1
|
Drążkowska K, Tomecki R, Tudek A. Purification of Enzymatically Active Xrn1 for Removal of Non-capped mRNAs from In Vitro Transcription Reactions and Evaluation of mRNA Decapping Status In Vivo. Methods Mol Biol 2025; 2863:81-105. [PMID: 39535706 DOI: 10.1007/978-1-0716-4176-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The cap is a 7-methylguanosine attached to the first messenger RNA (mRNA) nucleotide with a 5'-5' triphosphate bridge. This conserved eukaryotic modification confers stability to the transcripts and is essential for translation initiation. The specific mechanisms that govern transcript cytoplasmic longevity and translatability were always of substantial interest. Multiple works aimed at modeling mRNA decay mechanisms, including the onset of decapping, which is the rate-limiting step of mRNA decay. Additionally, with the recent advances in RNA-based vaccines, the importance of efficient synthesis of fully functional mRNAs has increased. Non-capped mRNAs arising during in vitro transcription are highly immunogenic, and multiple approaches were developed to reduce their levels. Efficient and low-cost methods for elimination of non-capped mRNAs in vitro are therefore essential to basic sciences and to pharmaceutical applications. Here, we present a protocol for heterologous expression and purification of catalytically active recombinant Xrn1 from Thermothelomyces (Myceliophthora) thermophilus (Tt_Xrn1). We also describe protocols needed to verify the enzyme quality.
Collapse
Affiliation(s)
- Karolina Drążkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Rafał Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
2
|
Ibrahim F, Mourelatos Z. Defining the True Native Ends of RNAs at Single-Molecule Level with TERA-Seq. Methods Mol Biol 2025; 2863:359-372. [PMID: 39535720 DOI: 10.1007/978-1-0716-4176-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Turnover of messenger RNAs (mRNAs) is a highly regulated process and serves to control expression of RNA molecules and to eliminate aberrant transcripts. Profiling mRNA decay using short-read sequencing methods that target either the 5' or 3' ends of RNAs, overlooks valuable information about the other end, which could provide significant insights into biological aspects and mechanisms of RNA decay. Oxford Nanopore Technology (ONT) is rapidly emerging as a powerful platform for direct sequencing of native, single-RNA molecules. However, as currently designed, the existing ONT platform is unable to sequence the very 5' ends of RNAs and is limited to polyadenylated molecules. Here, we present a detailed step-by-step experimental protocol for True End-to-end RNA Sequencing (TERA-Seq), a new method that addresses ONT's limitations, allowing accurate representation and characterization of RNAs at the level of single molecules. TERA-Seq describes both poly- and non-polyadenylated RNA molecules and accurately identifies their native ends by ligating uniquely designed adapters to the 5' ends (5TERA), the 3' ends (TERA3), or both ends (5TERA3) that are sequenced along with the transcripts.
Collapse
Affiliation(s)
- Fadia Ibrahim
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Zissimos Mourelatos
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Czarnocka-Cieciura A, Poznański J, Turtola M, Tomecki R, Krawczyk PS, Mroczek S, Orzeł W, Saha U, Jensen TH, Dziembowski A, Tudek A. Modeling of mRNA deadenylation rates reveal a complex relationship between mRNA deadenylation and decay. EMBO J 2024; 43:6525-6554. [PMID: 39394354 PMCID: PMC11649921 DOI: 10.1038/s44318-024-00258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
Complete cytoplasmic polyadenosine tail (polyA-tail) deadenylation is thought to be essential for initiating mRNA decapping and subsequent degradation. To investigate this prevalent model, we conducted direct RNA sequencing of S. cerevisiae mRNAs derived from chase experiments under steady-state and stress condition. Subsequently, we developed a numerical model based on a modified gamma distribution function, which estimated the transcriptomic deadenylation rate at 10 A/min. A simplified independent method, based on the delineation of quantile polyA-tail values, showed a correlation between the decay and deadenylation rates of individual mRNAs, which appeared consistent within functional transcript groups and associated with codon optimality. Notably, these rates varied during the stress response. Detailed analysis of ribosomal protein-coding mRNAs (RPG mRNAs), constituting 40% of the transcriptome, singled out this transcript group. While deadenylation and decay of RPG mRNAs accelerated under heat stress, their degradation could proceed even when deadenylation was blocked, depending entirely on ongoing nuclear export. Our findings support the general primary function of deadenylation in dictating the onset of decapping, while also demonstrating complex relations between these processes.
Collapse
Affiliation(s)
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Matti Turtola
- Department of Life Technologies, University of Turku, Biocity, Tykistökatu 6, 205240, Turku, Finland
| | - Rafał Tomecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Paweł S Krawczyk
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Seweryn Mroczek
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland
| | - Wiktoria Orzeł
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland
| | - Upasana Saha
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Torben Heick Jensen
- Aarhus University, Department of Molecular Biology and Genetics-Universitetsbyen 81, 8000, Aarhus, Denmark
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, Księcia Trojdena 4, 02-109, Warsaw, Poland.
- University of Warsaw, Faculty of Biology, Miecznikowa 1, 02-089, Warsaw, Poland.
| | - Agnieszka Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Adolfa Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Grab K, Fido M, Spiewla T, Warminski M, Jemielity J, Kowalska J. Aptamer-based assay for high-throughput substrate profiling of RNA decapping enzymes. Nucleic Acids Res 2024; 52:e100. [PMID: 39445825 PMCID: PMC11602136 DOI: 10.1093/nar/gkae919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Recent years have led to the identification of a number of enzymes responsible for RNA decapping. This has provided a basis for further research to identify their role, dependency and substrate specificity. However, the multiplicity of these enzymes and the complexity of their functions require advanced tools to study them. Here, we report a high-throughput fluorescence intensity assay based on RNA aptamers designed as substrates for decapping enzymes. Using a library of differently capped RNA probes we generated a decapping susceptibility heat map, which confirms previously reported substrate specificities of seven tested hydrolases and uncovers novel. We have also demonstrated the utility of our assay for evaluating inhibitors of viral decapping enzymes and performed kinetic studies of the decapping process. The assay may accelerate the characterization of new decapping enzymes, enable high-throughput screening of inhibitors and facilitate the development of molecular tools for a better understanding of RNA degradation pathways.
Collapse
Affiliation(s)
- Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Mateusz Fido
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, Żwirki i Wigury 93, 02-089, Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093, Warsaw, Poland
| |
Collapse
|
5
|
Kulkarni S, Morrissey A, Sebastian A, Giardine B, Smith C, Akinniyi OT, Keller CA, Arnaoutov A, Albert I, Mahony S, Reese JC. Human CCR4-NOT globally regulates gene expression and is a novel silencer of retrotransposon activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612038. [PMID: 39314347 PMCID: PMC11419117 DOI: 10.1101/2024.09.10.612038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
CCR4-NOT regulates multiple steps in gene regulation and has been well studied in budding yeast, but much less is known about the human complex. Auxin-induced degradation was used to rapidly deplete the scaffold subunit CNOT1, and CNOT4, to characterize the functions of human CCR4-NOT in gene regulation. Depleting CNOT1 increased RNA levels and caused a widespread decrease in RNA decay. In contrast, CNOT4 depletion only modestly changed steady-state RNA levels and, surprisingly, led to a global acceleration in mRNA decay. Further, depleting either subunit resulted in a global increase in RNA synthesis. In contrast to most of the genome, the transcription of KRAB-Zinc-Finger-protein (KZNFs) genes, especially those on chromosome 19, was repressed. KZNFs are transcriptional repressors of retrotransposable elements (rTEs), and consistent with the decreased KZNFs expression, rTEs, mainly Long Interspersed Nuclear Elements (LINEs), were activated. These data establish CCR4-NOT as a global regulator of gene expression and a novel silencer of rTEs.
Collapse
|
6
|
Chen TW, Liao HW, Noble M, Siao JY, Cheng YH, Chiang WC, Lo YT, Chang CT. Human DCP1 is crucial for mRNA decapping and possesses paralog-specific gene regulating functions. eLife 2024; 13:RP94811. [PMID: 39485278 PMCID: PMC11530239 DOI: 10.7554/elife.94811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024] Open
Abstract
The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.
Collapse
Affiliation(s)
- Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Hsiao-Wei Liao
- Department of Pharmacy, National Yang Ming Chiao Tung UniversityTaipei CityTaiwan
| | - Michelle Noble
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
| | - Jing-Yi Siao
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yu-Hsuan Cheng
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Wei-Chung Chiang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yi-Tzu Lo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental BiologyTübingenGermany
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
7
|
Zhang J, Wu Q, Xie Y, Li F, Wei H, Jiang Y, Qiao Y, Li Y, Sun Y, Huang H, Ge M, Zhao D, Dong Z, Liu K. Ribonucleotide reductase small subunit M2 promotes the proliferation of esophageal squamous cell carcinoma cells via HuR-mediated mRNA stabilization. Acta Pharm Sin B 2024; 14:4329-4344. [PMID: 39525580 PMCID: PMC11544187 DOI: 10.1016/j.apsb.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/23/2024] [Indexed: 11/16/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), a malignancy of the digestive system, is highly prevalent and the primary cause of cancer-related deaths worldwide due to the lack of early diagnostic biomarkers and effective therapeutic targets. Dysregulated ribonucleotide reductase (RNR) expression has been confirmed to be causally linked to tumorigenesis. This study demonstrated that ribonucleotide reductase small subunit M2 (RRM2) is significantly upregulated in ESCC tissue and that its expression is negatively correlated with clinical outcomes. Mechanistically, HuR promotes RRM2 mRNA stabilization by binding to the adenine/uridine (AU)-rich elements (AREs) within the 3'UTR, resulting in persistent overexpression of RRM2. Furthermore, bifonazole is identified as an inhibitor of HuR via computational screening and molecular docking analysis. Bifonazole disrupts HuR-ARE interactions by competitively binding to HuR at F65, R97, I103, and R153 residues, resulting in reduced RRM2 expression. Furthermore, bifonazole exhibited antitumor effects on ESCC patient-derived xenograft (PDX) models by decreasing RRM2 expression and the dNTP pool. In summary, this study reveals the interaction network among HuR, RRM2, and bifonazole and demonstrated that bifonazole is a potential therapeutic compound for ESCC through inhibition of the HuR/RRM2 axis.
Collapse
Affiliation(s)
- Jing Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Qiong Wu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yifei Xie
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
| | - Feng Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Huifang Wei
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Yan Qiao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yinhua Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Yanan Sun
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Han Huang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Mengmeng Ge
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Dengyun Zhao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
| | - Zigang Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China
- Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou 450052, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450000, China
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou 450000, China
| |
Collapse
|
8
|
Hulscher N, McCullough PA, Marotta DE. Strategic deactivation of mRNA COVID-19 vaccines: New applications for siRNA therapy and RIBOTACs. J Gene Med 2024; 26:e3733. [PMID: 39183706 DOI: 10.1002/jgm.3733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
The rapid development and authorization of messenger ribonucleic acid (mRNA) vaccines by Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) in 2020 marked a significant milestone in human mRNA product application, overcoming previous obstacles such as mRNA instability and immunogenicity. This paper reviews the strategic modifications incorporated into these vaccines to enhance mRNA stability and translation efficiency, such as the inclusion of nucleoside modifications and optimized mRNA design elements including the 5' cap and poly(A) tail. We highlight emerging concerns regarding the wide systemic biodistribution of these mRNA vaccines leading to prolonged inflammatory responses and other safety concerns. The regulatory framework guiding the biodistribution studies is pivotal in assessing the safety profiles of new mRNA formulations in use today. The stability of mRNA vaccines, their pervasive distribution, and the longevity of the encapsulated mRNA along with unlimited production of the damaging and potentially lethal spike (S) protein call for strategies to mitigate potential adverse effects. Here, we explore the potential of small interfering RNA (siRNA) and ribonuclease targeting chimeras (RIBOTACs) as promising solutions to target, inactivate, and degrade residual and persistent vaccine mRNA, thereby potentially preventing uncontrolled S protein production and reducing toxicity. The targeted nature of siRNA and RIBOTACs allows for precise intervention, offering a path to prevent and mitigate adverse events of mRNA-based therapies. This review calls for further research into siRNA and RIBOTAC applications as antidotes and detoxication products for mRNA vaccine technology.
Collapse
|
9
|
Li J, Wen W, Li J, Liu T, Sun J, Chen H. CNOT7 regulates lipid deposition in nonalcoholic fatty liver disease. Biochem Biophys Res Commun 2024; 721:150003. [PMID: 38772212 DOI: 10.1016/j.bbrc.2024.150003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has ascended with the increasing number of metabolic diseases such as obesity and diabetes, which will bring great medical burden to society. At present, multiple scientific experiments have found that the CCR4-NOT complex can participate in regulating obesity and energy metabolism. This study is designed to explore the role and mechanism of CCR4-NOT transcription complex subunit 7 (CNOT7), a subunit of the CCR4-NOT complex in liver lipid deposition. METHODS To establish the NAFLD cell model, palmitic acid (PA) was utilized to stimulate HepG2 cells and LO2 cells, promoting intracellular lipid deposition. CNOT7 was knockdown by siRNA and lentivirus to evaluate the effect of CNOT7 in NAFLD. RESULTS Our results demonstrated that the expression of CNOT7 was increased in the NAFLD cell model. After knocking down CNOT7, the lipid deposition declined in HepG2 or LO2 cells treated by PA reduced. We found the lipid synthesis genes and the lipid uptake and transport factors in the CNOT7 knockdown group were significantly downregulated compared to the non-knockdown group. Furthermore, knockdown of CNOT7 might promote fatty acid oxidation. CONCLUSION Knocking down CNOT7 can improve lipid deposition and CNOT7 may be a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Jiahui Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weiheng Wen
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jitong Li
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiancai Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jia Sun
- Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Hong Chen
- Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Li F, Li W. Readers of RNA Modification in Cancer and Their Anticancer Inhibitors. Biomolecules 2024; 14:881. [PMID: 39062595 PMCID: PMC11275166 DOI: 10.3390/biom14070881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer treatment has always been a challenge for humanity. The inadequacies of current technologies underscore the limitations of our efforts against this disease. Nevertheless, the advent of targeted therapy has introduced a promising avenue, furnishing us with more efficacious tools. Consequently, researchers have turned their attention toward epigenetics, offering a novel perspective in this realm. The investigation of epigenetics has brought RNA readers to the forefront, as they play pivotal roles in recognizing and regulating RNA functions. Recently, the development of inhibitors targeting these RNA readers has emerged as a focal point in research and holds promise for further strides in targeted therapy. In this review, we comprehensively summarize various types of inhibitors targeting RNA readers, including non-coding RNA (ncRNA) inhibitors, small-molecule inhibitors, and other potential inhibitors. We systematically elucidate their mechanisms in suppressing cancer progression by inhibiting readers, aiming to present inhibitors of readers at the current stage and provide more insights into the development of anticancer drugs.
Collapse
Affiliation(s)
| | - Wenjin Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|
11
|
Lee YS, Levdansky Y, Jung Y, Kim VN, Valkov E. Deadenylation kinetics of mixed poly(A) tails at single-nucleotide resolution. Nat Struct Mol Biol 2024; 31:826-834. [PMID: 38374449 PMCID: PMC11102861 DOI: 10.1038/s41594-023-01187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/24/2023] [Indexed: 02/21/2024]
Abstract
Shortening of messenger RNA poly(A) tails, or deadenylation, is a rate-limiting step in mRNA decay and is highly regulated during gene expression. The incorporation of non-adenosines in poly(A) tails, or 'mixed tailing', has been observed in vertebrates and viruses. Here, to quantitate the effect of mixed tails, we mathematically modeled deadenylation reactions at single-nucleotide resolution using an in vitro deadenylation system reconstituted with the complete human CCR4-NOT complex. Applying this model, we assessed the disrupting impact of single guanosine, uridine or cytosine to be equivalent to approximately 6, 8 or 11 adenosines, respectively. CCR4-NOT stalls at the 0, -1 and -2 positions relative to the non-adenosine residue. CAF1 and CCR4 enzyme subunits commonly prefer adenosine but exhibit distinct sequence selectivities and stalling positions. Our study provides an analytical framework to monitor deadenylation and reveals the molecular basis of tail sequence-dependent regulation of mRNA stability.
Collapse
Affiliation(s)
- Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Yoonseok Jung
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
12
|
Mofayezi A, Jadaliha M, Zangeneh FZ, Khoddami V. Poly(A) tale: From A to A; RNA polyadenylation in prokaryotes and eukaryotes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1837. [PMID: 38485452 DOI: 10.1002/wrna.1837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Ahmadreza Mofayezi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- ReNAP Therapeutics, Tehran, Iran
| | - Mahdieh Jadaliha
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Vahid Khoddami
- ReNAP Therapeutics, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Delaunay S, Helm M, Frye M. RNA modifications in physiology and disease: towards clinical applications. Nat Rev Genet 2024; 25:104-122. [PMID: 37714958 DOI: 10.1038/s41576-023-00645-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/17/2023]
Abstract
The ability of chemical modifications of single nucleotides to alter the electrostatic charge, hydrophobic surface and base pairing of RNA molecules is exploited for the clinical use of stable artificial RNAs such as mRNA vaccines and synthetic small RNA molecules - to increase or decrease the expression of therapeutic proteins. Furthermore, naturally occurring biochemical modifications of nucleotides regulate RNA metabolism and function to modulate crucial cellular processes. Studies showing the mechanisms by which RNA modifications regulate basic cell functions in higher organisms have led to greater understanding of how aberrant RNA modification profiles can cause disease in humans. Together, these basic science discoveries have unravelled the molecular and cellular functions of RNA modifications, have provided new prospects for therapeutic manipulation and have led to a range of innovative clinical approaches.
Collapse
Affiliation(s)
- Sylvain Delaunay
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michaela Frye
- Deutsches Krebsforschungszentrum (DKFZ), Division of Mechanisms Regulating Gene Expression, Heidelberg, Germany.
| |
Collapse
|
14
|
Wang L, Li H, Lei Z, Jeong DH, Cho J. The CARBON CATABOLITE REPRESSION 4A-mediated RNA deadenylation pathway acts on the transposon RNAs that are not regulated by small RNAs. THE NEW PHYTOLOGIST 2024; 241:1636-1645. [PMID: 38009859 DOI: 10.1111/nph.19435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Transposable elements (TEs) are mobile genetic elements that can impair the host genome stability and integrity. It has been well documented that activated transposons in plants are suppressed by small interfering (si) RNAs. However, transposon repression by the cytoplasmic RNA surveillance system is unknown. Here, we show that mRNA deadenylation is critical for controlling transposons in Arabidopsis. Trimming of poly(A) tail is a rate-limiting step that precedes the RNA decay and is primarily mediated by the CARBON CATABOLITE REPRESSION 4 (CCR4)-NEGATIVE ON TATA-LESS (NOT) complex. We found that the loss of CCR4a leads to strong derepression and mobilization of TEs in Arabidopsis. Intriguingly, CCR4a regulates a largely distinct set of TEs from those controlled by RNA-dependent RNA Polymerase 6 (RDR6), a key enzyme that produces cytoplasmic siRNAs. This indicates that the cytoplasmic RNA quality control mechanism targets the TEs that are poorly recognized by the previously well-characterized RDR6-mediated pathway, and thereby augments the host genome stability. Our study suggests a hitherto unknown mechanism for transposon repression mediated by RNA deadenylation and unveils a complex nature of the host's strategy to maintain the genome integrity.
Collapse
Affiliation(s)
- Ling Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Hui Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Zhen Lei
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Dong-Hoon Jeong
- Department of Life Science, Hallym University, Chuncheon, 24252, Korea
- Multidisciplinary Genome Institute, Hallym University, Chuncheon, 24252, Korea
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| |
Collapse
|
15
|
Lu L, Shi Y, Wei B, Li W, Yu X, Zhao Y, Yu D, Sun M. YTHDF3 modulates the Cbln1 level by recruiting BTG2 and is implicated in the impaired cognition of prenatal hypoxia offspring. iScience 2024; 27:108703. [PMID: 38205248 PMCID: PMC10776956 DOI: 10.1016/j.isci.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The "Fetal Origins of Adult Disease (FOAD)" hypothesis holds that adverse factors during pregnancy can increase the risk of chronic diseases in offspring. Here, we investigated the effects of prenatal hypoxia (PH) on brain structure and function in adult offspring and explored the role of the N6-methyladenosine (m6A) pathway. The results suggest that abnormal cognition in PH offspring may be related to the dysregulation of the m6A pathway, specifically increased levels of YTHDF3 in the hippocampus. YTHDF3 interacts with BTG2 and is involved in the decay of Cbln1 mRNA, leading to the down-regulation of Cbln1 expression. Deficiency of Cbln1 may contribute to abnormal synaptic function, which in turn causes cognitive impairment in PH offspring. This study provides a scientific clues for understanding the mechanisms of impaired cognition in PH offspring and provides a theoretical basis for the treatment of cognitive impairment in offspring exposed to PH.
Collapse
Affiliation(s)
- Likui Lu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yajun Shi
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Bin Wei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Weisheng Li
- Department of Gynaecology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, China
| | - Xi Yu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic, Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, Shandong, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou City, Jiangsu, China
- Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
16
|
Chang CT. Analysis of Human Endogenous mRNA Deadenylation Complexes by High-Resolution Gel Electrophoresis. Methods Mol Biol 2024; 2723:47-54. [PMID: 37824063 DOI: 10.1007/978-1-0716-3481-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In eukaryotic cells, poly(A) tails stabilize mRNA molecules and play a pivotal role in enhancing translational efficiency. Consequently, the enzymatic shortening of these poly(A) tails by deadenylase enzymes has a critical role in post-transcriptional gene regulation. However, deadenylases are usually large, multisubunit, and multifunctional complexes, which complicates their biochemical analysis. This chapter presents a methodology for isolating human deadenylation complexes from endogenous sources and conducting an in vitro deadenylation assay to examine their enzymatic activity. The reactions involving fluorescently labeled synthetic polyadenylated RNAs are subsequently analyzed using high-resolution denaturing polyacrylamide gel electrophoresis.
Collapse
Affiliation(s)
- Chung-Te Chang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
17
|
Chen B, Huang R, Xia T, Wang C, Xiao X, Lu S, Chen X, Ouyang Y, Deng X, Miao J, Zhao C, Wang L. The m6A reader IGF2BP3 preserves NOTCH3 mRNA stability to sustain Notch3 signaling and promote tumor metastasis in nasopharyngeal carcinoma. Oncogene 2023; 42:3564-3574. [PMID: 37853162 PMCID: PMC10673713 DOI: 10.1038/s41388-023-02865-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Metastasis remains the major cause of treatment failure in patients with nasopharyngeal carcinoma (NPC), in which sustained activation of the Notch signaling plays a critical role. N6-Methyladenosine (m6A)-mediated post-transcriptional regulation is involved in fine-tuning the Notch signaling output; however, the post-transcriptional mechanisms underlying NPC metastasis remain poorly understood. In the present study, we report that insulin-like growth factor 2 mRNA-binding proteins 3 (IGF2BP3) serves as a key m6A reader in NPC. IGF2BP3 expression was significantly upregulated in metastatic NPC and correlated with poor prognosis in patients with NPC. IGF2BP3 overexpression promoted, while IGF2BP3 downregulation inhibited tumor metastasis and the stemness phenotype of NPC cells in vitro and in vivo. Mechanistically, IGF2BP3 maintains NOTCH3 mRNA stability via suppression of CCR4-NOT complex-mediated deadenylation in an m6A-dependent manner, which sustains Notch3 signaling activation and increases the transcription of stemness-associated downstream genes, eventually promoting tumor metastasis. Our findings highlight the pro-metastatic function of the IGF2BP3/Notch3 axis and revealed the precise role of IGF2BP3 in post-transcriptional regulation of NOTCH3, suggesting IGF2BP3 as a novel prognostic biomarker and potential therapeutic target in NPC metastasis.
Collapse
Affiliation(s)
- Boyu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Runda Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Tianliang Xia
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Chunyang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510060, P. R. China
| | - Xiao Xiao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shunzhen Lu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiangfu Chen
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Ying Ouyang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Xiaowu Deng
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Jingjing Miao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Chong Zhao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| | - Lin Wang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.
| |
Collapse
|
18
|
Tomecki R, Drazkowska K, Kobylecki K, Tudek A. SKI complex: A multifaceted cytoplasmic RNA exosome cofactor in mRNA metabolism with links to disease, developmental processes, and antiviral responses. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1795. [PMID: 37384835 DOI: 10.1002/wrna.1795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 07/01/2023]
Abstract
RNA stability and quality control are integral parts of gene expression regulation. A key factor shaping eukaryotic transcriptomes, mainly via 3'-5' exoribonucleolytic trimming or degradation of diverse transcripts in nuclear and cytoplasmic compartments, is the RNA exosome. Precise exosome targeting to various RNA molecules requires strict collaboration with specialized auxiliary factors, which facilitate interactions with its substrates. The predominant class of cytoplasmic RNA targeted by the exosome are protein-coding transcripts, which are carefully scrutinized for errors during translation. Normal, functional mRNAs are turned over following protein synthesis by the exosome or by Xrn1 5'-3'-exonuclease, acting in concert with Dcp1/2 decapping complex. In turn, aberrant transcripts are eliminated by dedicated surveillance pathways, triggered whenever ribosome translocation is impaired. Cytoplasmic 3'-5' mRNA decay and surveillance are dependent on the tight cooperation between the exosome and its evolutionary conserved co-factor-the SKI (superkiller) complex (SKIc). Here, we summarize recent findings from structural, biochemical, and functional studies of SKIc roles in controlling cytoplasmic RNA metabolism, including links to various cellular processes. Mechanism of SKIc action is illuminated by presentation of its spatial structure and details of its interactions with exosome and ribosome. Furthermore, contribution of SKIc and exosome to various mRNA decay pathways, usually converging on recycling of ribosomal subunits, is delineated. A crucial physiological role of SKIc is emphasized by describing association between its dysfunction and devastating human disease-a trichohepatoenteric syndrome (THES). Eventually, we discuss SKIc functions in the regulation of antiviral defense systems, cell signaling and developmental transitions, emerging from interdisciplinary investigations. This article is categorized under: RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Turnover and Surveillance > Regulation of RNA Stability RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Rafal Tomecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Karolina Drazkowska
- Laboratory of Epitranscriptomics, Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Kamil Kobylecki
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tudek
- Laboratory of RNA Processing and Decay, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
20
|
Li Y, Wang M, Peng X, Yang Y, Chen Q, Liu J, She Q, Tan J, Lou C, Liao Z, Li X. mRNA vaccine in cancer therapy: Current advance and future outlook. Clin Transl Med 2023; 13:e1384. [PMID: 37612832 PMCID: PMC10447885 DOI: 10.1002/ctm2.1384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/25/2023] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines are a relatively new class of vaccines that have shown great promise in the immunotherapy of a wide variety of infectious diseases and cancer. In the past 2 years, SARS-CoV-2 mRNA vaccines have contributed tremendously against SARS-CoV2, which has prompted the arrival of the mRNA vaccine research boom, especially in the research of cancer vaccines. Compared with conventional cancer vaccines, mRNA vaccines have significant advantages, including efficient production of protective immune responses, relatively low side effects and lower cost of acquisition. In this review, we elaborated on the development of cancer vaccines and mRNA cancer vaccines, as well as the potential biological mechanisms of mRNA cancer vaccines and the latest progress in various tumour treatments, and discussed the challenges and future directions for the field.
Collapse
Affiliation(s)
- Youhuai Li
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Mina Wang
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
- Department of Acupuncture and MoxibustionBeijing Hospital of Traditional Chinese MedicineCapital Medical UniversityBeijing Key Laboratory of Acupuncture NeuromodulationBeijingChina
| | - Xueqiang Peng
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Yingying Yang
- Clinical Research CenterShanghai Key Laboratory of Maternal Fetal MedicineShanghai Institute of Maternal‐Fetal Medicine and Gynecologic OncologyShanghai First Maternity and Infant HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qishuang Chen
- Graduate SchoolBeijing University of Chinese MedicineBeijingChina
| | - Jiaxing Liu
- Department of General SurgeryThe Fourth Affiliated HospitalChina Medical UniversityShenyangChina
| | - Qing She
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Jichao Tan
- Department of Breast SurgeryBaoji Municipal Central HospitalWeibin DistrictBaojiShaanxiChina
| | - Chuyuan Lou
- Department of OphthalmologyXi'an People's Hospital (Xi'an Fourth Hospital)Xi'anShaanxiChina
| | - Zehuan Liao
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
- Department of Microbiology, Tumor and Cell Biology (MTC)Karolinska InstitutetSweden
| | - Xuexin Li
- Department of Medical Biochemistry and Biophysics (MBB)Karolinska InstitutetBiomedicumStockholmSweden
| |
Collapse
|
21
|
Lodde V, Floris M, Zoroddu E, Zarbo IR, Idda ML. RNA-binding proteins in autoimmunity: From genetics to molecular biology. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1772. [PMID: 36658783 DOI: 10.1002/wrna.1772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023]
Abstract
Autoimmune diseases (ADs) are chronic pathologies generated by the loss of immune tolerance to the body's own cells and tissues. There is growing recognition that RNA-binding proteins (RBPs) critically govern immunity in healthy and pathological conditions by modulating gene expression post-transcriptionally at all levels: nuclear mRNA splicing and modification, export to the cytoplasm, as well as cytoplasmic mRNA transport, storage, editing, stability, and translation. Despite enormous efforts to identify new therapies for ADs, definitive solutions are not yet available in many instances. Recognizing that many ADs have a strong genetic component, we have explored connections between the molecular biology and the genetics of RBPs in ADs. Here, we review the genetics and molecular biology of RBPs in four major ADs, multiple sclerosis (MS), type 1 diabetes mellitus (T1D), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We anticipate that gaining insights into the genetics and biology of ADs can facilitate the discovery of new therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Enrico Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ignazio Roberto Zarbo
- Department of Medical, Surgical and Experimental Sciences, University of Sassari - Neurology Unit Azienza Ospedaliera Universitaria (AOU), Sassari, Italy
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), Sassari, Italy
| |
Collapse
|
22
|
Nanjappa DP, De Saffel H, Kalladka K, Arjuna S, Babu N, Prasad K, Sips P, Chakraborty A. Poly (A)-specific ribonuclease deficiency impacts oogenesis in zebrafish. Sci Rep 2023; 13:10026. [PMID: 37340076 DOI: 10.1038/s41598-023-37226-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/18/2023] [Indexed: 06/22/2023] Open
Abstract
Poly (A)-specific ribonuclease (PARN) is the most important 3'-5'exonuclease involved in the process of deadenylation, the removal of poly (A) tails of mRNAs. Although PARN is primarily known for its role in mRNA stability, recent studies suggest several other functions of PARN including a role in telomere biology, non-coding RNA maturation, trimming of miRNAs, ribosome biogenesis and TP53 function. Moreover, PARN expression is de-regulated in many cancers, including solid tumours and hematopoietic malignancies. To better understand the in vivo role of PARN, we used a zebrafish model to study the physiological consequences of Parn loss-of-function. Exon 19 of the gene, which partially codes for the RNA binding domain of the protein, was targeted for CRISPR-Cas9-directed genome editing. Contrary to the expectations, no developmental defects were observed in the zebrafish with a parn nonsense mutation. Intriguingly, the parn null mutants were viable and fertile, but turned out to only develop into males. Histological analysis of the gonads in the mutants and their wild type siblings revealed a defective maturation of gonadal cells in the parn null mutants. The results of this study highlight yet another emerging function of Parn, i.e., its role in oogenesis.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Hanna De Saffel
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Krithika Kalladka
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Srividya Arjuna
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Kishan Prasad
- Department of Pathology, KS Hegde Medical Academy, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education & Research, NITTE (Deemed to be University), Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
23
|
Walgrave H, Penning A, Tosoni G, Snoeck S, Davie K, Davis E, Wolfs L, Sierksma A, Mars M, Bu T, Thrupp N, Zhou L, Moechars D, Mancuso R, Fiers M, Howden AJ, De Strooper B, Salta E. microRNA-132 regulates gene expression programs involved in microglial homeostasis. iScience 2023; 26:106829. [PMID: 37250784 PMCID: PMC10213004 DOI: 10.1016/j.isci.2023.106829] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
microRNA-132 (miR-132), a known neuronal regulator, is one of the most robustly downregulated microRNAs (miRNAs) in the brain of Alzheimer's disease (AD) patients. Increasing miR-132 in AD mouse brain ameliorates amyloid and Tau pathologies, and also restores adult hippocampal neurogenesis and memory deficits. However, the functional pleiotropy of miRNAs requires in-depth analysis of the effects of miR-132 supplementation before it can be moved forward for AD therapy. We employ here miR-132 loss- and gain-of-function approaches using single-cell transcriptomics, proteomics, and in silico AGO-CLIP datasets to identify molecular pathways targeted by miR-132 in mouse hippocampus. We find that miR-132 modulation significantly affects the transition of microglia from a disease-associated to a homeostatic cell state. We confirm the regulatory role of miR-132 in shifting microglial cell states using human microglial cultures derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Amber Penning
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Giorgia Tosoni
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Sarah Snoeck
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Kristofer Davie
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Brain & Disease Research, Bioinformatics Core Facility, 3000 Leuven, Belgium
| | - Emma Davis
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Leen Wolfs
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Mayte Mars
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| | - Taofeng Bu
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Nicola Thrupp
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Lujia Zhou
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Diederik Moechars
- Discovery Neuroscience, Janssen Research and Development, Division of Janssen Pharmaceutica NV, 2340 Beerse, Belgium
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Mark Fiers
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
| | - Andrew J.M. Howden
- UK Dementia Research Institute, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute (LBI), 3000 Leuven, Belgium
- UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, 1105 BA Amsterdam, the Netherlands
| |
Collapse
|
24
|
Pavanello L, Hall M, Winkler GS. Regulation of eukaryotic mRNA deadenylation and degradation by the Ccr4-Not complex. Front Cell Dev Biol 2023; 11:1153624. [PMID: 37152278 PMCID: PMC10157403 DOI: 10.3389/fcell.2023.1153624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/20/2023] [Indexed: 05/09/2023] Open
Abstract
Accurate and precise regulation of gene expression programmes in eukaryotes involves the coordinated control of transcription, mRNA stability and translation. In recent years, significant progress has been made about the role of sequence elements in the 3' untranslated region for the regulation of mRNA degradation, and a model has emerged in which recruitment of the Ccr4-Not complex is the critical step in the regulation of mRNA decay. Recruitment of the Ccr4-Not complex to a target mRNA results in deadenylation mediated by the Caf1 and Ccr4 catalytic subunits of the complex. Following deadenylation, the 5' cap structure is removed, and the mRNA subjected to 5'-3' degradation. Here, the role of the human Ccr4-Not complex in cytoplasmic deadenylation of mRNA is reviewed, with a particular focus on mechanisms of its recruitment to mRNA by sequence motifs in the 3' untranslated region, codon usage, as well as general mechanisms involving the poly(A) tail.
Collapse
Affiliation(s)
- Lorenzo Pavanello
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Michael Hall
- School of Pharmacy, University of Nottingham, University Park, Nottingham, United Kingdom
| | | |
Collapse
|
25
|
Park J, Kim M, Yi H, Baeg K, Choi Y, Lee YS, Lim J, Kim VN. Short poly(A) tails are protected from deadenylation by the LARP1-PABP complex. Nat Struct Mol Biol 2023; 30:330-338. [PMID: 36849640 DOI: 10.1038/s41594-023-00930-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 01/10/2023] [Indexed: 03/01/2023]
Abstract
Deadenylation generally constitutes the first and pivotal step in eukaryotic messenger RNA decay. Despite its importance in posttranscriptional regulations, the kinetics of deadenylation and its regulation remain largely unexplored. Here we identify La ribonucleoprotein 1, translational regulator (LARP1) as a general decelerator of deadenylation, which acts mainly in the 30-60-nucleotide (nt) poly(A) length window. We measured the steady-state and pulse-chased distribution of poly(A)-tail length, and found that deadenylation slows down in the 30-60-nt range. LARP1 associates preferentially with short tails and its depletion results in accelerated deadenylation specifically in the 30-60-nt range. Consistently, LARP1 knockdown leads to a global reduction of messenger RNA abundance. LARP1 interferes with the CCR4-NOT-mediated deadenylation in vitro by forming a ternary complex with poly(A)-binding protein (PABP) and poly(A). Together, our work reveals a dynamic nature of deadenylation kinetics and a role of LARP1 as a poly(A) length-specific barricade that creates a threshold for deadenylation.
Collapse
Affiliation(s)
- Joha Park
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Myeonghwan Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Stanford University School of Medicine, Stanford, CA, USA
| | - Kyungmin Baeg
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
| | - Yongkuk Choi
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Young-Suk Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Jaechul Lim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea
- School of Biological Sciences, Seoul National University, Seoul, Korea
- Yale School of Medicine, New Haven, CT, USA
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Korea.
- School of Biological Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
26
|
Wenzlow N, Mills D, Byrd J, Warren M, Long MT. Review of the current and potential use of biological and molecular methods for the estimation of the postmortem interval in animals and humans. J Vet Diagn Invest 2023; 35:97-108. [PMID: 36744749 PMCID: PMC9999395 DOI: 10.1177/10406387231153930] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We provide here an overview of the state of applied techniques in the estimation of the early period of the postmortem interval (PMI). The biological methods included consist of body cooling, CSF potassium, body cooling combined with CSF potassium, and tissue autolysis. For each method, we present its application in human and veterinary medicine and provide current methodology, strengths, and weaknesses, as well as target areas for improvement. We examine current and future molecular methods as they pertain to DNA and primarily to messenger RNA degradation for the estimation of the PMI, as well as the use of RNA in aging wounds, aging blood stains, and the identification of body fluids. Various types of RNA have different lengths, structures, and functions in cells. These differences in RNAs determine various intrinsic properties, such as their half-lives in cells, and, hence, their decay rate as well as their unique use for specific forensic tests. Future applications and refinements of RNA-based techniques provide opportunities for the use of molecular methods in the estimation of PMI and other general forensic applications.
Collapse
Affiliation(s)
- Nanny Wenzlow
- Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, LA, USA
| | - DeEtta Mills
- Department of Biological Sciences and International Forensic Research Institute, Florida International University, Miami, FL, USA
| | - Jason Byrd
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Mike Warren
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Dave P, Roth G, Griesbach E, Mateju D, Hochstoeger T, Chao JA. Single-molecule imaging reveals translation-dependent destabilization of mRNAs. Mol Cell 2023; 83:589-606.e6. [PMID: 36731471 PMCID: PMC9957601 DOI: 10.1016/j.molcel.2023.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 02/04/2023]
Abstract
The relationship between mRNA translation and decay is incompletely understood, with conflicting reports suggesting that translation can either promote decay or stabilize mRNAs. The effect of translation on mRNA decay has mainly been studied using ensemble measurements and global transcription and translation inhibitors, which can have pleiotropic effects. We developed a single-molecule imaging approach to control the translation of a specific transcript that enabled simultaneous measurement of translation and mRNA decay. Our results demonstrate that mRNA translation reduces mRNA stability, and mathematical modeling suggests that this process is dependent on ribosome flux. Furthermore, our results indicate that miRNAs mediate efficient degradation of both translating and non-translating target mRNAs and reveal a predominant role for mRNA degradation in miRNA-mediated regulation. Simultaneous observation of translation and decay of single mRNAs provides a framework to directly study how these processes are interconnected in cells.
Collapse
Affiliation(s)
- Pratik Dave
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Gregory Roth
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Esther Griesbach
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Daniel Mateju
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Tobias Hochstoeger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; University of Basel, 4003 Basel, Switzerland
| | - Jeffrey A Chao
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland.
| |
Collapse
|
28
|
Sun H, Zhang Y, Wang G, Yang W, Xu Y. mRNA-Based Therapeutics in Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15020622. [PMID: 36839944 PMCID: PMC9964383 DOI: 10.3390/pharmaceutics15020622] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Over the past two decades, significant technological innovations have led to messenger RNA (mRNA) becoming a promising option for developing prophylactic and therapeutic vaccines, protein replacement therapies, and genome engineering. The success of the two COVID-19 mRNA vaccines has sparked new enthusiasm for other medical applications, particularly in cancer treatment. In vitro-transcribed (IVT) mRNAs are structurally designed to resemble naturally occurring mature mRNA. Delivery of IVT mRNA via delivery platforms such as lipid nanoparticles allows host cells to produce many copies of encoded proteins, which can serve as antigens to stimulate immune responses or as additional beneficial proteins for supplements. mRNA-based cancer therapeutics include mRNA cancer vaccines, mRNA encoding cytokines, chimeric antigen receptors, tumor suppressors, and other combination therapies. To better understand the current development and research status of mRNA therapies for cancer treatment, this review focused on the molecular design, delivery systems, and clinical indications of mRNA therapies in cancer.
Collapse
Affiliation(s)
- Han Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ge Wang
- Department of Oral Maxillofacial & Head and Neck Oncology, National Center of Stomatology, National Clinical Research Center for Oral Disease, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wen Yang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingjie Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Correspondence:
| |
Collapse
|
29
|
Weng YT, Chang YM, Chern Y. The Impact of Dysregulated microRNA Biogenesis Machinery and microRNA Sorting on Neurodegenerative Diseases. Int J Mol Sci 2023; 24:ijms24043443. [PMID: 36834853 PMCID: PMC9959302 DOI: 10.3390/ijms24043443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs involved in the differentiation, development, and function of cells in the body by targeting the 3'- untranslated regions (UTR) of mRNAs for degradation or translational inhibition. miRNAs not only affect gene expression inside the cells but also, when sorted into exosomes, systemically mediate the communication between different types of cells. Neurodegenerative diseases (NDs) are age-associated, chronic neurological diseases characterized by the aggregation of misfolded proteins, which results in the progressive degeneration of selected neuronal population(s). The dysregulation of biogenesis and/or sorting of miRNAs into exosomes was reported in several NDs, including Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Alzheimer's disease (AD). Many studies support the possible roles of dysregulated miRNAs in NDs as biomarkers and therapeutic treatments. Understanding the molecular mechanisms underlying the dysregulated miRNAs in NDs is therefore timely and important for the development of diagnostic and therapeutic interventions. In this review, we focus on the dysregulated miRNA machinery and the role of RNA-binding proteins (RBPs) in NDs. The tools that are available to identify the target miRNA-mRNA axes in NDs in an unbiased manner are also discussed.
Collapse
|
30
|
Yu T, Wu F, Jia Y, Zhang X, Qi X, Jin Z, Hao T, Zhao J, Liu Z, Wang C, Niu M, Yue Q, Li M, Liu Y. RNA N 6-methyladenosine modification mediates downregulation of NR4A1 to facilitate malignancy of cervical cancer. Cell Biosci 2022; 12:207. [PMID: 36566195 DOI: 10.1186/s13578-022-00937-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/05/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND N6-methyladenosine is the most abundant eukaryotic mRNA modification and alters a wide range of cellular processes in cancer. Therefore, defining the molecular details are critical for understanding the regulatory mechanism of m6A modification. RESULTS We found that METTL3, a core m6A methyltransferase component, is upregulated and functions as an oncogene in cervical cancer. Mechanistically, METTL3 induces the degradation of m6A-modified transcripts of NR4A1 though YTHDF2-DDX6 pathway. In addition, NR4A1 overexpression attenuates the malignant progression through recruiting the LSD1/HDAC1/CoREST transcriptional repression complex to AKT1 promoter. CONCLUSIONS Our findings reveal that m6A regulates cervical cancer cellular progression through manipulating NR4A1 pathway.
Collapse
Affiliation(s)
- Tao Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
| | - Fuxia Wu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yan Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaozhen Qi
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zeyuan Jin
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Tongxin Hao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Jianing Zhao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ziyu Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Chaokun Wang
- Department of Integrative Chinese and Western Medicine, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Minmin Niu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Qin Yue
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Min Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yankun Liu
- Department of Molecular Diagnosis, Tangshan People's Hospital, Tangshan, 063001, China.
| |
Collapse
|
31
|
Gan T, Wang Y, Xie M, Wang Q, Zhao S, Wang P, Shi Q, Qian X, Miao F, Shen Z, Nie E. MEX3A Impairs DNA Mismatch Repair Signaling and Mediates Acquired Temozolomide Resistance in Glioblastoma. Cancer Res 2022; 82:4234-4246. [PMID: 36112059 DOI: 10.1158/0008-5472.can-22-2036] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 12/14/2022]
Abstract
MutS protein homolog 2 (MSH2) is a key element involved in the DNA mismatch repair (MMR) system, which is responsible for recognizing and repairing mispaired bases. Simultaneously, MSH2 identifies DNA adducts induced by temozolomide (TMZ) and triggers apoptosis and autophagy in tumor cells. Previous work has revealed that reduced MSH2 expression is often observed in patients with glioblastoma (GBM) who relapse after chemotherapy. Elucidation of the mechanism behind TMZ-mediated reduction of MSH2 could help improve GBM treatment. Here, we report significant upregulation of Mex-3 RNA binding family member A (MEX3A) in GBM tissues and cell lines following TMZ treatment. MEX3A bound to the MEX3 recognition element (MRE) of MSH2 mRNA, which in turn recruited CCR4-NOT complexes to target MSH2 mRNA for deadenylation and degradation. In addition, ectopic expression of MEX3A significantly decreased cellular DNA MMR activities and reduced the chemosensitivity of GBM cells via downregulation of MSH2, while depletion of MEX3A sensitized GBM cells to TMZ. In MGMT-deficient patients with GBM, MEX3A expression correlated with MSH2 levels, and high MEX3A expression was associated with poor prognosis. Overall, these findings reveal a potential mechanism by which MSH2 expression is reduced in post-TMZ recurrent GBM. SIGNIFICANCE A MEX3A/CCR4-NOT/MSH2 axis plays a crucial role in promoting temozolomide resistance, providing new insights into the function of MEX3A and suggesting MEX3A as a potential therapeutic target in therapy-resistant glioblastoma.
Collapse
Affiliation(s)
- Tian Gan
- Department of Endocrinology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Yan Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Manyi Xie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Qiang Wang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Saisai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Peng Wang
- Department of Neurosurgery, Rizhao Central Hospital, Rizhao, Shandong Province, P.R. China
| | - Qinyu Shi
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, P.R. China
| | - Xuanchen Qian
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Faan Miao
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Zhigang Shen
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| | - Er Nie
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, P.R. China
| |
Collapse
|
32
|
Gao Y, Liu X, Jin Y, Wu J, Li S, Li Y, Chen B, Zhang Y, Wei L, Li W, Li R, Lin C, Reddy ASN, Jaiswal P, Gu L. Drought induces epitranscriptome and proteome changes in stem-differentiating xylem of Populus trichocarpa. PLANT PHYSIOLOGY 2022; 190:459-479. [PMID: 35670753 PMCID: PMC9434199 DOI: 10.1093/plphys/kiac272] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 05/11/2022] [Indexed: 05/25/2023]
Abstract
Understanding gene expression and regulation requires insights into RNA transcription, processing, modification, and translation. However, the relationship between the epitranscriptome and the proteome under drought stress remains undetermined in poplar (Populus trichocarpa). In this study, we used Nanopore direct RNA sequencing and tandem mass tag-based proteomic analysis to examine epitranscriptomic and proteomic regulation induced by drought treatment in stem-differentiating xylem (SDX). Our results revealed a decreased full-length read ratio under drought treatment and, especially, a decreased association between transcriptome and proteome changes in response to drought. Epitranscriptome analysis of cellulose- and lignin-related genes revealed an increased N6-Methyladenosine (m6A) ratio, which was accompanied by decreased RNA abundance and translation, under drought stress. Interestingly, usage of the distal poly(A) site increased during drought stress. Finally, we found that transcripts of highly expressed genes tend to have shorter poly(A) tail length (PAL), and drought stress increased the percentage of transcripts with long PAL. These findings provide insights into the interplay among m6A, polyadenylation, PAL, and translation under drought stress in P. trichocarpa SDX.
Collapse
Affiliation(s)
| | | | - Yandong Jin
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ji Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxin Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Linxiao Wei
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ruili Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chentao Lin
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | |
Collapse
|
33
|
Liu H, Heller-Trulli D, Moore CL. Targeting the mRNA endonuclease CPSF73 inhibits breast cancer cell migration, invasion, and self-renewal. iScience 2022; 25:104804. [PMID: 35992060 PMCID: PMC9385686 DOI: 10.1016/j.isci.2022.104804] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/26/2022] [Accepted: 07/15/2022] [Indexed: 12/02/2022] Open
Abstract
Cleavage by the endonuclease CPSF73 and polyadenylation of nascent RNA is an essential step in co-transcriptional mRNA maturation. Recent work has surprisingly identified CPSF73 as a promising drug target for inhibiting the growth of specific cancers, triggering further studies on understanding CPSF73 regulation and functions in cells. Here, we report that a HECT-like E3 ligase, UBE3D, participates in stabilizing CPFS73 protein by preventing its ubiquitin-mediated degradation by the proteasome. Depletion of UBE3D leads to CPSF73 downregulation, a pre-mRNA cleavage defect, and dysregulated gene expression in cells. UBE3D dysfunction or chemical inactivation of CPSF73 inhibited migration and invasion as well as stem cell renewal phenotypes in vitro in triple-negative breast cancer cells. In addition, genetic overexpression of CPSF73 promoted breast cancer stemness and knocking down CPSF73 inhibited stem cell renewal properties. Together, our findings indicate that targeting the pre-mRNA processing nuclease CPSF73 has potential for breast cancer therapy.
Collapse
Affiliation(s)
- Huiyun Liu
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel Heller-Trulli
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Claire L. Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
34
|
Nai F, Nachawati R, Zálešák F, Wang X, Li Y, Caflisch A. Fragment Ligands of the m 6A-RNA Reader YTHDF2. ACS Med Chem Lett 2022; 13:1500-1509. [PMID: 36110386 PMCID: PMC9466600 DOI: 10.1021/acsmedchemlett.2c00303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Francesco Nai
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Raed Nachawati
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - František Zálešák
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Xiang Wang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Yaozong Li
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
35
|
Lombardi S, Testa MF, Pinotti M, Branchini A. Translation termination codons in protein synthesis and disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:1-48. [PMID: 36088072 DOI: 10.1016/bs.apcsb.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fidelity of protein synthesis, a process shaped by several mechanisms involving specialized ribosome regions and external factors, ensures the precise reading of sense as well as stop codons (UGA, UAG, UAA), which are usually localized at the 3' of mRNA and drive the release of the polypeptide chain. However, either natural (NTCs) or premature (PTCs) termination codons, the latter arising from nucleotide changes, can undergo a recoding process named ribosome or translational readthrough, which insert specific amino acids (NTCs) or subset(s) depending on the stop codon type (PTCs). This process is particularly relevant for nonsense mutations, a relatively frequent cause of genetic disorders, which impair gene expression at different levels by potentially leading to mRNA degradation and/or synthesis of truncated proteins. As a matter of fact, many efforts have been made to develop efficient and safe readthrough-inducing compounds, which have been challenged in several models of human disease to provide with a therapy. In this view, the dissection of the molecular determinants shaping the outcome of readthrough, namely nucleotide and protein contexts as well as their interplay and impact on protein structure/function, is crucial to identify responsive nonsense mutations resulting in functional full-length proteins. The interpretation of experimental and mechanistic findings is also important to define a possibly clear picture of potential readthrough-favorable features useful to achieve rescue profiles compatible with therapeutic thresholds typical of each targeted disorder, which is of primary importance for the potential translatability of readthrough into a personalized and mutation-specific, and thus patient-oriented, therapeutic strategy.
Collapse
Affiliation(s)
- Silvia Lombardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Maria Francesca Testa
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Mirko Pinotti
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Alessio Branchini
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
36
|
Perzanowska O, Smietanski M, Jemielity J, Kowalska J. Chemically Modified Poly(A) Analogs Targeting PABP: Structure Activity Relationship and Translation Inhibitory Properties. Chemistry 2022; 28:e202201115. [PMID: 35575378 PMCID: PMC9400960 DOI: 10.1002/chem.202201115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Indexed: 11/13/2022]
Abstract
Poly(A)‐binding protein (PABP) is an essential element of cellular translational machinery. Recent studies have revealed that poly(A) tail modifications can modulate mRNA stability and translational potential, and that oligoadenylate‐derived PABP ligands can act as effective translational inhibitors with potential applications in pain management. Although extensive research has focused on protein‐RNA and protein‐protein interactions involving PABPs, further studies are required to examine the ligand specificity of PABP. In this study, we developed a microscale thermophoresis‐based assay to probe the interactions between PABP and oligoadenylate analogs containing different chemical modifications. Using this method, we evaluated oligoadenylate analogs modified with nucleobase, ribose, and phosphate moieties to identify modification hotspots. In addition, we determined the susceptibility of the modified oligos to CNOT7 to identify those with the potential for increased cellular stability. Consequently, we selected two enzymatically stable oligoadenylate analogs that inhibit translation in rabbit reticulocyte lysates with a higher potency than a previously reported PABP ligand. We believe that the results presented in this study and the implemented methodology can be capitalized upon in the future development of RNA‐based biological tools.
Collapse
Affiliation(s)
- Olga Perzanowska
- Division of Biophysics Faculty of Physics University of Warsaw Ludwika Pasteura 5 02-093 Warsaw Poland
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Miroslaw Smietanski
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Jacek Jemielity
- Centre of New Technologies University of Warsaw Stefana Banacha 2c 02-097 Warsaw Poland
| | - Joanna Kowalska
- Division of Biophysics Faculty of Physics University of Warsaw Ludwika Pasteura 5 02-093 Warsaw Poland
| |
Collapse
|
37
|
Kocić G, Hadzi-Djokić J, Veljković A, Roumeliotis S, Janković-Veličković L, Šmelcerović A. Template-Independent Poly(A)-Tail Decay and RNASEL as Potential Cellular Biomarkers for Prostate Cancer Development. Cancers (Basel) 2022; 14:cancers14092239. [PMID: 35565367 PMCID: PMC9100668 DOI: 10.3390/cancers14092239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The ultimate need in cancer tissue is to adapt translation machinery to accelerated protein synthesis in a rapidly proliferating environment. Our study was designed with the aim of integrating fundamental and clinical research to find new biomarkers for prostate cancer (PC) with clinical usefulness for the stratification prediction of healthy tissue transition into malignant phenotype. This study revealed: (i) an entirely novel mechanism of the regulatory influence of Poly(A) deadenylase in mRNAs translational activity and the 3′ mRNA untranslated region (3′UTR) length in cancer tissue and its regulation by the poly(A) decay; (ii) the RNASEL interrelationship with the inflammatory pattern of PC and corresponding tumor-adjacent and healthy tissue; and (iii) the sensitivity, specificity, and predictive value of these enzymes. The proposed manuscript is based on the use of specific biochemical and immunoassay methods with the principal research adapted for the use of tissue specimens. Abstract The post-transcriptional messenger RNA (mRNA) decay and turnover rate of the template-independent poly(A) tail, localized at the 3′-untranslated region (3′UTR) of mRNA, have been documented among subtle mechanisms of uncontrolled cancer tissue growth. The activity of Poly(A) deadenylase and the expression pattern of RNASEL have been examined. A total of 138 prostate tissue specimens from 46 PC patients (cancer specimens, corresponding adjacent surgically healthy tissues, and in their normal counterparts, at least 2 cm from carcinoma) were used. For the stratification prediction of healthy tissue transition into malignant phenotype, the enzyme activity of tumor-adjacent tissue was considered in relation to the presence of microfocal carcinoma. More than a four-times increase in specific enzyme activity (U/L g.prot) was registered in PC on account of both the dissociation of its inhibitor and genome reprogramming. The obtained ROC curve and Youden index showed that Poly(A) deadenylase identified PC with a sensitivity of 93.5% and a specificity of 94.6%. The RNASEL expression profile was raised significantly in PC, but the sensitivity was 40.5% and specificity was 86.9%. A significantly negative correlation between PC and control tissue counterparts with a higher expression pattern in lymphocyte-infiltrated samples were reported. In conclusion, significantly upregulated Poly(A) deadenylase activity may be a checkpoint for the transition of precancerous lesion to malignancy, while RNASEL may predict chronic inflammation.
Collapse
Affiliation(s)
- Gordana Kocić
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- Correspondence: ; Tel.: +381-63-812-2522
| | | | - Andrej Veljković
- Department of Biochemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| | - Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, AHEPA Hospital, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | | | - Andrija Šmelcerović
- Department of Chemistry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
| |
Collapse
|
38
|
Toyoda K, Matsuoka M. Functional and Pathogenic Roles of Retroviral Antisense Transcripts. Front Immunol 2022; 13:875211. [PMID: 35572593 PMCID: PMC9100821 DOI: 10.3389/fimmu.2022.875211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Exogenous retroviruses such as human immunodeficiency virus type 1 (HIV-1), human T-cell leukemia virus type 1 (HTLV-1) and bovine leukemia virus (BLV) can cause various diseases including immunodeficiency, inflammatory diseases and hematologic malignancies. These retroviruses persistently infect their hosts. Therefore, they need to evade host immune surveillance. One way in which these viruses might avoid immune detection is to utilize functional RNAs, rather than proteins, for certain activities, because RNAs are not recognized by the host immune system. HTLV-1 encodes the HTLV-1 bZIP factor (HBZ) gene in the antisense strand of the provirus. The HBZ protein is constantly expressed in HTLV-1 carriers and patients with adult T-cell leukemia-lymphoma, and it plays critical roles in pathogenesis. However, HBZ not only encodes this protein, but also functions as mRNA. Thus, HBZ gene mRNA is bifunctional. HIV-1 and BLV also encode long non-coding RNAs as antisense transcripts. In this review, we reshape our current understanding of how these antisense transcripts function and how they influence disease pathogenesis.
Collapse
|
39
|
Pozniak T, Shcharbin D, Bryszewska M. Circulating microRNAs in Medicine. Int J Mol Sci 2022; 23:ijms23073996. [PMID: 35409354 PMCID: PMC8999557 DOI: 10.3390/ijms23073996] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Circulating microRNAs (c-microRNAs, c-miRNAs), which are present in almost all biological fluids, are promising sensitive biomarkers for various diseases (oncological and cardiovascular diseases, neurodegenerative pathologies, etc.), and their signatures accurately reflect the state of the body. Studies of the expression of microRNA markers show that they can enable a wide range of diseases to be diagnosed before clinical symptoms are manifested, and they can help to assess a patient’s response to therapy in order to correct and personalize treatments. This review discusses the latest trends in the uses of miRNAs for diagnosing and treating various diseases, viral and non-viral. It is concluded that exogenous microRNAs can be used as high-precision therapeutic agents for these purposes.
Collapse
Affiliation(s)
- Tetiana Pozniak
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
- Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
- Correspondence: (T.P.); (D.S.)
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus
- Correspondence: (T.P.); (D.S.)
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland;
| |
Collapse
|
40
|
Viegas IJ, de Macedo JP, Serra L, De Niz M, Temporão A, Silva Pereira S, Mirza AH, Bergstrom E, Rodrigues JA, Aresta-Branco F, Jaffrey SR, Figueiredo LM. N 6-methyladenosine in poly(A) tails stabilize VSG transcripts. Nature 2022; 604:362-370. [PMID: 35355019 DOI: 10.1038/s41586-022-04544-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/10/2022] [Indexed: 12/24/2022]
Abstract
RNA modifications are important regulators of gene expression1. In Trypanosoma brucei, transcription is polycistronic and thus most regulation happens post-transcriptionally2. N6-methyladenosine (m6A) has been detected in this parasite, but its function remains unknown3. Here we found that m6A is enriched in 342 transcripts using RNA immunoprecipitation, with an enrichment in transcripts encoding variant surface glycoproteins (VSGs). Approximately 50% of the m6A is located in the poly(A) tail of the actively expressed VSG transcripts. m6A residues are removed from the VSG poly(A) tail before deadenylation and mRNA degradation. Computational analysis revealed an association between m6A in the poly(A) tail and a 16-mer motif in the 3' untranslated region of VSG genes. Using genetic tools, we show that the 16-mer motif acts as a cis-acting motif that is required for inclusion of m6A in the poly(A) tail. Removal of this motif from the 3' untranslated region of VSG genes results in poly(A) tails lacking m6A, rapid deadenylation and mRNA degradation. To our knowledge, this is the first identification of an RNA modification in the poly(A) tail of any eukaryote, uncovering a post-transcriptional mechanism of gene regulation.
Collapse
Affiliation(s)
- Idálio J Viegas
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Juan Pereira de Macedo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lúcia Serra
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Adriana Temporão
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Silva Pereira
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Aashiq H Mirza
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Ed Bergstrom
- Department of Chemistry, University of York, York, UK.,Centre of Excellence in Mass Spectrometry, University of York, York, UK
| | - João A Rodrigues
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Clarify Analytical, Évora, Portugal
| | - Francisco Aresta-Branco
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.,Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
41
|
Deng M, Chen B, Liu Z, Wan Y, Li D, Yang Y, Wang F. YBX1 mediates alternative splicing and maternal mRNA decay during pre-implantation development. Cell Biosci 2022; 12:12. [PMID: 35109938 PMCID: PMC8812265 DOI: 10.1186/s13578-022-00743-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background In mammals, maternal gene products decay and zygotic genome activation (ZGA) during maternal to zygotic transition (MZT) is critical for the early embryogenesis. Y-box binding protein YBX1 plays vital roles in RNA stabilization and transcriptional regulation, but its roles remain to be elucidated during pre-implantation development. Methods In the present study, we re-analyzed transcriptional level of YBX1 in mice, human, bovine, and goat embryos using public RNA-seq datasets. We further performed siRNA microinjection to knock down the expression of YBX1, and RNA sequencing of the 8-cell stage embryos in the control and YBX1 knockdown group. To reveal the regulation mechanisms of YBX1, we conducted differentially expression analysis, alternative splicing (AS) analysis, enrichment analysis, and 5-EU staining using DESeq2, rMATs, clusterProfiler, and immunofluorescence technique, respectively. Results The expression of YBX1 was increased during MZT in goat, bovine, human, and mice, but significantly decreased in YBX1 knockdown embryos compared with the controls, suggesting successfully knockdown of YBX1. The percentage of blastocyst was decreased, while embryos blocked at the 2- and 4-cell stage were increased in YBX1 knockdown embryos compared to the controls. Using RNA-seq, we identified 1623 up-regulated and 3531 down-regulated genes in the 8-cell stage YBX1 knockdown embryos. Of note, the down-regulated genes were enriched in regulation of RNA/mRNA stability and spliceosome, suggesting that YBX1 might medicate RNA stability and AS. To this end, we identified 3284 differential AS events and 1322 differentially expressed maternal mRNAs at the 8-cell stage YBX1 knockdown embryos. Meanwhile, the splicing factors and mRNA decay-related genes showed aberrant expression, and the transcriptional activity during ZGA in goat and mice was compromised when YBX1 was knocked down. Conclusion YBX1 serves an important role in maternal mRNA decay, alternative splicing, and the transcriptional activity required for early embryogenesis, which will broaden the current understanding of YBX1 functions during the stochastic reprogramming events. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00743-4.
Collapse
Affiliation(s)
- Mingtian Deng
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Baobao Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zifei Liu
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Wan
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongxu Li
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
42
|
Falchi FA, Pizzoccheri R, Briani F. Activity and Function in Human Cells of the Evolutionary Conserved Exonuclease Polynucleotide Phosphorylase. Int J Mol Sci 2022; 23:ijms23031652. [PMID: 35163574 PMCID: PMC8836086 DOI: 10.3390/ijms23031652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/04/2023] Open
Abstract
Polynucleotide phosphorylase (PNPase) is a phosphorolytic RNA exonuclease highly conserved throughout evolution. Human PNPase (hPNPase) is located in mitochondria and is essential for mitochondrial function and homeostasis. Not surprisingly, mutations in the PNPT1 gene, encoding hPNPase, cause serious diseases. hPNPase has been implicated in a plethora of processes taking place in different cell compartments and involving other proteins, some of which physically interact with hPNPase. This paper reviews hPNPase RNA binding and catalytic activity in relation with the protein structure and in comparison, with the activity of bacterial PNPases. The functions ascribed to hPNPase in different cell compartments are discussed, highlighting the gaps that still need to be filled to understand the physiological role of this ancient protein in human cells.
Collapse
|
43
|
Yaish O, Orenstein Y. Computational modeling of mRNA degradation dynamics using deep neural networks. Bioinformatics 2022; 38:1087-1101. [PMID: 34849591 DOI: 10.1093/bioinformatics/btab800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/12/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
MOTIVATION messenger RNA (mRNA) degradation plays critical roles in post-transcriptional gene regulation. A major component of mRNA degradation is determined by 3'-UTR elements. Hence, researchers are interested in studying mRNA dynamics as a function of 3'-UTR elements. A recent study measured the mRNA degradation dynamics of tens of thousands of 3'-UTR sequences using a massively parallel reporter assay. However, the computational approach used to model mRNA degradation was based on a simplifying assumption of a linear degradation rate. Consequently, the underlying mechanism of 3'-UTR elements is still not fully understood. RESULTS Here, we developed deep neural networks to predict mRNA degradation dynamics and interpreted the networks to identify regulatory elements in the 3'-UTR and their positional effect. Given an input of a 110 nt-long 3'-UTR sequence and an initial mRNA level, the model predicts mRNA levels of eight consecutive time points. Our deep neural networks significantly improved prediction performance of mRNA degradation dynamics compared with extant methods for the task. Moreover, we demonstrated that models predicting the dynamics of two identical 3'-UTR sequences, differing by their poly(A) tail, performed better than single-task models. On the interpretability front, by using Integrated Gradients, our convolutional neural networks (CNNs) models identified known and novel cis-regulatory sequence elements of mRNA degradation. By applying a novel systematic evaluation of model interpretability, we demonstrated that the recurrent neural network models are inferior to the CNN models in terms of interpretability and that random initialization ensemble improves both prediction and interoperability performance. Moreover, using a mutagenesis analysis, we newly discovered the positional effect of various 3'-UTR elements. AVAILABILITY AND IMPLEMENTATION All the code developed through this study is available at github.com/OrensteinLab/DeepUTR/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ofir Yaish
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
44
|
Poetz F, Corbo J, Levdansky Y, Spiegelhalter A, Lindner D, Magg V, Lebedeva S, Schweiggert J, Schott J, Valkov E, Stoecklin G. RNF219 attenuates global mRNA decay through inhibition of CCR4-NOT complex-mediated deadenylation. Nat Commun 2021; 12:7175. [PMID: 34887419 PMCID: PMC8660800 DOI: 10.1038/s41467-021-27471-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
The CCR4-NOT complex acts as a central player in the control of mRNA turnover and mediates accelerated mRNA degradation upon HDAC inhibition. Here, we explored acetylation-induced changes in the composition of the CCR4-NOT complex by purification of the endogenously tagged scaffold subunit NOT1 and identified RNF219 as an acetylation-regulated cofactor. We demonstrate that RNF219 is an active RING-type E3 ligase which stably associates with CCR4-NOT via NOT9 through a short linear motif (SLiM) embedded within the C-terminal low-complexity region of RNF219. By using a reconstituted six-subunit human CCR4-NOT complex, we demonstrate that RNF219 inhibits deadenylation through the direct interaction of the α-helical SLiM with the NOT9 module. Transcriptome-wide mRNA half-life measurements reveal that RNF219 attenuates global mRNA turnover in cells, with differential requirement of its RING domain. Our results establish RNF219 as an inhibitor of CCR4-NOT-mediated deadenylation, whose loss upon HDAC inhibition contributes to accelerated mRNA turnover.
Collapse
Affiliation(s)
- Fabian Poetz
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Joshua Corbo
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Yevgen Levdansky
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA
| | - Alexander Spiegelhalter
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Doris Lindner
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Vera Magg
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), Heidelberg University, 69120, Heidelberg, Germany
| | - Svetlana Lebedeva
- Berlin Institute for Molecular Systems Biology (BIMSB), Max Delbrück Center for Molecular Medicine, 10115, Berlin, Germany
| | - Jörg Schweiggert
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Johanna Schott
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Eugene Valkov
- RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute (NCI), Frederick, MD, 21702-1201, USA.
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
- Center for Molecular Biology of Heidelberg University (ZMBH), German Cancer Research Center (DKFZ)-ZMBH Alliance, 69120, Heidelberg, Germany.
| |
Collapse
|
45
|
Lin X, Fonseca MAS, Breunig JJ, Corona RI, Lawrenson K. In vivo discovery of RNA proximal proteins via proximity-dependent biotinylation. RNA Biol 2021; 18:2203-2217. [PMID: 34006179 PMCID: PMC8648264 DOI: 10.1080/15476286.2021.1917215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/16/2021] [Accepted: 04/10/2021] [Indexed: 12/12/2022] Open
Abstract
RNA molecules function as messenger RNAs (mRNAs) that encode proteins and noncoding transcripts that serve as adaptor molecules, structural components, and regulators of genome organization and gene expression. Their function and regulation are largely mediated by RNA binding proteins (RBPs). Here we present RNA proximity labelling (RPL), an RNA-centric method comprising the endonuclease-deficient Type VI CRISPR-Cas protein dCas13b fused to engineered ascorbate peroxidase APEX2. RPL discovers target RNA proximal proteins in vivo via proximity-based biotinylation. RPL applied to U1 identified proteins involved in both U1 canonical and noncanonical functions. Profiling of poly(A) tail proximal proteins uncovered expected categories of RBPs and provided additional evidence for 5'-3' proximity and unexplored subcellular localizations of poly(A)+ RNA. Our results suggest that RPL allows rapid identification of target RNA binding proteins in native cellular contexts, and is expected to pave the way for discovery of novel RNA-protein interactions important for health and disease.
Collapse
Affiliation(s)
- Xianzhi Lin
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Marcos A. S. Fonseca
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J. Breunig
- Cedars-Sinai Medical Center, Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Rosario I. Corona
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Cedars-Sinai Medical Center, Women’s Cancer Research Program at Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Medical Center, Center for Bioinformatics and Functional Genomics, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| |
Collapse
|
46
|
Li Y, Li J, Wang J, Lynch D, Shen X, R. Corey D, Parekh D, Bhat B, Woo C, Cherry J, Napierala J, Napierala M. Targeting 3' and 5' untranslated regions with antisense oligonucleotides to stabilize frataxin mRNA and increase protein expression. Nucleic Acids Res 2021; 49:11560-11574. [PMID: 34718736 PMCID: PMC8599914 DOI: 10.1093/nar/gkab954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Friedreich's ataxia (FRDA) is a severe multisystem disease caused by transcriptional repression induced by expanded GAA repeats located in intron 1 of the Frataxin (FXN) gene encoding frataxin. FRDA results from decreased levels of frataxin; thus, stabilization of the FXN mRNA already present in patient cells represents an attractive and unexplored therapeutic avenue. In this work, we pursued a novel approach based on oligonucleotide-mediated targeting of FXN mRNA ends to extend its half-life and availability as a template for translation. We demonstrated that oligonucleotides designed to bind to FXN 5' or 3' noncoding regions can increase FXN mRNA and protein levels. Simultaneous delivery of oligonucleotides targeting both ends increases efficacy of the treatment. The approach was confirmed in several FRDA fibroblast and induced pluripotent stem cell-derived neuronal progenitor lines. RNA sequencing and single-cell expression analyses confirmed oligonucleotide-mediated FXN mRNA upregulation. Mechanistically, a significant elongation of the FXN mRNA half-life without any changes in chromatin status at the FXN gene was observed upon treatment with end-targeting oligonucleotides, indicating that transcript stabilization is responsible for frataxin upregulation. These results identify a novel approach toward upregulation of steady-state mRNA levels via oligonucleotide-mediated end targeting that may be of significance to any condition resulting from transcription downregulation.
Collapse
Affiliation(s)
- Yanjie Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jixue Li
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Jun Wang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - David R Lynch
- Division of Neurology and Pediatrics, Children’s Hospital of Philadelphia, Abramson Research Center, Room 502, Philadelphia, PA 19104, USA
| | - Xiulong Shen
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David R. Corey
- Department of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darshan Parekh
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Caroline Woo
- Translate Bio, 29 Hartwell Avenue, Lexington, MA 02421, USA
| | | | - Jill S Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| | - Marek Napierala
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294, USA
| |
Collapse
|
47
|
Nanjappa DP, Babu N, Khanna-Gupta A, O'Donohue MF, Sips P, Chakraborty A. Poly (A)-specific ribonuclease (PARN): More than just "mRNA stock clearing". Life Sci 2021; 285:119953. [PMID: 34520768 DOI: 10.1016/j.lfs.2021.119953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022]
Abstract
In eukaryotic cells, the balance between the synthesis and the degradation decides the steady-state levels of messenger RNAs (mRNA). The removal of adenosine residues from the poly(A) tail, called deadenylation, is the first and the most crucial step in the process of mRNA degradation. Poly (A)-specific ribonuclease (PARN) is one such enzyme that catalyses the process of deadenylation. Although PARN has been primarily known as the regulator of the mRNA stability, recent evidence clearly suggests several other functions of PARN, including a role in embryogenesis, oocyte maturation, cell-cycle progression, telomere biology, non-coding RNA maturation and ribosome biogenesis. Also, deregulated PARN activity is shown to be a hallmark of specific disease conditions. Pathogenic variants in the PARN gene have been observed in various cancers and inherited bone marrow failure syndromes. The focus in this review is to highlight the emerging functions of PARN, particularly in the context of human diseases.
Collapse
Affiliation(s)
- Dechamma Pandyanda Nanjappa
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Nishith Babu
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India
| | - Arati Khanna-Gupta
- Consortium of Rare Genetic and Bone Marrow Disorders, India network@NitteDU, NITTE (Deemed to be University, Deralakatte, Mangaluru, India
| | - Marie-Françoise O'Donohue
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative CBI, Université de Toulouse- CNRS- UPS- Toulouse-, Dynamics and Disorders of Ribosome Synthesis, Toulouse, France
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte University Centre for Science Education and Research (NUCSER), NITTE (Deemed to be University), Deralakate, Mangaluru 575018, India.
| |
Collapse
|
48
|
Du SW, Palczewski K. MicroRNA regulation of critical retinal pigment epithelial functions. Trends Neurosci 2021; 45:78-90. [PMID: 34753606 DOI: 10.1016/j.tins.2021.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
MicroRNAs are short, evolutionarily conserved noncoding RNAs that are critical for the control of normal cellular physiology. In the retina, photoreceptors are highly specialized neurons that transduce light into electrical signals. Photoreceptors, however, are unable to process visual stimuli without the support of the retinal pigment epithelium (RPE). The RPE performs numerous functions to aid the retina, including the generation of visual chromophore and metabolic support. Recent work has underscored how microRNAs enable vision through their contributions to RPE functions. This review focuses on the biogenesis and control of microRNAs in rodents and humans, the roles microRNAs play in RPE function and degeneration, and how microRNAs could serve as potential therapeutics and biomarkers for visual diseases.
Collapse
Affiliation(s)
- Samuel W Du
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA
| | - Krzysztof Palczewski
- Center for Translational Vision Research, University of California, Irvine School of Medicine, CA, USA; Gavin Herbert Eye Institute, Department of Ophthalmology, University of California, Irvine School of Medicine, CA, USA; Department of Physiology and Biophysics, University of California, Irvine School of Medicine, CA, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine School of Medicine, CA, USA; Department of Chemistry, University of California, Irvine School of Medicine, CA, USA.
| |
Collapse
|
49
|
Li Y, Mi P, Chen X, Wu J, Liu X, Tang Y, Cheng J, Huang Y, Qin W, Cheng CY, Sun F. Tex13a Optimizes Sperm Motility via Its Potential Roles in mRNA Turnover. Front Cell Dev Biol 2021; 9:761627. [PMID: 34733855 PMCID: PMC8558480 DOI: 10.3389/fcell.2021.761627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
mRNAs have been found to undergo substantial selective degradation during the late stages of spermiogenesis. However, the mechanisms regulating this biological process are unknown. In this report, we have identified Tex13a, a spermatid-specific gene that interacts with the CCR4–NOT complex and is implicated in the targeted degradation of mRNAs encoding particular structural components of sperm. Deletion of Tex13a led to a delayed decay of these mRNAs, lowered the levels of house-keeping genes, and ultimately lowered several key parameters associated with the control of sperm motility, such as the path velocity (VAP, average path velocity), track speed (VCL, velocity curvilinear), and rapid progression.
Collapse
Affiliation(s)
- Yinchuan Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Panpan Mi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xue Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - Jinmei Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Yingying Huang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute (Guangdong Provincial Fertility Hospital), Guangzhou, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, NY, United States
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
50
|
Takaoka S, Yanagiya A, Mohamed HMA, Higa R, Abe T, Inoue KI, Takahashi A, Stoney P, Yamamoto T. Neuronal XRN1 is required for maintenance of whole-body metabolic homeostasis. iScience 2021; 24:103151. [PMID: 34646989 PMCID: PMC8496175 DOI: 10.1016/j.isci.2021.103151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/10/2021] [Accepted: 09/16/2021] [Indexed: 11/24/2022] Open
Abstract
Control of mRNA stability and degradation is essential for appropriate gene expression, and its dysregulation causes various disorders, including cancer, neurodegenerative diseases, diabetes, and obesity. The 5′–3′ exoribonuclease XRN1 executes the last step of RNA decay, but its physiological impact is not well understood. To address this, forebrain-specific Xrn1 conditional knockout mice (Xrn1-cKO) were generated, as Xrn1 null mice were embryonic lethal. Xrn1-cKO mice exhibited obesity with leptin resistance, hyperglycemia, hyperphagia, and decreased energy expenditure. Obesity resulted from dysregulated communication between the central nervous system and peripheral tissues. Moreover, expression of mRNAs encoding proteins that regulate appetite and energy expenditure was dysregulated in the hypothalamus of Xrn1-cKO mice. Therefore, we propose that XRN1 function in the hypothalamus is critical for maintenance of metabolic homeostasis. Forebrain specific Xrn1-cKO mice exhibit obesity with hyperphagia Xrn1-cKO mice exhibit leptin resistance, insulin resistance, and impaired glucose tolerance Xrn1-cKO mice cannot utilize fat as an energy source and mainly use carbohydrate AgRP expression is upregulated in the Xrn1-cKO hypothalamus
Collapse
Affiliation(s)
- Shohei Takaoka
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Haytham Mohamed Aly Mohamed
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Rei Higa
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan.,Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa 905-2192, Japan
| | - Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Ken-Ichi Inoue
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima Minami-machi, Chuou-ku, Kobe 650-0047, Japan
| | - Akinori Takahashi
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Patrick Stoney
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|