1
|
Yamada R, Ando K, Sakaguchi R, Matsumoto T, Ogino H. Induction of point and structural mutations in engineered yeast Saccharomyces cerevisiae improve carotenoid production. World J Microbiol Biotechnol 2024; 40:230. [PMID: 38829459 DOI: 10.1007/s11274-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
β-Carotene is an attractive compound and that its biotechnological production can be achieved by using engineered Saccharomyces cerevisiae. In a previous study, we developed a technique for the efficient establishment of diverse mutants through the introduction of point and structural mutations into the yeast genome. In this study, we aimed to improve β-carotene production by applying this mutagenesis technique to S. cerevisiae strain that had been genetically engineered for β-carotene production. Point and structural mutations were introduced into β-carotene-producing engineered yeast. The resulting mutants showed higher β-carotene production capacity than the parental strain. The top-performing mutant, HP100_74, produced 37.6 mg/L of β-carotene, a value 1.9 times higher than that of the parental strain (20.1 mg/L). Gene expression analysis confirmed an increased expression of multiple genes in the glycolysis, mevalonate, and β-carotene synthesis pathways. In contrast, expression of ERG9, which functions in the ergosterol pathway competing with β-carotene production, was decreased in the mutant strain. The introduction of point and structural mutations represents a simple yet effective method for achieving mutagenesis in yeasts. This technique is expected to be widely applied in the future to produce chemicals via metabolic engineering of S. cerevisiae.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Kazuya Ando
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Rumi Sakaguchi
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
2
|
Mehdi F, Galani S, Wickramasinghe KP, Zhao P, Lu X, Lin X, Xu C, Liu H, Li X, Liu X. Current perspectives on the regulatory mechanisms of sucrose accumulation in sugarcane. Heliyon 2024; 10:e27277. [PMID: 38463882 PMCID: PMC10923725 DOI: 10.1016/j.heliyon.2024.e27277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024] Open
Abstract
Sugars transported from leaves (source) to stems (sink) energize cell growth, elongation, and maintenance. which are regulated by a variety of genes. This review reflects progress and prospects in the regulatory mechanism for maximum sucrose accumulation, including the role of sucrose metabolizing enzymes, sugar transporters and the elucidation of post-transcriptional control of sucrose-induced regulation of translation (SIRT) in the accumulation of sucrose. The current review suggests that SIRT is emerging as a significant mechanism controlling Scbzip44 activities in response to endogenous sugar signals (via the negative feedback mechanism). Sucrose-controlled upstream open reading frame (SC-uORF) exists at the 5' leader region of Scbzip44's main ORF, which inhibits sucrose accumulation through post-transcriptional regulatory mechanisms. Sucrose transporters (SWEET1a/4a/4b/13c, TST, SUT1, SUT4 and SUT5) are crucial for sucrose translocation from source to sink. Particularly, SWEET13c was found to be a major contributor to the efflux in the transportation of stems. Tonoplast sugar transporters (TSTs), which import sucrose into the vacuole, suggest their tissue-specific role from source to sink. Sucrose cleavage has generally been linked with invertase isozymes, whereas sucrose synthase (SuSy)-catalyzed metabolism has been associated with biosynthetic processes such as UDP-Glc, cellulose, hemicellulose and other polymers. However, other two key sucrose-metabolizing enzymes, such as sucrose-6-phosphate phosphohydrolase (S6PP) and sucrose phosphate synthase (SPS) isoforms, have been linked with sucrose biosynthesis. These findings suggest that manipulation of genes, such as overexpression of SPS genes and sucrose transporter genes, silencing of the SC-uORF of Scbzip44 (removing the 5' leader region of the main ORF that is called SIRT-Insensitive) and downregulation of the invertase genes, may lead to maximum sucrose accumulation. This review provides an overview of sugarcane sucrose-regulating systems and baseline information for the development of cultivars with higher sucrose accumulation.
Collapse
Affiliation(s)
- Faisal Mehdi
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- National Key Laboratory for Tropical Crop Breeding, Key Laboratory of Biology and Genetic Resources of Tropical Crops (Ministry of Agriculture and Rural Affairs), Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Saddia Galani
- Dr.A. Q. Khan Institute of Biotechnology and Genetic Engineering, University of Karachi, Karachi Pakistan
| | - Kamal Priyananda Wickramasinghe
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
- Sugarcane Research Institute, Uda Walawa, 70190, Sri Lanka
| | - Peifang Zhao
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xin Lu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xiuqin Lin
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Chaohua Xu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Hongbo Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xujuan Li
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| | - Xinlong Liu
- Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences/Yunnan Key Laboratory of Sugarcane Genetic Improvement, Kaiyuan, Yunnan 661699, China
| |
Collapse
|
3
|
Kugler A, Stensjö K. Machine learning predicts system-wide metabolic flux control in cyanobacteria. Metab Eng 2024; 82:171-182. [PMID: 38395194 DOI: 10.1016/j.ymben.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Metabolic fluxes and their control mechanisms are fundamental in cellular metabolism, offering insights for the study of biological systems and biotechnological applications. However, quantitative and predictive understanding of controlling biochemical reactions in microbial cell factories, especially at the system level, is limited. In this work, we present ARCTICA, a computational framework that integrates constraint-based modelling with machine learning tools to address this challenge. Using the model cyanobacterium Synechocystis sp. PCC 6803 as chassis, we demonstrate that ARCTICA effectively simulates global-scale metabolic flux control. Key findings are that (i) the photosynthetic bioproduction is mainly governed by enzymes within the Calvin-Benson-Bassham (CBB) cycle, rather than by those involve in the biosynthesis of the end-product, (ii) the catalytic capacity of the CBB cycle limits the photosynthetic activity and downstream pathways and (iii) ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is a major, but not the most, limiting step within the CBB cycle. Predicted metabolic reactions qualitatively align with prior experimental observations, validating our modelling approach. ARCTICA serves as a valuable pipeline for understanding cellular physiology and predicting rate-limiting steps in genome-scale metabolic networks, and thus provides guidance for bioengineering of cyanobacteria.
Collapse
Affiliation(s)
- Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden.
| |
Collapse
|
4
|
Fina A, Millard P, Albiol J, Ferrer P, Heux S. High throughput 13C-metabolic flux analysis of 3-hydroxypropionic acid producing Pichia pastoris reveals limited availability of acetyl-CoA and ATP due to tight control of the glycolytic flux. Microb Cell Fact 2023; 22:117. [PMID: 37380999 DOI: 10.1186/s12934-023-02123-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Production of 3-hydroxypropionic acid (3-HP) through the malonyl-CoA pathway has yielded promising results in Pichia pastoris (Komagataella phaffii), demonstrating the potential of this cell factory to produce this platform chemical and other acetyl-CoA-derived products using glycerol as a carbon source. However, further metabolic engineering of the original P. pastoris 3-HP-producing strains resulted in unexpected outcomes, e.g., significantly lower product yield and/or growth rate. To gain an understanding on the metabolic constraints underlying these observations, the fluxome (metabolic flux phenotype) of ten 3-HP-producing P. pastoris strains has been characterized using a high throughput 13C-metabolic flux analysis platform. Such platform enabled the operation of an optimised workflow to obtain comprehensive maps of the carbon flux distribution in the central carbon metabolism in a parallel-automated manner, thereby accelerating the time-consuming strain characterization step in the design-build-test-learn cycle for metabolic engineering of P. pastoris. RESULTS We generated detailed maps of the carbon fluxes in the central carbon metabolism of the 3-HP producing strain series, revealing the metabolic consequences of different metabolic engineering strategies aimed at improving NADPH regeneration, enhancing conversion of pyruvate into cytosolic acetyl-CoA, or eliminating by-product (arabitol) formation. Results indicate that the expression of the POS5 NADH kinase leads to a reduction in the fluxes of the pentose phosphate pathway reactions, whereas an increase in the pentose phosphate pathway fluxes was observed when the cytosolic acetyl-CoA synthesis pathway was overexpressed. Results also show that the tight control of the glycolytic flux hampers cell growth due to limited acetyl-CoA biosynthesis. When the cytosolic acetyl-CoA synthesis pathway was overexpressed, the cell growth increased, but the product yield decreased due to higher growth-associated ATP costs. Finally, the six most relevant strains were also cultured at pH 3.5 to assess the effect of a lower pH on their fluxome. Notably, similar metabolic fluxes were observed at pH 3.5 compared to the reference condition at pH 5. CONCLUSIONS This study shows that existing fluoxomics workflows for high-throughput analyses of metabolic phenotypes can be adapted to investigate P. pastoris, providing valuable information on the impact of genetic manipulations on the metabolic phenotype of this yeast. Specifically, our results highlight the metabolic robustness of P. pastoris's central carbon metabolism when genetic modifications are made to increase the availability of NADPH and cytosolic acetyl-CoA. Such knowledge can guide further metabolic engineering of these strains. Moreover, insights into the metabolic adaptation of P. pastoris to an acidic pH have also been obtained, showing the capability of the fluoxomics workflow to assess the metabolic impact of environmental changes.
Collapse
Affiliation(s)
- Albert Fina
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 31077, France
| | - Joan Albiol
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08193, Spain
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08193, Spain.
| | - Stephanie Heux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, 31077, France
| |
Collapse
|
5
|
Cornish-Bowden A, Cárdenas ML. Evolution of Henrik Kacser's thought: Early publications on the organization of the whole system. Biosystems 2023; 226:104883. [PMID: 36931555 DOI: 10.1016/j.biosystems.2023.104883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Although the papers of Kacser and Burns (1973) and Heinrich and Rapoport (1974a,b) are commonly taken as the birth of metabolic control analysis, many of the ideas in them are foreshadowed in earlier papers, from 1956 onwards, when Kacser first argued for taking a systemic view of genetics and biochemistry.
Collapse
|
6
|
Yamamoto Y, Yamada R, Matsumoto T, Ogino H. Construction of a machine-learning model to predict the optimal gene expression level for efficient production of D-lactic acid in yeast. World J Microbiol Biotechnol 2023; 39:69. [PMID: 36607503 DOI: 10.1007/s11274-022-03515-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023]
Abstract
The modification of gene expression is being researched in the production of useful chemicals by metabolic engineering of the yeast Saccharomyces cerevisiae. When the expression levels of many metabolic enzyme genes are modified simultaneously, the expression ratio of these genes becomes diverse; the relationship between the gene expression ratio and chemical productivity remains unclear. In other words, it is challenging to predict phenotypes from genotypes. However, the productivity of useful chemicals can be improved if this relationship is clarified. In this study, we aimed to construct a machine-learning model that can be used to clarify the relationship between gene expression levels and D-lactic acid productivity and predict the optimal gene expression level for efficient D-lactic acid production in yeast. A machine-learning model was constructed using data on D-lactate dehydrogenase and glycolytic genes expression (13 dimensions) and D-lactic acid productivity. The coefficient of determination of the completed machine-learning model was 0.6932 when using the training data and 0.6628 when using the test data. Using the constructed machine-learning model, we predicted the optimal gene expression level for high D-lactic acid production. We successfully constructed a machine-learning model to predict both D-lactic acid productivity and the suitable gene expression ratio for the production of D-lactic acid. The technique established in this study could be key for predicting phenotypes from genotypes, a problem faced by recent metabolic engineering strategies.
Collapse
Affiliation(s)
- Yoshiki Yamamoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan.
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
7
|
The Production of Pyruvate in Biological Technology: A Critical Review. Microorganisms 2022; 10:microorganisms10122454. [PMID: 36557706 PMCID: PMC9783380 DOI: 10.3390/microorganisms10122454] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Pyruvic acid has numerous applications in the food, chemical, and pharmaceutical industries. The high costs of chemical synthesis have prevented the extensive use of pyruvate for many applications. Metabolic engineering and traditional strategies for mutation and selection have been applied to microorganisms to enhance their ability to produce pyruvate. In the past decades, different microbial strains were generated to enhance their pyruvate production capability. In addition to the development of genetic engineering and metabolic engineering in recent years, the metabolic transformation of wild-type yeast, E. coli, and so on to produce high-yielding pyruvate strains has become a hot spot. The strategy and the understanding of the central metabolism directly related to pyruvate production could provide valuable information for improvements in fermentation products. One of the goals of this review was to collect information regarding metabolically engineered strains and the microbial fermentation processes used to produce pyruvate in high yield and productivity.
Collapse
|
8
|
Guzikowski AR, Harvey AT, Zhang J, Zhu S, Begovich K, Cohn MH, Wilhelm JE, Zid BM. Differential translation elongation directs protein synthesis in response to acute glucose deprivation in yeast. RNA Biol 2022; 19:636-649. [PMID: 35491906 PMCID: PMC9067459 DOI: 10.1080/15476286.2022.2065784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein synthesis is energetically expensive and its rate is influenced by factors such as cell type and environment. Suppression of translation is a canonical response to stressful changes in the cellular environment. In particular, inhibition of the initiation step of translation has been highlighted as the key control step in stress-induced translational suppression as mechanisms that quickly suppress initiation are well-conserved. However, cells have evolved complex regulatory means to control translation apart from initiation. Here, we examine the role of the elongation step of translation in yeast subjected to acute glucose deprivation. The use of ribosome profiling and in vivo reporter assays demonstrated elongation rates slow progressively following glucose removal. We observed that ribosome distribution broadly shifts towards the downstream ends of transcripts after both acute and gradual glucose deprivation but not in response to other stressors. Additionally, on assessed mRNAs, a correlation existed between ribosome occupancy and protein production pre-stress but was lost after stress. These results indicate that stress-induced elongation regulation causes ribosomes to slow down and build up on a considerable proportion of the transcriptome in response to glucose withdrawal. Finally, we report ribosomes that built up along transcripts are competent to resume elongation and complete protein synthesis after readdition of glucose to starved cells. This suggests that yeast has evolved mechanisms to slow translation elongation in response to glucose starvation which do not preclude continuation of protein production from those ribosomes, thereby averting a need for new initiation events to take place to synthesize proteins. Abbreviations: AUG: start codon, bp: base pair(s), CDS: coding sequence, CHX: cycloheximide, eEF2: eukaryotic elongation factor 2, LTM: lactimidomycin, nt: nucleotide, PGK1: 3-phosphoglycerate kinase, ribosomal biogenesis: ribi, RO: ribosome occupancy, RPF: ribosome protected fragment, TE: translational efficiency
Collapse
Affiliation(s)
- Anna R. Guzikowski
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Alex T. Harvey
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Jingxiao Zhang
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Shihui Zhu
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - Kyle Begovich
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Molly H. Cohn
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| | - James E. Wilhelm
- Division of Biological Sciences, University of California, San Diego, CA, USA
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, CA, USA
| |
Collapse
|
9
|
Fell DA. Metabolic Control Analysis. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Gene expression regulates metabolite homeostasis during the Crabtree effect: Implications for the adaptation and evolution of Metabolism. Proc Natl Acad Sci U S A 2021; 118:2014013118. [PMID: 33372135 DOI: 10.1073/pnas.2014013118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A key issue in both molecular and evolutionary biology has been to define the roles of genes and phenotypes in the adaptation of organisms to environmental changes. The dominant view has been that an organism's metabolic adaptations are driven by gene expression and that gene mutations, independent of the starting phenotype, are responsible for the evolution of new metabolic phenotypes. We propose an alternate hypothesis, in which the phenotype and genotype together determine metabolic adaptation both in the lifetime of the organism and in the evolutionary selection of adaptive metabolic traits. We tested this hypothesis by flux-balance and metabolic-control analysis of the relative roles of the starting phenotype and gene expression in regulating the metabolic adaptations during the Crabtree effect in yeast, when they are switched from a low- to high-glucose environment. Critical for successful short-term adaptation was the ability of the glycogen/trehalose shunt to balance the glycolytic pathway. The role of later gene expression of new isoforms of glycolytic enzymes, rather than flux control, was to provide additional homeostatic mechanisms allowing an increase in the amount and efficiency of adenosine triphosphate and product formation while maintaining glycolytic balance. We further showed that homeostatic mechanisms, by allowing increased phenotypic plasticity, could have played an important role in guiding the evolution of the Crabtree effect. Although our findings are specific to Crabtree yeast, they are likely to be broadly found because of the well-recognized similarities in glucose metabolism across kingdoms and phyla from yeast to humans.
Collapse
|
11
|
Postma ED, Dashko S, van Breemen L, Taylor Parkins SK, van den Broek M, Daran JM, Daran-Lapujade P. A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:1769-1783. [PMID: 33423048 PMCID: PMC7897487 DOI: 10.1093/nar/gkaa1167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 12/02/2022] Open
Abstract
The construction of microbial cell factories for sustainable production of chemicals and pharmaceuticals requires extensive genome engineering. Using Saccharomyces cerevisiae, this study proposes synthetic neochromosomes as orthogonal expression platforms for rewiring native cellular processes and implementing new functionalities. Capitalizing the powerful homologous recombination capability of S. cerevisiae, modular neochromosomes of 50 and 100 kb were fully assembled de novo from up to 44 transcriptional-unit-sized fragments in a single transformation. These assemblies were remarkably efficient and faithful to their in silico design. Neochromosomes made of non-coding DNA were stably replicated and segregated irrespective of their size without affecting the physiology of their host. These non-coding neochromosomes were successfully used as landing pad and as exclusive expression platform for the essential glycolytic pathway. This work pushes the limit of DNA assembly in S. cerevisiae and paves the way for de novo designer chromosomes as modular genome engineering platforms in S. cerevisiae.
Collapse
Affiliation(s)
- Eline D Postma
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Lars van Breemen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Shannara K Taylor Parkins
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| |
Collapse
|
12
|
Jojima T, Igari T, Noburyu R, Watanabe A, Suda M, Inui M. Coexistence of the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways enhances glucose consumption of ethanol-producing Corynebacterium glutamicum. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:45. [PMID: 33593398 PMCID: PMC7888142 DOI: 10.1186/s13068-021-01876-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/07/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND It is interesting to modify sugar metabolic pathways to improve the productivity of biocatalysts that convert sugars to value-added products. However, this attempt often fails due to the tight control of the sugar metabolic pathways. Recently, activation of the Entner-Doudoroff (ED) pathway in Escherichia coli has been shown to enhance glucose consumption, though the mechanism underlying this phenomenon is poorly understood. In the present study, we investigated the effect of a functional ED pathway in metabolically engineered Corynebacterium glutamicum that metabolizes glucose via the Embden-Meyerhof-Parnas (EMP) pathway to produce ethanol under oxygen deprivation. This study aims to provide further information on metabolic engineering strategies that allow the Entner-Doudoroff and Embden-Meyerhof-Parnas pathways to coexist. RESULTS Three genes (zwf, edd, and eda) encoding glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase from Zymomonas mobilis were expressed in a genetically modified strain, C. glutamicum CRZ2e, which produces pyruvate decarboxylase and alcohol dehydrogenase from Z. mobilis. A 13C-labeling experiment using [1-13C] glucose indicated a distinctive 13C distribution of ethanol between the parental and the ED-introduced strains, which suggested an alteration of carbon flux as a consequence of ED pathway introduction. The ED-introduced strain, CRZ2e-ED, consumed glucose 1.5-fold faster than the parental strain. A pfkA deletion mutant of CRZ2e-ED (CRZ2e-EDΔpfkA) was also constructed to evaluate the effects of EMP pathway inactivation, which showed an almost identical rate of glucose consumption compared to that of the parental CRZ2e strain. The introduction of the ED pathway did not alter the intracellular NADH/NAD+ ratio, whereas it resulted in a slight increase in the ATP/ADP ratio. The recombinant strains with simultaneous overexpression of the genes for the EMP and ED pathways exhibited the highest ethanol productivity among all C. glutamicum strains ever constructed. CONCLUSIONS The increased sugar consumption observed in ED-introduced strains was not a consequence of cofactor balance alterations, but rather the crucial coexistence of two active glycolytic pathways for enhanced glucose consumption. Coexistence of the ED and EMP pathways is a good strategy for improving biocatalyst productivity even when NADPH supply is not a limiting factor for fermentation.
Collapse
Affiliation(s)
- Toru Jojima
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
- Faculty of Agriculture, Department of Environmental Management, Kindai University, 3327-204 Nakamachi, Nara, 631-8505, Japan
| | - Takafumi Igari
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Ryoji Noburyu
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Akira Watanabe
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masako Suda
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, 9-2, Kizugawadai, Kizugawa, Kyoto, 619-0292, Japan.
- Division of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, 8916-5, Nara, 630-0101, Japan.
| |
Collapse
|
13
|
Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. Bioenergetic consequences of F oF 1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 2021; 296:100357. [PMID: 33539923 PMCID: PMC7949148 DOI: 10.1016/j.jbc.2021.100357] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1–ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1–ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1–ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1–ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1–ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1–ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1–ATP synthase loss in insect versus mammalian forms of the parasite.
Collapse
Affiliation(s)
- Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Caroline Dewar
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | | | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
14
|
Garcia-Albornoz M, Holman SW, Antonisse T, Daran-Lapujade P, Teusink B, Beynon RJ, Hubbard SJ. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae. Mol Omics 2021; 16:59-72. [PMID: 31868867 DOI: 10.1039/c9mo00136k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrated regulatory networks can be powerful tools to examine and test properties of cellular systems, such as modelling environmental effects on the molecular bioeconomy, where protein levels are altered in response to changes in growth conditions. Although extensive regulatory pathways and protein interaction data sets exist which represent such networks, few have formally considered quantitative proteomics data to validate and extend them. We generate and consider such data here using a label-free proteomics strategy to quantify alterations in protein abundance for S. cerevisiae when grown on minimal media using glucose, galactose, maltose and trehalose as sole carbon sources. Using a high quality-controlled subset of proteins observed to be differentially abundant, we constructed a proteome-informed network, comprising 1850 transcription factor interactions and 37 chaperone interactions, which defines the major changes in the cellular proteome when growing under different carbon sources. Analysis of the differentially abundant proteins involved in the regulatory network pointed to their significant roles in specific metabolic pathways and function, including glucose homeostasis, amino acid biosynthesis, and carbohydrate metabolic process. We noted strong statistical enrichment in the differentially abundant proteome of targets of known transcription factors associated with stress responses and altered carbon metabolism. This shows how such integrated analysis can lend further experimental support to annotated regulatory interactions, since the proteomic changes capture both magnitude and direction of gene expression change at the level of the affected proteins. Overall this study highlights the power of quantitative proteomics to help define regulatory systems pertinent to environmental conditions.
Collapse
Affiliation(s)
- M Garcia-Albornoz
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Lahue C, Madden AA, Dunn RR, Smukowski Heil C. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Front Genet 2020; 11:584718. [PMID: 33262788 PMCID: PMC7686800 DOI: 10.3389/fgene.2020.584718] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/13/2020] [Indexed: 11/30/2022] Open
Abstract
The yeast Saccharomyces cerevisiae has been instrumental in the fermentation of foods and beverages for millennia. In addition to fermentations like wine, beer, cider, sake, and bread, S. cerevisiae has been isolated from environments ranging from soil and trees, to human clinical isolates. Each of these environments has unique selection pressures that S. cerevisiae must adapt to. Bread dough, for example, requires S. cerevisiae to efficiently utilize the complex sugar maltose; tolerate osmotic stress due to the semi-solid state of dough, high salt, and high sugar content of some doughs; withstand various processing conditions, including freezing and drying; and produce desirable aromas and flavors. In this review, we explore the history of bread that gave rise to modern commercial baking yeast, and the genetic and genomic changes that accompanied this. We illustrate the genetic and phenotypic variation that has been documented in baking strains and wild strains, and how this variation might be used for baking strain improvement. While we continue to improve our understanding of how baking strains have adapted to bread dough, we conclude by highlighting some of the remaining open questions in the field.
Collapse
Affiliation(s)
- Caitlin Lahue
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Anne A. Madden
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
| | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, United States
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Caiti Smukowski Heil
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
16
|
Xu X, Song Y, Guo L, Cheng W, Niu C, Wang J, Liu C, Zheng F, Zhou Y, Li X, Mu Y, Li Q. Higher NADH Availability of Lager Yeast Increases the Flavor Stability of Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:584-590. [PMID: 31623437 DOI: 10.1021/acs.jafc.9b05812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Flavor stability is a significant concern to brewers as the staling compounds impart unpleasant flavor to beer. Thus, yeasts with antistaling ability have been engineered to produce beer with improved flavor stability. Here, we proposed that increasing the NADH availability of yeast could improve the flavor stability of beer. By engineering endogenous pathways, we obtained an array of yeast strains with a higher reducing activity. Then, we carried out beer fermentation with these strains and found that the antistaling capacities of the beer samples were improved. For a better understanding of the underlying mechanism, we compared the flavor profiles of these strains. The production of staling components was significantly decreased, whereas the content of antistaling components, such as SO2, was increased, in line with the increased antistaling ability. The other aroma components were marginally changed, indicating that this concept was useful for improving the antistaling stability without changing the flavor of beer.
Collapse
Affiliation(s)
| | - Yumei Song
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | - Liyun Guo
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | | | | | | | | | | | | | | | - Yingjian Mu
- Beijing Yanjing Brewery Group Co., Ltd. , Beijing 101300 , China
| | | |
Collapse
|
17
|
Sun L, Zhang P, Wang R, Wan J, Ju Q, Rothstein SJ, Xu J. The SNAC-A Transcription Factor ANAC032 Reprograms Metabolism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:999-1010. [PMID: 30690513 DOI: 10.1093/pcp/pcz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Studies have indicated that the carbon starvation response leads to the reprogramming of the transcriptome and metabolome, and many genes, including several important regulators, such as the group S1 basic leucine zipper transcription factors (TFs) bZIP1, bZIP11 and bZIP53, the SNAC-A TF ATAF1, etc., are involved in these physiological processes. Here, we show that the SNAC-A TF ANAC032 also plays important roles in this process. The overexpression of ANAC032 inhibits photosynthesis and induces reactive oxygen species accumulation in chloroplasts, thereby reducing sugar accumulation and resulting in carbon starvation. ANAC032 reprograms carbon and nitrogen metabolism by increasing sugar and amino acid catabolism in plants. The ChIP-qPCR and transient dual-luciferase reporter assays indicated that ANAC032 regulates trehalose metabolism via the direct regulation of TRE1 expression. Taken together, these results show that ANAC032 is an important regulator of the carbon/energy status that represses photosynthesis to induce carbon starvation.
Collapse
Affiliation(s)
- Liangliang Sun
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Ping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ruling Wang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Jinpeng Wan
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiong Ju
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Jin Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, China
| |
Collapse
|
18
|
Competitive resource allocation to metabolic pathways contributes to overflow metabolisms and emergent properties in cross-feeding microbial consortia. Biochem Soc Trans 2018; 46:269-284. [PMID: 29472366 DOI: 10.1042/bst20170242] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/21/2017] [Accepted: 01/01/2018] [Indexed: 01/24/2023]
Abstract
Resource scarcity is a common stress in nature and has a major impact on microbial physiology. This review highlights microbial acclimations to resource scarcity, focusing on resource investment strategies for chemoheterotrophs from the molecular level to the pathway level. Competitive resource allocation strategies often lead to a phenotype known as overflow metabolism; the resulting overflow byproducts can stabilize cooperative interactions in microbial communities and can lead to cross-feeding consortia. These consortia can exhibit emergent properties such as enhanced resource usage and biomass productivity. The literature distilled here draws parallels between in silico and laboratory studies and ties them together with ecological theories to better understand microbial stress responses and mutualistic consortia functioning.
Collapse
|
19
|
Rational design of a synthetic Entner-Doudoroff pathway for enhancing glucose transformation to isobutanol in Escherichia coli. J Ind Microbiol Biotechnol 2018; 45:187-199. [PMID: 29380153 DOI: 10.1007/s10295-018-2017-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/23/2018] [Indexed: 01/18/2023]
Abstract
Isobutanol as a more desirable biofuel has attracted much attention. In our previous work, an isobutanol-producing strain Escherichia coli LA09 had been obtained by rational redox status improvement under guidance of the genome-scale metabolic model. However, the low transformation from sugar to isobutanol is a limiting factor for isobutanol production by E. coli LA09. In this study, the intracellular metabolic profiles of the isobutanol-producing E. coli LA09 with different initial glucose concentrations were investigated and the metabolic reaction of fructose 6-phosphate to 1, 6-diphosphate fructose in glycolytic pathway was identified as the rate-limiting step of glucose transformation. Thus, redesigned carbon catabolism was implemented by altering flux of sugar metabolism. Here, the heterologous Entner-Doudoroff (ED) pathway from Zymomonas mobilis was constructed, and the adaptation of upper and lower parts of ED pathway was further improved with artificial promoters to alleviate the accumulation of toxic intermediate metabolite 2-keto-3-deoxy-6-phospho-gluconate (KDPG). Finally, the best isobutanol-producing E. coli ED02 with higher glucose transformation and isobutanol production was obtained. In the fermentation of strain E. coli ED02 with 45 g/L initial glucose, the isobutanol titer, yield and average producing rate were, respectively, increased by 56.8, 47.4 and 88.1% to 13.67 g/L, 0.50 C-mol/C-mol and 0.456 g/(L × h) in a shorter time of 30 h, compared with that of the starting strain E. coli LA09.
Collapse
|
20
|
Abstract
Although networks are extensively used to visualize information flow in biological, social and technological systems, translating topology into dynamic flow continues to challenge us, as similar networks exhibit fundamentally different flow patterns, driven by different interaction mechanisms. To uncover a network’s actual flow patterns, here we use a perturbative formalism, analytically tracking the contribution of all nodes/paths to the flow of information, exposing the rules that link structure and dynamic information flow for a broad range of nonlinear systems. We find that the diversity of flow patterns can be mapped into a single universal function, characterizing the interplay between the system’s topology and its dynamics, ultimately allowing us to identify the network’s main arteries of information flow. Counter-intuitively, our formalism predicts a family of frequently encountered dynamics where the flow of information avoids the hubs, favoring the network’s peripheral pathways, a striking disparity between structure and dynamics. Complex networks are a useful tool to investigate spreading processes but topology alone is insufficient to predict information flow. Here the authors propose a measure of information flow and predict its behavior from the interplay between structure and dynamics.
Collapse
|
21
|
Hatakeyama TS, Furusawa C. Metabolic dynamics restricted by conserved carriers: Jamming and feedback. PLoS Comput Biol 2017; 13:e1005847. [PMID: 29112954 PMCID: PMC5693451 DOI: 10.1371/journal.pcbi.1005847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 11/17/2017] [Accepted: 10/24/2017] [Indexed: 11/19/2022] Open
Abstract
To uncover the processes and mechanisms of cellular physiology, it first necessary to gain an understanding of the underlying metabolic dynamics. Recent studies using a constraint-based approach succeeded in predicting the steady states of cellular metabolic systems by utilizing conserved quantities in the metabolic networks such as carriers such as ATP/ADP as an energy carrier or NADH/NAD+ as a hydrogen carrier. Although such conservation quantities restrict not only the steady state but also the dynamics themselves, the latter aspect has not yet been completely understood. Here, to study the dynamics of metabolic systems, we propose adopting a carrier cycling cascade (CCC), which includes the dynamics of both substrates and carriers, a commonly observed motif in metabolic systems such as the glycolytic and fermentation pathways. We demonstrate that the conservation laws lead to the jamming of the flux and feedback. The CCC can show slow relaxation, with a longer timescale than that of elementary reactions, and is accompanied by both robustness against small environmental fluctuations and responsiveness against large environmental changes. Moreover, the CCC demonstrates robustness against internal fluctuations due to the feedback based on the moiety conservation. We identified the key parameters underlying the robustness of this model against external and internal fluctuations and estimated it in several metabolic systems.
Collapse
Affiliation(s)
- Tetsuhiro S. Hatakeyama
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
- * E-mail:
| | - Chikara Furusawa
- Quantitative Biology Center (QBiC), RIKEN, Suita, Osaka, Japan
- Universal Biology Institute, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
22
|
Andrejc D, Možir A, Legiša M. Effect of the cancer specific shorter form of human 6-phosphofructo-1-kinase on the metabolism of the yeast Saccharomyces cerevisiae. BMC Biotechnol 2017; 17:41. [PMID: 28482870 PMCID: PMC5422889 DOI: 10.1186/s12896-017-0362-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Background At first glance, there appears to be a high degree of similarity between the metabolism of yeast (the Crabtree effect) and human cancer cells (the Warburg effect). At the root of both effects is accelerated metabolic flow through glycolysis which leads to overflows of ethanol and lactic acid, respectively. It has been proposed that enhanced glycolytic flow in cancer cells is triggered by the altered kinetic characteristics of the key glycolytic regulatory enzyme 6-phosphofructo-1-kinase (Pfk). Through a posttranslational modification, highly active shorter Pfk-M fragments, which are resistant to feedback inhibition, are formed after the proteolytic cleavage of the C-terminus of the native human Pfk-M. Alternatively, enhanced glycolysis is triggered by optimal growth conditions in the yeast Saccharomyces cerevisiae. Results To assess the deregulation of glycolysis in yeast cells, the sfPFKM gene encoding highly active human shorter Pfk-M fragments was introduced into pfk-null S. cerevisiae. No growth of the transformants with the sfPFKM gene was observed on glucose and fructose. Glucose even induced rapid deactivation of Pfk1 activities in such transformants. However, Pfk1 activities of the sfPFKM transformants were detected in maltose medium, but the growth in maltose was possible only after the addition of 10 mM of ethanol to the medium. Ethanol seemed to alleviate the severely unbalanced NADH/NADPH ratio in the sfPFKM cells. However, the transformants carrying modified Pfk-M enzymes grew faster than the transformants with the human native human Pfk-M enzyme in a narrow ecological niche with a low maltose concentration medium that was further improved by additional modifications. Interestingly, periodic extracellular accumulation of phenylacetaldehyde was detected during the growth of the strain with modified Pfk-M but not with the strain encoding the human native enzyme. Conclusions Highly active cancer-specific shorter Pfk-M fragments appear to trigger several controlling mechanisms in the primary metabolism of yeast S. cerevisiae cells. These results suggest more complex metabolic regulation is present in S. cerevisiae as free living unicellular eukaryotic organisms in comparison to metazoan human cells. However, increased productivity under broader growth conditions may be achieved if more gene engineering is performed to reduce or omit several controlling mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0362-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Darjan Andrejc
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hjadrihova 19, Si-1000, Ljubljana, Slovenia
| | - Alenka Možir
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, Si-1000, Ljubljana, Slovenia.,Current address: Lek-Sandoz Company, Ljubljana, Slovenia
| | - Matic Legiša
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hjadrihova 19, Si-1000, Ljubljana, Slovenia.
| |
Collapse
|
23
|
Yamada R, Wakita K, Ogino H. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:659-666. [PMID: 28080037 DOI: 10.1021/acssynbio.6b00281] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The use of renewable feedstocks for producing biofuels and biobased chemicals by engineering metabolic pathways of yeast Saccharomyces cerevisiae has recently become an attractive option. Many researchers attempted to increase glucose consumption rate by overexpressing some glycolytic enzymes because most target biobased chemicals are derived through glycolysis. However, these attempts have met with little success. In this study, to create a S. cerevisiae strain with high glucose consumption rate, we used multicopy integration to develop a global metabolic engineering strategy. Among approximately 350 metabolically engineered strains, YPH499/dPdA3-34 exhibited the highest glucose consumption rate. This strain showed 1.3-fold higher cell growth rate and glucose consumption rate than the control strain. Real-time PCR analysis revealed that transcription levels of glycolysis-related genes such as HXK2, PFK1, PFK2, PYK2, PGI1, and PGK1 in YPH499/dPdA3-34 were increased. Our strategy is thus a promising approach to optimize global metabolic pathways in S. cerevisiae.
Collapse
Affiliation(s)
- Ryosuke Yamada
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kazuki Wakita
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
24
|
Abstract
Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.
Collapse
Affiliation(s)
- Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128 Gothenburg, Sweden; .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark.,Science for Life Laboratory, Royal Institute of Technology, SE17121 Stockholm, Sweden
| |
Collapse
|
25
|
Metabolic regulation is sufficient for global and robust coordination of glucose uptake, catabolism, energy production and growth in Escherichia coli. PLoS Comput Biol 2017; 13:e1005396. [PMID: 28187134 PMCID: PMC5328398 DOI: 10.1371/journal.pcbi.1005396] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/27/2017] [Accepted: 02/03/2017] [Indexed: 11/23/2022] Open
Abstract
The metabolism of microorganisms is regulated through two main mechanisms: changes of enzyme capacities as a consequence of gene expression modulation (“hierarchical control”) and changes of enzyme activities through metabolite-enzyme interactions. An increasing body of evidence indicates that hierarchical control is insufficient to explain metabolic behaviors, but the system-wide impact of metabolic regulation remains largely uncharacterized. To clarify its role, we developed and validated a detailed kinetic model of Escherichia coli central metabolism that links growth to environment. Metabolic control analyses confirm that the control is widely distributed across the network and highlight strong interconnections between all the pathways. Exploration of the model solution space reveals that several robust properties emerge from metabolic regulation, from the molecular level (e.g. homeostasis of total metabolite pool) to the overall cellular physiology (e.g. coordination of carbon uptake, catabolism, energy and redox production, and growth), while allowing a large degree of flexibility at most individual metabolic steps. These properties have important physiological implications for E. coli and significantly expand the self-regulating capacities of its metabolism. Metabolism is a fundamental biochemical process that enables cells to operate and grow by converting nutrients into ‘building blocks’ and energy. Metabolism happens through the work of enzymes, which are encoded by genes. Thus, genes and their regulation are often thought of controlling metabolism, somewhat at the top of a hierarchical control system. However, an increasing body of evidence indicates that metabolism plays an active role in the control of its own operation via a dense network of metabolite-enzyme interactions. The system-wide role of metabolic regulation is hard to dissect and so far remains largely uncharacterized. To better understand its role, we constructed a detailed kinetic model of the carbon and energy metabolism of the bacterium Escherichia coli, a model organism in Systems and Synthetic biology. Model simulations indicate that kinetic considerations of metabolism alone can explain data from hundreds of experiments, without needing to invoke regulation of gene expression. In particular, metabolic regulation is sufficient to coordinate carbon utilization, redox and energy production, and growth, while maintaining local flexibility at individual metabolic steps. These findings indicate that the self-regulating capacities of E. coli metabolism are far more significant than previously expected, and improve our understanding on how cells work.
Collapse
|
26
|
Sauro HM. Control and regulation of pathways via negative feedback. J R Soc Interface 2017; 14:20160848. [PMID: 28202588 PMCID: PMC5332569 DOI: 10.1098/rsif.2016.0848] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/19/2017] [Indexed: 12/21/2022] Open
Abstract
The biochemical networks found in living organisms include a huge variety of control mechanisms at multiple levels of organization. While the mechanistic and molecular details of many of these control mechanisms are understood, their exact role in driving cellular behaviour is not. For example, yeast glycolysis has been studied for almost 80 years but it is only recently that we have come to understand the systemic role of the multitude of feedback and feed-forward controls that exist in this pathway. In this article, control theory is discussed as an approach to dissect the control logic of complex pathways. One of the key issues is distinguishing between the terms control and regulation and how these concepts are applied to regulated enzymes such as phosphofructokinase. In doing so, one of the paradoxes in metabolic regulation can be resolved where enzymes such as phosphofructokinase have little control but, nevertheless, possess significant regulatory influence.
Collapse
Affiliation(s)
- Herbert M Sauro
- Department of Bioengineering, William H. Foege Building, Box 355061, University of Washington, Seattle, WA 98195-5061, USA
| |
Collapse
|
27
|
Overexpression of smORF YNR034W-A/EGO4 in Saccharomyces cerevisiae increases the fermentative efficiency of Agave tequilana Weber must. ACTA ACUST UNITED AC 2017; 44:63-74. [DOI: 10.1007/s10295-016-1871-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
Abstract
Abstract
Fermentative processes are widely used to produce food, beverages and biofuels. Saccharomyces cerevisiae is an efficient ethanol-producing microorganism. However, a concentration of high ethanol and other metabolites can affect yeast viability and decrease the ethanol yield. Many studies have focused on improving the fermentative efficiency, mostly through the genetic engineering of genes that have a direct impact on specific metabolic pathways. In the present study, we characterized a small open reading frame encoding a protein with an unknown function and biological role termed YNR034W-A. We analyzed the expression profile of the YNR034W-A gene during growth and glucose treatment, finding that it is expressed during the diauxic shift and stationary phase and is negatively regulated by glucose. We overexpressed the YNR034W-A gene in the BY4741 laboratory strain and a wild-type yeast strain (AR5) isolated during the Tequila fermentation process. Transformant derivatives of the AR5 strain showed an improved fermentative efficiency during fermentation of Agave tequilana Weber juice. We suggest that the improved fermentative efficiency is the result of a higher stress tolerance response in the YNR034W-A overexpressing transformant.
Collapse
|
28
|
Zobel S, Kuepper J, Ebert B, Wierckx N, Blank LM. Metabolic response of Pseudomonas putida to increased NADH regeneration rates. Eng Life Sci 2016; 17:47-57. [PMID: 32624728 DOI: 10.1002/elsc.201600072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/19/2016] [Accepted: 08/10/2016] [Indexed: 11/08/2022] Open
Abstract
Pseudomonas putida efficiently utilizes many different carbon sources without the formation of byproducts even under conditions of stress. This implies a high degree of flexibility to cope with conditions that require a significantly altered distribution of carbon to either biomass or energy in the form of NADH. In the literature, co-feeding of the reduced C1 compound formate to Escherichia coli heterologously expressing the NAD+-dependent formate dehydrogenase of the yeast Candida boidinii was demonstrated to boost various NADH-demanding applications. Pseudomonas putida as emerging biotechnological workhorse is inherently equipped with an NAD+-dependent formate dehydrogenase encouraging us to investigate the use of formate and its effect on P. putida's metabolism. Hence, this study provides a detailed insight into the co-utilization of formate and glucose by P. putida. Our results show that the addition of formate leads to a high increase in the NADH regeneration rate resulting in a very high biomass yield on glucose. Metabolic flux analysis revealed a significant flux rerouting from catabolism to anabolism. These metabolic insights argue further for P. putida as a host for redox cofactor demanding bioprocesses.
Collapse
Affiliation(s)
- Sebastian Zobel
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Jannis Kuepper
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Birgitta Ebert
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Nick Wierckx
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| | - Lars M Blank
- Institute of Applied Microbiology - iAMB RWTH Aachen University - ABBt Aachen Germany
| |
Collapse
|
29
|
Jojima T, Inui M. Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance. Bioengineered 2016; 6:328-34. [PMID: 26513591 DOI: 10.1080/21655979.2015.1111493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The glycolytic pathway is a main driving force in the fermentation process as it produces energy, cell component precursors, and fermentation products. Given its importance, the glycolytic pathway can be considered as an attractive target for the metabolic engineering of industrial microorganisms. However, many attempts to enhance glycolytic flux, by overexpressing homologous or heterologous genes encoding glycolytic enzymes, have been unsuccessful. In contrast, significant enhancement in glycolytic flux has been observed in studies with bacteria, specifically, Corynebacterium glutamicum. Although there has been a recent increase in the number of successful applications of this technology, little is known about the mechanisms leading to the enhancement of glycolytic flux. To explore the rational applications of glycolytic pathway engineering in biocatalyst development, this review summarizes recent successful studies as well as past attempts.
Collapse
Affiliation(s)
- Toru Jojima
- a Research Institute of Innovative Technology for the Earth ; Kizugawa , Kyoto , Japan
| | - Masayuki Inui
- a Research Institute of Innovative Technology for the Earth ; Kizugawa , Kyoto , Japan
| |
Collapse
|
30
|
Ballester-Tomás L, Pérez-Torrado R, Rodríguez-Vargas S, Prieto JA, Randez-Gil F. Near-freezing effects on the proteome of industrial yeast strains of Saccharomyces cerevisiae. J Biotechnol 2016; 221:70-7. [DOI: 10.1016/j.jbiotec.2016.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 11/28/2022]
|
31
|
Improvement of glucose uptake rate and production of target chemicals by overexpressing hexose transporters and transcriptional activator Gcr1 in Saccharomyces cerevisiae. Appl Environ Microbiol 2015; 81:8392-401. [PMID: 26431967 DOI: 10.1128/aem.02056-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023] Open
Abstract
Metabolic engineering to increase the glucose uptake rate might be beneficial to improve microbial production of various fuels and chemicals. In this study, we enhanced the glucose uptake rate in Saccharomyces cerevisiae by overexpressing hexose transporters (HXTs). Among the 5 tested HXTs (Hxt1, Hxt2, Hxt3, Hxt4, and Hxt7), overexpression of high-affinity transporter Hxt7 was the most effective in increasing the glucose uptake rate, followed by moderate-affinity transporters Hxt2 and Hxt4. Deletion of STD1 and MTH1, encoding corepressors of HXT genes, exerted differential effects on the glucose uptake rate, depending on the culture conditions. In addition, improved cell growth and glucose uptake rates could be achieved by overexpression of GCR1, which led to increased transcription levels of HXT1 and ribosomal protein genes. All genetic modifications enhancing the glucose uptake rate also increased the ethanol production rate in wild-type S. cerevisiae. Furthermore, the growth-promoting effect of GCR1 overexpression was successfully applied to lactic acid production in an engineered lactic acid-producing strain, resulting in a significant improvement of productivity and titers of lactic acid production under acidic fermentation conditions.
Collapse
|
32
|
Millard P, Portais JC, Mendes P. Impact of kinetic isotope effects in isotopic studies of metabolic systems. BMC SYSTEMS BIOLOGY 2015; 9:64. [PMID: 26410690 PMCID: PMC4583766 DOI: 10.1186/s12918-015-0213-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/19/2015] [Indexed: 12/30/2022]
Abstract
Background Isotope labeling experiments (ILEs) are increasingly used to investigate the functioning of metabolic systems. Some enzymes are subject to kinetic isotope effects (KIEs) which modulate reaction rates depending on the isotopic composition of their substrate(s). KIEs may therefore affect both the propagation of isotopes through metabolic networks and their operation, and ultimately jeopardize the biological value of ILEs. However, the actual impact of KIEs on metabolism has never been investigated at the system level. Results First, we developed a framework which integrates KIEs into kinetic and isotopic models of metabolism, thereby accounting for their system-wide effects on metabolite concentrations, metabolic fluxes, and isotopic patterns. Then, we applied this framework to assess the impact of KIEs on the central carbon metabolism of Escherichia coli in the context of 13C-ILEs, under different situations commonly encountered in laboratories. Results showed that the impact of KIEs strongly depends on the label input and on the variable considered but is significantly lower than expected intuitively from measurements on isolated enzymes. The global robustness of both the metabolic operation and isotopic patterns largely emerge from intrinsic properties of metabolic networks, such as the distribution of control across the network and bidirectional isotope exchange. Conclusions These results demonstrate the necessity of investigating the impact of KIEs at the level of the entire system, contradict previous hypotheses that KIEs would have a strong effect on isotopic distributions and on flux determination, and strengthen the biological value of 13C-ILEs. The proposed modeling framework is generic and can be used to investigate the impact of all the isotopic tracers (2H, 13C, 15N, 18O, etc.) on different isotopic datasets and metabolic systems. By allowing the integration of isotopic and metabolomics data collected under stationary and/or non-stationary conditions, it may also assist interpretations of ILEs and facilitate the development of more accurate kinetic models with improved explicative and predictive capabilities. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0213-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pierre Millard
- MCISB, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK. .,School of Computer Science, University of Manchester, Manchester, UK. .,Université de Toulouse; INSA, UPS, INP; LISBP, Toulouse, France. .,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - Jean-Charles Portais
- Université de Toulouse; INSA, UPS, INP; LISBP, Toulouse, France. .,INRA, UMR792, Ingénierie des Systèmes Biologiques et des Procédés, Toulouse, France. .,CNRS, UMR5504, Toulouse, France.
| | - Pedro Mendes
- MCISB, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK. .,School of Computer Science, University of Manchester, Manchester, UK. .,Center for Quantitative Medicine and Department of Cell Biology, UConn Health, Farmington, Connecticut, USA.
| |
Collapse
|
33
|
Shulman RG, Rothman DL. Homeostasis and the glycogen shunt explains aerobic ethanol production in yeast. Proc Natl Acad Sci U S A 2015; 112:10902-7. [PMID: 26283370 PMCID: PMC4568274 DOI: 10.1073/pnas.1510730112] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Aerobic glycolysis in yeast and cancer cells produces pyruvate beyond oxidative needs, a paradox noted by Warburg almost a century ago. To address this question, we reanalyzed extensive measurements from (13)C magnetic resonance spectroscopy of yeast glycolysis and the coupled pathways of futile cycling and glycogen and trehalose synthesis (which we refer to as the glycogen shunt). When yeast are given a large glucose load under aerobic conditions, the fluxes of these pathways adapt to maintain homeostasis of glycolytic intermediates and ATP. The glycogen shunt uses glycolytic ATP to store glycolytic intermediates as glycogen and trehalose, generating pyruvate and ethanol as byproducts. This conclusion is supported by studies of yeast with a partial block in the glycogen shunt due to the cif mutation, which found that when challenged with glucose, the yeast cells accumulate glycolytic intermediates and ATP, which ultimately leads to cell death. The control of the relative fluxes, which is critical to maintain homeostasis, is most likely exerted by the enzymes pyruvate kinase and fructose bisphosphatase. The kinetic properties of yeast PK and mammalian PKM2, the isoform found in cancer, are similar, suggesting that the same mechanism may exist in cancer cells, which, under these conditions, could explain their excess lactate generation. The general principle that homeostasis of metabolite and ATP concentrations is a critical requirement for metabolic function suggests that enzymes and pathways that perform this critical role could be effective drug targets in cancer and other diseases.
Collapse
Affiliation(s)
- Robert G Shulman
- Magnetic Resonance Research Center and Department of Diagnostic Radiology, Yale University, New Haven, CT 06520
| | - Douglas L Rothman
- Magnetic Resonance Research Center and Department of Diagnostic Radiology, Yale University, New Haven, CT 06520
| |
Collapse
|
34
|
Xu HX, Hong Y, Zhang MZ, Wang YL, Liu SS, Wang XW. Transcriptional responses of invasive and indigenous whiteflies to different host plants reveal their disparate capacity of adaptation. Sci Rep 2015; 5:10774. [PMID: 26041313 PMCID: PMC4455138 DOI: 10.1038/srep10774] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 05/01/2015] [Indexed: 11/24/2022] Open
Abstract
The whitefly Bemisia tabaci contains more than 35 cryptic species. The higher adaptability of Middle East-Asia Minor 1 (MEAM1) cryptic species has been recognized as one important factor for its invasion and displacement of other indigenous species worldwide. Here we compared the performance of the invasive MEAM1 and the indigenous Asia II 3 whitefly species following host plant transfer from a suitable host (cotton) to an unsuitable host (tobacco) and analyzed their transcriptional responses. After transfer to tobacco for 24 h, MEAM1 performed much better than Asia II 3. Transcriptional analysis showed that the patterns of gene regulation were very different with most of the genes up-regulated in MEAM1 but down-regulated in Asia II 3. Whereas carbohydrate and energy metabolisms were repressed in Asia II 3, the gene expression and protein metabolisms were activated in MEAM1. Compared to the constitutive high expression of detoxification genes in MEAM1, most of the detoxification genes were down-regulated in Asia II 3. Enzymatic activities of P450, GST and esterase further verified that the detoxification of MEAM1 was much higher than that of Asia II 3. These results reveal obvious differences in responses of MEAM1 and Asia II 3 to host transfer.
Collapse
Affiliation(s)
- Hong-Xing Xu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yue Hong
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min-Zhu Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong-Liang Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
35
|
Dmytruk KV, Sibirny AA. Metabolic engineering of the yeast Hansenula polymorpha for the construction of efficient ethanol producers. CYTOL GENET+ 2013. [DOI: 10.3103/s0095452713060029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Abstract
Although firmly grounded in metabolic biochemistry, the study of energy metabolism has gone well beyond this discipline and become integrative and comparative as well as ecological and evolutionary in scope. At the cellular level, ATP is hydrolyzed by energy-expending processes and resynthesized by pathways in bioenergetics. A significant development in the study of bioenergetics is the realization that fluxes through pathways as well as metabolic rates in cells, tissues, organs, and whole organisms are "system properties." Therefore, studies of energy metabolism have become, increasingly, experiments in systems biology. A significant challenge continues to be the integration of phenomena over multiple levels of organization. Body mass and temperature are said to account for most of the variation in metabolic rates found in nature. A mechanistic foundation for the understanding of these patterns is outlined. It is emphasized that evolution, leading to adaptation to diverse lifestyles and environments, has resulted in a tremendous amount of deviation from popularly accepted scaling "rules." This is especially so in the deep sea which constitutes most of the biosphere.
Collapse
Affiliation(s)
- Raul K Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, USA.
| |
Collapse
|
37
|
Belorgey D, Lanfranchi DA, Davioud-Charvet E. 1,4-naphthoquinones and other NADPH-dependent glutathione reductase-catalyzed redox cyclers as antimalarial agents. Curr Pharm Des 2013; 19:2512-28. [PMID: 23116403 DOI: 10.2174/1381612811319140003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/30/2012] [Indexed: 11/22/2022]
Abstract
The homodimeric flavoenzyme glutathione reductase catalyzes NADPH-dependent glutathione disulfide reduction. This reaction is important for keeping the redox homeostasis in human cells and in the human pathogen Plasmodium falciparum. Different types of NADPH-dependent disulfide reductase inhibitors were designed in various chemical series to evaluate the impact of each inhibition mode on the propagation of the parasites. Against malaria parasites in cultures the most potent and specific effects were observed for redox-active agents acting as subversive substrates for both glutathione reductases of the Plasmodium-infected red blood cells. In their oxidized form, these redox-active compounds are reduced by NADPH-dependent flavoenzyme-catalyzed reactions in the cytosol of infected erythrocytes. In their reduced forms, these compounds can reduce molecular oxygen to reactive oxygen species, or reduce oxidants like methemoglobin, the major nutrient of the parasite, to indigestible hemoglobin. Furthermore, studies on a fluorinated suicide-substrate of the human glutathione reductase indicate that the glutathione reductase-catalyzed bioactivation of 3-benzylnaphthoquinones to the corresponding reduced 3-benzoyl metabolites is essential for the observed antimalarial activity. In conclusion, the antimalarial lead naphthoquinones are suggested to perturb the major redox equilibria of the targeted cells. These effects result in developmental arrest of the parasite and contribute to the removal of the parasitized erythrocytes by macrophages.
Collapse
Affiliation(s)
- Didier Belorgey
- European School of Chemistry, Polymers and Materials (ECPM), UMR7509 CNRS - Universite de Strasbourg, 25 rue Becquerel, F-67087 Strasbourg Cedex 2, France.
| | | | | |
Collapse
|
38
|
Li S, Chen X, Liu L, Chen J. Pyruvate production inCandida glabrata: manipulation and optimization of physiological function. Crit Rev Biotechnol 2013; 36:1-10. [DOI: 10.3109/07388551.2013.811636] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H. Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum (D)-lactate productivity under oxygen deprivation. Appl Microbiol Biotechnol 2013; 97:6693-703. [PMID: 23712891 DOI: 10.1007/s00253-013-4986-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/25/2022]
Abstract
We previously demonstrated the simplicity of oxygen-deprived Corynebacterium glutamicum to produce D-lactate, a primary building block of next-generation biodegradable plastics, at very high optical purity by introducing heterologous D-ldhA gene from Lactobacillus delbrueckii. Here, we independently evaluated the effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production in C. glutamicum. We consequently show that while the reactions catalyzed by glucokinase (GLK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase had positive effects on D-lactate productivity by increasing 98, 39, 15, 13, and 10 %, respectively, in 10 h reactions in minimal salts medium, the reaction catalyzed by pyruvate kinase had large negative effect by decreasing 70 %. The other glycolytic enzymes did not affect D-lactate productivity when each of encoding genes was overexpressed. It is noteworthy that all reactions associated with positive effects are located upstream of glycerate-1,3-bisphosphate in the glycolytic pathway. The D-lactate yield also increased by especially overexpressing TPI encoding gene up to 94.5 %. Interestingly, overexpression of PFK encoding gene reduced the yield of succinate, one of the main by-products of D-lactate production, by 52 %, whereas overexpression of GAPDH encoding gene increased succinate yield by 26 %. Overexpression of GLK encoding gene markedly increased the yield of dihydroxyacetone and glycerol by 10- and 5.8-fold in exchange with decreasing the D-lactate yield. The effect of overexpressing glycolytic genes was also evaluated in 80 h long-term reactions. The variety of effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production is discussed.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan
| | | | | | | | | |
Collapse
|
40
|
Randez-Gil F, Córcoles-Sáez I, Prieto JA. Genetic and Phenotypic Characteristics of Baker's Yeast: Relevance to Baking. Annu Rev Food Sci Technol 2013; 4:191-214. [DOI: 10.1146/annurev-food-030212-182609] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Francisca Randez-Gil
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| | - Isaac Córcoles-Sáez
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| | - José A. Prieto
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
41
|
Morandini P. Control limits for accumulation of plant metabolites: brute force is no substitute for understanding. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:253-267. [PMID: 23301840 DOI: 10.1111/pbi.12035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/13/2012] [Accepted: 11/19/2012] [Indexed: 06/01/2023]
Abstract
Which factors limit metabolite accumulation in plant cells? Are theories on flux control effective at explaining the results? Many biotechnologists cling to the idea that every pathway has a rate limiting enzyme and target such enzymes first in order to modulate fluxes. This often translates into large effects on metabolite concentration, but disappointing small increases in flux. Rate limiting enzymes do exist, but are rare and quite opposite to what predicted by biochemistry. In many cases however, flux control is shared among many enzymes. Flux control and concentration control can (and must) be distinguished and quantified for effective manipulation. Flux control for several 'building blocks' of metabolism is placed on the demand side, and therefore increasing demand can be very successful. Tampering with supply, particularly desensitizing supply enzymes, is usually not very effective, if not dangerous, because supply regulatory mechanisms function to control metabolite homeostasis. Some important, but usually unnoticed, metabolic constraints shape the responses of metabolic systems to manipulation: mass conservation, cellular resource allocation and, most prominently, energy supply, particularly in heterotrophic tissues. The theoretical basis for this view shall be explored with recent examples gathered from the manipulation of several metabolites (vitamins, carotenoids, amino acids, sugars, fatty acids, polyhydroxyalkanoates, fructans and sugar alcohols). Some guiding principles are suggested for an even more successful engineering of plant metabolism.
Collapse
Affiliation(s)
- Piero Morandini
- Department of Biosciences, University of Milan and CNR Institute of Biophysics, Milan, Italy.
| |
Collapse
|
42
|
Albertin W, Marullo P, Bely M, Aigle M, Bourgais A, Langella O, Balliau T, Chevret D, Valot B, da Silva T, Dillmann C, de Vienne D, Sicard D. Linking post-translational modifications and variation of phenotypic traits. Mol Cell Proteomics 2012; 12:720-35. [PMID: 23271801 DOI: 10.1074/mcp.m112.024349] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Enzymes can be post-translationally modified, leading to isoforms with different properties. The phenotypic consequences of the quantitative variability of isoforms have never been studied. We used quantitative proteomics to dissect the relationships between the abundances of the enzymes and isoforms of alcoholic fermentation, metabolic traits, and growth-related traits in Saccharomyces cerevisiae. Although the enzymatic pool allocated to the fermentation proteome was constant over the culture media and the strains considered, there was variation in abundance of individual enzymes and sometimes much more of their isoforms, which suggests the existence of selective constraints on total protein abundance and trade-offs between isoforms. Variations in abundance of some isoforms were significantly associated to metabolic traits and growth-related traits. In particular, cell size and maximum population size were highly correlated to the degree of N-terminal acetylation of the alcohol dehydrogenase. The fermentation proteome was found to be shaped by human selection, through the differential targeting of a few isoforms for each food-processing origin of strains. These results highlight the importance of post-translational modifications in the diversity of metabolic and life-history traits.
Collapse
Affiliation(s)
- Warren Albertin
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, Gif-sur-Yvette, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Cruz LAB, Hebly M, Duong GH, Wahl SA, Pronk JT, Heijnen JJ, Daran-Lapujade P, van Gulik WM. Similar temperature dependencies of glycolytic enzymes: an evolutionary adaptation to temperature dynamics? BMC SYSTEMS BIOLOGY 2012; 6:151. [PMID: 23216813 PMCID: PMC3554419 DOI: 10.1186/1752-0509-6-151] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 11/06/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Temperature strongly affects microbial growth, and many microorganisms have to deal with temperature fluctuations in their natural environment. To understand regulation strategies that underlie microbial temperature responses and adaptation, we studied glycolytic pathway kinetics in Saccharomyces cerevisiae during temperature changes. RESULTS Saccharomyces cerevisiae was grown under different temperature regimes and glucose availability conditions. These included glucose-excess batch cultures at different temperatures and glucose-limited chemostat cultures, subjected to fast linear temperature shifts and circadian sinoidal temperature cycles. An observed temperature-independent relation between intracellular levels of glycolytic metabolites and residual glucose concentration for all experimental conditions revealed that it is the substrate availability rather than temperature that determines intracellular metabolite profiles. This observation corresponded with predictions generated in silico with a kinetic model of yeast glycolysis, when the catalytic capacities of all glycolytic enzymes were set to share the same normalized temperature dependency. CONCLUSIONS From an evolutionary perspective, such similar temperature dependencies allow cells to adapt more rapidly to temperature changes, because they result in minimal perturbations of intracellular metabolite levels, thus circumventing the need for extensive modification of enzyme levels.
Collapse
Affiliation(s)
- Luisa Ana B Cruz
- Department of Biotechnology, Delft University of Technology and Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Vertès AA, Inui M, Yukawa H. Postgenomic Approaches to Using Corynebacteria as Biocatalysts. Annu Rev Microbiol 2012; 66:521-50. [DOI: 10.1146/annurev-micro-010312-105506] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alain A. Vertès
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Masayuki Inui
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| | - Hideaki Yukawa
- Research Institute of Innovative Technology for the Earth, Kizugawadai, Kizugawa, Kyoto 619-0292, Japan;
| |
Collapse
|
45
|
Abstract
In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved. (c) 1996 John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- K van Dam
- E. C. Slater Institute, BioCentrum, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| |
Collapse
|
46
|
Abstract
Metabolic signals are used for imaging and spectroscopic studies of brain function and disease and to elucidate the cellular basis of neuroenergetics. The major fuel for activated neurons and the models for neuron–astrocyte interactions have been controversial because discordant results are obtained in different experimental systems, some of which do not correspond to adult brain. In rats, the infrastructure to support the high energetic demands of adult brain is acquired during postnatal development and matures after weaning. The brain's capacity to supply and metabolize glucose and oxygen exceeds demand over a wide range of rates, and the hyperaemic response to functional activation is rapid. Oxidative metabolism provides most ATP, but glycolysis is frequently preferentially up-regulated during activation. Underestimation of glucose utilization rates with labelled glucose arises from increased lactate production, lactate diffusion via transporters and astrocytic gap junctions, and lactate release to blood and perivascular drainage. Increased pentose shunt pathway flux also causes label loss from C1 of glucose. Glucose analogues are used to assay cellular activities, but interpretation of results is uncertain due to insufficient characterization of transport and phosphorylation kinetics. Brain activation in subjects with low blood-lactate levels causes a brain-to-blood lactate gradient, with rapid lactate release. In contrast, lactate flooding of brain during physical activity or infusion provides an opportunistic, supplemental fuel. Available evidence indicates that lactate shuttling coupled to its local oxidation during activation is a small fraction of glucose oxidation. Developmental, experimental, and physiological context is critical for interpretation of metabolic studies in terms of theoretical models.
Collapse
|
47
|
Abstract
Summary
Much research in comparative physiology is now performed using ‘omics’ tools and many results are interpreted in terms of the effects of changes in gene expression on energy metabolism. However, ‘metabolism’ is a complex phenomenon that spans multiple levels of biological organization. In addition rates and directions of flux change dynamically under various physiological circumstances. Within cells, message level cannot be equated with protein level because multiple mechanisms are at play in the ‘regulatory hierarchy’ from gene to mRNA to enzyme protein. This results in many documented instances wherein change in mRNA levels and change in enzyme levels are unrelated. It is also known from metabolic control analysis that the influence of single steps in pathways on flux is often small. Flux is a system property and its control tends to be distributed among multiple steps. Consequently, change in enzyme levels cannot be equated with change in flux. Approaches developed by Hans Westerhoff and colleagues, called ‘hierarchical regulation analysis’, allow quantitative determination of the extent to which ‘hierarchical regulation’, involving change in enzyme level, and ‘metabolic regulation’, involving the modulation of the activity of preexisting enzyme, regulate flux. We outline these approaches and provide examples to show their applicability to problems of interest to comparative physiologists.
Collapse
Affiliation(s)
- Raul K. Suarez
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106-9610, USA
| | | |
Collapse
|
48
|
Adamczyk M, Westerhoff HV. Engineering of self-sustaining systems: substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system in a Lactococcus lactis network in silico. Biotechnol J 2012; 7:877-83. [PMID: 22700394 DOI: 10.1002/biot.201100314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/10/2012] [Accepted: 05/22/2012] [Indexed: 11/09/2022]
Abstract
The success rate of introducing new functions into a living species is still rather unsatisfactory. Much of this is due to the very essence of the living state, i.e. its robustness towards perturbations. Living cells are bound to notice that metabolic engineering is being effected, through changes in metabolite concentrations. In this study, we asked whether one could engage in such engineering without changing metabolite concentrations. We have illustrated that, in silico, one can do so in principle. We have done this for the case of substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system, in an L. lactis network, this engineering is 'silent' in terms of metabolite concentrations and almost all fluxes.
Collapse
Affiliation(s)
- Malgorzata Adamczyk
- Manchester Centre for Integrative Systems Biology, University of Manchester, MIB, Manchester, UK
| | | |
Collapse
|
49
|
Overexpression of genes encoding glycolytic enzymes in Corynebacterium glutamicum enhances glucose metabolism and alanine production under oxygen deprivation conditions. Appl Environ Microbiol 2012; 78:4447-57. [PMID: 22504802 DOI: 10.1128/aem.07998-11] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that Corynebacterium glutamicum strain ΔldhAΔppc+alaD+gapA, overexpressing glyceraldehyde-3-phosphate dehydrogenase-encoding gapA, shows significantly improved glucose consumption and alanine formation under oxygen deprivation conditions (T. Jojima, M. Fujii, E. Mori, M. Inui, and H. Yukawa, Appl. Microbiol. Biotechnol. 87:159-165, 2010). In this study, we employ stepwise overexpression and chromosomal integration of a total of four genes encoding glycolytic enzymes (herein referred to as glycolytic genes) to demonstrate further successive improvements in C. glutamicum glucose metabolism under oxygen deprivation. In addition to gapA, overexpressing pyruvate kinase-encoding pyk and phosphofructokinase-encoding pfk enabled strain GLY2/pCRD500 to realize respective 13% and 20% improved rates of glucose consumption and alanine formation compared to GLY1/pCRD500. Subsequent overexpression of glucose-6-phosphate isomerase-encoding gpi in strain GLY3/pCRD500 further improved its glucose metabolism. Notably, both alanine productivity and yield increased after each overexpression step. After 48 h of incubation, GLY3/pCRD500 produced 2,430 mM alanine at a yield of 91.8%. This was 6.4-fold higher productivity than that of the wild-type strain. Intracellular metabolite analysis showed that gapA overexpression led to a decreased concentration of metabolites upstream of glyceraldehyde-3-phosphate dehydrogenase, suggesting that the overexpression resolved a bottleneck in glycolysis. Changing ratios of the extracellular metabolites by overexpression of glycolytic genes resulted in reduction of the intracellular NADH/NAD(+) ratio, which also plays an important role on the improvement of glucose consumption. Enhanced alanine dehydrogenase activity using a high-copy-number plasmid further accelerated the overall alanine productivity. Increase in glycolytic enzyme activities is a promising approach to make drastic progress in growth-arrested bioprocesses.
Collapse
|
50
|
Abstract
The living cell can be thought of as a collection of linked chemical factories, a molecular economy in which the principles of supply and demand obtain. Supply-demand analysis is a framework for exploring and gaining an understanding of metabolic regulation, both theoretically and experimentally, where regulatory performance is measured in terms of flux control and homeostatic maintenance of metabolite concentrations. It is based on a metabolic control analysis of a supply-demand system in steady state in which the degree of flux and concentration control by the supply and demand blocks is related to their local properties, which are quantified as the elasticities of supply and demand. These elasticities can be visualized as the slopes of the log-log rate characteristics of supply and demand. Rate characteristics not only provide insight about system behavior around the steady state but can also be expanded to provide a view of the behavior of the system over a wide range of concentrations of the metabolic intermediate that links the supply and the demand. The theoretical and experimental results of supply-demand analysis paint a picture of the regulatory design of metabolic systems that differs radically from what can be called the classical view of metabolic regulation, which generally explains the role of regulatory mechanisms only in terms of the supply, completely ignoring the demand. Supply-demand analysis has recently been generalized into a computational tool that can be used to study the regulatory behavior of kinetic models of metabolic systems up to genome-scale.
Collapse
|