department of Medical Ultrasound, Fifth Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Jianping Dou
- Department of Medical Ultrasound, Fifth Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Xingjie Liang
- Laboratory of Controllable Nanopharmaceuticals, Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China
| | - Jie Yu
- Department of Medical Ultrasound, Fifth Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, P. R. China
| | - Ping Liang
- Department of Medical Ultrasound, Fifth Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing 100853, P. R. China
| |
Collapse
|
17
|
Peng Q, Qian Z, Gao H, Zhang K. Recent Advances in Transition-Metal Based Nanomaterials for Noninvasive Oncology Thermal Ablation and Imaging Diagnosis. Front Chem 2022; 10:899321. [PMID: 35494651 PMCID: PMC9047733 DOI: 10.3389/fchem.2022.899321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
With the developments of nanobiotechnology and nanomedicine, non-invasive thermal ablation with fewer side effects than traditional tumor treatment methods has received extensive attention in tumor treatment. Non-invasive thermal ablation has the advantages of non-invasiveness and fewer side effects compared with traditional treatment methods. However, the clinical efficiency and biological safety are low, which limits their clinical application. Transition-metal based nanomaterials as contrast agents have aroused increasing interest due to its unique optical properties, low toxicity, and high potentials in tumor diagnosis. Transition-metal based nanomaterials have high conversion efficiency of converting light energy into heat energy, good near-infrared absorption characteristics, which also can targetedly deliver those loaded drugs to tumor tissue, thereby improving the therapeutic effect and reducing the damage to the surrounding normal tissues and organs. This article mainly reviews the synthesis of transition-metal based nanomaterials in recent years, and discussed their applications in tumor thermal ablation and diagnosis, hopefully guiding the development of new transition metal-based nanomaterials in enhancing thermal ablation.
Collapse
Affiliation(s)
- Qiuxia Peng
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhangbo Qian
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Huali Gao
- Orthopedic Surgery Department, Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Huali Gao, ; Kun Zhang,
| | - Kun Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning, China
- Department of Medical Ultrasound and Central Laboratory, Shanghai Tenth People’s Hospital, Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Huali Gao, ; Kun Zhang,
| |
Collapse
|
18
|
Zhang J, Yang M, Fan X, Zhu M, Yin Y, Li H, Chen J, Qin S, Zhang H, Zhang K, Yu F. Biomimetic radiosensitizers unlock radiogenetics for local interstitial radiotherapy to activate systematic immune responses and resist tumor metastasis. J Nanobiotechnology 2022; 20:103. [PMID: 35246159 PMCID: PMC8895626 DOI: 10.1186/s12951-022-01324-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 02/06/2023] Open
Abstract
Background Similar to other local therapeutic methods, local interstitial radiotherapy (IRT) also suffers from insufficient systematic immune activation, resulting in tumor metastasis. Results Mn-based IRT radiosensitizers consisting of 131I, MnO2 and bovine serum albumin (BSA) (131I-MnO2-BSA) were engineered. Such Mn-based IRT radiosensitizers successfully unlocked radiogenetics to magnify systematic immune responses of local IRT via remodeling hypoxic and immunosuppressive microenvironments and resist tumor metastasis. The MnO2 in 131I-MnO2-BSA caused decomposition of H2O2 enriched in tumors to generate O2 for alleviating hypoxic microenvironment and removing tumor resistances to IRT. Concurrently, hypoxia mitigation by such radiosensitizers-unlocked radiogenetics can effectively remodel immunosuppressive microenvironment associated with regulatory T (Treg) cells and tumor-associated macrophages (TAMs) infiltration inhibition to induce immunogenic cell death (ICD), which, along with hypoxia mitigation, activates systematic immune responses. More intriguingly, 131I-MnO2-BSA-enabled radiogenetics can upregulate PD-L1 expression, which allows anti-PD-L1-combined therapy to exert a robust antitumor effect on primary tumors and elicit memory effects to suppress metastatic tumors in both tumor models (4T1 and CT26). Conclusions IRT radiosensitizer-unlocked radiogenetics and the corresponding design principle provide a general pathway to address the insufficient systematic immune responses of local IRT. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01324-w.
Collapse
Affiliation(s)
- Jiajia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Mengdie Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Xin Fan
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Mengqin Zhu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Yuzhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Hongyan Li
- Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Jie Chen
- Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Shanshan Qin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China
| | - Han Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| | - Kun Zhang
- Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Department of Medical Ultrasound and Central Laboratory, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China. .,Institute of Nuclear Medicine, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai, 200072, People's Republic of China.
| |
Collapse
|