1
|
Liu L, Cui H, Huang Y, Yan H, Zhou Y, Wan Y. Molecular docking and in vitro evaluations reveal the role of human cytochrome P450 3A4 in the cross-coupling metabolism of phenolic xenobiotics. ENVIRONMENTAL RESEARCH 2023; 220:115256. [PMID: 36634892 DOI: 10.1016/j.envres.2023.115256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/11/2022] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Metabolism generally transforms xenobiotics into more polar and hydrophilic products, facilitating their elimination from the body. Recently, a new metabolic pathway that transforms phenolic xenobiotics into more lipophilic and bioactive dimer products was discovered. To elucidate the role of cytochrome P450 (CYP) enzymes in mediating this cross-coupling metabolism, we used high-throughput screening to identify the metabolites generated from the coupling of 20 xenobiotics with four endogenous metabolites in liver microsomes. Endogenous vitamin E (VE) was the most reactive metabolite, as VE reacted with seven phenolic xenobiotics containing various structures (e.g., an imidazoline ring or a diphenol group) to generate novel lipophilic ethers such as bakuchiol-O-VE, phentolamine-O-VE, phenylethyl resorcinol-O-VE, 2-propanol-O-VE, and resveratrol-O-VE. Seven recombinant CYP enzymes were successfully expressed and purified in Escherichia coli. Integration of the results of recombinant human CYP incubation and molecular docking identified the central role of CYP3A4 in the cross-coupling metabolic pathway. Structural analysis revealed the π-π interactions, hydrogen bonds, and hydrophobic interactions between reactive xenobiotics and VE in the malleable active sites of CYP3A4. The consistency between the molecular docking results and the in vitro human cytochrome P450 evaluation shows that docking calculations can be used to screen molecules participating in cross-coupling metabolism. The results of this study provide supporting evidence for the overlooked toxicological effects induced by direct reactions between xenobiotics and endogenous metabolites during metabolic processes.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hao Yan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yulan Zhou
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
2
|
Heterologous Expression of Recombinant Human Cytochrome P450 (CYP) in Escherichia coli: N-Terminal Modification, Expression, Isolation, Purification, and Reconstitution. BIOTECH 2023; 12:biotech12010017. [PMID: 36810444 PMCID: PMC9944785 DOI: 10.3390/biotech12010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cytochrome P450 (CYP) enzymes play important roles in metabolising endogenous and xenobiotic substances. Characterisations of human CYP proteins have been advanced with the rapid development of molecular technology that allows heterologous expression of human CYPs. Among several hosts, bacteria systems such as Escherichia coli (E. coli) have been widely used thanks to their ease of use, high level of protein yields, and affordable maintenance costs. However, the levels of expression in E. coli reported in the literature sometimes differ significantly. This paper aims to review several contributing factors, including N-terminal modifications, co-expression with a chaperon, selections of vectors and E. coli strains, bacteria culture and protein expression conditions, bacteria membrane preparations, CYP protein solubilizations, CYP protein purifications, and reconstitution of CYP catalytic systems. The common factors that would most likely lead to high expression of CYPs were identified and summarised. Nevertheless, each factor may still require careful evaluation for individual CYP isoforms to achieve a maximal expression level and catalytic activity. Recombinant E. coli systems have been evidenced as a useful tool in obtaining the ideal level of human CYP proteins, which ultimately allows for subsequent characterisations of structures and functions.
Collapse
|
3
|
Durairaj P, Li S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. ENGINEERING MICROBIOLOGY 2022; 2:100011. [PMID: 39628612 PMCID: PMC11610987 DOI: 10.1016/j.engmic.2022.100011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 (CYP) enzymes play crucial roles during the evolution and diversification of ancestral monocellular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions, synthesis of diverse metabolites, detoxification of xenobiotics, and contribution to environmental adaptation. Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological, pharmaceutical and chemical industry applications. Nevertheless, the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range. This review is focused on comprehensive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories, aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future. We also highlight the functional significance of the previously underrated cytochrome P450 reductases (CPRs) and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
4
|
Frequencies of CYP2B6 ∗4, ∗5, and ∗6 Alleles within an Iranian Population (Mazandaran). Genet Res (Camb) 2021; 2021:8703812. [PMID: 34949964 PMCID: PMC8660211 DOI: 10.1155/2021/8703812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 01/09/2023] Open
Abstract
Background The human CYP2B subfamily consists of one functional gene (CYP2B6) and one pseudogene (CYP2B7P). Cytochrome P450 2B6 (CYP2B6) is a highly polymorphic enzyme that shows marked interindividual and interethnic variations. Currently, 38 alleles have been described, and some of the allelic variants have been associated with low enzyme activity. The aim of this study was to investigate the frequencies of CYP2B6∗4, CYP2B6∗5, and CYP2B6∗6 alleles in the Mazani ethnic group among Iranian Population. Methods The study was conducted in 289 unrelated healthy volunteers. DNA was extracted from peripheral blood and analyzed by the PCR-RFLP protocol. The PCR product was digested with restriction enzymes and then separated using agarose gel electrophoresis. Results The frequency of CYP2B6∗4, CYP2B6∗5, and CYP2B6∗6 in this study was 34.60%, 7.26%, and 34.54%, respectively. Conclusion The frequency of the CYP2B6∗4 allele in the Mazani ethnic group was much higher (34.60%) than other population. The frequency of CYP2B6∗6 (34.54%) also was higher than its frequency in other previously reported population. But the frequency of CYP2B6∗5 in this study was lower than expected. These results will be useful in understanding the ethnic diversity in Iranian population and offer a preliminary basis for more rational use of drugs that are substrates for CYP2B6 in this population.
Collapse
|
5
|
Nasrin S, Watson CJW, Perez-Paramo YX, Lazarus P. Cannabinoid Metabolites as Inhibitors of Major Hepatic CYP450 Enzymes, with Implications for Cannabis-Drug Interactions. Drug Metab Dispos 2021; 49:1070-1080. [PMID: 34493602 PMCID: PMC11022895 DOI: 10.1124/dmd.121.000442] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
The legalization of cannabis in many parts of the United States and other countries has led to a need for a more comprehensive understanding of cannabis constituents and their potential for drug-drug interactions. Although (-)-trans-Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) are the most abundant cannabinoids present in cannabis, THC metabolites are found in plasma at higher concentrations and for a longer duration than that of the parent cannabinoids. To understand the potential for drug-drug interactions, the inhibition potential of major cannabinoids and their metabolites on major hepatic cytochrome P450 (P450) enzymes was examined. In vitro assays with P450-overexpressing cell microsomes demonstrated that the major THC metabolites 11-hydroxy-Δ9-tetra-hydrocannabinol and 11-nor-9-carboxy-Δ9-THC-glucuronide competitively inhibited several major P450 enzymes, including CYP2B6, CYP2C9, and CYP2D6 (apparent Ki,u values = 0.086 ± 0.066 µM and 0.90 ± 0.54 µM, 0.057 ± 0.044 µM and 2.1 ± 0.81 µM, 0.15 ± 0.067 µM and 2.3 ± 0.54 µM, respectively). 11-Nor-9-carboxy-Δ9- tetrahydrocannabinol exhibited no inhibitory activity against any CYP450 tested. THC competitively inhibited CYP1A2, CYP2B6, CYP2C9, and CYP2D6; CBD competitively inhibited CYP3A4, CYP2B6, CYP2C9, CYP2D6, and CYP2E1; and CBN competitively inhibited CYP2B6, CYP2C9, and CYP2E1. THC and CBD showed mixed-type inhibition for CYP2C19 and CYP1A2, respectively. These data suggest that cannabinoids and major THC metabolites are able to inhibit the activities of multiple P450 enzymes, and basic static modeling of these data suggest the possibility of pharmacokinetic interactions between these cannabinoids and xenobiotics extensively metabolized by CYP2B6, CYP2C9, and CYP2D6. SIGNIFICANCE STATEMENT: Major cannabinoids and their metabolites found in the plasma of cannabis users inhibit several P450 enzymes, including CYP2B6, CYP2C9, and CYP2D6. This study is the first to show the inhibition potential of the most abundant plasma cannabinoid metabolite, THC-COO-Gluc, and suggests that circulating metabolites of cannabinoids play an essential role in CYP450 enzyme inhibition as well as drug-drug interactions.
Collapse
Affiliation(s)
- Shamema Nasrin
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Yadira X Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
6
|
Kim D, Kim V, Tateishi Y, Guengerich FP. Cytochrome b 5 Binds Tightly to Several Human Cytochrome P450 Enzymes. Drug Metab Dispos 2021; 49:902-909. [PMID: 34330716 PMCID: PMC8626640 DOI: 10.1124/dmd.121.000475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/13/2021] [Indexed: 01/18/2023] Open
Abstract
Numerous studies have been reported in the past 50-plus years regarding the stimulatory role of cytochrome b 5 (b 5) in some, but not all, microsomal cytochrome P450 (P450) reactions with drugs and steroids. A missing element in most of these studies has been a sensitive and accurate measure of binding affinities of b 5 with P450s. In the course of work with P450 17A1, we developed a fluorescent derivative of a human b 5 site-directed mutant, Alexa 488-T70C-b 5, that could be used in binding assays at sub-μM concentrations. Alexa 488-T70C-b 5 bound to human P450s 1A2, 2B6, 2C8, 2C9, 2E1, 2S1, 4A11, 3A4, and 17A1, with estimated K d values ranging from 2.5 to 61 nM. Only weak binding was detected with P450 2D6, and no fluorescence attenuation was observed with P450 2A6. All of the P450s that bound b 5 have some reported activity stimulation except for P450 2S1. The affinity of P450 3A4 for b 5 was decreased somewhat by the presence of a substrate or inhibitor. The fluorescence of a P450 3A4•Alexa 488-T70C-b 5 complex was partially restored by titration with NADPH-P450 reductase (POR) (K d,apparent 89 nM), suggesting the existence of a ternary P450 3A4-b 5-POR complex, as observed previously with P450 17A1. Gel filtration evidence was also obtained for this ternary complex with P450 3A4. Overall, the results indicated that the affinity of b 5 for many P450s is very high, and that ternary P450-b 5-POR complexes are relevant in P450 3A4 reactions as opposed to a shuttle mechanism. SIGNIFICANCE STATEMENT: High-affinity binding of cytochrome b 5 (b 5) (K d < 100 nM) was observed with many drug-metabolizing cytochrome P450 (P450) enzymes. There is some correlation of binding with reported stimulation, with several exceptions. Evidence is provided for a ternary P450 3A4-b 5-NADPH-P450 reductase complex.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - Vitchan Kim
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - Yasuhiro Tateishi
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 (D.K., Y.T., F.P.G.), and Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea (D.K., V.K.)
| |
Collapse
|
7
|
Langmia IM, Just KS, Yamoune S, Brockmöller J, Masimirembwa C, Stingl JC. CYP2B6 Functional Variability in Drug Metabolism and Exposure Across Populations-Implication for Drug Safety, Dosing, and Individualized Therapy. Front Genet 2021; 12:692234. [PMID: 34322158 PMCID: PMC8313315 DOI: 10.3389/fgene.2021.692234] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
Adverse drug reactions (ADRs) are one of the major causes of morbidity and mortality worldwide. It is well-known that individual genetic make-up is one of the causative factors of ADRs. Approximately 14 million single nucleotide polymorphisms (SNPs) are distributed throughout the entire human genome and every patient has a distinct genetic make-up which influences their response to drug therapy. Cytochrome P450 2B6 (CYP2B6) is involved in the metabolism of antiretroviral, antimalarial, anticancer, and antidepressant drugs. These drug classes are commonly in use worldwide and face specific population variability in side effects and dosing. Parts of this variability may be caused by single nucleotide polymorphisms (SNPs) in the CYP2B6 gene that are associated with altered protein expression and catalytic function. Population variability in the CYP2B6 gene leads to changes in drug metabolism which may result in adverse drug reactions or therapeutic failure. So far more than 30 non-synonymous variants in CYP2B6 gene have been reported. The occurrence of these variants show intra and interpopulation variability, thus affecting drug efficacy at individual and population level. Differences in disease conditions and affordability of drug therapy further explain why some individuals or populations are more exposed to CYP2B6 pharmacogenomics associated ADRs than others. Variabilities in drug efficacy associated with the pharmacogenomics of CYP2B6 have been reported in various populations. The aim of this review is to highlight reports from various ethnicities that emphasize on the relationship between CYP2B6 pharmacogenomics variability and the occurrence of adverse drug reactions. In vitro and in vivo studies evaluating the catalytic activity of CYP2B6 variants using various substrates will also be discussed. While implementation of pharmacogenomic testing for personalized drug therapy has made big progress, less data on pharmacogenetics of drug safety has been gained in terms of CYP2B6 substrates. Therefore, reviewing the existing evidence on population variability in CYP2B6 and ADR risk profiles suggests that, in addition to other factors, the knowledge on pharmacogenomics of CYP2B6 in patient treatment may be useful for the development of personalized medicine with regards to genotype-based prescription.
Collapse
Affiliation(s)
- Immaculate M. Langmia
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Katja S. Just
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Collen Masimirembwa
- African Institute of Biomedical Science and Technology (AiBST), Harare, Zimbabwe
| | - Julia C. Stingl
- Institute of Clinical Pharmacology, University Hospital of Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| |
Collapse
|
8
|
Shmarakov IO, Lee YJ, Jiang H, Blaner WS. Constitutive androstane receptor mediates PCB-induced disruption of retinoid homeostasis. Toxicol Appl Pharmacol 2019; 381:114731. [PMID: 31449830 DOI: 10.1016/j.taap.2019.114731] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/06/2019] [Accepted: 08/21/2019] [Indexed: 11/18/2022]
Abstract
Environmental exposure to polychlorinated biphenyls (PCBs) is associated with an increased risk of incidence of metabolic disease, however the molecular mechanisms underlying this phenomenon are not fully understood. Our study provides new insights into molecular interactions between PCBs and retinoids (vitamin A and its metabolites) by defining a role for constitutive androstane receptor (CAR) in the disruption of retinoid homeostasis by non-coplanar 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153). Administration of four weekly 50 mg/kg doses of PCB153 to C57BL/6 male mice resulted in a significant decline in the tissue concentrations of retinyl esters, retinol and all-trans-retinoic acid (atRA), while no decline in hepatic and adipose tissue retinoid levels were detected in Car-null littermates. Our data imply that disrupted retinoid homeostasis occurs as a consequence of PCB153-induced activation of CAR, and raise the possibility that CAR signaling can affect atRA homeostasis in vivo. A strong correlation between the changes in retinoid metabolism and extensive upregulation of hepatic CAR-driven Cyp2b10 expression implicates this CYP isoform as contributing to retinoid homeostasis disruption via atRA oxidation during PCB153 exposure. In response to PCB153-induced CAR activation and disruption of retinoid homeostasis, expression of hepatic Pepck, Cd36 and adipose tissue Pparγ, Cd36, Adipoq, and Rbp4 were altered; however, this was reversed by administration of exogenous dietary retinoids (300 IU daily for 4 weeks). Our study establishes that PCB153 exposure enables a significant disruption of retinoid homeostasis in a CAR-dependent manner. We propose that this contributes to the obesogenic properties of PCB153 and may contribute to the predisposition to the metabolic disease.
Collapse
Affiliation(s)
- Igor O Shmarakov
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | - Yun Jee Lee
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - Hongfeng Jiang
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | - William S Blaner
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| |
Collapse
|
9
|
Jeffreys LN, Girvan HM, McLean KJ, Munro AW. Characterization of Cytochrome P450 Enzymes and Their Applications in Synthetic Biology. Methods Enzymol 2018; 608:189-261. [PMID: 30173763 DOI: 10.1016/bs.mie.2018.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytochrome P450 monooxygenase enzymes (P450s) catalyze a diverse array of chemical transformations, most originating from the insertion of an oxygen atom into a substrate that binds close to the P450 heme. The oxygen is delivered by a highly reactive heme iron-oxo species (compound I) and, according to the chemical nature of the substrate and its position in the active site, the P450 can catalyze a wide range of reactions including, e.g., hydroxylation, reduction, decarboxylation, sulfoxidation, N- and O-demethylation, epoxidation, deamination, CC bond formation and breakage, nitration, and dehalogenation. In this chapter, we describe the structural, biochemical, and catalytic properties of the P450s, along with spectroscopic and analytical methods used to characterize P450 enzymes and their redox partners. Important uses of P450 enzymes are highlighted, including how various P450s have been exploited for applications in synthetic biology.
Collapse
Affiliation(s)
- Laura N Jeffreys
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Hazel M Girvan
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Kirsty J McLean
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| | - Andrew W Munro
- Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
10
|
Lee Y, Park HG, Kim V, Cho MA, Kim H, Ho TH, Cho KS, Lee IS, Kim D. Inhibitory effect of α-terpinyl acetate on cytochrome P450 2B6 enzymatic activity. Chem Biol Interact 2018; 289:90-97. [PMID: 29723517 DOI: 10.1016/j.cbi.2018.04.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 10/17/2022]
Abstract
Human cytochrome P450 2B6 is an important hepatic enzyme for the metabolism of xenobiotics and clinical drugs. Recently, more attention has been paid to P450 2B6 because of the increasing number of drugs it metabolizes. It has been known to interact with terpenes, the major constituents of the essential oils used for various medicinal purposes. In this study, the effect of monoterpenes on P450 2B6 catalytic activity was investigated. Recombinant P450 2B6 was expressed in Escherichia coli and purified using Ni-affinity chromatography. The purified P450 2B6 enzyme displayed bupropion hydroxylation activity in gas-mass spectrometry (GC-MS) analysis with a kcat of 0.5 min-1 and a Km of 47 μM. Many terpenes displayed the type I binding spectra to purified P450 2B6 enzyme and α-terpinyl acetate showed strong binding affinity with a Kd value of 5.4 μM. In GC-MS analysis, P450 2B6 converted α-terpinyl acetate to a putative oxidative product. The bupropion hydroxylation activity of P450 2B6 was inhibited by α-terpinyl acetate and its IC50 value was 10.4 μM α-Terpinyl acetate was determined to be a competitive inhibitor of P450 2B6 with a Ki value of 7.6 μM. The molecular docking model of the binding site of the P450 2B6 complex with α-terpinyl acetate was constructed. It showed the tight binding of α-terpinyl acetate in the active site of P450 2B6, which suggests that it could be a competitive substrate for P450 2B6.
Collapse
Affiliation(s)
- Yejin Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Myung-A Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Harim Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Thien-Hoang Ho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05025 Republic of Korea.
| |
Collapse
|
11
|
Hausjell J, Halbwirth H, Spadiut O. Recombinant production of eukaryotic cytochrome P450s in microbial cell factories. Biosci Rep 2018; 38:BSR20171290. [PMID: 29436484 PMCID: PMC5835717 DOI: 10.1042/bsr20171290] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Cytochrome P450s (P450s) comprise one of the largest known protein families. They occur in every kingdom of life and catalyze essential reactions, such as carbon source assimilation, synthesis of hormones and secondary metabolites, or degradation of xenobiotics. Due to their outstanding ability of specifically hydroxylating complex hydrocarbons, there is a great demand to use these enzymes for biocatalysis, including applications at an industrial scale. Thus, the recombinant production of these enzymes is intensively investigated. However, especially eukaryotic P450s are difficult to produce. Challenges are faced due to complex cofactor requirements and the availability of a redox-partner (cytochrome P450 reductase, CPR) can be a key element to get active P450s. Additionally, most eukaryotic P450s are membrane bound which complicates the recombinant production. This review describes current strategies for expression of P450s in the microbial cell factories Escherichia coli, Saccharomyces cerevisiae, and Pichia pastoris.
Collapse
Affiliation(s)
- Johanna Hausjell
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| | - Heidi Halbwirth
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| | - Oliver Spadiut
- TU Wien, Institute of Chemical, Environmental and Biological Engineering, Vienna, Austria
| |
Collapse
|
12
|
Imaishi H, Goto T. Effect of genetic polymorphism of human CYP2B6 on the metabolic activation of chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 144:42-48. [PMID: 29463407 DOI: 10.1016/j.pestbp.2017.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/05/2017] [Accepted: 11/09/2017] [Indexed: 06/08/2023]
Abstract
Chlorpyrifos (CPS) is a broad-spectrum organophosphate insecticide that is neurotoxic in humans. Chlorpyrifos oxon (CPO) is a toxic metabolite of CPS that is produced by CYP2B6. In this study, we examined the variability of CPS metabolism resulting from single-nucleotide polymorphisms in CYP2B6. Wild-type CYP2B6 (CYP2B6.1) and two variants each with a single amino acid substitution: CYP2B6.5 (R487C) and CYP2B6.8 (K139E) were co-expressed together with human NADPH-dependent cytochrome P450 reductase in Escherichia coli (E. coli). Both of the CYP2B6 variants were successfully expressed in E. coli. The conversion of CPS to CPO by the CYP2B6 variants was analyzed with high-performance liquid chromatography. Km and Vmax of the reaction by CYP2B6.1 were 18.50±2.94μM and 17.07±1.15mol/min/mol P450, respectively. The CYP2B6 variants produced CPO with the following kinetic parameters: Km for CYP2B6.5 and CYP2B6.8 were 20.44±6.43 and 44.69±9.97μM, respectively; and Vmax were 1.10±0.10 and 1.77±0.26mol/min/mol P450, respectively. These results indicate that the amino acid substitutions in the CYP2B6 variants suppressed the metabolic activation of CPS. CYP2B6 variants have altered capacity to bioactivate CPF and may affect individual susceptibility of CPF.
Collapse
Affiliation(s)
- Hiromasa Imaishi
- Laboratory of Response to Environmental Materials, Division of Signal Responses, Biosignal Research Center, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Tatsushi Goto
- Laboratory of Response to Environmental Materials, Division of Signal Responses, Biosignal Research Center, Kobe University, Nada-ku, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
13
|
Tomas Ž, Kuhanec A, Škarić-Jurić T, Petranović MZ, Narančić NS, Janićijević B, Salihović MP. Distinctiveness of the Roma population within CYP2B6 worldwide variation. Pharmacogenomics 2017; 18:1575-1587. [PMID: 29095103 DOI: 10.2217/pgs-2017-0105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM To determine variation of CYP2B6 gene within the genetically specific Croatian Roma (Gypsy) population originating from India and to examine it in the worldwide perspective. MATERIALS & METHODS Seven SNP loci (rs12721655, rs2279343, rs28399499, rs34097093, rs3745274, rs7260329 and rs8192709) were genotyped in 439 subjects using Kompetitive Allele Specific PCR (KASP) method. RESULTS The Croatian Roma took an outlying position in CYP2B6 variation from the worldwide perspective mainly due to their exceptionally high minor allele frequency (MAF) for rs8192709 (12.8%), and lower for rs2279343 (21.1%) compared with south Asian populations. CONCLUSION This study provides the first data of several CYP2B6 polymorphisms in Roma population and indicates the need for systematic investigation of the most important pharmacogenes' variants in this large, transnationally isolated population worldwide.
Collapse
Affiliation(s)
- Željka Tomas
- Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | - Antonija Kuhanec
- Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | | | | | | | - Branka Janićijević
- Institute for Anthropological Research, Gajeva 32, 10000 Zagreb, Croatia
| | | |
Collapse
|
14
|
Hedrich WD, Hassan HE, Wang H. Insights into CYP2B6-mediated drug-drug interactions. Acta Pharm Sin B 2016; 6:413-425. [PMID: 27709010 PMCID: PMC5045548 DOI: 10.1016/j.apsb.2016.07.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/18/2016] [Accepted: 05/27/2016] [Indexed: 01/11/2023] Open
Abstract
Mounting evidence demonstrates that CYP2B6 plays a much larger role in human drug metabolism than was previously believed. The discovery of multiple important substrates of CYP2B6 as well as polymorphic differences has sparked increasing interest in the genetic and xenobiotic factors contributing to the expression and function of the enzyme. The expression of CYP2B6 is regulated primarily by the xenobiotic receptors constitutive androstane receptor (CAR) and pregnane X receptor (PXR) in the liver. In addition to CYP2B6, these receptors also mediate the inductive expression of CYP3A4, and a number of important phase II enzymes and drug transporters. CYP2B6 has been demonstrated to play a role in the metabolism of 2%–10% of clinically used drugs including widely used antineoplastic agents cyclophosphamide and ifosfamide, anesthetics propofol and ketamine, synthetic opioids pethidine and methadone, and the antiretrovirals nevirapine and efavirenz, among others. Significant inter-individual variability in the expression and function of the human CYP2B6 gene exists and can result in altered clinical outcomes in patients receiving treatment with CYP2B6-substrate drugs. These variances arise from a number of sources including genetic polymorphism, and xenobiotic intervention. In this review, we will provide an overview of the key players in CYP2B6 expression and function and highlight recent advances made in assessing clinical ramifications of important CYP2B6-mediated drug–drug interactions.
Collapse
Key Words
- 4-OH-CPA, 4-hydroxycyclophosphamide
- C/EBP, CCAAT/enhancer-binding protein
- CAR
- CAR, constitutive androstane receptor
- CHOP, cyclophosphamide–doxorubicin–vincristine–prednisone
- CITCO, (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime)
- COUP-TF, chicken ovalbumin upstream promoter-transcription factor
- CPA, cyclophosphamide
- CYP, cytochrome P450
- CYP2B6
- Cyclophosphamide
- DDI, drug–drug interaction
- DEX, dexamethasone
- Drug–drug interaction
- E2, estradiol
- EFV, efavirenz
- ERE, estrogen responsive element
- Efavirenz
- GR, glucocorticoid receptor
- GRE, glucocorticoid responsive element
- HAART, highly active antiretroviral therapy
- HNF, hepatocyte nuclear factor
- IFA, Ifosfamide
- MAOI, monoamine oxidase inhibitor
- NNRTI, non-nucleotide reverse-transcriptase inhibitor
- NR1/2, nuclear receptor binding site 1/2
- NVP, nevirapine
- PB, phenobarbital
- PBREM, phenobarbital-responsive enhancer module
- PCN, pregnenolone 16 alpha-carbonitrile
- PXR
- PXR, pregnane X receptor
- Polymorphism
- RIF, rifampin
- SNP, single nucleotide polymorphism
- TCPOBOP, 1,4-bis[3,5-dichloropyridyloxy]benzene
- UGT, UDP-glucuronosyl transferase
Collapse
Affiliation(s)
| | | | - Hongbing Wang
- Corresponding author at: Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA. Tel.: +1 410 706 1280; fax: +1 410 706 5017.
| |
Collapse
|
15
|
Mrízová I, Moserová M, Milichovský J, Šulc M, Kizek R, Kubáčková K, Arlt VM, Stiborová M. Heterologous expression of human cytochrome P450 2S1 in Escherichia coli and investigation of its role in metabolism of benzo[ a]pyrene and ellipticine. MONATSHEFTE FUR CHEMIE 2016; 147:881-888. [PMID: 27110039 PMCID: PMC4828499 DOI: 10.1007/s00706-016-1738-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/21/2016] [Indexed: 12/30/2022]
Abstract
ABSTRACT Cytochrome P450 (CYP) 2S1 is "orphan" CYP that is overexpressed in several epithelial tissues and many human tumors. The pure enzyme is required for better understanding of its biological functions. Therefore, human CYP2S1 was considered to be prepared by the gene manipulations and heterologous expression in Escherichia coli. Here, the conditions suitable for efficient expression of human CYP2S1 protein from plasmid pCW containing the human CYP2S1 gene were optimized and the enzyme purified to homogeneity. The identity of CYP2S1 as the product of heterologous expression was confirmed by dodecyl sulfate-polyacrylamide gel electrophoresis, Western blotting, and mass spectrometry. To confirm the presence of the enzymatically active CYP2S1, the CO spectrum of purified CYP2S1 was recorded. Since CYP2S1 was shown to catalyze oxidation of compounds having polycyclic aromatic structures, the prepared enzyme has been tested to metabolize the compounds having this structural character; namely, the human carcinogen benzo[a]pyrene (BaP), its 7,8-dihydrodiol derivative, and an anticancer drug ellipticine. Reaction mixtures contained besides the test compounds the CYP2S1 enzyme reconstituted with NADPH:CYP reductase (POR) in liposomes, and/or this CYP in the presence of cumene hydroperoxide or hydrogen peroxide. High performance liquid chromatography was employed for separation of BaP, BaP-7,8-dihydrodiol, and ellipticine metabolites. The results found in this study demonstrate that CYP2S1 in the presence of cumene hydroperoxide or hydrogen peroxide catalyzes oxidation of two of the test xenobiotics, a metabolite of BaP, BaP-7,8-dihydrodiol, and ellipticine. Whereas BaP-7,8,9,10-tetrahydrotetrol was formed as a product of BaP-7,8-dihydrodiol oxidation, ellipticine was oxidized to 12-hydroxyellipticine, 13-hydroxyellipticine, and the ellipticine N2-oxide. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Iveta Mrízová
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Michaela Moserová
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Jan Milichovský
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Miroslav Šulc
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - René Kizek
- />Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, 613 00 Brno, Czech Republic
| | - Kateřina Kubáčková
- />Department of Oncology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 150 06 Prague 5, Czech Republic
| | - Volker M. Arlt
- />Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King’s College London, London, SE1 9NH UK
| | - Marie Stiborová
- />Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| |
Collapse
|
16
|
Achour B, Barber J, Rostami-Hodjegan A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: a meta-analysis. Drug Metab Dispos 2014; 42:1349-56. [PMID: 24879845 DOI: 10.1124/dmd.114.058834] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Cytochrome P450 is a family of enzymes that catalyze reactions involved in the metabolism of drugs and other xenobiotics. These enzymes are therefore important in pharmacologic and toxicologic studies, and information on their abundances is of value in the process of scaling in vitro data to in vivo metabolic parameters. A meta-analysis was applied to data on the abundance of human hepatic cytochrome P450 enzymes in Caucasian adult livers (50 studies). Despite variations in the methods used to measure the abundance of enzymes, agreement between the studies in 26 different laboratories was generally good. Nonetheless, some heterogeneity was detected (Higgins and Thompson heterogeneity test). More importantly, large interindividual variability was observed in the collated data. Positive correlations between the expression levels of some cytochrome P450 enzymes were found in the abundance data, including the following pairs: CYP3A4/CYP3A5*1/*3 (Rs = 0.70, P < 0.0001, n = 52), CYP3A4/CYP2C8 (Rs = 0.68, P < 0.0001, n = 134), CYP3A4/CYP2C9 (Rs = 0.55, P < 0.0001, n = 71), and CYP2C8/CYP2C9 (Rs = 0.55, P < 0.0001, n = 99). These correlations can be used to demonstrate common genetic transcriptional mechanisms.
Collapse
Affiliation(s)
- Brahim Achour
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (B.A., J.B., A.R-H.), and Simcyp Limited, a Certara Company, Sheffield, United Kingdom (A.R-H.)
| | - Jill Barber
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (B.A., J.B., A.R-H.), and Simcyp Limited, a Certara Company, Sheffield, United Kingdom (A.R-H.)
| | - Amin Rostami-Hodjegan
- Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (B.A., J.B., A.R-H.), and Simcyp Limited, a Certara Company, Sheffield, United Kingdom (A.R-H.)
| |
Collapse
|
17
|
Kobayashi K, Takahashi O, Hiratsuka M, Yamaotsu N, Hirono S, Watanabe Y, Oda A. Evaluation of influence of single nucleotide polymorphisms in cytochrome P450 2B6 on substrate recognition using computational docking and molecular dynamics simulation. PLoS One 2014; 9:e96789. [PMID: 24796891 PMCID: PMC4010486 DOI: 10.1371/journal.pone.0096789] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 04/11/2014] [Indexed: 11/18/2022] Open
Abstract
In this study, we investigated the influence of single nucleotide polymorphisms on the conformation of mutated cytochrome P450 (CYP) 2B6 proteins using molecular dynamics (MD) simulation. Some of these mutations influence drug metabolism activities, leading to individual variations in drug efficacy and pharmacokinetics. Using computational docking, we predicted the structure of the complex between the antimalarial agent artemether and CYP2B6 whose conformations were obtained by MD simulation. The simulation demonstrated that the entire structure of the protein changes even when a single residue is mutated. Moreover, the structural flexibility is affected by the mutations and it may influence the enzyme activity. The results suggest that some of the inactive mutants cannot recognize artemether due to structural changes caused by the mutation.
Collapse
Affiliation(s)
- Kana Kobayashi
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Ohgi Takahashi
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masahiro Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | | - Shuichi Hirono
- School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan
| | - Yurie Watanabe
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Akifumi Oda
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
18
|
Zelasko S, Palaria A, Das A. Optimizations to achieve high-level expression of cytochrome P450 proteins using Escherichia coli expression systems. Protein Expr Purif 2013; 92:77-87. [DOI: 10.1016/j.pep.2013.07.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/26/2013] [Accepted: 07/30/2013] [Indexed: 12/18/2022]
|
19
|
Sridar C, D'Agostino J, Hollenberg PF. Bioactivation of the cancer chemopreventive agent tamoxifen to quinone methides by cytochrome P4502B6 and identification of the modified residue on the apoprotein. Drug Metab Dispos 2012; 40:2280-8. [PMID: 22942317 PMCID: PMC3500549 DOI: 10.1124/dmd.112.047266] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 08/31/2012] [Indexed: 11/22/2022] Open
Abstract
The nonsteroidal antiestrogen tamoxifen was introduced as a treatment for breast cancer 3 decades ago. It has also been approved as a chemopreventive agent and is prescribed to women at high risk for this disease. However, several studies have shown that use of tamoxifen leads to increased risk of endometrial cancer in humans. One potential pathway of tamoxifen toxicity could involve metabolism via hydroxylation to give 4-hydroxytamoxifen (4OHtam), which may be further oxidized to form a quinone methide. CYP2B6 is a highly polymorphic drug-metabolizing enzyme, and it metabolizes a number of clinically important drugs. Earlier studies from our laboratory have shown that tamoxifen is a mechanism-based inactivator of CYP2B6. The aim of the current study was to investigate the possible formation of reactive intermediates through detection of protein covalent binding and glutathione ethyl ester adduct (GSHEE) formation. The incubation of tamoxifen with 2B6 gave rise to an adduct of 4OHtam with glutathione, which was characterized as the 4OHtam quinone methide + GSHEE with an m/z value of 719, and the structure was characterized by liquid chromatography-tandem mass spectrometry. The metabolic activation of tamoxifen in the CYP2B6 reconstituted system also resulted in the formation of an adduct to the P4502B6 apoprotein, which was identified using liquid chromatography mass spectrometry. The site responsible for the inactivation of CYP2B6 was determined by proteolytic digestion and identification of the labeled peptide. This revealed a tryptic peptide ¹⁸⁸FHYQDQE¹⁹⁴ with the site of adduct formation localized to Gln193 as the site modified by the reactive metabolite formed during tamoxifen metabolism.
Collapse
Affiliation(s)
- Chitra Sridar
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
20
|
Sridar C, Kenaan C, Hollenberg PF. Inhibition of bupropion metabolism by selegiline: mechanism-based inactivation of human CYP2B6 and characterization of glutathione and peptide adducts. Drug Metab Dispos 2012; 40:2256-66. [PMID: 22936314 PMCID: PMC3500550 DOI: 10.1124/dmd.112.046979] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/30/2012] [Indexed: 11/22/2022] Open
Abstract
Selegiline, the R-enantiomer of deprenyl, is used in the treatment of Parkinson's disease. Bupropion, an antidepressant, often used to treat patients in conjunction with selegiline, is metabolized primarily by CYP2B6. The effect of selegiline on the enzymatic activity of human cytochrome CYP2B6 in a reconstituted system and its effect on the metabolism of bupropion were examined. Selegiline was found to be a mechanism-based inactivator of the 7-ethoxy-4-(trifluoromethyl)coumarin O-deethylation (7-EFC) activity of CYP2B6 as well as bupropion metabolism. The inactivations were time-, concentration-, and NADPH-dependent and were characterized by K(I) values of 0.14 and 0.6 μM, k(inact) values of 0.022 and 0.029 min⁻¹, and t(½) values of 31.5 and 24 min, respectively. In standard inhibition assays, selegiline increased the K(m) of CYP2B6 for bupropion from 10 to 92 μM and decreased the k(cat) by ∼50%. The reduced carbon-monoxide difference spectrum revealed over a 50% loss in the cytochrome P450 spectrum in the inactivated sample, with no loss in heme, and there was ∼70% loss in enzyme activity. Trapping of the reactive metabolite using GSH led to the identification of a GSH-selegiline conjugate with a m/z 528 that could be explained by hydroxylation of selegiline followed by the addition of glutathione to the propargyl moiety after oxygenation to form the ketene intermediate. Liquid chromatography-tandem mass spectrometry analysis of the labeled protein following digestion with trypsin revealed the peptide ⁶⁴DVFTVHLGPR⁷³ as the peptide modified by the reactive metabolite of selegiline and the site of adduct formation is Asp64.
Collapse
Affiliation(s)
- Chitra Sridar
- Department of Pharmacology, The University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
21
|
Abstract
Previous studies have shown that the presence of one P450 enzyme can affect the function of another. The goal of the present study was to determine if P450 enzymes are capable of forming homomeric complexes that affect P450 function. To address this problem, the catalytic activities of several P450s were examined in reconstituted systems containing NADPH-POR (cytochrome P450 reductase) and a single P450. CYP2B4 (cytochrome P450 2B4)-, CYP2E1 (cytochrome P450 2E1)- and CYP1A2 (cytochrome P450 1A2)-mediated activities were measured as a function of POR concentration using reconstituted systems containing different concentrations of P450. Although CYP2B4-dependent activities could be explained by a simple Michaelis-Menten interaction between POR and CYP2B4, both CYP2E1 and CYP1A2 activities generally produced a sigmoidal response as a function of [POR]. Interestingly, the non-Michaelis behaviour of CYP1A2 could be converted into a simple mass-action response by increasing the ionic strength of the buffer. Next, physical interactions between CYP1A2 enzymes were demonstrated in reconstituted systems by chemical cross-linking and in cellular systems by BRET (bioluminescence resonance energy transfer). Cross-linking data were consistent with the kinetic responses in that both were similarly modulated by increasing the ionic strength of the surrounding solution. Taken together, these results show that CYP1A2 forms CYP1A2-CYP1A2 complexes that exhibit altered catalytic activity.
Collapse
|
22
|
Michaud V, Bar-Magen T, Turgeon J, Flockhart D, Desta Z, Wainberg MA. The Dual Role of Pharmacogenetics in HIV Treatment: Mutations and Polymorphisms Regulating Antiretroviral Drug Resistance and Disposition. Pharmacol Rev 2012; 64:803-33. [DOI: 10.1124/pr.111.005553] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Zhao B, Lei L, Kagawa N, Sundaramoorthy M, Banerjee S, Nagy LD, Guengerich FP, Waterman MR. Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J Biol Chem 2012; 287:10613-10622. [PMID: 22262854 DOI: 10.1074/jbc.m111.323501] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid 21-hydroxylase (cytochrome P450 21A2, CYP21A2) deficiency accounts for ∼95% of individuals with congenital adrenal hyperplasia, a common autosomal recessive metabolic disorder of adrenal steroidogenesis. The effects of amino acid mutations on CYP21A2 activity lead to impairment of the synthesis of cortisol and aldosterone and the excessive production of androgens. In order to understand the structural and molecular basis of this group of diseases, the bovine CYP21A2 crystal structure complexed with the substrate 17-hydroxyprogesterone (17OHP) was determined to 3.0 Å resolution. An intriguing result from this structure is that there are two molecules of 17OHP bound to the enzyme, the distal one being located at the entrance of the substrate access channel and the proximal one bound in the active site. The substrate binding features locate the key substrate recognition residues not only around the heme but also along the substrate access channel. In addition, orientation of the skeleton of the proximal molecule is toward the interior of the enzyme away from the substrate access channel. The 17OHP complex of CYP21A2 provides a good relationship between the crystal structure, clinical data, and genetic mutants documented in the literature, thereby enhancing our understanding of congenital adrenal hyperplasia. In addition, the location of certain CYP21A2 mutations provides general understanding of structure/function relationships in P450s.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and.
| | - Li Lei
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Norio Kagawa
- Global Centers of Excellence Program, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Munirathinam Sundaramoorthy
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Surajit Banerjee
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Leslie D Nagy
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and
| | - Michael R Waterman
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146 and.
| |
Collapse
|
24
|
Ohtsuki S, Schaefer O, Kawakami H, Inoue T, Liehner S, Saito A, Ishiguro N, Kishimoto W, Ludwig-Schwellinger E, Ebner T, Terasaki T. Simultaneous absolute protein quantification of transporters, cytochromes P450, and UDP-glucuronosyltransferases as a novel approach for the characterization of individual human liver: comparison with mRNA levels and activities. Drug Metab Dispos 2012; 40:83-92. [PMID: 21994437 DOI: 10.1124/dmd.111.042259] [Citation(s) in RCA: 337] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The purpose of the present study was to determine the absolute protein expression levels of multiple drug-metabolizing enzymes and transporters in 17 human liver biopsies, and to compare them with the mRNA expression levels and functional activities to evaluate the suitability of the three measures as parameters of hepatic metabolism. Absolute protein expression levels of 13 cytochrome P450 (P450) enzymes, NADPH-P450 reductase (P450R) and 6 UDP-glucuronosyltransferase (UGT) enzymes in microsomal fraction, and 22 transporters in plasma membrane fraction were determined using liquid chromatography/tandem mass spectrometry. CYP2C9, CYP2E1, CYP3A4, CYP2A6, UGT1A6, UGT2B7, UGT2B15, and P450R were abundantly expressed (more than 50 pmol/mg protein) in human liver microsomes. The protein expression levels of CYP3A4, CYP2B6, and CYP2C8 were each highly correlated with the corresponding enzyme activity and mRNA expression levels, whereas for other P450s, the protein expression levels were better correlated with the enzyme activities than the mRNA expression levels were. Among transporters, the protein expression level of organic anion-transporting polypeptide 1B1 was relatively highly correlated with the mRNA expression level. However, other transporters showed almost no correlation. These findings indicate that protein expression levels determined by the present simultaneous quantification method are a useful parameter to assess differences of hepatic function between individuals.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Division of Membrane Transport and Drug Targeting Laboratory, Department of Biochemical Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Shah MB, Pascual J, Zhang Q, Stout CD, Halpert JR. Structures of cytochrome P450 2B6 bound to 4-benzylpyridine and 4-(4-nitrobenzyl)pyridine: insight into inhibitor binding and rearrangement of active site side chains. Mol Pharmacol 2011; 80:1047-55. [PMID: 21875942 PMCID: PMC3228530 DOI: 10.1124/mol.111.074427] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/29/2011] [Indexed: 12/15/2022] Open
Abstract
The biochemical, biophysical, and structural analysis of the cytochrome P450 2B subfamily of enzymes has provided a wealth of information regarding conformational plasticity and substrate recognition. The recent X-ray crystal structure of the drug-metabolizing P450 2B6 in complex with 4-(4-chlorophenyl)imidazole (4-CPI) yielded the first atomic view of this human enzyme. However, knowledge of the structural basis of P450 2B6 specificity and inhibition has remained limited. In this study, structures of P450 2B6 were determined in complex with the potent inhibitors 4-benzylpyridine (4-BP) and 4-(4-nitrobenzyl)pyridine (4-NBP). Comparison of the present structures with the previous P450 2B6-4-CPI complex showed that reorientation of side chains of the active site residue Phe206 on the F-helix and Phe297 on the I-helix was necessary to accommodate the inhibitors. However, P450 2B6 does not require any major side chain rearrangement to bind 4-NBP compared with 4-BP, and the enzyme provides no hydrogen-bonding partners for the polar nitro group of 4-NBP within the hydrophobic active site. In addition, on the basis of these new structures, substitution of residue 172 with histidine as observed in the single nucleotide polymorphism Q172H and in P450 2B4 may contribute to a hydrogen bonding network connecting the E- and I-helices, thereby stabilizing active site residues on the I-helix. These results provide insight into the role of active site side chains upon inhibitor binding and indicate that the recognition of the benzylpyridines in the closed conformation structure of P450 2B6 is based solely on hydrophobicity, size, and shape.
Collapse
Affiliation(s)
- Manish B Shah
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093-0703, USA.
| | | | | | | | | |
Collapse
|
26
|
Saurabh K, Parmar D. Evidence for cytochrome P450 2B1/2B2 isoenzymes in freshly prepared peripheral blood lymphocytes. Biomarkers 2011; 16:649-56. [PMID: 21988088 DOI: 10.3109/1354750x.2011.622412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytochrome P450 2B1 and 2B2, the major hepatic drug metabolizing enzymes belonging to CYP2 family and associated constitutive androstane receptor (CAR) were found to be expressed in peripheral blood lymphocytes (PBL) isolated from rats. As observed in liver, pretreatment of phenobarbital (PB) or phenytoin were found to increase the expression of CYP2B1, CYP2B2 and associated enzyme activity in PBL. Like in liver, blood lymphocyte CYP2B1/2B2 catalyzed the activity of 7-pentoxyresorufin O-dealkylase (PROD). The present data, demonstrating similarities in the regulation of blood lymphocyte CYP2B-isoenzymes with the liver enzymes, suggests that blood lymphocyte CYP2B-isoenzymes could be used as a biomarker to monitor tissue levels.
Collapse
Affiliation(s)
- Kumar Saurabh
- Developmental Toxicology Division, CSIR-Indian Institute of Toxicology Research, Lucknow, UP, India
| | | |
Collapse
|
27
|
Zhang H, Sridar C, Kenaan C, Amunugama H, Ballou DP, Hollenberg PF. Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome p450-reductase complex. J Pharmacol Exp Ther 2011; 338:803-9. [PMID: 21659470 DOI: 10.1124/jpet.111.183111] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, metabolism of bupropion, efavirenz, and 7-ethoxy-4-trifluoromethylcoumarin (7-EFC) by CYP2B6 wild type (CYP2B6.1) and six polymorphic variants (CYP2B6.4 to CYP2B6.9) was investigated in a reconstituted system to gain a better understanding of the effects of the mutations on the catalytic properties of these naturally occurring variants. All six variants were successfully overexpressed in Escherichia coli, including CYP2B6.8 (the K139E variant), which previously could not be overexpressed in mammalian COS-1 cells (J Pharmacol Exp Ther 311:34-43, 2004). The steady-state turnover rates for the hydroxylation of bupropion and efavirenz and the O-deethylation of 7-EFC showed that these mutations significantly alter the catalytic activities of CYP2B6. It was found that CYP2B6.6 exhibits 4- and 27-fold increases in the K(m) values for the hydroxylation of bupropion and efavirenz, respectively, and CYP2B6.8 completely loses its ability to metabolize any of the substrates under normal turnover conditions. However, compared with CYP2B6.1, CYP2B6.8 retains 77% of its 7-EFC O-deethylase activity in the presence of tert-butyl hydroperoxide as an alternative oxidant, indicating that the heme and the active site are catalytically competent. Presteady-state measurements of the rate of electron transfer from NADPH-dependent cytochrome P450 reductase (CPR) to CYP2B6.8 using stopped-flow spectrophotometry revealed that CYP2B6.8 is incapable of accepting electrons from CPR. These observations provide conclusive evidence suggesting that the charge-reversal mutation in the K139E variant prevents CYP2B6.8 from forming a functional complex with CPR. Results from this work provide further insights to better understand the genotype-phenotype correlation regarding CYP2B6 polymorphisms and drug metabolism.
Collapse
Affiliation(s)
- Haoming Zhang
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, USA
| | | | | | | | | | | |
Collapse
|
28
|
Reed JR, Cawley GF, Backes WL. Inhibition of cytochrome P450 1A2-mediated metabolism and production of reactive oxygen species by heme oxygenase-1 in rat liver microsomes. Drug Metab Lett 2011; 5:6-16. [PMID: 20942796 DOI: 10.2174/187231211794455253] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 10/05/2010] [Indexed: 11/22/2022]
Abstract
Heme oxygenase-1 (HO-1) is induced in most cell types by many forms of environmental stress and is believed to play a protective role in cells exposed to oxidative stress. Metabolism by cytochromes P450 (P450) is highly inefficient as the oxidation of substrate is associated with the production of varying proportions of hydrogen peroxide and/or superoxide. This study tests the hypothesis that heme oxygenase-1 (HO-1) plays a protective role against oxidative stress by competing with P450 for binding to the common redox partner, the NADPH P450 reductase (CPR) and in the process, diminishing P450 metabolism and the associated production of reactive oxygen species (ROS). Liver microsomes were isolated from uninduced rats and rats that were treated with cadmium and/or β-napthoflavone (BNF) to induce HO-1 and/or CYP1A2. HO-1 induction was associated with slower rates of metabolism of the CYP1A2-specific substrate, 7-ethoxyresorufin. Furthermore, HO-1 induction also was associated with slower rates of hydrogen peroxide and hydroxyl radical production by microsomes from rats induced for CYP1A2. The inhibition associated with HO-1 induction was not dependent on the addition of heme to the microsomal incubations. The effects of HO-1 induction were less dramatic in the absence of substrate for CYP1A2, suggesting that the enzyme was more effective in inhibiting the CYP1A2-related activity than the CPR-related production of superoxide (that dismutates to form hydrogen peroxide).
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology and the Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 1901 Perdido St., New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
29
|
Sridar C, Snider NT, Hollenberg PF. Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6. Drug Metab Dispos 2011; 39:782-8. [PMID: 21289075 PMCID: PMC3082373 DOI: 10.1124/dmd.110.036707] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 02/02/2011] [Indexed: 11/22/2022] Open
Abstract
Anandamide is an arachidonic acid-derived endogenous cannabinoid that regulates normal physiological functions and pathophysiological responses within the central nervous system and in the periphery. Several cytochrome P450 (P450) isoforms metabolize anandamide to form hydroxylated and epoxygenated products. Human CYP2B6 and CYP2D6, which are expressed heterogeneously throughout the brain, exhibit clinically significant polymorphisms and are regulated by external factors, such as alcohol and smoking. Oxidative metabolism of anandamide by these two P450s may have important functional consequences for endocannabinoid system signaling. In this study, we investigated the metabolism of anandamide by wild-type CYP2B6 (2B6.1) and CYP2D6 (2D6.1) and by their common polymorphic mutants 2B6.4, 2B6.6, 2B6.9, and 2D6.34. Major differences in anandamide metabolism by the two isoforms and their mutants were found in vitro with respect to the formation of 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 14,15-epoxyeicosatetraenoic acid ethanolamide (14,15-EET-EA). Pharmacological studies showed that both 20-HETE-EA and 14,15-EET-EA bind to the rat brain cannabinoid CB1 receptor with lower affinities relative to that of anandamide. In addition, both products are degraded more rapidly than anandamide in rat brain homogenates. Their degradation occurs via different mechanisms involving either fatty acid amide hydrolase (FAAH), the major anandamide-degrading enzyme, or epoxide hydrolase (EH). Thus, the current findings provide potential new insights into the actions of inhibitors FAAH and EH, which are being developed as novel therapeutic agents, as well as a better understanding of the interactions between the cytochrome P450 monooxygenases and the endocannabinoid system.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/metabolism
- Animals
- Arachidonic Acids/chemistry
- Arachidonic Acids/metabolism
- Arachidonic Acids/pharmacokinetics
- Aryl Hydrocarbon Hydroxylases/genetics
- Aryl Hydrocarbon Hydroxylases/metabolism
- Brain/metabolism
- Cannabinoid Receptor Modulators/chemistry
- Cannabinoid Receptor Modulators/metabolism
- Cytochrome P-450 CYP2B6
- Cytochrome P-450 CYP2D6/genetics
- Cytochrome P-450 CYP2D6/metabolism
- Endocannabinoids
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/metabolism
- Humans
- Hydroxyeicosatetraenoic Acids/metabolism
- Hydroxylation
- Male
- Oxidation-Reduction
- Oxidoreductases, N-Demethylating/genetics
- Oxidoreductases, N-Demethylating/metabolism
- Polymorphism, Genetic
- Polyunsaturated Alkamides/chemistry
- Polyunsaturated Alkamides/metabolism
- Polyunsaturated Alkamides/pharmacokinetics
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/metabolism
Collapse
Affiliation(s)
- Chitra Sridar
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-5632, USA
| | | | | |
Collapse
|
30
|
Foxenberg RJ, Ellison CA, Knaak JB, Ma C, Olson JR. Cytochrome P450-specific human PBPK/PD models for the organophosphorus pesticides: chlorpyrifos and parathion. Toxicology 2011; 285:57-66. [PMID: 21514354 DOI: 10.1016/j.tox.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Organophosphorus pesticides (OPs) remain a potential concern to human health because of their continuing use worldwide. Phosphororthioate OPs like chlorpyrifos and parathion are directly activated and detoxified by various cytochrome P450s (CYPs), with the primary CYPs involved being CYP2B6 and CYP2C19. The goal of the current study was to convert a previously reported human pharmacokinetic and pharmacodynamic (PBPK/PD) model for chlorpyrifos, that used chlorpyrifos metabolism parameters from rat liver, into a human CYP based/age-specific model using recombinant human CYP kinetic parameters (V(max), K(m)), hepatic CYP content and plasma binding measurements to estimate new values for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition and to use the model as a template for the development of a comparable parathion PBPK/PD model. The human CYP based/age-specific PBPK/PD models were used to simulate single oral exposures of adults (19 year old) and infants (1 year) to chlorpyrifos (10,000, 1000 and 100 μg/kg) or parathion (100, 25 and 5 μg/kg). Model simulations showed that there is an age dependency in the amount of blood cholinesterase inhibition observed, however additional age-dependent data are needed to further optimize age-specific human PBPK/PD modeling for these OP compounds. PBPK/PD model simulations estimated that a 4-fold increase or decrease in relative CYP2B6 and CYP2C19 content would produce a 9-22% inhibition in blood AChE activity following exposure of an adult to chlorpyrifos (1000 μg/kg). Similar model simulation produced an 18-22% inhibition in blood AChE activity following exposure of an adult to parathion (25 μg/kg). Individuals with greater CYP2B6 content and lower CYP2C19 content were predicted to be most sensitive to both OPs. Changes in hepatic CYP2B6 and CYP2C19 content had more of an influence on cholinesterase inhibition for exposures to chlorpyrifos than parathion, which agrees with previously reported literature that these CYPs are more reaction biased for desulfurization (activation) and dearylation (detoxification) of chlorpyrifos compared to parathion. The data presented here illustrate how PBPK/PD models with human enzyme-specific parameters can assist ongoing risk assessment efforts and aid in the identification of sensitive individuals and populations.
Collapse
Affiliation(s)
- Robert J Foxenberg
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
31
|
Brignac-Huber L, Reed JR, Backes WL. Organization of NADPH-cytochrome P450 reductase and CYP1A2 in the endoplasmic reticulum--microdomain localization affects monooxygenase function. Mol Pharmacol 2011; 79:549-57. [PMID: 21156755 PMCID: PMC3061359 DOI: 10.1124/mol.110.068817] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/13/2010] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 is part of an electron transport chain found in the endoplasmic reticulum (ER), with its catalytic function requiring interactions with NADPH-cytochrome P450 reductase (CPR). The goals of this study were to examine how the P450 system proteins are organized in the membrane and to determine whether they are distributed in detergent-resistant lipid microdomains (DRM). Isolated liver microsomes from untreated rabbits were treated with 1% Brij 98, and DRMs were isolated via sucrose gradient centrifugation. Lipid analysis showed that DRM fractions were enriched in cholesterol and sphingomyelin, similar to that found with plasma membrane DRMs. Approximately 73% of CYP1A2 and 68% of CPR resided in DRM fractions, compared with only 33% of total ER proteins. These DRMs were found to be cholesterol-dependent: CPR and CYP1A2 migrated to the more dense regions of the sucrose gradient after cholesterol depletion. CYP1A2 function was studied in three purified lipid vesicles consisting of 1) phosphatidylcholine (V-PC), 2) lipids with a composition similar to ER lipids (V-ER), and 3) lipids with a composition similar to the DRM fractions (V-DRM). Each system showed similar substrate binding characteristics. However, when the association between CPR and CYP1A2 was measured, V-ER and V-DRM liposomes produced lower apparent K(m) values compared with V-PC without any significant change in V(max). These findings suggest that CYP1A2 and CPR reside in ER-DRMs and that the unique lipid components of these domains enhance CYP1A2 substrate metabolism through greater efficiency in CPR-CYP1A2 binding.
Collapse
Affiliation(s)
- Lauren Brignac-Huber
- Department of Pharmacology, Stanley S. Scott Cancer Center, Louisiana State University, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
32
|
Koyama N, Yamazoe Y. Development of Two-dimensional Template System for the Prediction of CYP2B6-mediated Reaction Sites. Drug Metab Pharmacokinet 2011; 26:309-30. [DOI: 10.2133/dmpk.dmpk-10-rg-097] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Li H, Ferguson SS, Wang H. Synergistically enhanced CYP2B6 inducibility between a polymorphic mutation in CYP2B6 promoter and pregnane X receptor activation. Mol Pharmacol 2010; 78:704-13. [PMID: 20624854 PMCID: PMC2981389 DOI: 10.1124/mol.110.065185] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Accepted: 07/12/2010] [Indexed: 01/05/2023] Open
Abstract
CYP2B6 is a highly inducible and polymorphic enzyme involved in the metabolism of an increasing number of clinically important drugs. Significant interindividual variability in CYP2B6 expression has been attributed to either genetic polymorphisms or chemical-mediated induction through the activation of constitutive androstane receptor and/or pregnane X receptor (PXR). It was reported that the -82T→C substitution within the CYP2B6*22 allele creates a functional CCAAT/enhancer-binding protein (C/EBP) binding site and enhances the basal expression of the CYP2B6 gene. Here, we explored whether this polymorphic mutation could affect drug-mediated induction of CYP2B6. Cell-based promoter reporter assays demonstrated that CYP2B6 luciferase activity was synergistically enhanced in the presence of both -82T→C mutation and rifampicin (RIF)-activated PXR. On the other hand, this synergism was attenuated by disrupting the C/EBP binding site or knocking down C/EBPα expression. Mechanistic studies revealed that C/EBPα plays an important role in such synergism by directly interacting with PXR; enhancing RIF-mediated recruitment of PXR to the -82T→C harboring CYP2B6 promoter; and looping the PXR-bound distal phenobarbital-responsive enhancer module toward the proximal C/EBP binding site. Furthermore, the genotype-phenotype association was evaluated in cultured human primary hepatocytes from 44 donors. Interestingly, RIF-mediated induction of CYP2B6 in four -82T/C carriers was higher compared with that in the reference -82T/T homozygotes. Together, our results demonstrate, for the first time, a synergistic interplay between a CYP2B6 polymorphism and PXR-mediated induction, which may contribute to the large individual variations and inducibility of CYP2B6 in humans.
Collapse
Affiliation(s)
- Haishan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
34
|
Roy PP, Roy K. Pharmacophore mapping, molecular docking and QSAR studies of structurally diverse compounds as CYP2B6 inhibitors. MOLECULAR SIMULATION 2010. [DOI: 10.1080/08927022.2010.492834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Park HG, Lim YR, Eun CY, Han S, Han JS, Cho KS, Chun YJ, Kim D. Candida albicans NADPH-P450 reductase: expression, purification, and characterization of recombinant protein. Biochem Biophys Res Commun 2010; 396:534-8. [PMID: 20435019 DOI: 10.1016/j.bbrc.2010.04.138] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
Candida albicans is responsible for serious fungal infections in humans. Analysis of its genome identified NCP1 gene coding for a putative NADPH-P450 reductase (NPR) enzyme. This enzyme appears to supply reducing equivalents to cytochrome P450 or heme oxygenase enzymes for fungal survival and virulence. In this study, we report the characterization of the functional features of NADPH-P450 reductase from C. albicans. The recombinant C. albicans NPR protein harboring a 6x(His)-tag was expressed heterologously in Escherichia coli, and was purified. Purified C. albicans NPR has an absorption maximum at 453 nm, indicating the feature of an oxidized flavin cofactor, which was decreased by the addition of NADPH. It also evidenced NADPH-dependent cytochrome c or nitroblue tetrazolium reducing activity. This purified reductase protein was successfully able to substitute for purified mammalian NPR in the reconstitution of the human P450 1A2-catalyzed O-deethylation of 7-ethoxyresorufin. These results indicate that purified C. albicans NPR is an orthologous reductase protein that supports cytochrome P450 or heme oxygenase enzymes in C. albicans.
Collapse
Affiliation(s)
- Hyoung-Goo Park
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Gay SC, Shah MB, Talakad JC, Maekawa K, Roberts AG, Wilderman PR, Sun L, Yang JY, Huelga SC, Hong WX, Zhang Q, Stout CD, Halpert JR. Crystal structure of a cytochrome P450 2B6 genetic variant in complex with the inhibitor 4-(4-chlorophenyl)imidazole at 2.0-A resolution. Mol Pharmacol 2010; 77:529-38. [PMID: 20061448 PMCID: PMC2845937 DOI: 10.1124/mol.109.062570] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/08/2010] [Indexed: 01/11/2023] Open
Abstract
The structure of the K262R genetic variant of human cytochrome P450 2B6 in complex with the inhibitor 4-(4-chlorophenyl)imidazole (4-CPI) has been determined using X-ray crystallography to 2.0-A resolution. Production of diffraction quality crystals was enabled through a combination of protein engineering, chaperone coexpression, modifications to the purification protocol, and the use of unique facial amphiphiles during crystallization. The 2B6-4-CPI complex is virtually identical to the rabbit 2B4 structure bound to the same inhibitor with respect to the arrangement of secondary structural elements and the placement of active site residues. The structure supports prior P450 2B6 homology models based on other mammalian cytochromes P450 and is consistent with the limited site-directed mutagenesis studies on 2B6 and extensive studies on P450 2B4 and 2B1. Although the K262R genetic variant shows unaltered binding of 4-CPI, altered binding affinity, kinetics, and/or product profiles have been previously shown with several other ligands. On the basis of new P450 2B6 crystal structure and previous 2B4 structures, substitutions at residue 262 affect a hydrogen-bonding network connecting the G and H helices, where subtle differences could be transduced to the active site. Docking experiments indicate that the closed protein conformation allows smaller ligands such as ticlopidine to bind to the 2B6 active site in the expected orientation. However, it is unknown whether 2B6 undergoes structural reorganization to accommodate bulkier molecules, as previously inferred from multiple P450 2B4 crystal structures.
Collapse
Affiliation(s)
- Sean C Gay
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr. #0703, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Al Koudsi N, Tyndale RF. Hepatic CYP2B6 is altered by genetic, physiologic, and environmental factors but plays little role in nicotine metabolism. Xenobiotica 2010; 40:381-92. [DOI: 10.3109/00498251003713958] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
38
|
Involvement of pregnane X receptor in the regulation of CYP2B6 gene expression by oltipraz in human hepatocytes. Toxicol In Vitro 2010; 24:452-9. [DOI: 10.1016/j.tiv.2009.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/25/2009] [Accepted: 09/28/2009] [Indexed: 11/24/2022]
|
39
|
Jang HH, Jamakhandi AP, Sullivan SZ, Yun CH, Hollenberg PF, Miller GP. Beta sheet 2-alpha helix C loop of cytochrome P450 reductase serves as a docking site for redox partners. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:1285-93. [PMID: 20152939 DOI: 10.1016/j.bbapap.2010.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 01/26/2010] [Accepted: 02/03/2010] [Indexed: 11/24/2022]
Abstract
As a promiscuous redox partner, the biological role of cytochrome P450 reductase (CPR) depends significantly on protein-protein interactions. We tested a hypothesized CPR docking site by mutating D113, E115, and E116 to alanine and assaying activity toward various electron acceptors as a function of ionic strength. Steady-state cytochrome c studies demonstrated the mutations improved catalytic efficiency and decreased the impact of ionic strength on catalytic parameters when compared to wild type. Based on activity toward 7-ethoxy-4-trifluoro-methylcoumarin, CYP2B1 and CPR favored formation of an active CYP2B1*CPR complex and inactive (CYP2B1)(2)*CPR complex until higher ionic strength whereby only the binary complex was observed. The mutations increased dissociation constants only for the binary complex and suppressed the ionic strength effect. Studies with a non-binding substrate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) suggest changes in activity toward cytochrome c and CYP2B1 reflect alterations in the route of electron transfer caused by the mutations. Electrostatic modeling of catalytic and binding parameters confirmed the importance of D113 and especially the double mutant E115 and E116 as mediators in forming charge-charge interactions between CPR and complex partners.
Collapse
Affiliation(s)
- Hyun-Hee Jang
- School of Biological Sciences and Technology and Hormone Research Center, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|
40
|
Reed JR, Eyer M, Backes WL. Functional interactions between cytochromes P450 1A2 and 2B4 require both enzymes to reside in the same phospholipid vesicle: evidence for physical complex formation. J Biol Chem 2010; 285:8942-52. [PMID: 20071338 DOI: 10.1074/jbc.m109.076885] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have shown that the combined presence of two cytochrome P450 enzymes (P450s) can affect the function of both enzymes, results that are consistent with the formation of heteromeric P450.P450 complexes. The goal of this study was to provide direct evidence for a physical interaction between P450 1A2 (CYP1A2) and P450 2B4 (CYP2B4), by determining if the interactions required both enzymes to reside in the same lipid vesicles. When NADPH-cytochrome P450 reductase (CPR) and a single P450 were incorporated into separate vesicles, extremely slow reduction rates were observed, demonstrating that the enzymes were anchored in the vesicles. Next, several reconstituted systems were prepared: 1) CPR.CYP1A2, 2) CPR.CYP2B4, 3) a mixture of CPR.CYP1A2 vesicles with CPR.CYP2B4 vesicles, and 4) CPR.CYP1A2.CYP2B4 in the same vesicles (ternary system). When in the ternary system, CYP2B4-mediated metabolism was significantly inhibited, and CYP1A2 activities were stimulated by the presence of the alternate P450. In contrast, P450s in separate vesicles were unable to interact. These data demonstrate that P450s must be in the same vesicles to alter metabolism. Additional evidence for a physical interaction among CPR, CYP1A2, and CYP2B4 was provided by cross-linking with bis(sulfosuccinimidyl) suberate. The results showed that after cross-linking, antibody to CYP1A2 was able to co-immunoprecipitate CYP2B4 but only when both proteins were in the same phospholipid vesicles. These results clearly demonstrate that the alterations in P450 function require both P450s to be present in the same vesicles and support a mechanism whereby P450s form a physical complex in the membrane.
Collapse
Affiliation(s)
- James R Reed
- Department of Pharmacology, Stanley S Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
41
|
Bumpus NN, Hollenberg PF. Cross-linking of human cytochrome P450 2B6 to NADPH-cytochrome P450 reductase: Identification of a potential site of interaction. J Inorg Biochem 2010; 104:485-8. [PMID: 20096935 DOI: 10.1016/j.jinorgbio.2009.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/22/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
The site(s) of interaction between human cytochrome P450 2B6 and NADPH-cytochrome P450 reductase (P450 reductase) have yet to be identified. To investigate this, the cross-linking agent 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) was used to covalently link P450 2B6-P450 reductase. Following digestion with trypsin, the cross-linked peptides were identified by reconstituting the peptides in (18)O-water based on the principle that the cross-linked peptides would be expected to incorporate twice as many (18)O atoms as the non-cross-linked peptides. Subsequent mass spectrometric analyses of the resulting peptides led to the identification of one cross-linked peptide candidate. De novo sequencing of the peptide indicated that it is a complex between residues in the C-helix of the P450 (based upon solved X-ray crystal structures of P450 2B4) and the connecting domain of the P450 reductase. To confirm this experimentally, the P450 2B6 peptide identified through the cross-linking studies was synthesized and peptide competition studies were performed. In the presence of the synthetic peptide, P450 catalytic activity was decreased by up to 60% when compared to competition studies performed using a nonsense peptide. Taken together, these studies indicate that residues in the C-helix of P450 2B6 play a major role in the interaction with the P450 reductase.
Collapse
Affiliation(s)
- Namandjé N Bumpus
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, United States
| | | |
Collapse
|
42
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 502] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
43
|
Shukla A, Huang W, Depaz IM, Gillam EMJ. Membrane integration of recombinant human P450 forms. Xenobiotica 2009; 39:495-507. [DOI: 10.1080/00498250902934884] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
44
|
Shebley M, Kent UM, Ballou DP, Hollenberg PF. Mechanistic analysis of the inactivation of cytochrome P450 2B6 by phencyclidine: effects on substrate binding, electron transfer, and uncoupling. Drug Metab Dispos 2009; 37:745-52. [PMID: 19144770 PMCID: PMC2680542 DOI: 10.1124/dmd.108.024661] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 01/13/2009] [Indexed: 11/22/2022] Open
Abstract
Phencyclidine (PCP) is a mechanism-based inactivator of cytochrome P450 (P450) 2B6. We have analyzed several steps in the P450 catalytic cycle to determine the mechanism of inactivation of P450 2B6 by PCP. Spectral binding studies show that binding of benzphetamine, a type I ligand, to P450 2B6 was significantly affected as a result of the inactivation, whereas binding of the inhibitor n-octylamine, a type II ligand, was not compromised. Binding of these ligands to P450 2B6 occurs in two phases. Stopped-flow spectral analysis of the binding kinetics of benzphetamine to PCP-inactivated 2B6 revealed a 15-fold decrease in the rate of binding during the second phase of the kinetics (k(1) = 5.0 s(-1), A(1) = 30%; k(2) = 0.02 s(-1), A(2) = 70%, where A(2) indicates the fractional magnitude of the second phase) compared with the native enzyme (k(1) = 8.0 s(-1), A(1) = 58%; k(2) = 0.3 s(-1), A(2) = 42%). Analysis of benzphetamine metabolism by the inactivated protein using liquid chromatography/electrospray ionization/mass spectrometry showed that the rates of formation of nor-benzphetamine and hydroxylated nor-benzphetamine were decreased by 75 and 69%, respectively, whereas the rates of formation for amphetamine, hydroxybenzphetamine, and methamphetamine showed slight but statistically insignificant decreases after the inactivation. The rate of reduction of P450 2B6 by NADPH and reductase was decreased by 6-fold as a result of the modification by PCP. In addition, the extent of uncoupling of NADPH oxidation from product formation, a process leading to futile production of H(2)O(2), increased significantly during the metabolism of ethylbenzene as a result of the inactivation.
Collapse
Affiliation(s)
- Mohamad Shebley
- Department of Pharmacology, The University of Michigan, Medical Science Research Building III, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-5632, USA
| | | | | | | |
Collapse
|
45
|
Wang H, Tompkins LM. CYP2B6: new insights into a historically overlooked cytochrome P450 isozyme. Curr Drug Metab 2008; 9:598-610. [PMID: 18781911 DOI: 10.2174/138920008785821710] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human CYP2B6 has been thought to account for a minor portion (<1%) of total hepatic cytochrome P450 (CYP) content and to have a minor function in human drug metabolism. Recent studies, however, indicate that the average relative contribution of CYP2B6 to total hepatic CYP content ranges from 2% to 10%. An increased interest in CYP2B6 research has been stimulated by the identification of an ever-increasing substrate list for this enzyme, polymorphic and ethnic variations in expression levels, and evidence for cross-regulation with CYP3A4, UGT1A1 and several hepatic drug transporters by the nuclear receptors pregnane X receptor and constitutive androstane receptor. Moreover, 20- to 250-fold interindividual variation in CYP2B6 expression has been demonstrated, presumably due to transcriptional regulation and polymorphisms. These individual differences may result in variable systemic exposure to drugs metabolized by CYP2B6, including the antineoplastics cyclophosphamide and ifosfamide, the antiretrovirals nevirapine and efavirenz, the anesthetics propofol and ketamine, the synthetic opioid methadone, and the anti-Parkinsonian selegiline. The potential clinical significance of CYP2B6 further enforces the need for a comprehensive review of this xenobiotic metabolizing enzyme. This communication summarizes recent advances in our understanding of this traditionally neglected enzyme and provides an overall picture of CYP2B6 with respect to expression, localization, substrate-specificity, inhibition, regulation, polymorphisms and clinical significance. Emphasis is given to nuclear receptor mediated transcriptional regulation, genetic polymorphisms, and their clinical significance.
Collapse
Affiliation(s)
- Hongbing Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, 20 Penn Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
46
|
Bumpus NN, Hollenberg PF. Investigation of the mechanisms underlying the differential effects of the K262R mutation of P450 2B6 on catalytic activity. Mol Pharmacol 2008; 74:990-9. [PMID: 18621926 PMCID: PMC2574649 DOI: 10.1124/mol.108.048637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human P450 2B6 is a polymorphic enzyme involved in the oxidative metabolism of a number of clinically relevant substrates. The lysine 262-to-arginine mutant of cytochrome P450 2B6 (P450 2B6.4) has been shown to have differential effects on P450 2B6 catalytic activity. We reported previously that the mutant enzyme was unable to metabolize 17-alpha-ethynylestradiol (17EE) or become inactivated by 17EE or efavirenz, which are inactivators of the wild-type enzyme. Studies were performed to elucidate the mechanism by which this mutation affects P450 2B6 catalytic activity. Studies using phenyldiazene to investigate differences between the active site topologies of the wild-type and mutant enzymes revealed only minor differences. Likewise, Ks values for the binding of both benzphetamine and efavirenz were comparable between the two enzymes. Using the alternate oxidant tert-butyl hydroperoxide, the mutant enzyme was inactivated by both 17EE and efavirenz. The stoichiometry of 17EE and efavirenz metabolism by P450s 2B6 and 2B6.4 revealed that the mutant enzyme was more uncoupled, producing hydrogen peroxide as the primary product. Interestingly, the addition of cytochrome b5 improved the coupling of the mutant, resulting in increased catalytic activity. In the presence of cytochrome b5 the variant readily metabolized 17EE and was inactivated by both 17EE and efavirenz. It is therefore proposed that the oxyferrous or iron-peroxo intermediate formed by the mutant enzyme in the presence of 17EE and efavirenz may be less stable than the same intermediates formed by the wild-type enzyme.
Collapse
Affiliation(s)
- Namandjé N Bumpus
- Department of Pharmacology, The University of Michigan, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0632, USA
| | | |
Collapse
|
47
|
Kent UM, Sridar C, Spahlinger G, Hollenberg PF. Modification of serine 360 by a reactive intermediate of 17-alpha-ethynylestradiol results in mechanism-based inactivation of cytochrome P450s 2B1 and 2B6. Chem Res Toxicol 2008; 21:1956-63. [PMID: 18729327 DOI: 10.1021/tx800138v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
17-alpha-Ethynylestradiol (17EE) is a mechanism-based inactivator of P450 2B1 and P450 2B6 in the reconstituted monooxygenase system. The loss in enzymatic activity was due to the binding of a reactive intermediate of 17EE to the apoprotein. P450 2B1 and P450 2B6 were inactivated by 17EE and digested with trypsin. The peptides obtained following digestion with trypsin of 17EE-inactivated P450 2B1 and P450 2B6 were separated by liquid chromatography and analyzed by ESI-MS. Adducted peptides exhibiting an increase in mass consistent with the addition of the mass of the reactive intermediate of 17EE were identified for each enzyme. Analysis of these modified peptides by ESI-MS/MS and precursor ion scanning facilitated the identification of the Ser360 in both enzymes as a site that had been adducted by a reactive intermediate of 17EE. A P450 2B1 mutant where Ser360 was replaced by alanine was constructed, expressed, and purified. Activity and inactivation studies indicated that mutation of the Ser360 residue to alanine did not prevent inactivation of the mutant enzyme by 17EE. These observations suggest that Ser360 is not critical for the catalytic function of these P450s. Spectral binding studies of the 17EE-inactivated P450 2B1 and P450 2B6 indicated that modification of the enzymes by the reactive intermediate of 17EE resulted in an enzyme that was no longer capable of binding substrates. These results suggest that the inactivation by 17EE may be due to modification of an amino acid residue in the substrate access channel near the point of entry into the active site.
Collapse
Affiliation(s)
- Ute M Kent
- Department of Pharmacology, University of Michigan, Medical Science Research Building III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
48
|
Reed JR, Brignac-Huber LM, Backes WL. Physical incorporation of NADPH-cytochrome P450 reductase and cytochrome P450 into phospholipid vesicles using glycocholate and Bio-Beads. Drug Metab Dispos 2008; 36:582-8. [PMID: 18048487 PMCID: PMC2789009 DOI: 10.1124/dmd.107.018473] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a previous study from our laboratory (Drug Metab Dispos 34: 660-666, 2006), we found several limitations with published methods (cholate gel filtration and cholate dialysis) for the incorporation of cytochromes P450 and P450 reductase into phospholipid vesicles. We found that a significant proportion of reductase was not incorporated in the vesicles when the amount of reductase was equal to or greater than that of CYP2B4 in the systems reconstituted with phosphatidylcholine. Furthermore, implementation of these methods compromised the ability of the CYP2B4 to form a ferrous carbon monoxy complex. In the current study, a comparison of results using the detergent-dialysis method with five similar detergents having the "bile salt" ring structure showed that glycocholate results in the greatest incorporation of reductase and the least loss in the ferrous carbon monoxy CYP2B4 complex. The method is further improved by using Bio-Beads SM-2 to remove detergent instead of the lengthy dialysis procedure or size exclusion chromatography that significantly dilutes the protein and lipid concentrations of the preparation. The method is shown to be applicable over a range of lipid/CYP2B4 ratios, and by using assay methods for total lipid, reductase, and CYP2B4, this improved reconstitution method resulted in increased incorporation efficiencies while minimizing the protein degradation inherent with these procedures.
Collapse
Affiliation(s)
- James R Reed
- Louisiana State University Health Science Center, Department of Pharmacology and the Stanley S. Scott Cancer Center, 533 Bolivar St., New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
49
|
Cheng D, Harris D, Reed JR, Backes WL. Inhibition of CYP2B4 by 2-ethynylnaphthalene: evidence for the co-binding of substrate and inhibitor within the active site. Arch Biochem Biophys 2007; 468:174-82. [PMID: 17967439 PMCID: PMC2121586 DOI: 10.1016/j.abb.2007.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/21/2007] [Accepted: 07/25/2007] [Indexed: 10/22/2022]
Abstract
2-ethynylnaphthalene (2EN) is an effective mechanism-based inhibitor of CYP2B4. There are two inhibitory components: (1) irreversible inactivation of CYP2B4 (a typical time-dependent inactivation), and (2) a reversible component. The reversible component was unusual in that the degree of inhibition was not simply a characteristic of the enzyme-inhibitor interaction, but dependent on the size of the substrate molecule used to monitor residual activity. The effect of 2EN on the metabolism of seven CYP2B4 substrates showed that it was not an effective reversible inhibitor of substrates containing a single aromatic ring; substrates with two fused rings were competitively inhibited by 2EN; and larger substrates were non-competitively inhibited. Energy-based docking studies demonstrated that, with increasing substrate size, the energy of 2EN and substrate co-binding in the active site became unfavorable precisely at the point where 2EN became a competitive inhibitor. Hierarchical docking revealed potential allosteric inhibition sites separate from the substrate binding site.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - Danni Harris
- Molecular Research Institute, Mountain View, CA 94043
| | - James R. Reed
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - Wayne L. Backes
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| |
Collapse
|
50
|
Affiliation(s)
- Elizabeth M. J. Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|