1
|
Xu YS, Ma W, Li J, Huang PW, Sun XM, Huang H. Metal cofactor regulation combined with rational genetic engineering of Schizochytrium sp. for high-yield production of squalene. Biotechnol Bioeng 2023; 120:1026-1037. [PMID: 36522292 DOI: 10.1002/bit.28311] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The increasing market demand for squalene requires novel biotechnological production platforms. Schizochytrium sp. is an industrial oleaginous host with a high potential for squalene production due to its abundant native acetyl-CoA pool. We first found that iron starvation led to the accumulation of 1.5 g/L of squalene by Schizochytrium sp., which was 40-fold higher than in the control. Subsequent transcriptomic and lipidomic analyses showed that the high squalene titer is due to the diversion of precursors from lipid biosynthesis and increased triglycerides (TAG) content for squalene storage. Furthermore, we constructed the engineered acetyl-CoA C-acetyltransferase (ACAT)-overexpressing strain 18S::ACAT, which produced 2.79 g/L of squalene, representing an 86% increase over the original strain. Finally, a nitrogen-rich feeding strategy was developed to further increase the squalene titer of the engineered strain, which reached 10.78 g/L in fed-batch fermentation, a remarkable 161-fold increase over the control. To our best knowledge, this is the highest squalene yield in thraustochytrids reported to date.
Collapse
Affiliation(s)
- Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Peng-Wei Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| |
Collapse
|
2
|
Cheah LC, Liu L, Stark T, Plan MR, Peng B, Lu Z, Schenk G, Sainsbury F, Vickers CE. Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation. Metab Eng 2023; 77:143-151. [PMID: 36990382 DOI: 10.1016/j.ymben.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia
| | - Lian Liu
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Terra Stark
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Manuel R Plan
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia; School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia; Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
3
|
Niinemets Ü, Rasulov B, Talts E. CO 2 -responsiveness of leaf isoprene emission: Why do species differ? PLANT, CELL & ENVIRONMENT 2021; 44:3049-3063. [PMID: 34155641 DOI: 10.1111/pce.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Leaf isoprene emission rate, I, decreases with increasing atmospheric CO2 concentration with major implications for global change. There is a significant interspecific variability in [CO2 ]-responsiveness of I, but the extent of this variation is unknown and its reasons are not understood. We hypothesized that the magnitude of emission reduction reflects the size and changeability of precursor pools responsible for isoprene emission (dimethylallyl diphosphate, DMADP and 2-methyl-erythritol 2,4-cyclodiphosphate, MEcDP). Changes in I and intermediate pool sizes upon increase of [CO2 ] from 400 to 1500 μmol/mol were studied in nine woody species spanning boreal to tropical ecosystems. I varied 10-fold, total substrate pool size 37-fold and the ratio of DMADP/MEcDP pool sizes 57-fold. At higher [CO2 ], I was reduced on average by 65%, but [CO2 ]-responsiveness varied an order of magnitude across species. The increase in [CO2 ] resulted in concomitant reductions in both substrate pools. The variation in [CO2 ]-responsiveness across species scaled with the reduction in pool sizes, the substrate pool size supported and the share of DMADP in total substrate pool. This study highlights a major interspecific variation in [CO2 ]-responsiveness of isoprene emission and conclusively links this variation to interspecific variability in [CO2 ] effects on substrate availability and intermediate pool size.
Collapse
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Bahtijor Rasulov
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
4
|
Yu N, Chen Z, Yang J, Li R, Zou W. Integrated transcriptomic and metabolomic analyses reveal regulation of terpene biosynthesis in the stems of Sindora glabra. TREE PHYSIOLOGY 2021; 41:1087-1102. [PMID: 33372995 DOI: 10.1093/treephys/tpaa168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Sesquiterpenes are important defensive secondary metabolites that are synthesized in various plant organs. Methyl jasmonate (MeJA) plays a key role in plant defense responses and secondary metabolism. Sindora glabra Merr. ex de Wit produces abundant sesquiterpenes in its trunks, and was subjected to investigation after MeJA treatment in order to characterize the molecular mechanisms underlying the regulation of sesquiterpene biosynthesis in plant stems and further our understanding of oleoresin production in trees. A total of 14 types of sesquiterpenes in the stems of mature S. glabra trees were identified. The levels of two sesquiterpenes, α-copaene and β-caryophyllene, significantly increased after MeJA treatment. Differentially expressed genes involved in terpenoid backbone biosynthesis were significantly enriched over time, while the expression of JAZ genes involved in the jasmonic acid signaling pathway and TGA genes involved in the salicylic acid signaling pathway was significantly enriched at later time points after treatment. Two new terpene synthase genes, SgSTPS4 and SgSTPS5, were also identified. Following MeJA treatment, the expression levels of SgSTPS1, SgSTPS2 and SgSTPS4 decreased, while SgSTPS5 expression increased. The major enzymatic products of SgSTPS4 were identified as β-elemene and cyperene, while SgSTPS5 was identified as a bifunctional mono/sesquiterpene synthase that could catalyze farnesyl pyrophosphate to produce nine types of sesquiterpenes, including α-copaene and β-caryophyllene, while SgSTPS5 could also use geranyl pyrophosphate to produce geraniol. Dramatic changes in the amounts of α-copaene and β-caryophyllene in response to MeJA were correlated with transcriptional expression changes of SgSTPS5 in the wood tissues. In addition, the transcription factors MYB, NAC, ARF, WRKY, MYC, ERF and GRAS were co-expressed with terpene biosynthesis genes and might potentially regulate terpene biosynthesis. Metabolite changes were further investigated with UPLC-TOF/MS following MeJA treatment. These results contribute to the elucidation of the molecular mechanisms of terpene biosynthesis and regulation as well as to the identification of candidate genes involved in these processes.
Collapse
Affiliation(s)
- Niu Yu
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou 510520, China
| | - Zhaoli Chen
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou 510520, China
| | - Jinchang Yang
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou 510520, China
| | - Rongsheng Li
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou 510520, China
| | - Wentao Zou
- Key Laboratory of State Forestry Administration on Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Number 682, Guang Shan Yi Road, Longdong District, Guangzhou 510520, China
| |
Collapse
|
5
|
Barsain BL, Purohit A, Kumar A, Joshi R, Hallan V, Yadav SK. PkGPPS.SSU interacts with two PkGGPPS to form heteromeric GPPS in Picrorhiza kurrooa: Molecular insights into the picroside biosynthetic pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:115-128. [PMID: 32554175 DOI: 10.1016/j.plaphy.2020.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Geranyl geranyl pyrophosphate synthase (GGPPS) is known to form an integral subunit of the heteromeric GPPS (geranyl pyrophosphate synthase) complex and catalyzes the biosynthesis of monoterpene in plants. Picrorhiza kurrooa Royle ex Benth., a medicinally important high altitude plant is known for picroside biomolecules, the monoterpenoids. However, the significance of heteromeric GPPS in P. kurrooa still remains obscure. Here, transient silencing of PkGGPPS was observed to reduce picroside-I (P-I) content by more than 60% as well as picroside-II (P-II) by more than 75%. Thus, PkGGPPS was found to be involved in the biosynthesis of P-I and P-II besides other terpenoids. To unravel the mechanism, small subunit of GPPS (PkGPPS.SSU) was identified from P. kurrooa. Protein-protein interaction studies in yeast as well as bimolecular fluorescence complementation (BiFC) in planta have indicated that large subunit of GPPS PkGPPS.LSUs (PkGGPPS1 and PkGGPPS2) and PkGPPS.SSU form a heteromeric GPPS. Presence of similar conserved domains such as light responsive motifs, low temperature responsive elements (LTRE), dehydration responsive elements (DREs), W Box and MeJA responsive elements in the promoters of PkGPPS.LSU and PkGPPS.SSU documented their involvement in picroside biosynthesis. Further, the tissue specific transcript expression analysis vis-à-vis epigenetic regulation (DNA methylation) of promoters as well as coding regions of PkGPPS.LSU and PkGPPS.SSU has strongly suggested their role in picroside biosynthesis. Taken together, the newly identified PkGPPS.SSU formed the heteromeric GPPS by interacting with PkGPPS.LSUs to synthesize P-I and P-II in P. kurrooa.
Collapse
Affiliation(s)
- Bharati Lalhal Barsain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Anjali Purohit
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Ajay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Robin Joshi
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| | - Sudesh Kumar Yadav
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, HP, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
6
|
Celedon JM, Bohlmann J. Oleoresin defenses in conifers: chemical diversity, terpene synthases and limitations of oleoresin defense under climate change. THE NEW PHYTOLOGIST 2019; 224:1444-1463. [PMID: 31179548 DOI: 10.1111/nph.15984] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/16/2019] [Indexed: 05/20/2023]
Abstract
Conifers have evolved complex oleoresin terpene defenses against herbivores and pathogens. In co-evolved bark beetles, conifer terpenes also serve chemo-ecological functions as pheromone precursors, chemical barcodes for host identification, or nutrients for insect-associated microbiomes. We highlight the genomic, molecular and biochemical underpinnings of the large chemical space of conifer oleoresin terpenes and volatiles. Conifer terpenes are predominantly the products of the conifer terpene synthase (TPS) gene family. Terpene diversity is increased by cytochromes P450 of the CYP720B class. Many conifer TPS are multiproduct enzymes. Multisubstrate CYP720B enzymes catalyse multistep oxidations. We summarise known terpenoid gene functions in various different conifer species with reference to the annotated terpenoid gene space in a spruce genome. Overall, biosynthesis of terpene diversity in conifers is achieved through a system of biochemical radiation and metabolic grids. Expression of TPS and CYP720B genes can be specific to individual cell types of constitutive or traumatic resin duct systems. Induced terpenoid transcriptomes in resin duct cells lead to dynamic changes of terpene composition and quantity to fend off herbivores and pathogens. While terpenoid defenses have contributed much to the evolutionary success of conifers, under new conditions of climate change, these defences may become inconsequential against range-expanding forest pests.
Collapse
Affiliation(s)
- Jose M Celedon
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jörg Bohlmann
- Michael Smith Laboratories, University of British Columbia, 301-2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
7
|
Nagel R, Schmidt A, Peters RJ. Isoprenyl diphosphate synthases: the chain length determining step in terpene biosynthesis. PLANTA 2019; 249:9-20. [PMID: 30467632 DOI: 10.1007/s00425-018-3052-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/14/2018] [Indexed: 05/07/2023]
Abstract
This review summarizes the recent developments in the study of isoprenyl diphosphate synthases with an emphasis on analytical techniques, product length determination, and the physiological consequences of manipulating expression in planta. The highly diverse structures of all terpenes are synthesized from the five carbon precursors dimethylallyl diphosphate and a varying number of isopentenyl diphosphate units through 1'-4 alkylation reactions. These elongation reactions are catalyzed by isoprenyl diphosphate synthases (IDS). IDS are classified depending on the configuration of the ensuing double bond as trans- and cis-IDS. In addition, IDS are further stratified by the length of their prenyl diphosphate product. This review discusses analytical techniques for the determination of product length and the factors that control product length, with an emphasis on alternative mechanisms. With recent advances in analytics, multiple IDS of Arabidopsis thaliana have been recently reinvestigated and demonstrated to yield products of different lengths than originally reported, which is summarized here. As IDS dictate prenyl diphosphate length and thereby which class of terpenes is ultimately produced, another focus of this review is the impact that altering IDS expression has on terpenoid natural product accumulation. Finally, recent findings regarding the ability of a few IDS to not catalyze 1'-4 alkylation reactions, but instead produce irregular products, with unusual connectivity, or act as terpene synthases, are also discussed.
Collapse
Affiliation(s)
- Raimund Nagel
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745, Jena, Germany
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
8
|
Yu Y, Bai J, Chen C, Plotto A, Yu Q, Baldwin EA, Gmitter FG. Identification of QTLs controlling aroma volatiles using a 'Fortune' x 'Murcott' (Citrus reticulata) population. BMC Genomics 2017; 18:646. [PMID: 28830354 PMCID: PMC5568196 DOI: 10.1186/s12864-017-4043-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Flavor is an important attribute of mandarin (Citrus reticulata Blanco), but flavor improvement via conventional breeding is very challenging largely due to the complexity of the flavor components and traits. Many aroma associated volatiles of citrus fruit have been identified, which are directly related to flavor, but knowledge of genetic linkages and relevant genes for these volatiles, along with applicable markers potentially for expeditious and economical marker-assisted selection (MAS), is very limited. The objective of this project was to identify single nucleotide polymorphism (SNP) markers associated with these volatile traits. RESULT Aroma volatiles were investigated in two mandarin parents ('Fortune' and 'Murcott') and their 116 F1 progeny using gas chromatography mass spectrometry in 2012 and 2013. A total of 148 volatiles were detected, including one acid, 12 alcohols, 20 aldehydes, 14 esters, one furan, three aromatic hydrocarbons, 16 ketones, one phenol, 27 sesquiterpenes, 15 monoterpenes, and 38 unknowns. A total of 206 quantitative trait loci (QTLs) were identified for 94 volatile compounds using genotyping data generated from a 1536-SNP Illumina GoldenGate assay. In detail, 25 of the QTLs were consistent over more than two harvest times. Forty-one QTLs were identified for 17 aroma active compounds that included 18 sesquiterpenes and were mapped onto four genomic regions. Fifty QTLs were for 14 monoterpenes and mapped onto five genomic regions. Candidate genes for some QTLs were also identified. A QTL interval for monoterpenes and sesquiterpenes on linkage group 2 contained four genes: geranyl diphosphate synthase 1, terpene synthase 3, terpene synthase 4, and terpene synthase 14. CONCLUSIONS Some fruit aroma QTLs were identified and the candidate genes in the terpenoid biosynthetic pathway were found within the QTL intervals. These QTLs could lead to an efficient and feasible MAS approach to mandarin flavor improvement.
Collapse
Affiliation(s)
- Yuan Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | - Jinhe Bai
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, 34945, USA
| | - Chunxian Chen
- Southeastern Fruit and Tree Nut Research Laboratory, ARS, USDA, Byron, GA, 31008, USA
| | - Anne Plotto
- Horticultural Research Laboratory, ARS, USDA, Fort Pierce, FL, 34945, USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
| | | | - Frederick G Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA.
| |
Collapse
|
9
|
Kajiura H, Suzuki N, Tokumoto Y, Yoshizawa T, Takeno S, Fujiyama K, Kaneko Y, Matsumura H, Nakazawa Y. Two Eucommia farnesyl diphosphate synthases exhibit distinct enzymatic properties leading to end product preferences. Biochimie 2017; 139:95-106. [PMID: 28478108 DOI: 10.1016/j.biochi.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/22/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023]
Abstract
Farnesyl diphosphate synthase (FPS) is an essential enzyme in the biosynthesis of prenyl precursors for the production of primary and secondary metabolites, including sterols, dolichols, carotenoids and ubiquinones, and for the modification of proteins. Here we identified and characterized two FPSs (EuFPS1 and EuFPS2) from the plant Eucommia ulmoides. The EuFPSs had seven highly conserved prenyltransferase-specific domains that are critical for activity. Complementation and biochemical analyses using bacterially produced recombinant EuFPS isoforms showed that the EuFPSs had FPP synthesis activities both in vivo and in vitro. In addition to the typical reaction mechanisms of FPS, EuFPSs utilized farnesyl diphosphate (FPP) as an allylic substrate and participated in further elongation of the isoprenyl chain, resulting in the synthesis of geranylgeranyl diphosphate. However, despite the high amino acid similarities between the two EuFPS isozymes, their specific activities, substrate preferences, and final reaction products were different. The use of dimethylallyl diphosphate (DMAPP) as an allylic substrate highlighted the differences between the two enzymes: depending on the pH, the metal ion cofactor, and the cofactor concentration, EuFPS2 accumulated geranyl diphosphate as an intermediate product at a constant rate, whereas EuFPS1 synthesized little geranyl diphosphate. The reaction kinetics of the EuFPSs demonstrated that isopentenyl diphosphate and DMAPP were used both as substrates and as inhibitors of EuFPS activity. Taken together, the results indicate that the biosynthesis of FPP is highly regulated by various factors indispensable for EuFPS reactions in plants.
Collapse
Affiliation(s)
- Hiroyuki Kajiura
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Nobuaki Suzuki
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Yuji Tokumoto
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan; Laboratory of Forest Ecology & Physiology, Graduate School of Bioagricultural Science, Nagoya University, E1-1 (300), Furo, Chikusa, Nagoya, Aichi, 464-8601, Japan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Shinya Takeno
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshinobu Kaneko
- Yeast Genetic Resources Lab, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshihisa Nakazawa
- Technical Research Institute, Hitachi Zosen Corporation, 2-2-11 Funamachi, Taisyo, Osaka, 551-0022, Japan.
| |
Collapse
|
10
|
Sarria S, Wong B, Martín HG, Keasling JD, Peralta-Yahya P. Microbial synthesis of pinene. ACS Synth Biol 2014; 3:466-75. [PMID: 24679043 DOI: 10.1021/sb4001382] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The volumetric heating values of today's biofuels are too low to power energy-intensive aircraft, rockets, and missiles. Recently, pinene dimers were shown to have a volumetric heating value similar to that of the tactical fuel JP-10. To provide a sustainable source of pinene, we engineered Escherichia coli for pinene production. We combinatorially expressed three pinene synthases (PS) and three geranyl diphosphate synthases (GPPS), with the best combination achieving ~28 mg/L of pinene. We speculated that pinene toxicity was limiting production; however, toxicity should not be limiting at current titers. Because GPPS is inhibited by geranyl diphosphate (GPP) and to increase flux through the pathway, we combinatorially constructed GPPS-PS protein fusions. The Abies grandis GPPS-PS fusion produced 32 mg/L of pinene, a 6-fold improvement over the highest titer previously reported in engineered E. coli. Finally, we investigated the pinene isomer ratio of our pinene-producing microbe and discovered that the isomer profile is determined not only by the identity of the PS used but also by the identity of the GPPS with which the PS is paired. We demonstrated that the GPP concentration available to PS for cyclization alters the pinene isomer ratio.
Collapse
Affiliation(s)
| | - Betty Wong
- Joint BioEnergy Institute, Lawrence Berkeley National
Laboratory, 5885 Hollis
Avenue, Emeryville, California 94608, United States
| | - Hector García Martín
- Joint BioEnergy Institute, Lawrence Berkeley National
Laboratory, 5885 Hollis
Avenue, Emeryville, California 94608, United States
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National
Laboratory, 5885 Hollis
Avenue, Emeryville, California 94608, United States
| | - Pamela Peralta-Yahya
- Joint BioEnergy Institute, Lawrence Berkeley National
Laboratory, 5885 Hollis
Avenue, Emeryville, California 94608, United States
| |
Collapse
|
11
|
Rasulov B, Bichele I, Laisk A, Niinemets Ü. Competition between isoprene emission and pigment synthesis during leaf development in aspen. PLANT, CELL & ENVIRONMENT 2014; 37:724-41. [PMID: 24033429 PMCID: PMC4411569 DOI: 10.1111/pce.12190] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 05/18/2023]
Abstract
In growing leaves, lack of isoprene synthase (IspS) is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on post-illumination isoprene decay and modelling DMADP consumption to estimate in vivo kinetic characteristics of IspS and prenyltransferase reactions, and to determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1- to 5-day-old leaves when isoprene emission was absent. Isoprene emission commenced on days 5 and 6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis-Menten constant (Km ) values obtained were 265 nmol m(-2) (20 μm) for DMADP-consuming prenyltransferase reactions and 2560 nmol m(-2) (190 μm) for IspS. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both IspS activity and competition for DMADP by prenyltransferase reactions.
Collapse
Affiliation(s)
- Bahtijor Rasulov
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Irina Bichele
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Agu Laisk
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23 Tartu 51010, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| |
Collapse
|
12
|
Metal ions control product specificity of isoprenyl diphosphate synthases in the insect terpenoid pathway. Proc Natl Acad Sci U S A 2013; 110:4194-9. [PMID: 23440195 DOI: 10.1073/pnas.1221489110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Isoprenyl diphosphate synthases (IDSs) produce the ubiquitous branched-chain diphosphates of different lengths that are precursors of all major classes of terpenes. Typically, individual short-chain IDSs (scIDSs) make the C10, C15, and C20 isoprenyl diphosphates separately. Here, we report that the product length synthesized by a single scIDS shifts depending on the divalent metal cofactor present. This previously undescribed mechanism of carbon chain-length determination was discovered for a scIDS from juvenile horseradish leaf beetles, Phaedon cochleariae. The recombinant enzyme P. cochleariae isoprenyl diphosphate synthase 1 (PcIDS1) yields 96% C10-geranyl diphosphate (GDP) and only 4% C15-farnesyl diphosphate (FDP) in the presence of Co(2+) or Mn(2+) as a cofactor, whereas it yields only 18% C10 GDP but 82% C15 FDP in the presence of Mg(2+). In reaction with Co(2+), PcIDS1 has a Km of 11.6 μM for dimethylallyl diphosphate as a cosubstrate and 24.3 μM for GDP. However, with Mg(2+), PcIDS1 has a Km of 1.18 μM for GDP, suggesting that this substrate is favored by the enzyme under such conditions. RNAi targeting PcIDS1 revealed the participation of this enzyme in the de novo synthesis of defensive monoterpenoids in the beetle larvae. As an FDP synthase, PcIDS1 could be associated with the formation of sesquiterpenes, such as juvenile hormones. Detection of Co(2+), Mn(2+), or Mg(2+) in the beetle larvae suggests flux control into C10 vs. C15 isoprenoids could be accomplished by these ions in vivo. The dependence of product chain length of scIDSs on metal cofactor identity introduces an additional regulation for these branch point enzymes of terpene metabolism.
Collapse
|
13
|
Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:169-96. [PMID: 23171352 DOI: 10.1111/pbi.12022] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 05/03/2023]
Abstract
Terpenoids (a.k.a. isoprenoids) represent the most diverse class of natural products found in plants, with tens of thousands of reported structures. Plant-derived terpenoids have a multitude of pharmaceutical and industrial applications, but the natural resources for their extraction are often limited and, in many cases, synthetic routes are not commercially viable. Some of the most valuable terpenoids are not accumulated in model plants or crops, and genetic resources for breeding of terpenoid natural product traits are thus poorly developed. At present, metabolic engineering, either in the native producer or a heterologous host, is the only realistic alternative to improve yield and accessibility. In this review article, we will evaluate the state of the art of modulating the biosynthetic pathways for the production of mono-, sesqui- and diterpenes in plants.
Collapse
Affiliation(s)
- B Markus Lange
- Institute of Biological Chemistry and MJ Murdock Metabolomics Laboratory, Washington State University, Pullman, WA, USA.
| | | |
Collapse
|
14
|
Keim V, Manzano D, Fernández FJ, Closa M, Andrade P, Caudepón D, Bortolotti C, Vega MC, Arró M, Ferrer A. Characterization of Arabidopsis FPS isozymes and FPS gene expression analysis provide insight into the biosynthesis of isoprenoid precursors in seeds. PLoS One 2012; 7:e49109. [PMID: 23145086 PMCID: PMC3492304 DOI: 10.1371/journal.pone.0049109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/07/2012] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Both enzymes were expressed in E. coli, purified and biochemically characterized. Despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 was found to be more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Homology modelling for FPS1S and FPS2 and analysis of the amino acid differences between the two enzymes revealed an increase in surface polarity and a greater capacity to form surface salt bridges of FPS2 compared to FPS1S. These factors most likely account for the enhanced thermostability of FPS2. Expression analysis of FPS::GUS genes in seeds showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the Arabidopsis fps2 knockout mutant seed phenotypes demonstrated that under normal conditions FPS1S and FPS2 are functionally interchangeable. A putative role for FPS2 in maintaining seed germination capacity under adverse environmental conditions is discussed.
Collapse
Affiliation(s)
- Verónica Keim
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - David Manzano
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Francisco J. Fernández
- Department of Structural and Quantitative Biology, Centre for Biological Research (CIB-CSIC), Madrid, Spain
| | - Marta Closa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Paola Andrade
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Daniel Caudepón
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Cristina Bortolotti
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - M. Cristina Vega
- Department of Structural and Quantitative Biology, Centre for Biological Research (CIB-CSIC), Madrid, Spain
| | - Montserrat Arró
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Albert Ferrer
- Department of Molecular Genetics, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), Campus UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
15
|
Demissie ZA, Cella MA, Sarker LS, Thompson TJ, Rheault MR, Mahmoud SS. Cloning, functional characterization and genomic organization of 1,8-cineole synthases from Lavandula. PLANT MOLECULAR BIOLOGY 2012; 79:393-411. [PMID: 22592779 DOI: 10.1007/s11103-012-9920-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/27/2012] [Indexed: 05/07/2023]
Abstract
Several members of the genus Lavandula produce valuable essential oils (EOs) that are primarily constituted of the low molecular weight isoprenoids, particularly monoterpenes. We isolated over 8,000 ESTs from the glandular trichomes of L. x intermedia flowers (where bulk of the EO is synthesized) to facilitate the discovery of genes that control the biosynthesis of EO constituents. The expression profile of these ESTs in L. x intermedia and its parents L. angustifolia and L. latifolia was established using microarrays. The resulting data highlighted a differentially expressed, previously uncharacterized cDNA with strong homology to known 1,8-cineole synthase (CINS) genes. The ORF, excluding the transit peptide, of this cDNA was expressed in E. coli, purified by Ni-NTA agarose affinity chromatography and functionally characterized in vitro. The ca. 63 kDa bacterially produced recombinant protein, designated L. x intermedia CINS (LiCINS), converted geranyl diphosphate (the linear monoterpene precursor) primarily to 1,8-cineole with K ( m ) and k ( cat ) values of 5.75 μM and 8.8 × 10(-3) s(-1), respectively. The genomic DNA of CINS in the studied Lavandula species had identical exon-intron architecture and coding sequences, except for a single polymorphic nucleotide in the L. angustifolia ortholog which did not alter protein function. Additional nucleotide variations restricted to L. angustifolia introns were also observed, suggesting that LiCINS was most likely inherited from L. latifolia. The LiCINS mRNA levels paralleled the 1,8-cineole content in mature flowers of the three lavender species, and in developmental stages of L. x intermedia inflorescence indicating that the production of 1,8 cineole in Lavandula is most likely controlled through transcriptional regulation of LiCINS.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Carbon-Carbon Lyases/chemistry
- Carbon-Carbon Lyases/genetics
- Carbon-Carbon Lyases/metabolism
- Cloning, Molecular
- Cyclohexanols/metabolism
- DNA, Plant/genetics
- Eucalyptol
- Expressed Sequence Tags
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Gene Library
- Genome, Plant
- Lavandula/enzymology
- Lavandula/genetics
- Lavandula/growth & development
- Metabolic Networks and Pathways
- Molecular Sequence Data
- Monoterpenes/metabolism
- Oils, Volatile/metabolism
- Phylogeny
- Plant Proteins/chemistry
- Plant Proteins/genetics
- Plant Proteins/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia, 1177 Research Road, Kelowna, BC, V1V 1V7, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Behnke K, Grote R, Brüggemann N, Zimmer I, Zhou G, Elobeid M, Janz D, Polle A, Schnitzler JP. Isoprene emission-free poplars--a chance to reduce the impact from poplar plantations on the atmosphere. THE NEW PHYTOLOGIST 2012; 194:70-82. [PMID: 22142198 DOI: 10.1111/j.1469-8137.2011.03979.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
• Depending on the atmospheric composition, isoprene emissions from plants can have a severe impact on air quality and regional climate. For the plant itself, isoprene can enhance stress tolerance and also interfere with the attraction of herbivores and parasitoids. • Here, we tested the growth performance and fitness of Populus × canescens in which isoprene emission had been knocked down by RNA interference technology (PcISPS-RNAi plants) for two growing seasons under outdoor conditions. • Neither the growth nor biomass yield of the PcISPS-RNAi poplars was impaired, and they were even temporarily enhanced compared with control poplars. Modelling of the annual carbon balances revealed a reduced carbon loss of 2.2% of the total gross primary production by the absence of isoprene emission, and a 6.9% enhanced net growth of PcISPS-RNAi poplars. However, the knock down in isoprene emission resulted in reduced susceptibility to fungal infection, whereas the attractiveness for herbivores was enhanced. • The present study promises potential for the use of non- or low-isoprene-emitting poplars for more sustainable and environmentally friendly biomass production, as reducing isoprene emission will presumably have positive effects on regional climate and air quality.
Collapse
Affiliation(s)
- Katja Behnke
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research (IMK-IFU), Kreuzeckbahnstraße 19, 82467 Garmisch-Partenkirchen, Germany
| | | | - Ina Zimmer
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| | - Guanwu Zhou
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Mudawi Elobeid
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Ingolstädter Landstraße 1, D-85764 Neuherberg, Germany
| |
Collapse
|
17
|
Schmidt A, Nagel R, Krekling T, Christiansen E, Gershenzon J, Krokene P. Induction of isoprenyl diphosphate synthases, plant hormones and defense signalling genes correlates with traumatic resin duct formation in Norway spruce (Picea abies). PLANT MOLECULAR BIOLOGY 2011; 77:577-90. [PMID: 22002747 PMCID: PMC3215867 DOI: 10.1007/s11103-011-9832-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 09/23/2011] [Indexed: 05/19/2023]
Abstract
Norway spruce (Picea abies) defends itself against herbivores and pathogens by formation of traumatic resin ducts filled with terpenoid-based oleoresin. An important group of enzymes in terpenoid biosynthesis are the short-chain isoprenyl diphosphate synthases which produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of monoterpenes, sesquiterpenes, and diterpene resin acids, respectively. After treatment with methyl jasmonate (MJ) we investigated the expression of all isoprenyl diphosphate synthase genes characterized to date from Norway spruce and correlated this with formation of traumatic resin ducts and terpene accumulation. Formation of traumatic resin ducts correlated with higher amounts of monoterpenes, sesquiterpenes and diterpene resin acids and an upregulation of isoprenyl diphosphate synthase genes producing geranyl diphosphate or geranylgeranyl diphosphate. Among defense hormones, jasmonate and jasmonate-isoleucine conjugate accumulated to higher levels in trees with extensive traumatic resin duct formation, whereas salicylate did not. Jasmonate and ethylene are likely to both be involved in formation of traumatic resin ducts based on elevated transcripts of genes encoding lipoxygenase and 1-aminocyclopropane-1-carboxylic acid oxidase associated with resin duct formation. Other genes involved in defense signalling in other systems, mitogen-activated protein kinase3 and nonexpressor of pathogenesis-related gene1, were also associated with traumatic resin duct formation. These responses were detected not only at the site of MJ treatment, but also systemically up to 60 cm above the site of treatment on the trunk.
Collapse
Affiliation(s)
- Axel Schmidt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Raimund Nagel
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Trygve Krekling
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, 1432 Ås, Norway
| | | | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, 07745 Jena, Germany
| | - Paal Krokene
- Norwegian Forest and Landscape Institute, Pb 115, 1431 Ås, Norway
| |
Collapse
|
18
|
Demissie ZA, Sarker LS, Mahmoud SS. Cloning and functional characterization of β-phellandrene synthase from Lavandula angustifolia. PLANTA 2011; 233:685-696. [PMID: 21165645 DOI: 10.1007/s00425-010-1332-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 11/30/2010] [Indexed: 05/30/2023]
Abstract
En route to building genomics resources for Lavandula, we have obtained over 14,000 ESTs for leaves and flowers of L. angustifolia, a major essential oil crop, and identified a number of previously uncharacterized terpene synthase (TPS) genes. Here we report the cloning, expression in E. coli, and functional characterization of β-phellandrene synthase, LaβPHLS. The ORF--excluding the transit peptide--for this gene encoded a 62.3 kDa protein that contained all conserved motifs present in plant TPSs. Expression in bacteria resulted in the production of a soluble protein that was purified by Ni-NTA agarose affinity chromatography. While the recombinant LaβPHLS did not utilize FPP as a substrate, it converted GPP (the preferred substrate) and NPP into β-phellandrene as the major product, with K (m) and k (cat) of 6.55 μM and 1.75 × 10(-2) s(-1), respectively, for GPP. The LaβPHLS transcripts were highly abundant in young leaves where β-phellandrene is produced, but were barely detectable in flowers and older leaves, where β-phellandrene is not synthesized in significant quantities. This data indicate that β-phellandrene biosynthesis is transcriptionally and developmentally regulated. We also cloned and expressed in E. coli a second TPS-like protein, LaTPS-I, that lacks an internal stretch of 73 amino acids, including the signature DDxxD divalent metal binding motif, compared to other plant TPSs. The recombinant LaTPS-I did not produce detectable products in vitro when assayed with GPP, NPP or FPP as substrates. The lack of activity is most likely due to the absence of catalytically important amino acid residues within the missing region.
Collapse
Affiliation(s)
- Zerihun A Demissie
- Department of Biology, University of British Columbia-Okanagan, 3333 University Way, Kelowna, British Columbia, V1V 1V7, Canada
| | | | | |
Collapse
|
19
|
Ghirardo A, Zimmer I, Brüggemann N, Schnitzler JP. Analysis of 1-deoxy-D-xylulose 5-phosphate synthase activity in Grey poplar leaves using isotope ratio mass spectrometry. PHYTOCHEMISTRY 2010; 71:918-22. [PMID: 20303132 DOI: 10.1016/j.phytochem.2010.02.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 02/24/2010] [Accepted: 02/25/2010] [Indexed: 05/21/2023]
Abstract
Deoxy-xylulose phosphate synthase (DXS) catalyzes the first step of the methylerythritol phosphate (MEP) pathway and it might regulate the metabolic flux in plastidic isoprenoid biosynthesis. We developed a sensitive assay suitable for plant extracts that is based on the decarboxylation of labeled pyruvate (1-(13)C)-PYR and detection of (13)CO(2) by isotope ratio mass spectrometry. We tested our method investigating the DXS activity in poplar leaves. Apparent DXS activity showed Michaelis constants of 111 and 158 microM for glyceraldehyde phosphate and pyruvate, respectively; pH and temperature optima were found at pH 8.6 and 45 degrees C. DXS activity was inhibited when the competitive inhibitor beta-fluoropyruvate was added to the reaction mixture. DXS activity strongly depended on leaf development with higher activity in young leaves and correlated fairly well with leaf isoprene emission potential. In mature poplar leaves, isoprene emission is the main metabolic sink of plastidic isoprenoid intermediates. Consequently, we found lower DXS activity in non-isoprene-emitting lines of poplar than in emitting plants as indicator of a lower demand of metabolic flux within the MEP pathway.
Collapse
Affiliation(s)
- Andrea Ghirardo
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| | | | | | | |
Collapse
|
20
|
Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. TRENDS IN PLANT SCIENCE 2010; 15:154-66. [PMID: 20133178 DOI: 10.1016/j.tplants.2009.12.006] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 12/30/2009] [Indexed: 05/21/2023]
Abstract
Plants produce a wide spectrum of biogenic volatile organic compounds (BVOCs) in various tissues above and below ground to communicate with other plants and organisms. However, BVOCs also have various functions in biotic and abiotic stresses. For example abiotic stresses enhance BVOCs emission rates and patterns, altering the communication with other organisms and the photochemical cycles. Recent new insights on biosynthesis and eco-physiological control of constitutive or induced BVOCs have led to formulation of hypotheses on their functions which are presented in this review. Specifically, oxidative and thermal stresses are relieved in the presence of volatile terpenes. Terpenes, C6 compounds, and methyl salicylate are thought to promote direct and indirect defence by modulating the signalling that biochemically activate defence pathways.
Collapse
Affiliation(s)
- Francesco Loreto
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione delle Piante (IPP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
21
|
Schnitzler JP, Louis S, Behnke K, Loivamäki M. Poplar volatiles - biosynthesis, regulation and (eco)physiology of isoprene and stress-induced isoprenoids. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:302-16. [PMID: 20398237 DOI: 10.1111/j.1438-8677.2009.00284.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants interact with their environment through a wide variety of biogenic volatile organic compounds (BVOCs), with isoprenoids ( identical with terpenes), i.e. isoprene, mono- and sesquiterpenes, playing an important role. Isoprene, a hemiterpene, is the simplest isoprenoid compound mainly emitted by tree species like poplars, oaks and willows. Woody plants alone comprise 75% of the global isoprene emitted to the atmosphere. Due to its significant influence on atmospheric chemistry, research has been focused on this C5 compound, with poplar being the most prominent model system. Recent studies indicate that isoprene can enhance thermotolerance or quench oxidative stress, while also interfering with the attraction of herbivores and parasitoids to plants. In this paper, we report on biosynthesis, regulation and function of isoprene and other stress-induced volatile isoprenoids in poplar, and discuss the future scientific challenges in this genus with respect to the importance of plant volatiles in high-density poplar biomass plantations.
Collapse
Affiliation(s)
- J-P Schnitzler
- Karlsruhe Institut for Technologie (KIT), Institut für Meteorologie und Klimaforschung (IMK-IFU), Garmisch-Partenkirchen, Germany.
| | | | | | | |
Collapse
|
22
|
Schmidt A, Wächtler B, Temp U, Krekling T, Séguin A, Gershenzon J. A bifunctional geranyl and geranylgeranyl diphosphate synthase is involved in terpene oleoresin formation in Picea abies. PLANT PHYSIOLOGY 2010; 152:639-55. [PMID: 19939949 PMCID: PMC2815902 DOI: 10.1104/pp.109.144691] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 11/19/2009] [Indexed: 05/19/2023]
Abstract
The conifer Picea abies (Norway spruce) defends itself against herbivores and pathogens with a terpenoid-based oleoresin composed chiefly of monoterpenes (C(10)) and diterpenes (C(20)). An important group of enzymes in oleoresin biosynthesis are the short-chain isoprenyl diphosphate synthases that produce geranyl diphosphate (C(10)), farnesyl diphosphate (C(15)), and geranylgeranyl diphosphate (C(20)) as precursors of different terpenoid classes. We isolated a gene from P. abies via a homology-based polymerase chain reaction approach that encodes a short-chain isoprenyl diphosphate synthase making an unusual mixture of two products, geranyl diphosphate (C(10)) and geranylgeranyl diphosphate (C(20)). This bifunctionality was confirmed by expression in both prokaryotic (Escherichia coli) and eukaryotic (P. abies embryogenic tissue) hosts. Thus, this isoprenyl diphosphate synthase, designated PaIDS1, could contribute to the biosynthesis of both major terpene types in P. abies oleoresin. In saplings, PaIDS1 transcript was restricted to wood and bark, and transcript level increased dramatically after methyl jasmonate treatment, which induces the formation of new (traumatic) resin ducts. Polyclonal antibodies localized the PaIDS1 protein to the epithelial cells surrounding the traumatic resin ducts. PaIDS1 has a close phylogenetic relationship to single-product conifer geranyl diphosphate and geranylgeranyl diphosphate synthases. Its catalytic properties and reaction mechanism resemble those of conifer geranylgeranyl diphosphate synthases, except that significant quantities of the intermediate geranyl diphosphate are released. Using site-directed mutagenesis and chimeras of PaIDS1 with single-product geranyl diphosphate and geranylgeranyl diphosphate synthases, specific amino acid residues were identified that alter the relative composition of geranyl to geranylgeranyl diphosphate.
Collapse
|
23
|
Nagegowda DA, Rhodes D, Dudareva N. Chapter 10 The Role of the Methyl-Erythritol-Phosphate (MEP)Pathway in Rhythmic Emission of Volatiles. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
24
|
Zulak KG, Bohlmann J. Terpenoid biosynthesis and specialized vascular cells of conifer defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:86-97. [PMID: 20074143 DOI: 10.1111/j.1744-7909.2010.00910.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Defense-related terpenoid biosynthesis in conifers is a dynamic process closely associated with specialized anatomical structures that allows conifers to cope with attack from many potential pests and pathogens. The constitutive and inducible terpenoid defense of conifers involves several hundred different monoterpenes, sesquiterpenes and diterpenes. Changing arrays of these many compounds are formed from the general isoprenoid pathway by activities of large gene families for two classes of enzymes, the terpene synthases and the cytochrome P450-dependent monooxygenases of the CYP720B group. Extensive studies have been conducted on the genomics, proteomics and molecular biochemical characterization of these enzymes. Many of the conifer terpene synthases are multi-product enzymes, and the P450 enzymes of the CYP720B group are promiscuous in catalyzing multiple oxidations, along homologous series of diterpenoids, from a broad spectrum of substrates. The terpene synthases and CYP720B genes respond to authentic or simulated insect attack with increased transcript levels, protein abundance and enzyme activity. The constitutive and induced oleoresin terpenoids for conifer defense accumulate in preformed cortical resin ducts and in xylem trauma-associated resin ducts. Formation of these resin ducts de novo in the cambium zone and developing xylem, following insect attack or treatment of trees with methyl jasmonate, is a unique feature of the induced defense of long-lived conifer trees.
Collapse
Affiliation(s)
- Katherine G Zulak
- Michael Smith Laboratories, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | | |
Collapse
|
25
|
Orlova I, Nagegowda DA, Kish CM, Gutensohn M, Maeda H, Varbanova M, Fridman E, Yamaguchi S, Hanada A, Kamiya Y, Krichevsky A, Citovsky V, Pichersky E, Dudareva N. The small subunit of snapdragon geranyl diphosphate synthase modifies the chain length specificity of tobacco geranylgeranyl diphosphate synthase in planta. THE PLANT CELL 2009; 21:4002-17. [PMID: 20028839 PMCID: PMC2814502 DOI: 10.1105/tpc.109.071282] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/25/2009] [Accepted: 12/07/2009] [Indexed: 05/18/2023]
Abstract
Geranyl diphosphate (GPP), the precursor of many monoterpene end products, is synthesized in plastids by a condensation of dimethylallyl diphosphate and isopentenyl diphosphate (IPP) in a reaction catalyzed by homodimeric or heterodimeric GPP synthase (GPPS). In the heterodimeric enzymes, a noncatalytic small subunit (GPPS.SSU) determines the product specificity of the catalytic large subunit, which may be either an active geranylgeranyl diphosphate synthase (GGPPS) or an inactive GGPPS-like protein. Here, we show that expression of snapdragon (Antirrhinum majus) GPPS.SSU in tobacco (Nicotiana tabacum) plants increased the total GPPS activity and monoterpene emission from leaves and flowers, indicating that the introduced catalytically inactive GPPS.SSU found endogenous large subunit partner(s) and formed an active snapdragon/tobacco GPPS in planta. Bimolecular fluorescence complementation and in vitro enzyme analysis of individual and hybrid proteins revealed that two of four GGPPS-like candidates from tobacco EST databases encode bona fide GGPPS that can interact with snapdragon GPPS.SSU and form a functional GPPS enzyme in plastids. The formation of chimeric GPPS in transgenic plants also resulted in leaf chlorosis, increased light sensitivity, and dwarfism due to decreased levels of chlorophylls, carotenoids, and gibberellins. In addition, these transgenic plants had reduced levels of sesquiterpene emission, suggesting that the export of isoprenoid intermediates from the plastids into the cytosol was decreased. These results provide genetic evidence that GPPS.SSU modifies the chain length specificity of phylogenetically distant GGPPS and can modulate IPP flux distribution between GPP and GGPP synthesis in planta.
Collapse
Affiliation(s)
- Irina Orlova
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Dinesh A. Nagegowda
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Christine M. Kish
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Michael Gutensohn
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Hiroshi Maeda
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Marina Varbanova
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Eyal Fridman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | | | - Atsushi Hanada
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 2300045, Japan
| | - Yuji Kamiya
- RIKEN Plant Science Center, Tsurumi, Yokohama, Kanagawa 2300045, Japan
| | - Alexander Krichevsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, New York 11794-5215
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalia Dudareva
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
26
|
Monoterpenes in the glandular trichomes of tomato are synthesized from a neryl diphosphate precursor rather than geranyl diphosphate. Proc Natl Acad Sci U S A 2009; 106:10865-70. [PMID: 19487664 DOI: 10.1073/pnas.0904113106] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We identified a cis-prenyltransferase gene, neryl diphosphate synthase 1 (NDPS1), that is expressed in cultivated tomato (Solanum lycopersicum) cultivar M82 type VI glandular trichomes and encodes an enzyme that catalyzes the formation of neryl diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate. mRNA for a terpene synthase gene, phellandrene synthase 1 (PHS1), was also identified in these glands. It encodes an enzyme that uses neryl diphosphate to produce beta-phellandrene as the major product as well as a variety of other monoterpenes. The profile of monoterpenes produced by PHS1 is identical with the monoterpenes found in type VI glands. PHS1 and NDPS1 map to chromosome 8, and the presence of a segment of chromosome 8 derived from Solanum pennellii LA0716 causes conversion from the M82 gland monoterpene pattern to that characteristic of LA0716 plants. The data indicate that, contrary to the textbook view of geranyl diphosphate as the "universal" substrate of monoterpene synthases, in tomato glands neryl diphosphate serves as a precursor for the synthesis of monoterpenes.
Collapse
|
27
|
van Schie CCN, Ament K, Schmidt A, Lange T, Haring MA, Schuurink RC. Geranyl diphosphate synthase is required for biosynthesis of gibberellins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:752-62. [PMID: 17877699 DOI: 10.1111/j.1365-313x.2007.03273.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Geranyl diphosphate synthase (GPS) is generally considered to be responsible for the biosynthesis of monoterpene precursors only. However, reduction of LeGPS expression in tomato (Lycopersicon esculentum) by virus-induced gene silencing resulted in severely dwarfed plants. Further analysis of these dwarfed plants revealed a decreased gibberellin content, whereas carotenoid and chlorophyll levels were unaltered. Accordingly, the phenotype could be rescued by application of gibberellic acid. The dwarfed phenotype was also obtained in Arabidopsis thaliana plants transformed with RNAi constructs of AtGPS. These results link geranyl diphosphate (GPP) to the gibberellin biosynthesis pathway. They also demand a re-evaluation of the role of GPS in precursor synthesis for other di-, tri-, tetra- and/or polyterpenes and their derivatives.
Collapse
Affiliation(s)
- Chris C N van Schie
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 SM Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
28
|
Schmidt A, Gershenzon J. Cloning and characterization of isoprenyl diphosphate synthases with farnesyl diphosphate and geranylgeranyl diphosphate synthase activity from Norway spruce (Picea abies) and their relation to induced oleoresin formation. PHYTOCHEMISTRY 2007; 68:2649-59. [PMID: 17624381 DOI: 10.1016/j.phytochem.2007.05.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 05/16/2023]
Abstract
The conifer Picea abies (Norway spruce) employs terpenoid-based oleoresins as part of its constitutive and induced defense responses to herbivores and pathogens. The isoprenyl diphosphate synthases are branch-point enzymes of terpenoid biosynthesis leading to the various terpene classes. We isolated three genes encoding isoprenyl diphosphate synthases from P. abies cDNA libraries prepared from the bark and wood of methyl jasmonate-treated saplings and screened via a homology-based PCR approach using degenerate primers. Enzyme assays of the purified recombinant proteins expressed in Escherichia coli demonstrated that one gene (PaIDS 4) encodes a farnesyl diphosphate synthase and the other two (PaIDS 5 and PaIDS 6) encode geranylgeranyl diphosphate synthases. The sequences have moderate similarity to those of farnesyl diphosphate and geranylgeranyl diphosphate synthases already known from plants, and the kinetic properties of the enzymes are not unlike those of other isoprenyl diphosphate synthases. Of the three genes, only PaIDS 5 displayed a significant increase in transcript level in response to methyl jasmonate spraying, suggesting its involvement in induced oleoresin biosynthesis.
Collapse
Affiliation(s)
- Axel Schmidt
- Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knöll-Str. 8, D-07745 Jena, Germany.
| | | |
Collapse
|
29
|
Sen SE, Brown DC, Sperry AE, Hitchcock JR. Prenyltransferase of larval and adult M. sexta corpora allata. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:29-40. [PMID: 17175444 DOI: 10.1016/j.ibmb.2006.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/27/2006] [Accepted: 09/28/2006] [Indexed: 05/13/2023]
Abstract
Prenyltransferase activity derived from the corpora allata (CA) of the lepidopteran insect, Manduca sexta, has been characterized. The coupling of allylic substrates DMAPP and GPP with the non-allylic substrate IPP was evaluated using CA homogenates of both the larval and adult stages of development. The effect of additives and inhibitors, assay conditions, and metal preference were examined. The cellular location of prenyltransferase activity was also investigated. We found subtle differences between larval and adult preparations, including metal and detergent preference, and while larval prenyltransferase activity was strictly cytosolic, prenyltransferase derived from adult CA was found in both the cytosolic and pellet fractions. Differences in kinetics as a function of development were also noted. When GPP was utilized as allylic substrate, adult prenyltransferase displayed cooperative behavior; while with DMAPP, biphasic kinetics were observed. In fifth instar larvae, prenyltransferase activity was highest on days 1-2 and reaction end products changed as a result of insect age. Taken together, these results suggest that larval and adult prenyltransferase of M. sexta have distinct enzymological properties and that the adult CA possess more than one prenyltransferase.
Collapse
Affiliation(s)
- Stephanie E Sen
- Department of Chemistry, Indiana U.-Purdue U. Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
30
|
Keeling CI, Bohlmann J. Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. THE NEW PHYTOLOGIST 2006; 170:657-75. [PMID: 16684230 DOI: 10.1111/j.1469-8137.2006.01716.x] [Citation(s) in RCA: 366] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Insects select their hosts, but trees cannot select which herbivores will feed upon them. Thus, as long-lived stationary organisms, conifers must resist the onslaught of varying and multiple attackers over their lifetime. Arguably, the greatest threats to conifers are herbivorous insects and their associated pathogens. Insects such as bark beetles, stem- and wood-boring insects, shoot-feeding weevils, and foliage-feeding budworms and sawflies are among the most devastating pests of conifer forests. Conifer trees produce a great diversity of compounds, such as an enormous array of terpenoids and phenolics, that may impart resistance to a variety of herbivores and microorganisms. Insects have evolved to specialize in resistance to these chemicals -- choosing, feeding upon, and colonizing hosts they perceive to be best suited to reproduction. This review focuses on the plant-insect interactions mediated by conifer-produced terpenoids. To understand the role of terpenoids in conifer-insect interactions, we must understand how conifers produce the wide diversity of terpenoids, as well as understand how these specific compounds affect insect behaviour and physiology. This review examines what chemicals are produced, the genes and proteins involved in their biosynthesis, how they work, and how they are regulated. It also examines how insects and their associated pathogens interact with, elicit, and are affected by conifer-produced terpenoids.
Collapse
Affiliation(s)
- Christopher I Keeling
- Michael Smith Laboratories, 301-2185 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
31
|
Induced Chemical Defenses in Conifers: Biochemical and Molecular Approaches to Studying Their Function. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0079-9920(05)80002-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
|
32
|
Turner GW, Croteau R. Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase, and pulegone reductase. PLANT PHYSIOLOGY 2004; 136:4215-27. [PMID: 15542490 PMCID: PMC535851 DOI: 10.1104/pp.104.050229] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We present immunocytochemical localizations of four enzymes involved in p-menthane monoterpene biosynthesis in mint: the large and small subunits of peppermint (Mentha x piperita) geranyl diphosphate synthase, spearmint (Mentha spicata) (-)-(4S)-limonene-6-hydroxylase, peppermint (-)-trans-isopiperitenol dehydrogenase, and peppermint (+)-pulegone reductase. All were localized to the secretory cells of peltate glandular trichomes with abundant labeling corresponding to the secretory phase of gland development. Immunogold labeling of geranyl diphosphate synthase occurred within secretory cell leucoplasts, (-)-4S-limonene-6-hydroxylase labeling was associated with gland cell endoplasmic reticulum, (-)-trans-isopiperitenol dehydrogenase labeling was restricted to secretory cell mitochondria, while (+)-pulegone reductase labeling occurred only in secretory cell cytoplasm. We discuss this pathway compartmentalization in relation to possible mechanisms for the intracellular movement of monoterpene metabolites, and for monoterpene secretion into the extracellular essential oil storage cavity.
Collapse
Affiliation(s)
- Glenn W Turner
- Institute of Biological Chemistry, Washington State University, Pullman, Washington 99164, USA
| | | |
Collapse
|
33
|
Iijima Y, Davidovich-Rikanati R, Fridman E, Gang DR, Bar E, Lewinsohn E, Pichersky E. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. PLANT PHYSIOLOGY 2004; 136:3724-36. [PMID: 15516500 PMCID: PMC527170 DOI: 10.1104/pp.104.051318] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surface glandular trichomes distributed throughout the aerial parts of sweet basil (Ocimum basilicum) produce and store monoterpene, sesquiterpene, and phenylpropene volatiles. Three distinct basil chemotypes were used to examine the molecular mechanisms underlying the divergence in their monoterpene and sesquiterpene content. The relative levels of specific terpenes in the glandular trichomes of each cultivar were correlated with the levels of transcripts for eight genes encoding distinct terpene synthases. In a cultivar that produces mostly (R)-linalool, transcripts of (R)-linalool synthase (LIS) were the most abundant of these eight. In a cultivar that synthesizes mostly geraniol, transcripts of geraniol synthase were the most abundant, but the glands of this cultivar also contained a transcript of an (R)-LIS gene with a 1-base insertion that caused a frameshift mutation. A geraniol synthase-LIS hybrid gene was constructed and expressed in Escherichia coli, and the protein catalyzed the formation of both geraniol and (R)-linalool from geranyl diphosphate. The total amounts of terpenes were correlated with total levels of terpene synthase activities, and negatively correlated with levels of phenylpropanoids and phenylalanine ammonia lyase activity. The relative levels of geranyl diphosphate synthase and farnesyl diphosphate synthase activities did not correlate with the total amount of terpenes produced, but showed some correlation with the ratio of monoterpenes to sesquiterpenes.
Collapse
Affiliation(s)
- Yoko Iijima
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Zhao P, Inoue K, Kouno I, Yamamoto H. Characterization of leachianone G 2"-dimethylallyltransferase, a novel prenyl side-chain elongation enzyme for the formation of the lavandulyl group of sophoraflavanone G in Sophora flavescens Ait. cell suspension cultures. PLANT PHYSIOLOGY 2003; 133:1306-13. [PMID: 14551337 PMCID: PMC281625 DOI: 10.1104/pp.103.025213] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Revised: 06/05/2003] [Accepted: 07/31/2003] [Indexed: 05/17/2023]
Abstract
Leachianone G (LG) 2"-dimethylallyltransferase, a novel prenyl side-chain elongation enzyme, was identified in Sophora flavescens Ait. cultured cells. The enzyme transfers a dimethylallyl group to the 2" position of another dimethylallyl group attached at position 8 of LG to form sophoraflavanone G, a branched monoterpenoid-conjugated flavanone characteristic to this plant. This membrane-bound dimethylallyltransferase required Mg2+ (optimum concentration was 10 mm) for the reaction and had an optimum pH of 8.8. It utilized dimethylallyl diphosphate as the sole prenyl donor, and the 2'-hydroxy function in LG was indispensable to the activity. The apparent Km values for dimethylallyl diphosphate and LG were 59 and 2.3 microm, respectively. Subcellular localization of three enzymes that participated in the formation of the lavandulyl group was also investigated by sucrose density gradient centrifugation. Two prenyltransferases, naringenin 8-dimethylallyltransferase and LG 2"-dimethylallyltransferase, were localized in the plastids, whereas 8-dimethylallylnaringenin 2'-hydroxylase, which catalyzes the crucial step in the lavandulyl-group formation, was associated with the endoplasmic reticulum. These results suggest the close cooperation between the plastids and the endoplasmic reticulum in the formation of lavandulyl groups.
Collapse
|
35
|
Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys 2002; 405:130-6. [PMID: 12176066 DOI: 10.1016/s0003-9861(02)00335-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Geranyl diphosphate synthase catalyzes the condensation of dimethylallyl diphosphate and isopentenyl diphosphate to generate geranyl diphosphate, the essential precursor of monoterpene biosynthesis. Using geranylgeranyl diphosphate synthase from Taxus canadensis as a hybridization probe, four full length cDNA clones, sharing high sequence identity to each other (>69%) and to the Taxus geranylgeranyl diphosphate synthase (>66%), were isolated from a grand fir (Abies grandis) cDNA library. When expressed in Escherichia coli, three of the recombinant enzymes produced geranyl diphosphate and one produced geranylgeranyl diphosphate as the dominant product when supplied with isopentenyl diphosphate and dimethylallyl diphosphate as cosubstrates. One enzyme (AgGPPS2) was confirmed as a specific geranyl diphosphate synthase, in that it accepted only dimethylallyl diphosphate as the allylic cosubstrate and it produced exclusively geranyl diphosphate as product, with a k(cat) of 1.8s(-1). Gel filtration experiments performed on the recombinant geranyl diphosphate synthases, in which the plastidial targeting sequences had been deleted, revealed that these enzymes are homodimers similar to other short-chain prenyltransferases but different from the heterotetrameric geranyl diphosphate synthase of mint.
Collapse
Affiliation(s)
- Charles Burke
- Institute of Biological Chemistry and Program in Plant Physiology, Washington State University, Pullman, Washington 99164-6340, USA
| | | |
Collapse
|
36
|
Martin D, Tholl D, Gershenzon J, Bohlmann J. Methyl jasmonate induces traumatic resin ducts, terpenoid resin biosynthesis, and terpenoid accumulation in developing xylem of Norway spruce stems. PLANT PHYSIOLOGY 2002; 129:1003-18. [PMID: 12114556 PMCID: PMC166496 DOI: 10.1104/pp.011001] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2001] [Revised: 01/23/2002] [Accepted: 02/27/2002] [Indexed: 05/18/2023]
Abstract
Norway spruce (Picea abies L. Karst) produces an oleoresin characterized by a diverse array of terpenoids, monoterpenoids, sesquiterpenoids, and diterpene resin acids that can protect conifers against potential herbivores and pathogens. Oleoresin accumulates constitutively in resin ducts in the cortex and phloem (bark) of Norway spruce stems. De novo formation of traumatic resin ducts (TDs) is observed in the developing secondary xylem (wood) after insect attack, fungal elicitation, and mechanical wounding. Here, we characterize the methyl jasmonate-induced formation of TDs in Norway spruce by microscopy, chemical analyses of resin composition, and assays of terpenoid biosynthetic enzymes. The response involves tissue-specific differentiation of TDs, terpenoid accumulation, and induction of enzyme activities of both prenyltransferases and terpene synthases in the developing xylem, a tissue that constitutively lacks axial resin ducts in spruce. The induction of a complex defense response in Norway spruce by methyl jasmonate application provides new avenues to evaluate the role of resin defenses for protection of conifers against destructive pests such as white pine weevils (Pissodes strobi), bark beetles (Coleoptera, Scolytidae), and insect-associated tree pathogens.
Collapse
Affiliation(s)
- Diane Martin
- Max Planck Institute for Chemical Ecology, Carl Zeiss Promenade 10, 07745 Jena, Germany
| | | | | | | |
Collapse
|
37
|
Burke C, Croteau R. Interaction with the small subunit of geranyl diphosphate synthase modifies the chain length specificity of geranylgeranyl diphosphate synthase to produce geranyl diphosphate. J Biol Chem 2002; 277:3141-9. [PMID: 11733504 DOI: 10.1074/jbc.m105900200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Geranyl diphosphate synthase belongs to a subgroup of prenyltransferases, including farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, that catalyzes the specific formation, from C(5) units, of the respective C(10), C(15), and C(20) precursors of monoterpenes, sesquiterpenes, and diterpenes. Unlike farnesyl diphosphate synthase and geranylgeranyl diphosphate synthase, which are homodimers, geranyl diphosphate synthase from Mentha is a heterotetramer in which the large subunit shares functional motifs and a high level of amino acid sequence identity (56-75%) with geranylgeranyl diphosphate synthases of plant origin. The small subunit, however, shares little sequence identity with other isoprenyl diphosphate synthases; yet it is absolutely required for geranyl diphosphate synthase catalysis. Coexpression in Escherichia coli of the Mentha geranyl diphosphate synthase small subunit with the phylogenetically distant geranylgeranyl diphosphate synthases from Taxus canadensis and Abies grandis yielded a functional hybrid heterodimer that generated geranyl diphosphate as product in each case. These results indicate that the geranyl diphosphate synthase small subunit is capable of modifying the chain length specificity of geranylgeranyl diphosphate synthase (but not, apparently, farnesyl diphosphate synthase) to favor the production of C(10) chains. Comparison of the kinetic behavior of the parent prenyltransferases with that of the hybrid enzyme revealed that the hybrid possesses characteristics of both geranyl diphosphate synthase and geranylgeranyl diphosphate synthase.
Collapse
Affiliation(s)
- Charles Burke
- Institute of Biological Chemistry, Program in Plant Physiology, Washington State University, Pullman, Washington 99164-6340, USA
| | | |
Collapse
|