1
|
Reis A, Teixeira JPF, Silva AMG, Ferreira M, Gameiro P, de Freitas V. Modelling Hyperglycaemia in an Epithelial Membrane Model: Biophysical Characterisation. Biomolecules 2022; 12:biom12101534. [PMID: 36291743 PMCID: PMC9599690 DOI: 10.3390/biom12101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biomimetic models are valuable platforms to improve our knowledge on the molecular mechanisms governing membrane-driven processes in (patho)physiological conditions, including membrane permeability, transport, and fusion. However, current membrane models are over simplistic and do not include the membrane’s lipid remodelling in response to extracellular stimuli. Our study describes the synthesis of glycated dimyristoyl-phosphatidylethanolamine (DMPE-glyc), which was structurally characterised by mass spectrometry (ESI-MS) and quantified by NMR spectroscopy to be further incorporated in a complex phospholipid (PL) membrane model enriched in cholesterol (Chol) and (glyco)sphingolipids (GSL) designed to mimic epithelial membranes (PL/Chol/GSL) under hyperglycaemia conditions. Characterisation of synthesised DMPE-glyc adducts by tandem mass spectrometry (ESI-MS/MS) show that synthetic DMPE-glyc adducts correspond to Amadori products and quantification by 1H NMR spectroscopy show that the yield of glycation reaction was 8%. The biophysical characterisation of the epithelial membrane model shows that excess glucose alters the thermotropic behaviour and fluidity of epithelial membrane models likely to impact permeability of solutes. The epithelial membrane models developed to mimic normo- and hyperglycaemic scenarios are the basis to investigate (poly)phenol-lipid and drug–membrane interactions crucial in nutrition, pharmaceutics, structural biochemistry, and medicinal chemistry.
Collapse
|
2
|
When polyphenols meet lipids: Challenges in membrane biophysics and opportunities in epithelial lipidomics. Food Chem 2020; 333:127509. [DOI: 10.1016/j.foodchem.2020.127509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/25/2020] [Accepted: 07/04/2020] [Indexed: 12/14/2022]
|
3
|
Tsiavaliaris G, Itel F, Hedfalk K, Al‐Samir S, Meier W, Gros G, Endeward V. Low CO
2
permeability of cholesterol‐containing liposomes detected by stopped‐flow fluorescence spectroscopy. FASEB J 2015; 29:1780-93. [DOI: 10.1096/fj.14-263988] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/19/2014] [Indexed: 01/21/2023]
Affiliation(s)
- Georgios Tsiavaliaris
- Institut für Biophysikalische Chemie, Medizinische Hochschule HannoverHannoverGermany
| | - Fabian Itel
- Departement ChemieUniversität BaselBaselSwitzerland
| | - Kristina Hedfalk
- Department Chemistry & Molecular BiologyUniversity of GothenburgGöteborgSweden
| | - Samer Al‐Samir
- Institut für Molekular‐ und Zellphysiologie, AG Vegetative Physiologie, Medizinische Hochschule HannoverHannoverGermany
| | | | - Gerolf Gros
- Institut für Molekular‐ und Zellphysiologie, AG Vegetative Physiologie, Medizinische Hochschule HannoverHannoverGermany
| | - Volker Endeward
- Institut für Molekular‐ und Zellphysiologie, AG Vegetative Physiologie, Medizinische Hochschule HannoverHannoverGermany
| |
Collapse
|
4
|
Endeward V, Al-Samir S, Itel F, Gros G. How does carbon dioxide permeate cell membranes? A discussion of concepts, results and methods. Front Physiol 2014; 4:382. [PMID: 24409149 PMCID: PMC3884148 DOI: 10.3389/fphys.2013.00382] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/05/2013] [Indexed: 12/13/2022] Open
Abstract
We review briefly how the thinking about the permeation of gases, especially CO2, across cell and artificial lipid membranes has evolved during the last 100 years. We then describe how the recent finding of a drastic effect of cholesterol on CO2 permeability of both biological and artificial membranes fundamentally alters the long-standing idea that CO2—as well as other gases—permeates all membranes with great ease. This requires revision of the widely accepted paradigm that membranes never offer a serious diffusion resistance to CO2 or other gases. Earlier observations of “CO2-impermeable membranes” can now be explained by the high cholesterol content of some membranes. Thus, cholesterol is a membrane component that nature can use to adapt membrane CO2 permeability to the functional needs of the cell. Since cholesterol serves many other cellular functions, it cannot be reduced indefinitely. We show, however, that cells that possess a high metabolic rate and/or a high rate of O2 and CO2 exchange, do require very high CO2 permeabilities that may not be achievable merely by reduction of membrane cholesterol. The article then discusses the alternative possibility of raising the CO2 permeability of a membrane by incorporating protein CO2 channels. The highly controversial issue of gas and CO2 channels is systematically and critically reviewed. It is concluded that a majority of the results considered to be reliable, is in favor of the concept of existence and functional relevance of protein gas channels. The effect of intracellular carbonic anhydrase, which has recently been proposed as an alternative mechanism to a membrane CO2 channel, is analysed quantitatively and the idea considered untenable. After a brief review of the knowledge on permeation of O2 and NO through membranes, we present a summary of the 18O method used to measure the CO2 permeability of membranes and discuss quantitatively critical questions that may be addressed to this method.
Collapse
Affiliation(s)
- Volker Endeward
- Zentrum Physiologie, Vegetative Physiologie 4220, Medizinische Hochschule Hannover Hannover, Germany
| | - Samer Al-Samir
- Zentrum Physiologie, Vegetative Physiologie 4220, Medizinische Hochschule Hannover Hannover, Germany
| | - Fabian Itel
- Departement Chemie, Universität Basel Basel, Switzerland
| | - Gerolf Gros
- Zentrum Physiologie, Vegetative Physiologie 4220, Medizinische Hochschule Hannover Hannover, Germany
| |
Collapse
|
5
|
Itel F, Al-Samir S, Öberg F, Chami M, Kumar M, Supuran CT, Deen PMT, Meier W, Hedfalk K, Gros G, Endeward V. CO2 permeability of cell membranes is regulated by membrane cholesterol and protein gas channels. FASEB J 2012; 26:5182-91. [PMID: 22964306 DOI: 10.1096/fj.12-209916] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent observations that some membrane proteins act as gas channels seem surprising in view of the classical concept that membranes generally are highly permeable to gases. Here, we study the gas permeability of membranes for the case of CO(2), using a previously established mass spectrometric technique. We first show that biological membranes lacking protein gas channels but containing normal amounts of cholesterol (30-50 mol% of total lipid), e.g., MDCK and tsA201 cells, in fact possess an unexpectedly low CO(2) permeability (P(CO2)) of ∼0.01 cm/s, which is 2 orders of magnitude lower than the P(CO2) of pure planar phospholipid bilayers (∼1 cm/s). Phospholipid vesicles enriched with similar amounts of cholesterol also exhibit P(CO2) ≈ 0.01 cm/s, identifying cholesterol as the major determinant of membrane P(CO2). This is confirmed by the demonstration that MDCK cells depleted of or enriched with membrane cholesterol show dramatic increases or decreases in P(CO2), respectively. We demonstrate, furthermore, that reconstitution of human AQP-1 into cholesterol-containing vesicles, as well as expression of human AQP-1 in MDCK cells, leads to drastic increases in P(CO2), indicating that gas channels are of high functional significance for gas transfer across membranes of low intrinsic gas permeability.
Collapse
Affiliation(s)
- Fabian Itel
- Department of Chemistry, Universität Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Cacas JL, Furt F, Le Guédard M, Schmitter JM, Buré C, Gerbeau-Pissot P, Moreau P, Bessoule JJ, Simon-Plas F, Mongrand S. Lipids of plant membrane rafts. Prog Lipid Res 2012; 51:272-99. [PMID: 22554527 DOI: 10.1016/j.plipres.2012.04.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipids tend to organize in mono or bilayer phases in a hydrophilic environment. While they have long been thought to be incapable of coherent lateral segregation, it is now clear that spontaneous assembly of these compounds can confer microdomain organization beyond spontaneous fluidity. Membrane raft microdomains have the ability to influence spatiotemporal organization of protein complexes, thereby allowing regulation of cellular processes. In this review, we aim at summarizing briefly: (i) the history of raft discovery in animals and plants, (ii) the main findings about structural and signalling plant lipids involved in raft segregation, (iii) imaging of plant membrane domains, and their biochemical purification through detergent-insoluble membranes, as well as the existing debate on the topic. We also discuss the potential involvement of rafts in the regulation of plant physiological processes, and further discuss the prospects of future research into plant membrane rafts.
Collapse
Affiliation(s)
- Jean-Luc Cacas
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS, Université de Bordeaux, 146 Rue Léo Saignat, 33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Purification and characterization of the ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon. Arch Biochem Biophys 2010; 496:21-32. [PMID: 20122893 DOI: 10.1016/j.abb.2010.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 11/21/2022]
Abstract
Distal colon absorbs K+ through a Na+-independent, ouabain-sensitive H+/K+-exchange, associated to an apical ouabain-sensitive H+/K+-ATPase. Expression of HKalpha2, gene associated with this ATPase, induces K+-transport mechanisms, whose ouabain susceptibility is inconsistent. Both ouabain-sensitive and ouabain-insensitive K+-ATPase activities have been described in colonocytes. However, native H+/K+-ATPases have not been identified as unique biochemical entities. Herein, a procedure to purify ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon is described. H+/K+-ATPase is Mg2+-dependent and activated by K+, Cs+ and NH4+ but not by Na+ or Li+, independently of K+-accompanying anion. H+/K+-ATPase was inhibited by ouabain and vanadate but insensitive to SCH-28080 and bafilomycin-A. Enzyme was phosphorylated from [32P]-gamma-ATP, forming an acyl-phosphate bond, in an Mg2+-dependent, vanadate-sensitive process. K+ inhibited phosphorylation, effect blocked by ouabain. H+/K+-ATPase is an alpha/beta-heterodimer, whose subunits, identified by Tandem-mass spectrometry, seems to correspond to HKalpha2 and Na+/K+-ATPase beta1-subunit, respectively. Thus, colonic ouabain-sensitive H+/K+-ATPase is a distinctive P-type ATPase.
Collapse
|
8
|
Peeling as a novel, simple, and effective method for isolation of apical membrane from intact polarized epithelial cells. Anal Biochem 2009; 395:25-32. [DOI: 10.1016/j.ab.2009.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/04/2009] [Accepted: 08/06/2009] [Indexed: 11/23/2022]
|
9
|
Different glycoforms of prostate-specific membrane antigen are intracellularly transported through their association with distinct detergent-resistant membranes. Biochem J 2008; 409:149-57. [PMID: 17935484 DOI: 10.1042/bj20070396] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hormone-refractory prostate carcinomas as well as the neovasculature of different tumours express high levels of PSMA (prostate-specific membrane antigen). PSMA is a type II-transmembrane glycoprotein and a potential tumour marker for both diagnosis and passive immunotherapy. Here, we report on the association of PSMA with DRMs (detergent-resistant membranes) at different stages of the protein maturation pathway in human prostate carcinoma LNCaP cells. At least three PSMA glycoforms were biochemically identified based on their extractability behaviour in different non-ionic detergents. In particular, one precursor glycoform of PSMA is associated with Tween 20-insoluble DRMs, whereas the complex glycosylated protein segregates into membrane structures that are insoluble in Lubrol WX and display a different lipid composition. Association of PSMA with these membranes occurs in the Golgi compartment together with the acquisition of a native conformation. PSMA homodimers reach the plasma membrane of LNCaP cells in Lubrol WX-insoluble lipid/protein complexes. At the steady state, the majority of PSMA remains within these membrane microdomains at the cell surface. We conclude that the intracellular transport of PSMA occurs through populations of DRMs distinct for each biosynthetic form and cellular compartment.
Collapse
|
10
|
Busche R, von Engelhardt W. pH gradients and a mirco-pore filter at the luminal surface affect fluxes of propionic acid across guinea pig large intestine. J Comp Physiol B 2007; 177:821-31. [PMID: 17639416 DOI: 10.1007/s00360-007-0182-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 06/12/2007] [Accepted: 06/22/2007] [Indexed: 01/05/2023]
Abstract
A neutral pH microclimate had been shown at the luminal surface of the large intestine. The aim was to estimate to what extent fluxes of propionic acid/propionate are affected by changes of the luminal pH when this microclimate is present, largely reduced or absent. Fluxes of propionic acid/propionate (J(Pr)) across epithelia from the caecum, the proximal and the distal colon of guinea pigs were measured in Ussing chambers with and without a filter at the luminal surface. With bicarbonate and with a neutral or an acid pH of mucosal solutions (pH 7.4 or 6.4), mucosal-to-serosal fluxes (J(ms)(Pr) ) were 1.5 to 1.9-fold higher at the lower pH, in bicarbonate-free solutions and carbonic anhydrase (CA) inhibition 2.1 to 2.6-fold. With a filter at the mucosal surface and with bicarbonate containing solutions, J (ms) (Pr) was not or only little elevated at the lower pH. Without bicarbonate J(ms)(Pr) was clearly higher. We conclude that the higher J(ms)(Pr) after luminal acidification is due to vigorous mixing in Ussing chambers resulting in a markedly reduced unstirred layer. Therefore, an effective pH microclimate at the epithelial surface is missing. J(ms)(Pr) is not or is little affected by lowering of pH because in the presence of bicarbonate the filter maintains the pH microclimate. However, in bicarbonate-free solutions J(ms)(Pr) was higher at pH 6.4 because a pH microclimate does not develop. Findings confirm that 30-60% of J(ms)(Pr) results from non-ionic diffusion.
Collapse
Affiliation(s)
- Roger Busche
- Department of Biochemistry, School of Veterinary Medicine, Hannover, Germany.
| | | |
Collapse
|
11
|
Busche R, Schröder B, Huber K, Sallmann HP, Breves G. The effects of dietary phosphorus deficiency on surface pH and membrane composition of the mucosa epithelium in caprine jejunum. J Comp Physiol B 2006; 177:135-42. [PMID: 17033826 DOI: 10.1007/s00360-006-0118-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 08/18/2006] [Accepted: 08/23/2006] [Indexed: 11/28/2022]
Abstract
In ruminants, the uptake of inorganic phosphate (P(i)) across the intestinal mucosa epithelium by Na-dependent and Na-independent mechanisms is a main regulatory factor in P homeostasis. The aim of the study was to elucidate to which extent Na-independent mechanisms, including pH effects or composition of mucosal brush-border membranes, could be involved in positive stimulation of P(i) absorptive processes seen under the P deficient condition. Therefore, luminal, surface and intracellular pH of the jejunal epithelial cells in control and P depleted goats were compared and biochemical analyses of membrane phospholipids in the apical membrane of the jejunal epithelium were performed. Dietary P depletion resulted in decreased plasma P(i) levels. While pH in jejunal ingesta was not significantly changed, P depletion resulted in a significantly lower surface pH in the crypt region compared to control animals (7.62 +/- 0.02 vs. 7.77 +/- 0.04, n = 4, P < 0.01). Inhibition of apical Na(+)/H(+)-exchange resulted in an increase of the jejunal surface pH in P depleted animals by 0.07 +/- 0.01 (n = 6, P < 0.01) and 0.05 +/- 0.01 (n = 6, P < 0.01) for the villus and the crypt region, respectively. This increase were inversely correlated with the initial surface pH prior to inhibition. In contrast to surface pH, intracellular pH of the jejunal epithelium and the phospholipid composition of the apical jejunal membrane were not affected by P depletion. Although the data suggest the existence of a Na(+)/H(+)-exchange mechanism at the luminal surface of goat jejunum they do not support the hypothesis that adaptational processes of active P(i) absorption from goat jejunum in response to low dietary P could be based on "non P(i) transporter events".
Collapse
Affiliation(s)
- R Busche
- Clinic for Cattle, School of Veterinary Medicine, Bischofsholer Damm 15, 30173 Hannover, Germany
| | | | | | | | | |
Collapse
|
12
|
Alfalah M, Wetzel G, Fischer I, Busche R, Sterchi EE, Zimmer KP, Sallmann HP, Naim HY. A novel type of detergent-resistant membranes may contribute to an early protein sorting event in epithelial cells. J Biol Chem 2005; 280:42636-43. [PMID: 16230359 DOI: 10.1074/jbc.m505924200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
One sorting mechanism of apical and basolateral proteins in epithelial cells is based on their solubility profiles with Triton X-100. Nevertheless, apical proteins themselves are also segregated beyond the trans-Golgi network by virtue of their association or nonassociation with cholesterol/sphingolipid-rich microdomains (Jacob, R., and Naim, H. Y. (2001) Curr. Biol. 11, 1444-1450). Therefore, extractability with Triton X-100 does not constitute an absolute criterion of protein sorting. Here, we investigate the solubility patterns of apical and basolateral proteins with other detergents and demonstrate that the mild detergent Tween 20 is adequate to discriminate between apical and basolateral proteins during early stages in their biosynthesis. Although the mannose-rich forms of the apical proteins sucrase-isomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV reveal similar solubility profiles comprising soluble and nonsoluble fractions, the basolateral proteins, vesicular stomatitis virus G protein, major histocompatibility complex class I, and CD46 are entirely soluble with this detergent. The insoluble Tween 20 membranes are enriched in phosphatidylinositol and phosphatidylglycerol compatible with their synthesis in the endoplasmic reticulum and the existence of a novel class of detergent-resistant membranes. The association of the mannose-rich biosynthetic forms of the apical proteins, sucraseisomaltase, lactase-phlorizin hydrolase, aminopeptidase N, and dipeptidylpeptidase IV with the Tween 20-resistant membranes suggests an early polarized sorting mechanism prior to maturation in the Golgi apparatus.
Collapse
Affiliation(s)
- Marwan Alfalah
- Department of Physiological Chemistry, School of Veterinary Medicine, D-30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Busche R, Dittmann J, Meyer zu Düttingdorf HD, Glockenthör U, von Engelhardt W, Sallmann HP. Permeability properties of apical and basolateral membranes of the guinea pig caecal and colonic epithelia for short-chain fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1565:55-63. [PMID: 12225852 DOI: 10.1016/s0005-2736(02)00505-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Unidirectional fluxes of short-chain fatty acids (SCFA) indicated marked segmental differences in the permeability of apical and basolateral membranes. The aim of our study was to prove these differences in membrane permeability for a lipid-soluble substance and to understand the factors affecting these differences. Apical and basolateral membrane fractions from guinea pig caecal and colonic epithelia were isolated. Membrane compositions were determined and the permeability of membrane vesicles for the protonated SCFA was measured in a stopped-flow device. Native vesicles from apical membranes of the caecum and proximal colon have a much lower permeability than the corresponding vesicles from the basolateral membranes. For the distal colon, membrane permeabilities of native apical and basolateral vesicles are similar. In vesicles prepared from lipid extracts, the permeabilities for the protonated SCFA are negatively correlated to cholesterol content, whereas no such correlation was observed in native vesicles. Our findings confirm that the apical membrane in the caecum and proximal colon of guinea pig is an effective barrier against a rapid diffusion of small lipid-soluble substances such as SCFAH. Besides cholesterol and membrane proteins, there are further factors that contribute to this barrier property.
Collapse
Affiliation(s)
- Roger Busche
- Department of Physiological Chemistry, School of Veterinary Medicine Hannover, Bünteweg 17, D-30559, Hanover, Germany
| | | | | | | | | | | |
Collapse
|