1
|
Wang X, Wu L, Xiang L, Gao R, Yin Q, Wang M, Liu Z, Leng L, Su Y, Wan H, Ma T, Chen S, Shi Y. Promoter variations in DBR2-like affect artemisinin production in different chemotypes of Artemisia annua. HORTICULTURE RESEARCH 2023; 10:uhad164. [PMID: 37731862 PMCID: PMC10508037 DOI: 10.1093/hr/uhad164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023]
Abstract
Artemisia annua is the only known plant source of the potent antimalarial artemisinin, which occurs as the low- and high-artemisinin producing (LAP and HAP) chemotypes. Nevertheless, the different mechanisms of artemisinin producing between these two chemotypes were still not fully understood. Here, we performed a comprehensive analysis of genome resequencing, metabolome, and transcriptome data to systematically compare the difference in the LAP chemotype JL and HAP chemotype HAN. Metabolites analysis revealed that 72.18% of sesquiterpenes was highly accumulated in HAN compared to JL. Integrated omics analysis found a DBR2-Like (DBR2L) gene may be involved in artemisinin biosynthesis. DBR2L was highly homologous with DBR2, belonged to ORR3 family, and had the DBR2 activity of catalyzing artemisinic aldehyde to dihydroartemisinic aldehyde. Genome resequencing and promoter cloning revealed that complicated variations existed in DBR2L promoters among different varieties of A. annua and were clustered into three variation types. The promoter activity of diverse variant types showed obvious differences. Furthermore, the core region (-625 to 0) of the DBR2L promoter was identified and candidate transcription factors involved in DBR2L regulation were screened. Thus, the result indicates that DBR2L is another key enzyme involved in artemisinin biosynthesis. The promoter variation in DBR2L affects its expression level, and thereby may result in the different yield of artemisinin in varieties of A. annua. It provides a novel insight into the mechanism of artemisinin-producing difference in LAP and HAP chemotypes of A. annua, and will assist in a high yield of artemisinin in A. annua.
Collapse
Affiliation(s)
- Xingwen Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lan Wu
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Xiang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ranran Gao
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qinggang Yin
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mengyue Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhaoyu Liu
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanyan Su
- Amway (China) Botanical R&D Center, Wuxi 214115, China
| | - Huihua Wan
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tingyu Ma
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuhua Shi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
2
|
Lu S, Deng H, Zhou C, Du Z, Guo X, Cheng Y, He X. Enhancement of β-Caryophyllene Biosynthesis in Saccharomyces cerevisiae via Synergistic Evolution of β-Caryophyllene Synthase and Engineering the Chassis. ACS Synth Biol 2023; 12:1696-1707. [PMID: 37224386 DOI: 10.1021/acssynbio.3c00024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
β-Caryophyllene is a plant-derived bicyclic sesquiterpene with multiple biological functions. β-Caryophyllene production by engineered Saccharomyces cerevisiae represents a promising technological route. However, the low catalytic activity of β-caryophyllene synthase (CPS) is one of the main restrictive factors for β-caryophyllene production. Here, directed evolution of the Artemisia annua CPS was performed, and variants of CPS enhancing the β-caryophyllene biosynthesis in S. cerevisiae were obtained, in which an E353D mutant enzyme presented large improvements in Vmax and Kcat. The Kcat/Km of the E353D mutant was 35.5% higher than that of wild-type CPS. Moreover, the E353D variant exhibited higher catalytic activity in much wider pH and temperature ranges. Thus, both the higher catalytic activity and the robustness of the E353D variant contribute to the 73.3% increase in β-caryophyllene production. Furthermore, the S. cerevisiae chassis was engineered by overexpressing genes related to β-alanine metabolism and MVA pathway to enhance the synthesis of the precursor, and ATP-binding cassette transporter gene variant STE6T1025N to improve the transmembrane transport of β-caryophyllene. The combined engineering of CPS and chassis resulted in 70.45 mg/L of β-caryophyllene after 48 h of cultivation in a test tube, which was 2.93-fold of that of the original strain. Finally, a β-caryophyllene yield of 594.05 mg/L was obtained by fed-batch fermentation, indicating the potential of β-caryophyllene production by yeast.
Collapse
Affiliation(s)
- Surui Lu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong Deng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chenyao Zhou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhengda Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xuena Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanfei Cheng
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuping He
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
3
|
Liu X, Zhang P, Zhao Q, Huang AC. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:417-443. [PMID: 35852486 DOI: 10.1111/jipb.13330] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant natural products have been extensively exploited in food, medicine, flavor, cosmetic, renewable fuel, and other industrial sectors. Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products. Compared with engineering microbes for the production of plant natural products, the potential of plants as chassis for producing these compounds is underestimated, largely due to challenges encountered in engineering plants. Knowledge in plant engineering is instrumental for enabling the effective and efficient production of valuable phytochemicals in plants, and also paves the way for a more sustainable future agriculture. In this manuscript, we briefly recap the biosynthesis of plant natural products, focusing primarily on industrially important terpenoids, alkaloids, and phenylpropanoids. We further summarize the plant hosts and strategies that have been used to engineer the production of natural products. The challenges and opportunities of using plant synthetic biology to achieve rapid and scalable production of high-value plant natural products are also discussed.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peijun Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiao Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), the Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
4
|
Zhu J, Liu L, Wu M, Xia G, Lin P, Zi J. Characterization of a Sesquiterpene Synthase Catalyzing Formation of Cedrol and Two Diastereoisomers of Tricho-Acorenol from Euphorbia fischeriana. JOURNAL OF NATURAL PRODUCTS 2021; 84:1780-1786. [PMID: 34014675 DOI: 10.1021/acs.jnatprod.1c00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A sesquiterpene synthase gene was identified from the transcriptome of Euphorbia fischeriana Steud, and the function of its product EfTPS12 was characterized by in vitro biochemical experiments and synthetic biology approaches. EfTPS12 catalyzed conversion of farnesyl diphosphate into three products, including cedrol (1) and eupho-acorenols A (2) and B (3) (two diastereoisomers of tricho-acorenol), thereby being named EfCAS herein. The structures of 2 and 3 were determined by spectroscopic methods and comparison of experimental and calculated electronic circular dichroism spectra. EfCAS is the first example of a plant-derived sesquiterpene synthase that is capable of synthesizing acorane-type alcohols. This study also documents that synthetic biology approaches enable large-scale preparation of volatile terpenes and thereby substantially facilitate characterization of corresponding terpene synthases and elucidation of the structures of their products.
Collapse
Affiliation(s)
- Jianxun Zhu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Lihong Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Maobo Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, People's Republic of China
| | - Pengcheng Lin
- College of Pharmacy, Qinghai Nationalities University, Xining 810007, People's Republic of China
| | - Jiachen Zi
- College of Pharmacy, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
5
|
Fu X, Zhang F, Ma Y, Hassani D, Peng B, Pan Q, Zhang Y, Deng Z, Liu W, Zhang J, Han L, Chen D, Zhao J, Li L, Sun X, Tang K. High-Level Patchoulol Biosynthesis in Artemisia annua L. Front Bioeng Biotechnol 2021; 8:621127. [PMID: 33614607 PMCID: PMC7890116 DOI: 10.3389/fbioe.2020.621127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Terpenes constitute the largest class of secondary metabolites in plants. Some terpenes are essential for plant growth and development, membrane components, and photosynthesis. Terpenes are also economically useful for industry, agriculture, and pharmaceuticals. However, there is very low content of most terpenes in microbes and plants. Chemical or microbial synthesis of terpenes are often costly. Plants have the elaborate and economic biosynthetic way of producing high-value terpenes through photosynthesis. Here we engineered the heterogenous sesquiterpenoid patchoulol production in A. annua. When using a strong promoter such as 35S to over express the avian farnesyl diphosphate synthase gene and patchoulol synthase gene, the highest content of patchoulol was 52.58 μg/g DW in transgenic plants. When altering the subcellular location of the introduced sesquiterpene synthetase via a signal peptide, the accumulation of patchoulol was observably increased to 273 μg/g DW. This case demonstrates that A. annua plant with glandular trichomes is a useful platform for synthetic biology studies.
Collapse
Affiliation(s)
- Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Fangyuan Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.,Southwest University-Tibet Agriculture and Animal Husbandry College (SWU-TAAHC) Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing, China
| | - Yanan Ma
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danial Hassani
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Peng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qifang Pan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuhua Zhang
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Zhongxiang Deng
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Wenbo Liu
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Jixiu Zhang
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Lei Han
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Dongfang Chen
- Corporate R&D Division, Firmenich Aromatics (China) Co. Ltd., Shanghai, China
| | - Jingya Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-Shanghai Jiaotong University (SJTU)-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Navale GR, Sharma P, Said MS, Ramkumar S, Dharne MS, Thulasiram HV, Shinde SS. Enhancing epi-cedrol production in Escherichia coli by fusion expression of farnesyl pyrophosphate synthase and epi-cedrol synthase. Eng Life Sci 2019; 19:606-616. [PMID: 32625036 DOI: 10.1002/elsc.201900103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/08/2019] [Indexed: 11/07/2022] Open
Abstract
Terpene synthase catalyses acyclic diphosphate farnesyl diphosphate into desired sesquiterpenes. In this study, a fusion enzyme was constructed by linking Santalum album farnesyl pyrophosphate synthase (SaFPPS) individually with terpene synthase and Artemisia annua Epi-cedrol synthase (AaECS). The stop codon at the N-terminus of SaFPPS was removed and replaced by a short peptide (GSGGS) to introduce a linker between the two open reading frames. This fusion clone was expressed in Escherichia coli Rosseta DE3 cells. The fusion enzyme FPPS-ECS produced sesquiterpene 8-epi-cedrol from substrates isopentenyl pyrophosphate and dimethylallyl pyrophosphate through sequential reactions. The K m values for FPPS-ECS for isopentyl diphosphate was 4.71 µM. The fusion enzyme carried out the efficient conversion of IPP to epi-cedrol, in comparison to single enzymes SaFPPS and AaECS when combined together in enzyme assay over time. Further, the recombinant E. coli BL21 strain harbouring fusion plasmid successfully produced epi-cedrol in fermentation medium. The strain having fusion plasmid (pET32a-FPPS-ECS) produced 1.084 ± 0.09 mg/L epi-cedrol, while the strain harbouring mixed plasmid (pRSETB-FPPS and pET28a-ECS) showed 1.002 ± 0.07 mg/L titre in fermentation medium by overexpression and MEP pathway utilization. Structural analysis was done by I-TASSER server and docking was done by AutoDock Vina software, which suggested that secondary structure of the N- C terminal domain and their relative positions to functional domains of the fusion enzyme was greatly significant to the catalytic properties of the fusion enzymatic complex than individual enzymes.
Collapse
Affiliation(s)
- Govinda R Navale
- Division of Organic Chemistry CSIR-National Chemical Laboratory Pune Maharashtra India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India.,NCIM Resource Centre CSIR-National Chemical Laboratory Pune Maharashtra India
| | - Poojadevi Sharma
- Division of Organic Chemistry CSIR-National Chemical Laboratory Pune Maharashtra India
| | - Madhukar S Said
- Division of Organic Chemistry CSIR-National Chemical Laboratory Pune Maharashtra India
| | - Sudha Ramkumar
- Division of Organic Chemistry CSIR-National Chemical Laboratory Pune Maharashtra India
| | - Mahesh S Dharne
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India.,NCIM Resource Centre CSIR-National Chemical Laboratory Pune Maharashtra India
| | - H V Thulasiram
- Division of Organic Chemistry CSIR-National Chemical Laboratory Pune Maharashtra India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Sandip S Shinde
- Division of Organic Chemistry CSIR-National Chemical Laboratory Pune Maharashtra India.,Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
7
|
Luo F, Ling Y, Li DS, Tang T, Liu YC, Liu Y, Li SH. Characterization of a sesquiterpene cyclase from the glandular trichomes of Leucosceptrum canum for sole production of cedrol in Escherichia coli and Nicotiana benthamiana. PHYTOCHEMISTRY 2019; 162:121-128. [PMID: 30884256 DOI: 10.1016/j.phytochem.2019.03.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 06/09/2023]
Abstract
Cedrol is an extremely versatile sesquiterpene alcohol that was approved by the Food and Drug Administration of the United States as a flavoring agent or adjuvant and has been commonly used as a flavoring ingredient in cosmetics, foods and medicine. Furthermore, cedrol possesses a wide range of pharmacological properties including sedative, anti-inflammatory and cytotoxic activities. Commercial production of cedrol relies on fractional distillation of cedar wood oils, followed by recrystallization, and little has been reported about its biosynthesis and aspects of synthetic biology. Here, we report the cloning and functional characterization of a cedrol synthase gene (Lc-CedS) from the transcriptome of the glandular trichomes of a woody Lamiaceae plant Leucosceptrum canum. The recombinant Lc-CedS protein catalyzed the in vitro conversion of farnesyl diphosphate into the single product cedrol, suggesting that Lc-CedS is a high-fidelity terpene synthase. Co-expression of Lc-CedS, a farnesyl diphosphate synthase gene and seven genes of the mevalonate (MVA) pathway responsible for converting acetyl-CoA into farnesyl diphosphate in Escherichia coli afforded 363 μg/L cedrol as the sole product under shaking flask conditions. Transient expression of Lc-CedS in Nicotiana benthamiana also resulted in a single product cedrol with a production level of 3.6 μg/g fresh weight. The sole production of cedrol by introducing of Lc-CedS in engineered E. coli and N. benthamiana suggests now alternative production systems using synthetic biology approaches that would better address sufficient supply of cedrol.
Collapse
Affiliation(s)
- Fei Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yi Ling
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - De-Sen Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Ting Tang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China
| | - Yan-Chun Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China; Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming, 650201, PR China.
| |
Collapse
|
8
|
Said MS, Navale GR, Gajbhiye JM, Shinde SS. Retracted Article: Synthesis of deuterated isopentyl pyrophosphates for chemo-enzymatic labelling methods: GC-EI-MS based 1,2-hydride shift in epicedrol biosynthesis. RSC Adv 2019; 9:28258-28261. [PMID: 35530493 PMCID: PMC9071075 DOI: 10.1039/c9ra00163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
A sesquiterpene epicedrol cyclase mechanism was elucidated based on the gas chromatography coupled to electron impact mass spectrometry fragmentation data of deuterated (2H) epicedrol analogues. The chemo-enzymatic method was applied for the specific synthesis of 8-position labelled farnesyl pyrophosphate and epicedrol. EI-MS fragmentation ions compared with non-labelled and isotopic mass shift fragments suggest that the 2H of C6 migrates to the C7 position during the cyclization mechanism. The cyclisation mechanism of epicedrol cyclase elucidated based on GC-EI-MS fragmentation of specific deuterated (2H) epicedrol analogues. The chemo-enzymatic method was applied for the synthesis 8-position-2H-farnesyl pyrophosphate synthesis.![]()
Collapse
Affiliation(s)
- Madhukar S. Said
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Govinda R. Navale
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Jayant M. Gajbhiye
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sandip S. Shinde
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| |
Collapse
|
9
|
Expression of key genes affecting artemisinin content in five Artemisia species. Sci Rep 2018; 8:12659. [PMID: 30139985 PMCID: PMC6107673 DOI: 10.1038/s41598-018-31079-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 08/10/2018] [Indexed: 01/24/2023] Open
Abstract
Artemisinin, an effective anti-malarial drug is synthesized in the specialized 10-celled biseriate glandular trichomes of some Artemisia species. In order to have an insight into artemisinin biosynthesis in species other than A. annua, five species with different artemisinin contents were investigated for the expression of key genes that influence artemisinin content. The least relative expression of the examined terpene synthase genes accompanied with very low glandular trichome density (4 No. mm−2) and absence of artemisinin content in A. khorassanica (S2) underscored the vast metabolic capacity of glandular trichomes. A. deserti (S4) with artemisinin content of 5.13 mg g−1 DW had a very high expression of Aa-ALDH1 and Aa-CYP71AV1 and low expression of Aa-DBR2. It is possible to develop plants with high artemisinin synthesis ability by downregulating Aa-ORA in S4, which may result in the reduction of Aa-ALDH1 and Aa-CYP71AV1 genes expression and effectively change the metabolic flux to favor more of artemisinin production than artemisinic acid. Based on the results, the Aa-ABCG6 transporter may be involved in trichome development. S4 had high transcript levels and larger glandular trichomes (3.46 fold) than A. annua found in Iran (S1), which may be due to the presence of more 2C-DNA (3.48 fold) in S4 than S1.
Collapse
|
10
|
Rusdi NA, Goh HH, Sabri S, Ramzi AB, Mohd Noor N, Baharum SN. Functional Characterisation of New Sesquiterpene Synthase from the Malaysian Herbal Plant, Polygonum Minus. Molecules 2018; 23:E1370. [PMID: 29882808 PMCID: PMC6100370 DOI: 10.3390/molecules23061370] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 11/16/2022] Open
Abstract
Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of β-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.
Collapse
Affiliation(s)
- Nor Azizun Rusdi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia.
- Institutes for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia.
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia.
| | - Suriana Sabri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Malaysia.
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia.
| | - Normah Mohd Noor
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia.
| | - Syarul Nataqain Baharum
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, Bangi 43600 UKM, Selangor, Malaysia.
| |
Collapse
|
11
|
Catania TM, Branigan CA, Stawniak N, Hodson J, Harvey D, Larson TR, Czechowski T, Graham IA. Silencing amorpha-4,11-diene synthase Genes in Artemisia annua Leads to FPP Accumulation. FRONTIERS IN PLANT SCIENCE 2018; 9:547. [PMID: 29896204 PMCID: PMC5986941 DOI: 10.3389/fpls.2018.00547] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/09/2018] [Indexed: 05/21/2023]
Abstract
Artemisia annua is established as an efficient crop for the production of the anti-malarial compound artemisinin, a sesquiterpene lactone synthesized and stored in Glandular Secretory Trichomes (GSTs) located on the leaves and inflorescences. Amorpha-4,11-diene synthase (AMS) catalyzes the conversion of farnesyl pyrophosphate (FPP) to amorpha-4,11-diene and diphosphate, which is the first committed step in the synthesis of artemisinin. FPP is the precursor for sesquiterpene and sterol biosynthesis in the plant. This work aimed to investigate the effect of blocking the synthesis of artemisinin in the GSTs of a high artemisinin yielding line, Artemis, by down regulating AMS. We determined that there are up to 12 AMS gene copies in Artemis, all expressed in GSTs. We used sequence homology to design an RNAi construct under the control of a GST specific promoter that was predicted to be effective against all 12 of these genes. Stable transformation of Artemis with this construct resulted in over 95% reduction in the content of artemisinin and related products, and a significant increase in the FPP pool. The Artemis AMS silenced lines showed no morphological alterations, and metabolomic and gene expression analysis did not detect any changes in the levels of other major sesquiterpene compounds or sesquiterpene synthase genes in leaf material. FPP also acts as a precursor for squalene and sterol biosynthesis but levels of these compounds were also not altered in the AMS silenced lines. Four unknown oxygenated sesquiterpenes were produced in these lines, but at extremely low levels compared to Artemis non-transformed controls (NTC). This study finds that engineering A. annua GSTs in an Artemis background results in endogenous terpenes related to artemisinin being depleted with the precursor FPP actually accumulating rather than being utilized by other endogenous enzymes. The challenge now is to establish if this precursor pool can act as substrate for production of alternative sesquiterpenes in A. annua.
Collapse
|
12
|
Fu X, Shi P, He Q, Shen Q, Tang Y, Pan Q, Ma Y, Yan T, Chen M, Hao X, Liu P, Li L, Wang Y, Sun X, Tang K. AaPDR3, a PDR Transporter 3, Is Involved in Sesquiterpene β-Caryophyllene Transport in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2017; 8:723. [PMID: 28533790 PMCID: PMC5420590 DOI: 10.3389/fpls.2017.00723] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/19/2017] [Indexed: 05/20/2023]
Abstract
Artemisinin, a sesquiterpenoid endoperoxide, isolated from the plant Artemisia annua L., is widely used in the treatment of malaria. Another sesquiterpenoid, β-caryophyllene having antibiotic, antioxidant, anticarcinogenic and local anesthetic activities, is also presented in A. annua. The role played by sesquiterpene transporters in trichomes and accumulation of these metabolites is poorly understood in A. annua and in trichomes of other plant species. We identified AaPDR3, encoding a pleiotropic drug resistance (PDR) transporter located to the plasma membrane from A. annua. Expression of AaPDR3 is tissue-specifically and developmentally regulated in A. annua. GUS activity is primarily restricted to T-shaped trichomes of old leaves and roots of transgenic A. annua plants expressing proAaPDR3: GUS. The level of β-caryophyllene was decreased in transgenic A. annua plants expressing AaPDR3-RNAi while transgenic A. annua plants expressing increased levels of AaPDR3 accumulated higher levels of β-caryophyllene. When AaPDR3 was expressed in transformed yeast, yeasts expressing AaPDR3 accumulated more β-caryophyllene, rather than germacrene D and β-farnesene, compared to the non-expressing control.
Collapse
|
13
|
Manczak T, Simonsen HT. Insight into Biochemical Characterization of Plant Sesquiterpene Synthases. ANALYTICAL CHEMISTRY INSIGHTS 2016; 11:1-7. [PMID: 27721652 PMCID: PMC5045046 DOI: 10.4137/aci.s40292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/21/2016] [Accepted: 08/29/2016] [Indexed: 11/21/2022]
Abstract
A fast and reproducible protocol was established for enzymatic characterization of plant sesquiterpene synthases that can incorporate radioactivity in their products. The method utilizes the 96-well format in conjunction with cluster tubes and enables processing of >200 samples a day. Along with reduced reagent usage, it allows further reduction in the use of radioactive isotopes and flammable organic solvents. The sesquiterpene synthases previously characterized were expressed in yeast, and the plant-derived Thapsia garganica kunzeaol synthase TgTPS2 was tested in this method. KM for TgTPS2 was found to be 0.55 μM; the turnover number, kcat, was found to be 0.29 s−1, kcat for TgTPS2 is in agreement with that of terpene synthases of other plants, and kcat/KM was found to be 0.53 s−1 μM−1 for TgTPS2. The kinetic parameters were in agreement with previously published data.
Collapse
Affiliation(s)
- Tom Manczak
- Department of Plants and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Eneh LK, Saijo H, Borg-Karlson AK, Lindh JM, Rajarao GK. Cedrol, a malaria mosquito oviposition attractant is produced by fungi isolated from rhizomes of the grass Cyperus rotundus. Malar J 2016; 15:478. [PMID: 27639972 PMCID: PMC5027114 DOI: 10.1186/s12936-016-1536-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/13/2016] [Indexed: 11/10/2022] Open
Abstract
Background Cedrol, a sesquiterpene alcohol, is the first identified oviposition attractant for African malaria vectors. Finding the natural source of this compound might help to elucidate why Anopheles gambiae and Anopheles arabiensis prefer to lay eggs in habitats containing it. Previous studies suggest that cedrol may be a fungal metabolite and the essential oil of grass rhizomes have been described to contain a high amount of different sesquiterpenes. Results Rhizomes of the grass Cyperus rotundus were collected in a natural malaria mosquito breeding site. Two fungi were isolated from an aqueous infusion with these rhizomes. They were identified as Fusarium falciforme and a species in the Fusarium fujikuroi species complex. Volatile compounds were collected from the headspace above fungal cultures on Tenax traps which were analysed by gas chromatography–mass spectrometry (GCMS). Cedrol and a cedrol isomer were detected in the headspace above the F. fujikuroi culture, while only cedrol was detected above the F. falciforme culture. Conclusion Cedrol an oviposition attractant for African malaria vectors is produced by two fungi species isolated from grass rhizomes collected from a natural mosquito breeding site.
Collapse
Affiliation(s)
- Lynda K Eneh
- Chemical Ecology Unit, Division of Organic Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hiromi Saijo
- Chemical Ecology Unit, Division of Organic Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.,Forest Products Group, Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Anna-Karin Borg-Karlson
- Chemical Ecology Unit, Division of Organic Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jenny M Lindh
- Chemical Ecology Unit, Division of Organic Chemistry, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - Gunaratna Kuttuva Rajarao
- Division of Industrial Biotechnology, School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
15
|
Gou JB, Li ZQ, Li CF, Chen FF, Lv SY, Zhang YS. Molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:288-294. [PMID: 27231873 DOI: 10.1016/j.plaphy.2016.05.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/17/2016] [Accepted: 05/17/2016] [Indexed: 06/05/2023]
Abstract
Junenol based-eudesmanolides have been detected in many compositae plant species and were reported to exhibit various pharmacological activities. So far, the gene encoding junenol synthase has never been isolated. Here we report the molecular cloning and functional analysis of a 10-epi-junenol synthase from Inula hupehensis (designated IhsTPS1). IhsTPS1 converts the substrate farnesyl diphosphate into multiple sesquiterpenes with the product 10-epi-junenol being predominant. The transcript levels of IhsTPS1 correlate well with the accumulation pattern of 10-epi-junenol in I. hupehensis organs, supporting its biochemical roles in vivo.
Collapse
Affiliation(s)
- Jun-Bo Gou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China; Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Qiu Li
- College of Life Sciences, Hebei University, Baoding 071002, China
| | - Chang-Fu Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang-Fang Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shi-You Lv
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yan-Sheng Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
16
|
Lv Z, Zhang F, Pan Q, Fu X, Jiang W, Shen Q, Yan T, Shi P, Lu X, Sun X, Tang K. Branch Pathway Blocking in Artemisia annua is a Useful Method for Obtaining High Yield Artemisinin. PLANT & CELL PHYSIOLOGY 2016; 57:588-602. [PMID: 26858285 DOI: 10.1093/pcp/pcw014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/13/2016] [Indexed: 05/04/2023]
Abstract
There are many biosynthetic pathways competing for the metabolic flux with the artemisinin biosynthetic pathway in Artemisia annua L. To study the relationship between genes encoding enzymes at branching points and the artemisinin biosynthetic pathway, β-caryophyllene, β-farnesene and squalene were sprayed on young seedlings of A. annua. Transient expression assays indicated that the transcription levels of β-caryophyllene synthase (CPS), β-farnesene synthase (BFS) and squalene synthase (SQS) were inhibited by β-caryophyllene, β-farnesene and squalene, respectively, while expression of some artemisinin biosynthetic pathway genes increased. Thus, inhibition of these genes encoding enzymes at branching points may be helpful to improve the artemisinin content. For further study, the expression levels of four branch pathway genes CPS, BFS, germacrene A synthase (GAS) and SQS were down-regulated by the antisense method in A. annua. In anti-CPS transgenic plants, mRNA levels of BFS and ADS were increased, and the contents of β-farnesene, artemisinin and dihydroartemisinic acid (DHAA) were increased by 212, 77 and 132%, respectively. The expression levels of CPS, SQS, GAS, amorpha-4,11-diene synthase (ADS), amorphadiene 12-hydroxylase (CYP71AV1) and aldehyde dehydrogenase 1 (ALDH1) were increased in anti-BFS transgenic plants and, at the same time, the contents of artemisinin and DHAA were increased by 77% and 54%, respectively, and the content of squalene was increased by 235%. In anti-GAS transgenic plants, mRNA levels of CPS, BFS, ADS and ALDH1 were increased. The contents of artemisinin and DHAA were enhanced by 103% and 130%, respectively. In anti-SQS transgenic plants, the transcription levels of BFS, GAS, CPS, ADS, CYP71AV1 and ALDH1 were all increased. Contents of artemisinin and DHAA were enhanced by 71% and 223%, respectively, while β-farnesene was raised to 123%. The mRNA level of artemisinic aldehyde Δ11(13) reductase (DBR2) had changed little in almost all transgenic plants.
Collapse
Affiliation(s)
- Zongyou Lv
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fangyuan Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qifang Pan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xueqing Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weimin Jiang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingxiang Yan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pu Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Lu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofen Sun
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kexuan Tang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Shinde SS, Navale GR, Said MS, Thulasiram HV. Stereoselective quenching of cedryl carbocation in epicedrol biosynthesis. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Fu X, Shi P, Shen Q, Jiang W, Tang Y, Lv Z, Yan T, Li L, Wang G, Sun X, Tang K. T-shaped trichome-specific expression of monoterpene synthase ADH2 using promoter-β-GUS fusion in transgenicArtemisia annuaL. Biotechnol Appl Biochem 2015; 63:834-840. [DOI: 10.1002/bab.1440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/26/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Xueqing Fu
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Pu Shi
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Qian Shen
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Weimin Jiang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Yueli Tang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Zongyou Lv
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Tingxiang Yan
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Ling Li
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Guofeng Wang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Xiaofen Sun
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| | - Kexuan Tang
- Key Laboratory of Urban Agriculture (South) Ministry of Agriculture; Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University; Shanghai People's Republic of China
| |
Collapse
|
19
|
Genetic Transformation of Artemisia carvifolia Buch with rol Genes Enhances Artemisinin Accumulation. PLoS One 2015; 10:e0140266. [PMID: 26444558 PMCID: PMC4596866 DOI: 10.1371/journal.pone.0140266] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/22/2015] [Indexed: 11/19/2022] Open
Abstract
The potent antimalarial drug artemisinin has a high cost, since its only viable source to date is Artemisia annua (0.01-0.8% DW). There is therefore an urgent need to design new strategies to increase its production or to find alternative sources. In the current study, Artemisia carvifolia Buch was selected with the aim of detecting artemisinin and then enhancing the production of the target compound and its derivatives. These metabolites were determined by LC-MS in the shoots of A. carvifolia wild type plants at the following concentrations: artemisinin (8μg/g), artesunate (2.24μg/g), dihydroartemisinin (13.6μg/g) and artemether (12.8μg/g). Genetic transformation of A. carvifolia was carried out with Agrobacterium tumefaciens GV3101 harboring the rol B and rol C genes. Artemisinin content increased 3-7-fold in transgenics bearing the rol B gene, and 2.3-6-fold in those with the rol C gene. A similar pattern was observed for artemisinin analogues. The dynamics of artemisinin content in transgenics and wild type A.carvifolia was also correlated with the expression of genes involved in its biosynthesis. Real time qPCR analysis revealed the differential expression of genes involved in artemisinin biosynthesis, i.e. those encoding amorpha-4, 11 diene synthase (ADS), cytochrome P450 (CYP71AV1), and aldehyde dehydrogenase 1 (ALDH1), with a relatively higher transcript level found in transgenics than in the wild type plant. Also, the gene related to trichome development and sesquiterpenoid biosynthesis (TFAR1) showed an altered expression in the transgenics compared to wild type A.carvifolia, which was in accordance with the trichome density of the respective plants. The trichome index was significantly higher in the rol B and rol C gene-expressing transgenics with an increased production of artemisinin, thereby demonstrating that the rol genes are effective inducers of plant secondary metabolism.
Collapse
|
20
|
In vitro characterization of a (E)-β-farnesene synthase from Matricaria recutita L. and its up-regulation by methyl jasmonate. Gene 2015; 571:58-64. [DOI: 10.1016/j.gene.2015.06.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 11/23/2022]
|
21
|
Xu GL, Geng D, Xie M, Teng KY, Tian YX, Liu ZZ, Yan C, Wang Y, Zhang X, Song Y, Yang Y, She GM. Chemical Composition, Antioxidative and Anticancer Activities of the Essential Oil: Curcumae Rhizoma-Sparganii Rhizoma, a Traditional Herb Pair. Molecules 2015; 20:15781-96. [PMID: 26343630 PMCID: PMC6332236 DOI: 10.3390/molecules200915781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 01/28/2023] Open
Abstract
As a classical herb pair in clinics of traditional Chinese medicine, Curcumae Rhizoma-Sparganii Rhizoma (HP CR-SR) is used for activating blood circulation to remove blood stasis. The essential components in HP CR-SR and its single herbs were comparatively analyzed using gas chromatography-mass spectrometry data. 66, 22, and 54 components in volatile oils of Curcumae Rhizoma, Sparganii Rhizoma, and HP CR-SR were identified, and total contents accounted for 75.416%, 91.857%, and 79.553% respectively. The thirty-eight components were found in HP CR-SR, and not detected in single herbs Curcumae Rhizoma and Sparganii Rhizoma. The highest radical trapping action was seen by an essential oil of HP CR-SR (IC50 = 0.59 ± 0.04 mg/mL). Furthermore, the HP CR-SR essential oil showed more remarkable cytotoxicity on tumor cell lines than that of the single herbs Curcumae Rhizoma and Sparganii Rhizoma in a dose-dependent manner: IC50 values showing 32.32 ± 5.31 μg/mL (HeLa), 34.76 ± 1.82 μg/mL (BGC823), 74.84 ± 1.66 μg/mL (MCF-7), 66.12 ± 11.23 μg/mL (SKOV3), and 708.24 ± 943.91 μg/mL (A549), respectively. In summary, the essential oil of HP CR-SR is different from any one of Curcumae Rhizoma and Sparganii Rhizoma, nor simply their superposition, and HP CR-SR oil presented more remarkable anticancer and antioxidant activities compared with Curcumae Rhizoma and Sparganii Rhizoma oils.
Collapse
Affiliation(s)
- Guan-Ling Xu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Di Geng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Meng Xie
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Kai-Yue Teng
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yu-Xin Tian
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Zi-Zhen Liu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Cheng Yan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yan Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Xia Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yan Song
- Pharmacy College, Ningxia Medical University, Ningxia 750021, China.
| | - Yue Yang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Gai-Mei She
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
22
|
Jin J, Kim MJ, Dhandapani S, Tjhang JG, Yin JL, Wong L, Sarojam R, Chua NH, Jang IC. The floral transcriptome of ylang ylang (Cananga odorata var. fruticosa) uncovers biosynthetic pathways for volatile organic compounds and a multifunctional and novel sesquiterpene synthase. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3959-75. [PMID: 25956881 PMCID: PMC4473991 DOI: 10.1093/jxb/erv196] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The pleasant fragrance of ylang ylang varieties (Cananga odorata) is mainly due to volatile organic compounds (VOCs) produced by the flowers. Floral scents are a key factor in plant-insect interactions and are vital for successful pollination. C. odorata var. fruticosa, or dwarf ylang ylang, is a variety of ylang ylang that is popularly grown in Southeast Asia as a small shrub with aromatic flowers. Here, we describe the combined use of bioinformatics and chemical analysis to discover genes for the VOC biosynthesis pathways and related genes. The scented flowers of C. odorata var. fruticosa were analysed by gas chromatography/mass spectrometry and a total of 49 VOCs were identified at four different stages of flower development. The bulk of these VOCs were terpenes, mainly sesquiterpenes. To identify the various terpene synthases (TPSs) involved in the production of these essential oils, we performed RNA sequencing on mature flowers. From the RNA sequencing data, four full-length TPSs were functionally characterized. In vitro assays showed that two of these TPSs were mono-TPSs. CoTPS1 synthesized four products corresponding to β-thujene, sabinene, β-pinene, and α-terpinene from geranyl pyrophosphate and CoTPS4 produced geraniol from geranyl pyrophosphate. The other two TPSs were identified as sesqui-TPSs. CoTPS3 catalysed the conversion of farnesyl pyrophosphate to α-bergamotene, whereas CoTPS2 was found to be a multifunctional and novel TPS that could catalyse the synthesis of three sesquiterpenes, β-ylangene, β-copaene, and β-cubebene. Additionally, the activities of the two sesqui-TPSs were confirmed in planta by transient expression of these TPS genes in Nicotiana benthamiana leaves by Agrobacterium-mediated infiltration.
Collapse
Affiliation(s)
- Jingjing Jin
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604 School of Computing, National University of Singapore, Singapore 117417
| | - Mi Jung Kim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Savitha Dhandapani
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117543
| | - Jessica Gambino Tjhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Jun-Lin Yin
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Limsoon Wong
- School of Computing, National University of Singapore, Singapore 117417
| | - Rajani Sarojam
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604 Department of Biological Sciences, National University of Singapore, Singapore 117543
| |
Collapse
|
23
|
Frister T, Hartwig S, Alemdar S, Schnatz K, Thöns L, Scheper T, Beutel S. Characterisation of a Recombinant Patchoulol Synthase Variant for Biocatalytic Production of Terpenes. Appl Biochem Biotechnol 2015; 176:2185-201. [DOI: 10.1007/s12010-015-1707-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023]
|
24
|
Rehman R, Hanif MA, Mushtaq Z, Al-Sadi AM. Biosynthesis of essential oils in aromatic plants: A review. FOOD REVIEWS INTERNATIONAL 2015. [DOI: 10.1080/87559129.2015.1057841] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Lindh JM, Okal MN, Herrera-Varela M, Borg-Karlson AK, Torto B, Lindsay SW, Fillinger U. Discovery of an oviposition attractant for gravid malaria vectors of the Anopheles gambiae species complex. Malar J 2015; 14:119. [PMID: 25885703 PMCID: PMC4404675 DOI: 10.1186/s12936-015-0636-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND New strategies are needed to manage malaria vector populations that resist insecticides and bite outdoors. This study describes a breakthrough in developing 'attract and kill' strategies targeting gravid females by identifying and evaluating an oviposition attractant for Anopheles gambiae s.l. METHODS Previously, the authors found that gravid An. gambiae s.s. females were two times more likely to lay eggs in lake water infused for six days with soil from a natural oviposition site in western Kenya compared to lake water alone or to the same but autoclaved infusion. Here, the volatile chemicals released from these substrates were analysed with a gas-chromatograph coupled to a mass-spectrometer (GC-MS). Furthermore, the behavioural responses of gravid females to one of the compounds identified were evaluated in dual choice egg-count bioassays, in dual-choice semi-field experiments with odour-baited traps and in field bioassays. RESULTS One of the soil infusion volatiles was readily identified as the sesquiterpene alcohol cedrol. Its widespread presence in natural aquatic habitats in the study area was confirmed by analysing the chemical headspace of 116 water samples collected from different aquatic sites in the field and was therefore selected for evaluation in oviposition bioassays. Twice as many gravid females were attracted to cedrol-treated water than to water alone in two choice cage bioassays (odds ratio (OR) 1.84; 95% confidence interval (CI) 1.16-2.91) and in experiments conducted in large-screened cages with free-flying mosquitoes (OR 1.92; 95% CI 1.63-2.27). When tested in the field, wild malaria vector females were three times more likely to be collected in the traps baited with cedrol than in the traps containing water alone (OR 3.3; 95% CI 1.4-7.9). CONCLUSION Cedrol is the first compound confirmed as an oviposition attractant for gravid An. gambiae s.l. This finding paves the way for developing new 'attract and kill strategies' for malaria vector control.
Collapse
Affiliation(s)
- Jenny M Lindh
- Department of Chemistry, Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | - Michael N Okal
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | - Manuela Herrera-Varela
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | | | - Baldwyn Torto
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| | - Steven W Lindsay
- School of Biological & Biomedical Sciences, Durham University, Durham, DH1 3LE, UK.
| | - Ulrike Fillinger
- Disease Control Department, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
- Behavioural and Chemical Ecology Department, International Centre of Insect Physiology and Ecology, 00100, Nairobi, Kenya.
| |
Collapse
|
26
|
Wang H, Kanagarajan S, Han J, Hao M, Yang Y, Lundgren A, Brodelius PE. Studies on the expression of linalool synthase using a promoter-β-glucuronidase fusion in transgenic Artemisia annua. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:85-96. [PMID: 24331423 DOI: 10.1016/j.jplph.2013.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 09/21/2013] [Accepted: 09/28/2013] [Indexed: 05/22/2023]
Abstract
Artemisinin, an antimalarial endoperoxide sesquiterpene, is synthesized in glandular trichomes of Artemisia annua L. A number of other enzymes of terpene metabolism utilize intermediates of artemisinin biosynthesis, such as isopentenyl and farnesyl diphosphate, and may thereby influence the yield of artemisinin. In order to study the expression of such enzymes, we have cloned the promoter regions of some enzymes and fused them to β-glucuronidase (GUS). In this study, we have investigated the expression of the monoterpene synthase linalool synthase (LIS) using transgenic A. annua carrying the GUS gene under the control of the LIS promoter. The 652bp promoter region was cloned by the genome walker method. A number of putative cis-acting elements were predicted indicating that the LIS is driven by a complex regulation mechanism. Transgenic plants carrying the promoter-GUS fusion showed specific expression of GUS in T-shaped trichomes (TSTs) but not in glandular secretory trichomes, which is the site for artemisinin biosynthesis. GUS expression was observed at late stage of flower development in styles of florets and in TSTs and guard cells of basal bracts. GUS expression after wounding showed that LIS is involved in plant responsiveness to wounding. Furthermore, the LIS promoter responded to methyl jasmonate (MeJA). These results indicate that the promoter carries a number of cis-acting regulatory elements involved in the tissue-specific expression of LIS and in the response of the plant to wounding and MeJA treatment. Southern blot analysis indicated that the GUS gene was integrated in the A. annua genome as single or multi copies in different transgenic lines. Promoter activity analysis by qPCR showed that both the wild-type and the recombinant promoter are active in the aerial parts of the plant while only the recombinant promoter was active in roots. Due to the expression in TSTs but not in glandular trichomes, it may be concluded that LIS expression will most likely have little or no effect on artemisinin production.
Collapse
Affiliation(s)
- Hongzhen Wang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Selvaraju Kanagarajan
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Junli Han
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Mengshu Hao
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Yiyi Yang
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Anneli Lundgren
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden
| | - Peter E Brodelius
- Department of Chemistry and Biomedical Sciences, Linnaeus University, Kalmar, Sweden.
| |
Collapse
|
27
|
Jullien F, Moja S, Bony A, Legrand S, Petit C, Benabdelkader T, Poirot K, Fiorucci S, Guitton Y, Nicolè F, Baudino S, Magnard JL. Isolation and functional characterization of a τ-cadinol synthase, a new sesquiterpene synthase from Lavandula angustifolia. PLANT MOLECULAR BIOLOGY 2014; 84:227-41. [PMID: 24078339 DOI: 10.1007/s11103-013-0131-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 09/15/2013] [Indexed: 05/12/2023]
Abstract
In this paper we characterize three sTPSs: a germacrene D (LaGERDS), a (E)-β-caryophyllene (LaCARS) and a τ-cadinol synthase (LaCADS). τ-cadinol synthase is reported here for the first time and its activity was studied in several biological models including transiently or stably transformed tobacco species. Three dimensional structure models of LaCADS and Ocimum basilicum γ-cadinene synthase were built by homology modeling using the template structure of Gossypium arboreum δ-cadinene synthase. The depiction of their active site organization provides evidence of the global influence of the enzymes on the formation of τ-cadinol: instead of a unique amino-acid, the electrostatic properties and solvent accessibility of the whole active site in LaCADS may explain the stabilization of the cadinyl cation intermediate. Quantitative PCR performed from leaves and inflorescences showed two patterns of expression. LaGERDS and LaCARS were mainly expressed during early stages of flower development and, at these stages, transcript levels paralleled the accumulation of the corresponding terpene products (germacrene D and (E)-β-caryophyllene). By contrast, the expression level of LaCADS was constant in leaves and flowers. Phylogenetic analysis provided informative results on potential duplication process leading to sTPS diversification in lavender.
Collapse
|
28
|
Soetaert SSA, Van Neste CMF, Vandewoestyne ML, Head SR, Goossens A, Van Nieuwerburgh FCW, Deforce DLD. Differential transcriptome analysis of glandular and filamentous trichomes in Artemisia annua. BMC PLANT BIOLOGY 2013; 13:220. [PMID: 24359620 PMCID: PMC3878173 DOI: 10.1186/1471-2229-13-220] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 12/12/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND The medicinal plant Artemisia annua is covered with filamentous trichomes and glandular, artemisinin producing trichomes. A high artemisinin supply is needed at a reduced cost for treating malaria. Artemisinin production in bioreactors can be facilitated if a better insight is obtained in the biosynthesis of artemisinin and other metabolites. Therefore, metabolic activities of glandular and filamentous trichomes were investigated at the transcriptome level. RESULTS By laser pressure catapulting, glandular and filamentous trichomes as well as apical and sub-apical cells from glandular trichomes were collected and their transcriptome was sequenced using Illumina RNA-Seq. A de novo transcriptome was assembled (Trinity) and studied with a differential expression analysis (edgeR).A comparison of the transcriptome from glandular and filamentous trichomes shows that MEP, MVA, most terpene and lipid biosynthesis pathways are significantly upregulated in glandular trichomes. Conversely, some transcripts coding for specific sesquiterpenoid and triterpenoid enzymes such as 8-epi-cedrol synthase and an uncharacterized oxidosqualene cyclase were significantly upregulated in filamentous trichomes. All known artemisinin biosynthesis genes are upregulated in glandular trichomes and were detected in both the apical and sub-apical cells of the glandular trichomes. No significant differential expression could be observed between the apical and sub-apical cells. CONCLUSIONS Our results underscore the vast metabolic capacities of A. annua glandular trichomes but nonetheless point to the existence of specific terpene metabolic pathways in the filamentous trichomes. Candidate genes that might be involved in artemisinin biosynthesis are proposed based on their putative function and their differential expression level.
Collapse
Affiliation(s)
- Sandra SA Soetaert
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Christophe MF Van Neste
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Mado L Vandewoestyne
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Steven R Head
- Next Generation Sequencing Core, The Scripps Research Institute, 10550N. Torrey Pines Rd, La Jolla, CA 92037 United States of America
| | - Alain Goossens
- Department of Plant Systems Biology, VIB and Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Filip CW Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Dieter LD Deforce
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Wang H, Han J, Kanagarajan S, Lundgren A, Brodelius PE. Studies on the expression of sesquiterpene synthases using promoter-β-glucuronidase fusions in transgenic Artemisia annua L. PLoS One 2013; 8:e80643. [PMID: 24278301 PMCID: PMC3838408 DOI: 10.1371/journal.pone.0080643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/12/2013] [Indexed: 11/30/2022] Open
Abstract
In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for β-caryophyllene (CPS), epi-cedrol (ECS) and β-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.
Collapse
Affiliation(s)
- Hongzhen Wang
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Junli Han
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | | | - Anneli Lundgren
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
| | - Peter E. Brodelius
- Department of Chemistry and Biomedicine, Linnaeus University, Kalmar, Sweden
- * E-mail:
| |
Collapse
|
30
|
Lange BM, Turner GW. Terpenoid biosynthesis in trichomes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:2-22. [PMID: 22979959 DOI: 10.1111/j.1467-7652.2012.00737.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 07/24/2012] [Accepted: 07/31/2012] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are anatomical structures specialized for the synthesis of secreted natural products. In this review we focus on the description of glands that accumulate terpenoid essential oils and oleoresins. We also provide an in-depth account of the current knowledge about the biosynthesis of terpenoids and secretion mechanisms in the highly specialized secretory cells of glandular trichomes, and highlight the implications for metabolic engineering efforts.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry, M.J. Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
31
|
Pani A, Mahapatra RK, Behera N, Naik PK. Computational identification of sweet wormwood (Artemisia annua) microRNA and their mRNA targets. GENOMICS PROTEOMICS & BIOINFORMATICS 2012; 9:200-10. [PMID: 22289476 PMCID: PMC5054163 DOI: 10.1016/s1672-0229(11)60023-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/28/2011] [Indexed: 11/18/2022]
Abstract
Despite its efficacy against malaria, the relatively low yield (0.01%-0.8%) of artemisinin in Artemisia annua is a serious limitation to the commercialization of the drug. A better understanding of the biosynthetic pathway of artemisinin and its regulation by both exogenous and endogenous factors is essential to improve artemisinin yield. Increasing evidence has shown that microRNAs (miRNAs) play multiple roles in various biological processes. In this study, we used previously known miRNAs from Arabidopsis and rice against expressed sequence tag (EST) database of A. annua to search for potential miRNAs and their targets in A. annua. A total of six potential miRNAs were predicted, which belong to the miR414 and miR1310 families. Furthermore, eight potential target genes were identified in this species. Among them, seven genes encode proteins that play important roles in artemisinin biosynthesis, including HMG-CoA reductase (HMGR), amorpha-4,11-diene synthase (ADS), farnesyl pyrophosphate synthase (FPS) and cytochrome P450. In addition, a gene coding for putative AINTEGUMENTA, which is involved in signal transduction and development, was also predicted as one of the targets. This is the first in silico study to indicate that miRNAs target genes encoding enzymes involved in artemisinin biosynthesis, which may help to understand the miRNA-mediated regulation of artemisinin biosynthesis in A. annua.
Collapse
Affiliation(s)
- Alok Pani
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
| | - Rajani Kanta Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) University, Bhubaneswar, Odisha 751024, India
- School of Life Sciences, Sambalpur University, Burla, Odisha 768019, India
- Corresponding author.
| | - Niranjan Behera
- School of Life Sciences, Sambalpur University, Burla, Odisha 768019, India
| | - Pradeep Kumar Naik
- Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh 173215, India
| |
Collapse
|
32
|
Kanagarajan S, Muthusamy S, Gliszczyńska A, Lundgren A, Brodelius PE. Functional expression and characterization of sesquiterpene synthases from Artemisia annua L. using transient expression system in Nicotiana benthamiana. PLANT CELL REPORTS 2012; 31:1309-19. [PMID: 22565787 DOI: 10.1007/s00299-012-1250-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/13/2012] [Accepted: 03/17/2012] [Indexed: 05/03/2023]
Abstract
UNLABELLED Artemisia annua L. produces a number of sesquiterpene synthases, which catalyze the conversion of farnesyl diphosphate to various sesquiterpenes. The cDNAs encoding amorpha-4,11-diene synthase (ADS), a key enzyme in the artemisinin biosynthesis, and epi-cedrol synthase (ECS), a complex sesquiterpene cyclization synthase, were cloned into Cowpea mosaic virus-based viral vector (pEAQ-HT) with Kozak consensus motif and C-terminal histidine tag. The plasmids were transformed into Agrobacterium LBA4404 and, agroinfiltrated into Nicotiana benthamiana leaves along with vector (pJL3:p19) containing Tomato bushy stunt virus post-transcriptional gene silencing suppressor. Quantitative PCR was carried out to measure the transcript levels at 0, 3, 6, 9, 12 and 15 days post-infiltration (dpi). The highest relative expression was observed at 9 dpi for both genes. Transiently expressed recombinant proteins of ADS and ECS were confirmed by SDS-PAGE and western blot. Recombinant proteins were extracted from 9 dpi leaves and purified by immobilized metal ion affinity chromatography using histidine tag, which produced yields of 90 and 96 mg kg⁻¹ fresh weight of leaves for ADS and ECS, respectively. Activities of the purified enzymes were assayed using gas chromatography-mass spectrometry for product identification and quantification using valencene as internal standard. The recombinant ADS and ECS converted farnesyl diphosphate into amorpha-4,11-diene (97 %) and epi-cedrol (96 %) as the major products, respectively. The purified enzymes exhibited the specific activity of 0.002 and 0.01 μmol min⁻¹ mg⁻¹ protein for ADS and ECS, respectively. The apparent k(cat) values were 2.1 × 10⁻³ s⁻¹ and 11 × 10⁻³ s⁻¹ for ADS and ECS, respectively. KEY MESSAGE Agroinfiltration of leaves of Nicotiana bentamiana can be used to produce recombinant biosynthetic enzymes as exemplified by two sesquiterpene synthases from Artemisia annua in relatively high yields.
Collapse
|
33
|
Faraldos JA, Miller DJ, González V, Yoosuf-Aly Z, Cascón O, Li A, Allemann RK. A 1,6-ring closure mechanism for (+)-δ-cadinene synthase? J Am Chem Soc 2012; 134:5900-8. [PMID: 22397618 DOI: 10.1021/ja211820p] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Recombinant (+)-δ-cadinene synthase (DCS) from Gossypium arboreum catalyzes the metal-dependent cyclization of (E,E)-farnesyl diphosphate (FDP) to the cadinane sesquiterpene δ-cadinene, the parent hydrocarbon of cotton phytoalexins such as gossypol. In contrast to some other sesquiterpene cyclases, DCS carries out this transformation with >98% fidelity but, as a consequence, leaves no mechanistic traces of its mode of action. The formation of (+)-δ-cadinene has been shown to occur via the enzyme-bound intermediate (3R)-nerolidyl diphosphate (NDP), which in turn has been postulated to be converted to cis-germacradienyl cation after a 1,10-cyclization. A subsequent 1,3-hydride shift would then relocate the carbocation within the transient macrocycle to expedite a second cyclization that yields the cadinenyl cation with the correct cis stereochemistry found in (+)-δ-cadinene. An elegant 1,10-mechanistic pathway that avoids the formation of (3R)-NDP has also been suggested. In this alternative scenario, the final cadinenyl cation is proposed to be formed through the intermediacy of trans, trans-germacradienyl cation and germacrene D. In addition, an alternative 1,6-ring closure mechanism via the bisabolyl cation has previously been envisioned. We report here a detailed investigation of the catalytic mechanism of DCS using a variety of mechanistic probes including, among others, deuterated and fluorinated FDPs. Farnesyl diphosphate analogues with fluorine at C2 and C10 acted as inhibitors of DCS, but intriguingly, after prolonged overnight incubations, they yielded 2F-germacrene(s) and a 10F-humulene, respectively. The observed 1,10-, and to a lesser extent, 1,11-cyclization activity of DCS with these fluorinated substrates is consistent with the postulated macrocyclization mechanism(s) en route to (+)-δ-cadinene. On the other hand, mechanistic results from incubations of DCS with 6F-FPP, (2Z,6E)-FDP, neryl diphosphate, 6,7-dihydro-FDP, and NDP seem to be in better agreement with the potential involvement of the alternative biosynthetic 1,6-ring closure pathway. In particular, the strong inhibition of DCS by 6F-FDP, coupled to the exclusive bisabolyl- and terpinyl-derived product profiles observed for the DCS-catalyzed turnover of (2Z,6E)-farnesyl and neryl diphosphates, suggested the intermediacy of α-bisabolyl cation. DCS incubations with enantiomerically pure [1-(2)H(1)](1R)-FDP revealed that the putative bisabolyl-derived 1,6-pathway proceeds through (3R)-nerolidyl diphosphate (NDP), is consistent with previous deuterium-labeling studies, and accounts for the cis stereochemistry characteristic of cadinenyl-derived sesquiterpenes. While the results reported here do not unambiguously rule in favor of 1,6- or 1,10-cyclization, they demonstrate the mechanistic versatility inherent to DCS and highlight the possible existence of multiple mechanistic pathways.
Collapse
Affiliation(s)
- Juan A Faraldos
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Hess BA, Smentek L, Noel JP, O’Maille PE. Physical Constraints on Sesquiterpene Diversity Arising from Cyclization of the Eudesm-5-yl Carbocation. J Am Chem Soc 2011; 133:12632-41. [DOI: 10.1021/ja203342p] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B. Andes Hess
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Lidia Smentek
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | | | | |
Collapse
|
35
|
Liu B, Wang H, Du Z, Li G, Ye H. Metabolic engineering of artemisinin biosynthesis in Artemisia annua L. PLANT CELL REPORTS 2011; 30:689-94. [PMID: 21184232 DOI: 10.1007/s00299-010-0967-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Revised: 11/18/2010] [Accepted: 11/30/2010] [Indexed: 05/19/2023]
Abstract
Artemisinin, a sesquiterpene lactone isolated from the Chinese medicinal plant Artemisia annua L., is an effective antimalarial agent, especially for multi-drug resistant and cerebral malaria. To date, A. annua is still the only commercial source of artemisinin. The low concentration of artemisinin in A. annua, ranging from 0.01 to 0.8% of the plant dry weight, makes artemisinin relatively expensive and difficult to meet the demand of over 100 million courses of artemisinin-based combinational therapies per year. Since the chemical synthesis of artemisinin is not commercially feasible at present, another promising approach to reduce the price of artemisinin-based antimalarial drugs is metabolic engineering of the plant to obtain a higher content of artemisinin in transgenic plants. In the past decade, we have established an Agrobacterium-mediated transformation system of A. annua, and have successfully transferred a number of genes related to artemisinin biosynthesis into the plant. The various aspects of these efforts are discussed in this review.
Collapse
Affiliation(s)
- Benye Liu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Nanxincun 20, Haidian District, Beijing, 100093, China
| | | | | | | | | |
Collapse
|
36
|
Olofsson L, Engström A, Lundgren A, Brodelius PE. Relative expression of genes of terpene metabolism in different tissues of Artemisia annua L. BMC PLANT BIOLOGY 2011; 11:45. [PMID: 21388533 PMCID: PMC3063820 DOI: 10.1186/1471-2229-11-45] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/09/2011] [Indexed: 05/02/2023]
Abstract
BACKGROUND Recently, Artemisia annua L. (annual or sweet wormwood) has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. RESULTS The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13) reductase and aldehyde dehydrogenase 1) showed remarkably higher expression (between ~40- to ~500-fold) in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures). Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. CONCLUSIONS Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes). The expression of dihydroartemisinic aldehyde reductase has been suggested to have a negative effect on artemisinin production through reduction of dihydroartemisinic aldehyde to dihydroartemisinic alcohol. However, our results show that this enzyme is expressed only at low levels in tissues producing artemisinin and consequently its effect on artemisinin production may be limited. Finally, squalene synthase but not other sesquiterpene synthases appears to be a significant competitor for farnesyl diphosphate in artemisinin-producing tissues.
Collapse
Affiliation(s)
- Linda Olofsson
- School of Natural Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Alexander Engström
- School of Natural Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Anneli Lundgren
- School of Natural Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| | - Peter E Brodelius
- School of Natural Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
37
|
Brown GD. The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010; 15:7603-98. [PMID: 21030913 PMCID: PMC6259225 DOI: 10.3390/molecules15117603] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 10/17/2010] [Indexed: 12/27/2022] Open
Abstract
The Chinese medicinal plant Artemisia annua L. (Qinghao) is the only known source of the sesquiterpene artemisinin (Qinghaosu), which is used in the treatment of malaria. Artemisinin is a highly oxygenated sesquiterpene, containing a unique 1,2,4-trioxane ring structure, which is responsible for the antimalarial activity of this natural product. The phytochemistry of A. annua is dominated by both sesquiterpenoids and flavonoids, as is the case for many other plants in the Asteraceae family. However, A. annua is distinguished from the other members of the family both by the very large number of natural products which have been characterised to date (almost six hundred in total, including around fifty amorphane and cadinane sesquiterpenes), and by the highly oxygenated nature of many of the terpenoidal secondary metabolites. In addition, this species also contains an unusually large number of terpene allylic hydroperoxides and endoperoxides. This observation forms the basis of a proposal that the biogenesis of many of the highly oxygenated terpene metabolites from A. annua - including artemisinin itself - may proceed by spontaneous oxidation reactions of terpene precursors, which involve these highly reactive allyllic hydroperoxides as intermediates. Although several studies of the biosynthesis of artemisinin have been reported in the literature from the 1980s and early 1990s, the collective results from these studies were rather confusing because they implied that an unfeasibly large number of different sesquiterpenes could all function as direct precursors to artemisinin (and some of the experiments also appeared to contradict one another). As a result, the complete biosynthetic pathway to artemisinin could not be stated conclusively at the time. Fortunately, studies which have been published in the last decade are now providing a clearer picture of the biosynthetic pathways in A. annua. By synthesising some of the sesquiterpene natural products which have been proposed as biogenetic precursors to artemisinin in such a way that they incorporate a stable isotopic label, and then feeding these precursors to intact A. annua plants, it has now been possible to demonstrate that dihydroartemisinic acid is a late-stage precursor to artemisinin and that the closely related secondary metabolite, artemisinic acid, is not (this approach differs from all the previous studies, which used radio-isotopically labelled precursors that were fed to a plant homogenate or a cell-free preparation). Quite remarkably, feeding experiments with labeled dihydroartemisinic acid and artemisinic acid have resulted in incorporation of label into roughly half of all the amorphane and cadinane sesquiterpenes which were already known from phytochemical studies of A. annua. These findings strongly support the hypothesis that many of the highly oxygenated sesquiterpenoids from this species arise by oxidation reactions involving allylic hydroperoxides, which seem to be such a defining feature of the chemistry of A. annua. In the particular case of artemisinin, these in vivo results are also supported by in vitro studies, demonstrating explicitly that the biosynthesis of artemisinin proceeds via the tertiary allylic hydroperoxide, which is derived from oxidation of dihydroartemisinic acid. There is some evidence that the autoxidation of dihydroartemisinic acid to this tertiary allylic hydroperoxide is a non-enzymatic process within the plant, requiring only the presence of light; and, furthermore, that the series of spontaneous rearrangement reactions which then convert this allylic hydroperoxide to the 1,2,4-trioxane ring of artemisinin are also non-enzymatic in nature.
Collapse
Affiliation(s)
- Geoffrey D Brown
- Department of Chemistry, The University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| |
Collapse
|
38
|
Lopez-Gallego F, Agger SA, Abate-Pella D, Distefano MD, Schmidt-Dannert C. Sesquiterpene synthases Cop4 and Cop6 from Coprinus cinereus: catalytic promiscuity and cyclization of farnesyl pyrophosphate geometric isomers. Chembiochem 2010; 11:1093-106. [PMID: 20419721 DOI: 10.1002/cbic.200900671] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sesquiterpene synthases catalyze with different catalytic fidelity the cyclization of farnesyl pyrophosphate (FPP) into hundreds of known compounds with diverse structures and stereochemistries. Two sesquiterpene synthases, Cop4 and Cop6, were previously isolated from Coprinus cinereus as part of a fungal genome survey. This study investigates the reaction mechanism and catalytic fidelity of the two enzymes. Cyclization of all-trans-FPP ((E,E)-FPP) was compared to the cyclization of the cis-trans isomer of FPP ((Z,E)-FPP) as a surrogate for the secondary cisoid neryl cation intermediate generated by sesquiterpene synthases, which are capable of isomerizing the C2--C3 pi bond of all-trans-FPP. Cop6 is a "high-fidelity" alpha-cuprenene synthase that retains its fidelity under various conditions tested. Cop4 is a catalytically promiscuous enzyme that cyclizes (E,E)-FPP into multiple products, including (-)-germacrene D and cubebol. Changing the pH of the reaction drastically alters the fidelity of Cop4 and makes it a highly selective enzyme. Cyclization of (Z,E)-FPP by Cop4 and Cop6 yields products that are very different from those obtained with (E,E)-FPP. Conversion of (E,E)-FPP proceeds via a (6R)-beta-bisabolyl carbocation in the case of Cop6 and an (E,E)-germacradienyl carbocation in the case of Cop4. However, (Z,E)-FPP is cyclized via a (6S)-beta-bisabolene carbocation by both enzymes. Structural modeling suggests that differences in the active site and the loop that covers the active site of the two enzymes might explain their different catalytic fidelities.
Collapse
|
39
|
Noel JP, Dellas N, Faraldos JA, Zhao M, Hess BA, Smentek L, Coates RM, O’Maille PE. Structural elucidation of cisoid and transoid cyclization pathways of a sesquiterpene synthase using 2-fluorofarnesyl diphosphates. ACS Chem Biol 2010; 5:377-92. [PMID: 20175559 PMCID: PMC2860371 DOI: 10.1021/cb900295g] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 02/22/2010] [Indexed: 11/29/2022]
Abstract
Sesquiterpene skeletal complexity in nature originates from the enzyme-catalyzed ionization of (trans,trans)-farnesyl diphosphate (FPP) (1a) and subsequent cyclization along either 2,3-transoid or 2,3-cisoid farnesyl cation pathways. Tobacco 5-epi-aristolochene synthase (TEAS), a transoid synthase, produces cisoid products as a component of its minor product spectrum. To investigate the cryptic cisoid cyclization pathway in TEAS, we employed (cis,trans)-FPP (1b) as an alternative substrate. Strikingly, TEAS was catalytically robust in the enzymatic conversion of (cis,trans)-FPP (1b) to exclusively (>/=99.5%) cisoid products. Further, crystallographic characterization of wild-type TEAS and a catalytically promiscuous mutant (M4 TEAS) with 2-fluoro analogues of both all-trans FPP (1a) and (cis,trans)-FPP (1b) revealed binding modes consistent with preorganization of the farnesyl chain. These results provide a structural glimpse into both cisoid and transoid cyclization pathways efficiently templated by a single enzyme active site, consistent with the recently elucidated stereochemistry of the cisoid products. Further, computational studies using density functional theory calculations reveal concerted, highly asynchronous cyclization pathways leading to the major cisoid cyclization products. The implications of these discoveries for expanded sesquiterpene diversity in nature are discussed.
Collapse
Affiliation(s)
- Joseph P. Noel
- Howard Hughes Medical Institute
- The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology & Proteomics, 10010 Torrey Pines Road, La Jolla, California 92037
| | - Nikki Dellas
- The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology & Proteomics, 10010 Torrey Pines Road, La Jolla, California 92037
- Department of Chemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093
| | - Juan A. Faraldos
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Marylin Zhao
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - B. Andes Hess
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | - Lidia Smentek
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
- Institute of Physics, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Robert M. Coates
- Department of Chemistry, University of Illinois at Urbana–Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801
| | - Paul E. O’Maille
- Howard Hughes Medical Institute
- The Salk Institute for Biological Studies, Jack H. Skirball Center for Chemical Biology & Proteomics, 10010 Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
40
|
Faraldos JA, O'Maille PE, Dellas N, Noel JP, Coates RM. Bisabolyl-derived sesquiterpenes from tobacco 5-epi-aristolochene synthase-catalyzed cyclization of (2Z,6E)-farnesyl diphosphate. J Am Chem Soc 2010; 132:4281-9. [PMID: 20201526 DOI: 10.1021/ja909886q] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the structures and stereochemistry of seven bisabolyl-derived sesquiterpenes arising from an unprecedented 1,6-cyclization (cisoid pathway) efficiently catalyzed by tobacco 5-epi-aristolochene synthase (TEAS). The use of (2Z,6E)-farnesyl diphosphate as an alternate substrate for recombinant TEAS resulted in a robust enzymatic cyclization to an array of products derived exclusively (>/=99.5%) from the cisoid pathway, whereas these same products account for ca. 2.5% of the total hydrocarbons obtained using (2E,6E)-farnesyl diphosphate. Chromatographic fractionations of extracts from preparative incubations with the 2Z,6E substrate afforded, in addition to the acyclic allylic alcohols (2Z,6E)-farnesol (6.7%) and nerolidol (3.6%), five cyclic sesquiterpene hydrocarbons and two cyclic sesquiterpene alcohols: (+)-2-epi-prezizaene (44%), (-)-alpha-cedrene (21.5%), (R)-(-)-beta-curcumene (15.5%), alpha-acoradiene (3.9%), 4-epi-alpha-acoradiene (1.3%), and equal amounts of alpha-bisabolol (1.8%) and epi-alpha-bisalolol (1.8%). The structures, stereochemistry, and enantiopurities were established by comprehensive spectroscopic analyses, optical rotations, chemical correlations with known sesquiterpenes, comparisons with literature data, and GC analyses. The major product, (+)-2-epi-prezizaene, is structurally related to the naturally occurring tricyclic alcohol, jinkohol (2-epi-prezizaan-7beta-ol). Cisoid cyclization pathways are proposed by which all five sesquiterpene hydrocarbons are derived from a common (7R)-beta-bisabolyl(+)/pyrophosphate(-) ion pair intermediate. The implications of the "cisoid" catalytic activity of TEAS are discussed.
Collapse
Affiliation(s)
- Juan A Faraldos
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
41
|
CLM1 of Fusarium graminearum encodes a longiborneol synthase required for culmorin production. Appl Environ Microbiol 2009; 76:136-41. [PMID: 19880637 DOI: 10.1128/aem.02017-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fusarium graminearum is a fungal pathogen of cereal crops (e.g., wheat, barley, maize) and produces a number of mycotoxins, including 15-acetyldeoxynivalenol, butenolide, zearalenone, and culmorin. To identify a biosynthetic gene for the culmorin pathway, an expressed-sequence-tag database was examined for terpene cyclase genes. A gene designated CLM1 was expressed under trichothecene-inducing conditions. Expression of CLM1 in yeast (Saccharomyces cerevisiae) resulted in the production of a sesquiterpene alcohol, longiborneol, which has the same ring structure as culmorin. Gene disruption and add-back experiments in F. graminearum showed that CLM1 was required for culmorin biosynthesis. CLM1 gene disruptants were able to convert exogenously added longiborneol to culmorin. Longiborneol accumulated transiently in culmorin-producing strains. The results indicate that CLM1 encodes a longiborneol synthase and is required for culmorin biosynthesis in F. graminearum.
Collapse
|
42
|
Wang W, Wang Y, Zhang Q, Qi Y, Guo D. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing. BMC Genomics 2009; 10:465. [PMID: 19818120 PMCID: PMC2763888 DOI: 10.1186/1471-2164-10-465] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 10/09/2009] [Indexed: 01/27/2023] Open
Abstract
Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biology and the State Key Lab for Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| | | | | | | | | |
Collapse
|
43
|
Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. PHYTOCHEMISTRY 2009; 70:1621-37. [PMID: 19793600 DOI: 10.1016/j.phytochem.2009.07.030] [Citation(s) in RCA: 624] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 07/23/2009] [Accepted: 07/24/2009] [Indexed: 05/20/2023]
Abstract
The multitude of terpene carbon skeletons in plants is formed by enzymes known as terpene synthases. This review covers the monoterpene and sesquiterpene synthases presenting an up-to-date list of enzymes reported and evidence for their ability to form multiple products. The reaction mechanisms of these enzyme classes are described, and information on how terpene synthase proteins mediate catalysis is summarized. Correlations between specific amino acid motifs and terpene synthase function are described, including an analysis of the relationships between active site sequence and cyclization type and a discussion of whether specific protein features might facilitate multiple product formation.
Collapse
Affiliation(s)
- Jörg Degenhardt
- Martin Luther University Halle-Wittenberg, Institute for Pharmacy, Halle/Saale, Germany.
| | | | | |
Collapse
|
44
|
Hong YJ, Tantillo DJ. Consequences of Conformational Preorganization in Sesquiterpene Biosynthesis: Theoretical Studies on the Formation of the Bisabolene, Curcumene, Acoradiene, Zizaene, Cedrene, Duprezianene, and Sesquithuriferol Sesquiterpenes. J Am Chem Soc 2009; 131:7999-8015. [DOI: 10.1021/ja9005332] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Young J. Hong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| | - Dean J. Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616
| |
Collapse
|
45
|
Hong YJ, Tantillo DJ. Modes of inactivation of trichodiene synthase by a cyclopropane-containing farnesyldiphosphate analog. Org Biomol Chem 2009; 7:4101-9. [DOI: 10.1039/b908738a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Abstract
The dependence of polyketide synthase and terpene cyclase mechanistic adaptation on the chemistry of their oligomeric substrates illuminates a convergent evolutionary strategy for shaping cyclization in these otherwise disparate reactions. Evolution of these enzyme families relies on rhythmic tangos, in which the enzymes and substrates together determine product outcome by negotiating decision networks governing intrinsic and induced chemical reactivities.
Collapse
|
47
|
Nagegowda DA, Gutensohn M, Wilkerson CG, Dudareva N. Two nearly identical terpene synthases catalyze the formation of nerolidol and linalool in snapdragon flowers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:224-39. [PMID: 18363779 DOI: 10.1111/j.1365-313x.2008.03496.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Terpenoids emitted from snapdragon flowers include three monoterpenes derived from geranyl diphosphate (GPP), myrcene, (E)-beta-ocimene and linalool, and a sesquiterpene, nerolidol, derived from farnesyl diphosphate (FPP). Using a functional genomics approach, we have isolated and biochemically characterized two nearly identical nerolidol/linalool synthases, AmNES/LIS-1 and AmNES/LIS-2, two enzymes responsible for the terpenoid profile of snapdragon scent remaining to be characterized. The AmNES/LIS-2 protein has an additional 30 amino acids in the N-terminus, and shares 95% amino acid sequence identity with AmNES/LIS-1, with only 23 amino acid substitutions distributed across the homologous regions of the proteins. Although these two terpene synthases have very similar catalytic properties, and synthesize linalool and nerolidol as specific products from GPP and FPP, respectively, they are compartmentally segregated. GFP localization studies and analysis of enzyme activities in purified leucoplasts, together with our previous feeding experiments, revealed that AmNES/LIS-1 is localized in cytosol, and is responsible for nerolidol biosynthesis, whereas AmNES/LIS-2 is located in plastids, and accounts for linalool formation. Our results show that subcellular localization of bifunctional enzymes, in addition to the availability of substrate, controls the type of product formed. By directing nearly identical bifunctional enzymes to more than one cellular compartment, plants extend the range of available substrates for enzyme utilization, thus increasing the diversity of the metabolites produced.
Collapse
Affiliation(s)
- Dinesh A Nagegowda
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
48
|
Huang B, Guo J, Yi B, Yu X, Sun L, Chen W. Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol Lett 2008; 30:1121-37. [PMID: 18512022 DOI: 10.1007/s10529-008-9663-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
Abstract
Heterologous expression of genes involved in the biosynthesis of various products is of increasing interest in biotechnology and in drug research and development. Microbial cells are most appropriate for this purpose. Availability of more microbial genomic sequences in recent years has greatly facilitated the elucidation of metabolic and regulatory networks and helped gain overproduction of desired metabolites or create novel production of commercially important compounds. Saccharomyces cerevisiae, as one of the most intensely studied eukaryotic model organisms with a rich density of knowledge detailing its genetics, biochemistry, physiology, and large-scale fermentation performance, can be capitalized upon to enable a substantial increase in the industrial application of this yeast. In this review, we describe recent efforts made to produce commercial secondary metabolites in Saccharomyces cerevisiae as pharmaceuticals. As natural products are increasingly becoming the center of attention of the pharmaceutical and nutraceutical industries, such as naringenin, coumarate, artemisinin, taxol, amorphadiene and vitamin C, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures with unique properties.
Collapse
Affiliation(s)
- Beibei Huang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | | | | | | | | | | |
Collapse
|
49
|
Portnoy V, Benyamini Y, Bar E, Harel-Beja R, Gepstein S, Giovannoni JJ, Schaffer AA, Burger J, Tadmor Y, Lewinsohn E, Katzir N. The molecular and biochemical basis for varietal variation in sesquiterpene content in melon (Cucumis melo L.) rinds. PLANT MOLECULAR BIOLOGY 2008; 66:647-61. [PMID: 18264780 DOI: 10.1007/s11103-008-9296-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 01/14/2008] [Indexed: 05/06/2023]
Abstract
A combined chemical, biochemical and molecular study was conducted to understand the differential accumulation of volatile sesquiterpenes in melon fruits. Sesquiterpenes were present mainly in the rinds of climacteric varieties, and a great diversity in their composition was found among varieties. Sesquiterpenes were generally absent in non-climacteric varieties. Two climacteric melon varieties, the green-fleshed 'Noy Yizre'el', and the orange-fleshed 'Dulce' were further examined. In 'Noy Yizre'el' the main sesquiterpenes accumulated are delta-cadinene, gamma-cadinene and alpha-copaene, while alpha-farnesene is the main sesquiterpene in 'Dulce'. Sesquiterpene synthase activities, mainly restricted to rinds of mature fruits, were shown to generate different sesquiterpenes in each variety according to the compositions found in rinds. EST melon database mining yielded two novel cDNAs coding for members of the Tps gene family termed CmTpsNY and CmTpsDul respectively, that are 43.2% similar. Heterologous expression in E. coli of CmTpsNY produced mainly delta-copaene, alpha-copaene, beta-caryophyllene, germacrene D, alpha-muurolene, gamma-cadinene, delta-cadinene, and alpha-cadinene, while CmTpsDul produced alpha-farnesene only. CmTpsNY was mostly expressed in 'Noy Yizre'el' rind while CmTpsDul expression was specific to 'Dulce' rind. None of these genes was expressed in rinds of the non-climacteric 'Tam Dew' cultivar. Our results indicate that different sesquiterpene synthases encoded by different members of the Tps gene family are active in melon varieties and this specificity modulates the accumulation of sesquiterpenes. The genes are differentially transcriptionally regulated during fruit development and according to variety and are likely to be associated with chemical differences responsible for the unique aromas of melon varieties.
Collapse
Affiliation(s)
- Vitaly Portnoy
- Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Keszei A, Brubaker CL, Foley WJ. A molecular perspective on terpene variation in Australian Myrtaceae. AUSTRALIAN JOURNAL OF BOTANY 2008. [PMID: 0 DOI: 10.1071/bt07146] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The terpenoid-dominated essential oils in Australian Myrtaceae mediate many ecological interactions and are important industrially. Of all the significant essential oil-producing families, Myrtaceae is the only one for which there is no molecular information on terpene biosynthesis. Here we summarise available knowledge on terpene biosynthesis and its relevance to the Myrtaceae to provide a foundation for ecological and genetic studies of chemical diversity. There are several steps in the terpene biosynthesis pathway that have potential for influencing the oil yield, profile and composition of leaf oils in Myrtaceae. The biochemical steps that influence oil yield in Myrtaceae probably occur in the steps of the pathway leading up to the synthesis of the terpene backbone. Qualitative differences in oil profiles are more likely to be due to variation in terpene synthases and terpene-modifying enzymes. Most of the information on molecular variation in terpene biosynthesis is based on the analysis of artificially derived mutants but Australian Myrtaceae can provide examples of the same mechanisms in an ecological context.
Collapse
|