1
|
Katoh K. FAK-Dependent Cell Motility and Cell Elongation. Cells 2020; 9:cells9010192. [PMID: 31940873 PMCID: PMC7017285 DOI: 10.3390/cells9010192] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Fibroblastic cells show specific substrate selectivity for typical cell–substrate adhesion. However, focal adhesion kinase (FAK) contributes to controlling the regulation of orientation and polarity. When fibroblasts attach to micropatterns, tyrosine-phosphorylated proteins and FAK are both detected along the inner border between the adhesive micropatterns and the nonadhesive glass surface. FAK likely plays important roles in regulation of cell adhesion to the substrate, as FAK is a tyrosine-phosphorylated protein that acts as a signal transduction molecule at sites of cell–substrate attachment, called focal adhesions. FAK has been suggested to play a role in the attachment of cells at adhesive micropatterns by affecting cell polarity. Therefore, the localization of FAK might play a key role in recognition of the border of the cell with the adhesive micropattern, thus regulating cell polarity and the cell axis. This review discusses the regulation and molecular mechanism of cell proliferation and cell elongation by FAK and its associated signal transduction proteins.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology Tsukuba-city, Ibaraki, Japan
| |
Collapse
|
2
|
Tamborindeguy MT, Matte BF, Ramos GDO, Alves AM, Bernardi L, Lamers ML. NADPH-oxidase-derived ROS alters cell migration by modulating adhesions dynamics. Biol Cell 2018; 110:225-236. [DOI: 10.1111/boc.201800011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 08/03/2018] [Accepted: 08/10/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Maurício Tavares Tamborindeguy
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Center of Biotechnology; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Bibiana Franzen Matte
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Grasieli de Oliveira Ramos
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- School of Dentistry; University of Oeste de Santa Catarina; Joaçaba SC Brazil
| | - Alessandro Menna Alves
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- School of Dentistry; University Center Univates; Lajeado RS Brazil
| | - Lisiane Bernardi
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| | - Marcelo Lazzaron Lamers
- Basic Research Center in Dentistry, Dentistry School; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
- Department of Morphological Sciences, Institute of Basic Health Sciences; Federal University of Rio Grande do Sul; Porto Alegre RS Brazil
| |
Collapse
|
3
|
Masdeu MDM, Armendáriz BG, Soriano E, Ureña JM, Burgaya F. New partners and phosphorylation sites of focal adhesion kinase identified by mass spectrometry. Biochim Biophys Acta Gen Subj 2016; 1860:1388-94. [PMID: 27033120 DOI: 10.1016/j.bbagen.2016.02.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/22/2015] [Accepted: 02/23/2016] [Indexed: 01/29/2023]
Abstract
The regulation of focal adhesion kinase (FAK) involves phosphorylation and multiple interactions with other signaling proteins. Some of these pathways are relevant for nervous system functions such as branching, axonal guidance, and plasticity. In this study, we screened mouse brain to identify FAK-interactive proteins and phosphorylatable residues as a first step to address the neuronal functions of this kinase. Using mass spectrometry analysis, we identified new phosphorylated sites (Thr 952, Thr 1048, and Ser 1049), which lie in the FAT domain; and putative new partners for FAK, which include cytoskeletal proteins such as drebrin and MAP 6, adhesion regulators such as neurabin-2 and plakophilin 1, and synapse-associated proteins such as SynGAP and a NMDA receptor subunit. Our findings support the participation of brain-localized FAK in neuronal plasticity.
Collapse
Affiliation(s)
- Maria del Mar Masdeu
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Beatriz G Armendáriz
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Eduardo Soriano
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain; Vall d´Hebron Institute of Research, 08035 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Jesús Mariano Ureña
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ferran Burgaya
- Developmental Neurobiology and Neural Regeneration Group, Department of Cell Biology, Faculty of Biology, University of Barcelona, Diagonal 643, 08038 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain.
| |
Collapse
|
4
|
Schlienger S, Ramirez RAM, Claing A. ARF1 regulates adhesion of MDA-MB-231 invasive breast cancer cells through formation of focal adhesions. Cell Signal 2014; 27:403-15. [PMID: 25530216 DOI: 10.1016/j.cellsig.2014.11.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022]
Abstract
Adhesion complex formation and disassembly is crucial for maintaining efficient cell movement. During migration, several proteins act in concert to promote remodeling of the actin cytoskeleton and we have previously shown that in highly invasive breast cancer cells, this process is regulated by small GTP-binding proteins of the ADP-ribosylation factor (ARF) family. These are overexpressed and highly activated in these cells. Here, we report that one mechanism by which ARF1 regulates migration is by controlling assembly of focal adhesions. In cells depleted of ARF1, paxillin is no longer colocalized with actin at focal adhesion sites. In addition, we demonstrate that this occurs through the ability of ARF1 to regulate the recruitment of key proteins such as paxillin, talin and FAK to ß1-integrin. Furthermore, we show that the interactions between paxillin and talin together and with FAK are significantly impaired in ARF1 knocked down cells. Our findings also indicate that ARF1 is essential for EGF-mediated phosphorylation of FAK and Src. Finally, we report that ARF1 can be found in complex with key focal adhesion proteins such as ß1-integrin, paxillin, talin and FAK. Together our findings uncover a new mechanism by which ARF1 regulates cell migration and provide this GTPase as a target for the development of new therapeutics in triple negative breast cancer.
Collapse
Affiliation(s)
- Sabrina Schlienger
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada
| | | | - Audrey Claing
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
5
|
Mammary gland-specific ablation of focal adhesion kinase reduces the incidence of p53-mediated mammary tumour formation. Br J Cancer 2014; 110:2747-55. [PMID: 24809783 PMCID: PMC4037829 DOI: 10.1038/bjc.2014.219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/28/2014] [Accepted: 04/01/2014] [Indexed: 12/27/2022] Open
Abstract
Background: Elevated expression of focal adhesion kinase (FAK) occurs in numerous human cancers including colon-, cervix- and breast cancer. Although several studies have implicated FAK in mammary tumour formation induced by ectopic oncogene expression, evidence supporting a role for FAK in spontaneous mammary tumour development caused by loss of tumour suppressor genes such as p53 is lacking. Alterations in the tumour suppressor gene p53 have been implicated in over 50% of human breast cancers. Given that elevated FAK expression highly correlates with p53 mutation status in human breast cancer, we set out to investigate the importance of FAK in p53-mediated spontaneous mammary tumour development. Methods: To directly assess the role of FAK, we generated mice with conditional inactivation of FAK and p53. We generated female p53lox/lox/FAK+/+/WapCre, p53lox/lox/FAKflox/+/WapCre and p53lox/lox/FAKflox/−/WapCre mice, and mice with WapCre-mediated conditional expression of p53R270H, the mouse equivalent of human p53R273H hot spot mutation, together with conditional deletion of FAK, P53R270H/+/FAKlox/+/WapCre and p53R270H/+/FAKflox/−/WapCre mice. All mice were subjected to one pregnancy to induce WapCre-mediated deletion of p53 or expression of p53 R270H, and Fak genes flanked by two loxP sites, and subsequently followed the development of mammary tumours. Results: Using this approach, we show that FAK is important for p53-induced mammary tumour development. In addition, mice with the mammary gland-specific conditional expression of p53 point mutation R270H, the mouse equivalent to human R273H, in combination with conditional deletion of Fak showed reduced incidence of p53R270H-induced mammary tumours. In both models these effects of FAK were related to reduced proliferation in preneoplastic lesions in the mammary gland ductal structures. Conclusions: Mammary gland-specific ablation of FAK hampers p53-regulated spontaneous mammary tumour formation. Focal adhesion kinase deletion reduced proliferative capacity of p53 null and p53R270H mammary epithelial cells but did not lead to increased apoptosis in vivo. Our data identify FAK as an important regulator in mammary epithelial cell proliferation in p53-mediated and p53R270H-induced mammary tumour development.
Collapse
|
6
|
Wiemer AJ, Wernimont SA, Cung TD, Bennin DA, Beggs HE, Huttenlocher A. The focal adhesion kinase inhibitor PF-562,271 impairs primary CD4+ T cell activation. Biochem Pharmacol 2013; 86:770-81. [PMID: 23928188 PMCID: PMC3762933 DOI: 10.1016/j.bcp.2013.07.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/27/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
Abstract
The focal adhesion kinase inhibitor, PF-562,271, is currently in clinical development for cancer, however it is not known how PF-562,271 affects T cell function. Here, we demonstrate inhibitory effects of PF-562,271 on the activation of primary human and mouse T cells. PF-562,271 inhibits T cell receptor signaling-induced T cell adhesion to intercellular adhesion molecule-1 and T cell interactions with antigen-presenting cells. An additional focal adhesion kinase inhibitor, PF-573,228, and genetic depletion of focal adhesion kinase also impair T cell conjugation with antigen-presenting cells. PF-562,271 blocks phosphorylation of the signaling molecules zeta chain associate protein of 70 kDa, linker of activated T cells, and extracellular signal-regulated kinase, and impairs T cell proliferation. The effects observed on T cell proliferation cannot solely be attributed to focal adhesion kinase inhibition, as genetic depletion did not alter proliferation. The effect of PF-562,271 on T cell proliferation is not rescued when proximal T cell receptor signaling is bypassed by stimulation with phorbol-12-myristate-13-acetate and ionomycin. Taken together, our findings demonstrate that focal adhesion kinase regulates integrin-mediated T cell adhesion following T cell receptor activation. Moreover, our findings suggest that PF-562,271 may have immunomodulatory effects that could impact its therapeutic applications.
Collapse
Affiliation(s)
- Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd Unit 3092, Storrs, CT 06269, USA.
| | - Sarah A. Wernimont
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
| | - Thai-duong Cung
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
| | - David A. Bennin
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
| | - Hilary E. Beggs
- Department of Ophthalmology, University of California, 10 Koret Way, San Francisco, CA, 94143, USA.
| | - Anna Huttenlocher
- Departments of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA. , , ,
- Department of Pediatrics, University of Wisconsin-Madison, 1550 Linden Dr., Madison, WI 53705, USA
| |
Collapse
|
7
|
Curcumin Suppresses Metastasis via Sp-1, FAK Inhibition, and E-Cadherin Upregulation in Colorectal Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:541695. [PMID: 23970932 PMCID: PMC3736531 DOI: 10.1155/2013/541695] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/17/2013] [Indexed: 12/19/2022]
Abstract
Colorectal cancer (CRC) is a serious public health problem that results due to changes of diet and various environmental stress factors in the world. Curcumin is a traditional medicine used for treatment of a wide variety of tumors. However, antimetastasis mechanism of curcumin on CRC has not yet been completely investigated. Here, we explored the underlying molecular mechanisms of curcumin on metastasis of CRC cells in vitro and in vivo. Curcumin significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. We found that curcumin suppresses Sp-1 transcriptional activity and Sp-1 regulated genes including ADEM10, calmodulin, EPHB2, HDAC4, and SEPP1 in CRC cells. Curcumin inhibits focal adhesion kinase (FAK) phosphorylation and enhances the expressions of several extracellular matrix components which play a critical role in invasion and metastasis. Curcumin reduces CD24 expression in a dose-dependent manner in CRC cells. Moreover, E-cadherin expression is upregulated by curcumin and serves as an inhibitor of EMT. These results suggest that curcumin executes its antimetastasis function through downregulation of Sp-1, FAK, and CD24 and by promoting E-cadherin expression in CRC cells.
Collapse
|
8
|
Focal adhesion kinase plays a role in osteoblast mechanotransduction in vitro but does not affect load-induced bone formation in vivo. PLoS One 2012; 7:e43291. [PMID: 23028449 PMCID: PMC3448625 DOI: 10.1371/journal.pone.0043291] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
A healthy skeleton relies on bone's ability to respond to external mechanical forces. The molecular mechanisms by which bone cells sense and convert mechanical stimuli into biochemical signals, a process known as mechanotransduction, are unclear. Focal adhesions play a critical role in cell survival, migration and sensing physical force. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that controls focal adhesion dynamics and can mediate reparative bone formation in vivo and osteoblast mechanotransduction in vitro. Based on these data, we hypothesized that FAK plays a role in load-induced bone formation. To test this hypothesis, we performed in vitro fluid flow experiments and in vivo bone loading studies in FAK−/− clonal lines and conditional FAK knockout mice, respectively. FAK−/− osteoblasts showed an ablated prostaglandin E2 (PGE2) response to fluid flow shear. This effect was reversed with the re-expression of wild-type FAK. Re-expression of FAK containing site-specific mutations at Tyr-397 and Tyr-925 phosphorylation sites did not rescue the phenotype, suggesting that these sites are important in osteoblast mechanotransduction. Interestingly, mice in which FAK was conditionally deleted in osteoblasts and osteocytes did not exhibit altered load-induced periosteal bone formation. Together these data suggest that although FAK is important in mechanically-induced signaling in osteoblasts in vitro, it is not required for an adaptive response in vivo, possibly due to a compensatory mechanism that does not exist in the cell culture system.
Collapse
|
9
|
Wary KK, Kohler EE, Chatterjee I. Focal adhesion kinase regulation of neovascularization. Microvasc Res 2012; 83:64-70. [PMID: 21616084 PMCID: PMC3186864 DOI: 10.1016/j.mvr.2011.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 05/04/2011] [Accepted: 05/06/2011] [Indexed: 11/22/2022]
Abstract
In this review, we discuss the role of focal adhesion kinase (FAK), an intracellular tyrosine kinase, in endothelial cells in relation to neovascularization. Genetic and in vitro studies have identified critical factors, receptor systems, and their intracellular signaling components that regulate the neovasculogenic phenotypes of endothelial cells. Among these factors, FAK appears to regulate several aspects of endothelial cellular behavior, including migration, survival, cytoskeletal organization, as well as cell proliferation. Upon adhesion of endothelial cells to extracellular matrix (ECM) ligands, integrins cluster on the plane of plasma-membrane, while cytoplasmic domains of integrins interact with cytoskeletal proteins and signaling molecules including FAK. However, FAK not only serves as a critical component of integrin signaling, but is also a downstream element of the VEGF/VEGF-receptor and other ligand-receptor systems that regulate neovascularization. A complete understanding of FAK-mediated neovascularization, therefore, should address the molecular and cellular mechanisms that regulate the biology of FAK. Continued research on FAK may, therefore, yield novel therapies to improve treatment modalities for the pathological neovascularization associated with diseases.
Collapse
Affiliation(s)
- Kishore K Wary
- Department of Pharmacology, University of Illinois, 835 S. Wolcott, Room E403, Mail code 868, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
10
|
Li XY, Zhou X, Rowe RG, Hu Y, Schlaepfer DD, Ilić D, Dressler G, Park A, Guan JL, Weiss SJ. Snail1 controls epithelial-mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells. ACTA ACUST UNITED AC 2011; 195:729-38. [PMID: 22105351 PMCID: PMC3257570 DOI: 10.1083/jcb.201105103] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Mouse embryonic cells isolated from focal adhesion kinase (FAK)-null animals at embryonic day 7.5 display multiple defects in focal adhesion remodeling, microtubule dynamics, mechanotransduction, proliferation, directional motility, and invasion. To date, the ability of FAK to modulate cell function has been ascribed largely to its control of posttranscriptional signaling cascades in this embryonic cell population. In this paper, we demonstrate that FAK unexpectedly exerts control over an epithelial-mesenchymal transition (EMT) program that commits embryonic FAK-null cells to an epithelial status highlighted by the expression of E-cadherin, desmoplakin, and cytokeratins. FAK rescue reestablished the mesenchymal characteristics of FAK-null embryonic cells to generate committed mouse embryonic fibroblasts via an extracellular signal-related kinase- and Akt-dependent signaling cascade that triggered Snail1 gene expression and Snail1 protein stabilization. These findings indentify FAK as a novel regulator of Snail1-dependent EMT in embryonic cells and suggest that multiple defects in FAK(-/-) cell behavior can be attributed to an inappropriate commitment of these cells to an epithelial, rather than fibroblastic, phenotype.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Plaza-Menacho I, Morandi A, Mologni L, Boender P, Gambacorti-Passerini C, Magee AI, Hofstra RMW, Knowles P, McDonald NQ, Isacke CM. Focal adhesion kinase (FAK) binds RET kinase via its FERM domain, priming a direct and reciprocal RET-FAK transactivation mechanism. J Biol Chem 2011; 286:17292-302. [PMID: 21454698 DOI: 10.1074/jbc.m110.168500] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Whether RET is able to directly phosphorylate and activate downstream targets independently of the binding of proteins that contain Src homology 2 or phosphotyrosine binding domains and whether mechanisms in trans by cytoplasmic kinases can modulate RET function and signaling remain largely unexplored. In this study, oligopeptide arrays were used to screen substrates directly phosphorylated by purified recombinant wild-type and oncogenic RET kinase domain in the presence or absence of small molecule inhibitors. The results of the peptide array were validated by enzyme kinetics, in vitro kinase, and cell-based experiments. The identification of focal adhesion kinase (FAK) as a direct substrate for RET kinase revealed (i) a RET-FAK transactivation mechanism consisting of direct phosphorylation of FAK Tyr-576/577 by RET and a reciprocal phosphorylation of RET by FAK, which crucially is able to rescue the kinase-impaired RET K758M mutant and (ii) that FAK binds RET via its FERM domain. Interestingly, this interaction is abolished upon RET phosphorylation, indicating that RET binding to the FERM domain of FAK is a priming step for RET-FAK transactivation. Finally, our data indicate that FAK inhibitors could be used as potential therapeutic agents for patients with multiple endocrine neoplasia type 2 tumors because both, treatment with the FAK kinase inhibitor NVP-TAE226 and FAK down-regulation by siRNA reduced RET phosphorylation and signaling as well as the proliferation and survival of tumor and transfected cell lines expressing oncogenic RET.
Collapse
Affiliation(s)
- Iván Plaza-Menacho
- Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Beverdam A, Svingen T, Bagheri-Fam S, McClive P, Sinclair AH, Harley VR, Koopman P. Protein tyrosine kinase 2 beta (PTK2B), but not focal adhesion kinase (FAK), is expressed in a sexually dimorphic pattern in developing mouse gonads. Dev Dyn 2010; 239:2735-41. [DOI: 10.1002/dvdy.22396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
14
|
Schultze A, Fiedler W. Therapeutic potential and limitations of new FAK inhibitors in the treatment of cancer. Expert Opin Investig Drugs 2010; 19:777-88. [PMID: 20465362 DOI: 10.1517/13543784.2010.489548] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
IMPORTANCE OF THE FIELD Activation of the non-receptor tyrosine kinase focal adhesion kinase (FAK) has been implicated in progression of multiple mesenchymal and epithelial malignant tumors. FAK plays an important role in regulation of proliferation, migration and apoptosis of neoplastic cells. AREAS COVERED IN THIS REVIEW We review the importance of FAK expression as a prognostic marker in cancer patients, discuss the available small-molecule inhibitors of FAK, summarize the available data from early-phase clinical trials with FAK inhibitors and cover the antiangiogenic properties of FAK inhibitors, as well as their potential to overcome chemoresistance. WHAT THE READER WILL GAIN This review enables the reader to overview current knowledge about FAK inhibition in cancer therapy and its role in the clinical setting. The reader will be able to consider FAK inhibitors not only as direct antitumor but also as antineoangiogenic agents and drugs that can overcome the problem of chemoresistance. TAKE HOME MESSAGE Emerging data from early-phase clinical trials with orally available small-molecule inhibitors of FAK are promising. There are early indicators of clinical efficacy. In the future, combination therapy with cytotoxic or antiangiogenic drugs may help to overcome chemoresistance and enhance efficacy of antivascular therapy.
Collapse
Affiliation(s)
- Alexander Schultze
- University Medical Center Hamburg-Eppendorf, Hubertus Wald Tumorzentrum-University Cancer Center Hamburg, Department of Oncology/Hematology, Hamburg, Germany
| | | |
Collapse
|
15
|
Lim ST, Chen XL, Tomar A, Miller NLG, Yoo J, Schlaepfer DD. Knock-in mutation reveals an essential role for focal adhesion kinase activity in blood vessel morphogenesis and cell motility-polarity but not cell proliferation. J Biol Chem 2010; 285:21526-36. [PMID: 20442405 PMCID: PMC2898428 DOI: 10.1074/jbc.m110.129999] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/03/2010] [Indexed: 12/27/2022] Open
Abstract
Focal adhesion kinase (FAK) associates with both integrins and growth factor receptors in the control of cell motility and survival. Loss of FAK during mouse development results in lethality at embryonic day 8.5 (E8.5) and a block in cell proliferation. Because FAK serves as both a scaffold and signaling protein, gene knock-outs do not provide mechanistic insights in distinguishing between these modes of FAK function. To determine the role of FAK activity during development, a knock-in point mutation (lysine 454 to arginine (R454)) within the catalytic domain was introduced by homologous recombination. Homozygous FAK(R454/R454) mutation was lethal at E9.5 with defects in blood vessel formation as determined by lack of yolk sac primary capillary plexus formation and disorganized endothelial cell patterning in FAK(R454/R454) embryos. In contrast to the inability of embryonic FAK(-/-) cells to proliferate ex vivo, primary FAK(R454/R454) mouse embryo fibroblasts (MEFs) were established from E8.5 embryos. R454 MEFs exhibited no difference in cell growth compared with normal MEFs, and R454 FAK localized to focal adhesions but was not phosphorylated at Tyr-397. In E8.5 embryos and primary MEFs, FAK R454 mutation resulted in decreased c-Src Tyr-416 phosphorylation. R454 MEFs exhibited enhanced focal adhesion formation, decreased migration, and defects in cell polarity. Within immortalized MEFs, FAK activity was required for fibronectin-stimulated FAK-p190RhoGAP association and p190RhoGAP tyrosine phosphorylation linked to decreased RhoA GTPase activity, focal adhesion turnover, and directional motility. Our results establish that intrinsic FAK activity is essential for developmental processes controlling blood vessel formation and cell motility-polarity but not cell proliferation. This work supports the use of FAK inhibitors to disrupt neovascularization.
Collapse
Affiliation(s)
- Ssang-Taek Lim
- From the Department of Reproductive Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| | - Xiao Lei Chen
- From the Department of Reproductive Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| | - Alok Tomar
- From the Department of Reproductive Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| | - Nichol L. G. Miller
- From the Department of Reproductive Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| | - Jiyeon Yoo
- From the Department of Reproductive Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| | - David D. Schlaepfer
- From the Department of Reproductive Medicine, Moores Cancer Center, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
16
|
Forrest AD, Beggs HE, Reichardt LF, Dupree JL, Colello RJ, Fuss B. Focal adhesion kinase (FAK): A regulator of CNS myelination. J Neurosci Res 2010; 87:3456-64. [PMID: 19224576 DOI: 10.1002/jnr.22022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The formation of the myelin sheath is a crucial step during development because it enables fast and efficient propagation of signals within the limited space of the mammalian central nervous system (CNS). During the process of myelination, oligodendrocytes actively interact with the extracellular matrix (ECM). These interactions are considered crucial for proper and timely completion of the myelin sheath. However, the exact regulatory circuits involved in the signaling events that occur between the ECM and oligodendrocytes are currently not fully understood. Therefore, in the present study we investigated the role of a known integrator of cell-ECM signaling, namely, focal adhesion kinase (FAK), in CNS myelination via the use of conditional (oligodendrocyte-specific) and inducible FAK-knockout mice (Fak(flox/flox): PLP/CreER(T) mice). When inducing FAK knockout just prior to and during active myelination of the optic nerve, we observed a significant reduction in the number of myelinated fibers on postnatal day 14. In addition, our data revealed a decreased number of primary processes extending from oligodendrocyte cell bodies at this postnatal age and on induction of FAK knockout. In contrast, myelination appeared normal on postnatal day 28. Thus, our data suggest that FAK controls the efficiency and timing of CNS myelination during its initial stages, at least in part, by regulating oligodendrocyte process outgrowth and/or remodeling.
Collapse
Affiliation(s)
- Audrey D Forrest
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | | | | | | | | | | |
Collapse
|
17
|
Villagomez M, Szabo E, Podcheko A, Feng T, Papp S, Opas M. Calreticulin and focal-contact-dependent adhesion. Biochem Cell Biol 2009; 87:545-56. [PMID: 19767819 DOI: 10.1139/o09-016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell adhesion is regulated by a variety of Ca2+-regulated pathways that depend on Ca2+-binding proteins. One such protein is calreticulin, an ER-resident protein. Calreticulin signalling from within the ER can affect processes outside the ER, such as expression of several adhesion-related genes, most notably vinculin and fibronectin. In addition, changes in the expression level of calreticulin strongly affect tyrosine phosphorylation of cellular proteins, which is known to affect many adhesion-related functions. While calreticulin has been localized to cellular compartments other than the ER, it appears that only the ER-resident calreticulin affects focal-contact-dependent adhesion. In contrast, calreticulin residing outside the ER may be involved in contact disassembly and other adhesion phenomena. Here, we review the role of calreticulin in focal contact initiation, stabilization, and turnover. We propose that calreticulin may regulate cell-substratum adhesion by participating in an "ER-to-nucleus" signalling and in parallel "ER-to-cell surface" signalling based on posttranslational events.
Collapse
Affiliation(s)
- Maria Villagomez
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Medical Sciences Building, Toronto, ON M5S 1A8, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Durieux AC, D'Antona G, Desplanches D, Freyssenet D, Klossner S, Bottinelli R, Flück M. Focal adhesion kinase is a load-dependent governor of the slow contractile and oxidative muscle phenotype. J Physiol 2009; 587:3703-17. [PMID: 19470782 DOI: 10.1113/jphysiol.2009.171355] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Striated muscle exhibits a pronounced structural-functional plasticity in response to chronic alterations in loading. We assessed the implication of focal adhesion kinase (FAK) signalling in mechano-regulated differentiation of slow-oxidative muscle. Load-dependent consequences of FAK signal modulation were identified using a multi-level approach after electrotransfer of rat soleus muscle with FAK-expression plasmid vs. empty plasmid-transfected contralateral controls. Muscle fibre-targeted over-expression of FAK in anti-gravitational muscle for 9 days up-regulated transcript levels of gene ontologies underpinning mitochondrial metabolism and contraction in the transfected belly portion. Concomitantly, mRNA expression of the major fast-type myosin heavy chain (MHC) isoform, MHC2A, was reduced. The promotion of the slow-oxidative expression programme by FAK was abolished after co-expression of the FAK inhibitor FAK-related non-kinase (FRNK). Elevated protein content of MHC1 (+9%) and proteins of mitochondrial respiration (+165-610%) with FAK overexpression demonstrated the translation of transcript differentiation in targeted muscle fibres towards a slow-oxidative muscle phenotype. Coincidentally MHC2A protein was reduced by 50% due to protection of muscle from de-differentiation with electrotransfer. Fibre cross section in FAK-transfected muscle was elevated by 6%. The FAK-modulated muscle transcriptome was load-dependent and regulated in correspondence to tyrosine 397 phosphorylation of FAK. In the context of overload, the FAK-induced gene expression became manifest at the level of contraction by a slow transformation and the re-establishment of normal muscle force from the lowered levels with transfection. These results highlight the analytic power of a systematic somatic transgene approach by mapping a role of FAK in the dominant mechano-regulation of muscular motor performance via control of gene expression.
Collapse
|
19
|
Michael KE, Dumbauld DW, Burns KL, Hanks SK, García AJ. Focal adhesion kinase modulates cell adhesion strengthening via integrin activation. Mol Biol Cell 2009; 20:2508-19. [PMID: 19297531 DOI: 10.1091/mbc.e08-01-0076] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Focal adhesion kinase (FAK) is an essential nonreceptor tyrosine kinase regulating cell migration, adhesive signaling, and mechanosensing. Using FAK-null cells expressing FAK under an inducible promoter, we demonstrate that FAK regulates the time-dependent generation of adhesive forces. During the early stages of adhesion, FAK expression in FAK-null cells enhances integrin activation to promote integrin binding and, hence, the adhesion strengthening rate. Importantly, FAK expression regulated integrin activation, and talin was required for the FAK-dependent effects. A role for FAK in integrin activation was confirmed in human fibroblasts with knocked-down FAK expression. The FAK autophosphorylation Y397 site was required for the enhancements in adhesion strengthening and integrin-binding responses. This work demonstrates a novel role for FAK in integrin activation and the time-dependent generation of cell-ECM forces.
Collapse
Affiliation(s)
- Kristin E Michael
- Woodruff School of Mechanical Engineering and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
20
|
Abstract
Mechanical loading of bone is important for maintenance of bone mass and structural stability of the skeleton. When bone is mechanically loaded, movement of fluid within the spaces surrounding bone cells generates fluid shear stress (FSS) that stimulates osteoblasts, resulting in enhanced anabolic activity. The mechanisms by which osteoblasts convert the external stimulation of FSS into biochemical changes, a process known as mechanotransduction, remain poorly understood. Focal adhesions are prime candidates for transducing external stimuli. Focal adhesion kinase (FAK), a nonreceptor tyrosine kinase found in focal adhesions, may play a key role in mechanotransduction, although its function has not been directly examined in osteoblasts. We examined the role of FAK in osteoblast mechanotransduction using short interfering RNA (siRNA), overexpression of a dominant negative FAK, and FAK(-/-) osteoblasts to disrupt FAK function in calvarial osteoblasts. Osteoblasts were subjected to varying periods oscillatory fluid flow (OFF) from 5 min to 4 h, and several physiologically important readouts of mechanotransduction were analyzed including: extracellular signal-related kinase 1/2 phosphorylation, upregulation of c-fos, cyclooxygenase-2, and osteopontin, and release of prostaglandin E(2). Osteoblasts with disrupted FAK signaling exhibited severely impaired mechanical responses in all endpoints examined. These data indicate the importance of FAK for both short and long periods of FSS-induced mechanotransduction in osteoblasts.
Collapse
|
21
|
Manso AM, Kang SM, Plotnikov SV, Thievessen I, Oh J, Beggs HE, Ross RS. Cardiac fibroblasts require focal adhesion kinase for normal proliferation and migration. Am J Physiol Heart Circ Physiol 2009; 296:H627-38. [PMID: 19136609 PMCID: PMC2660223 DOI: 10.1152/ajpheart.00444.2008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 01/05/2009] [Indexed: 01/18/2023]
Abstract
Migration and proliferation of cardiac fibroblasts (CFs) play an important role in the myocardial remodeling process. While many factors have been identified that regulate CF growth and migration, less is known about the signaling mechanisms involved in these processes. Here, we utilized Cre-LoxP technology to obtain focal adhesion kinase (FAK)-deficient adult mouse CFs and studied how FAK functioned in modulating cell adhesion, proliferation, and migration of these cells. Treatment of FAK(flox/flox) CFs with Ad/Cre virus caused over 70% reduction of FAK protein levels within a cell population. FAK-deficient CFs showed no changes in focal adhesions, cell morphology, or protein expression levels of vinculin, talin, or paxillin; proline-rich tyrosine kinase 2 (Pyk2) expression and activity were increased. Knockdown of FAK protein in CFs increased PDGF-BB-induced proliferation, while it reduced PDGF-BB-induced migration. Adhesion to fibronectin was not altered. To distinguish between the function of FAK and Pyk2, FAK function was inhibited via adenoviral-mediated overexpression of the natural FAK inhibitor FAK-related nonkinase (FRNK). Ad/FRNK had no effect on Pyk2 expression, inhibited the PDGF-BB-induced migration, but did not change the PDGF-BB-induced proliferation. FAK deficiency had only modest effects on increasing PDGF-BB activation of p38 and JNK MAPKs, with no alteration in the ERK response vs. control cells. These results demonstrate that FAK is required for the PDGF-BB-induced migratory response of adult mouse CFs and suggest that FAK could play an essential role in the wound-healing response that occurs in numerous cardiac pathologies.
Collapse
Affiliation(s)
- Ana Maria Manso
- Department of Medicine, University of California-San Diego School of Medicine, La Jolla, California, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Park J, Lee MS, Yoo SM, Seo T. A novel protein encoded by Kaposi's sarcoma-associated herpesvirus open reading frame 36 inhibits cell spreading and focal adhesion kinase activation. Intervirology 2008; 50:426-32. [PMID: 18182822 DOI: 10.1159/000112949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 11/13/2007] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Kaposi's sarcoma-associated herpesvirus (KSHV) is a gamma-herpesvirus implicated in the development of Kaposi's sarcoma, primary effusion lymphoma and some forms of multicentric Castleman's disease. The KSHV open reading frame (ORF) 36 encodes a viral serine/threonine protein kinase. The aim of this study was to characterize the cellular function of the ORF36 protein. METHODS The expression kinetics of the ORF36 protein and its localization were determined. The wild-type ORF36 and its mutant proteins were subjected to in vitro kinase assay. Cell morphology change by ORF36 protein was studied. The focal adhesion kinase (FAK) tyrosine phosphorylation and cleavage were determined when ORF36 was expressed. RESULTS ORF36 protein expressed in the late phase during the KSHV reactivation. The C-terminal domain of ORF36 protein was important for kinase activity. Moreover, the ORF36 protein altered cell morphology to a round shape, similar to the phenotype of FAK-deficient cells. The kinase activity of ORF36 protein was required for the inhibition of cell spreading. Interestingly, ORF36 protein colocalized with FAK, suppressed its tyrosine phosphorylation and promoted FAK cleavage. CONCLUSION Our results collectively demonstrate that the KSHV ORF36 protein is a viral protein kinase that inhibits cell spreading and FAK activation.
Collapse
Affiliation(s)
- Junsoo Park
- Korea Basic Science Institute, Gwangju, Korea
| | | | | | | |
Collapse
|
23
|
Charlesworth P, Komiyama NH, Grant SGN. Homozygous mutation of focal adhesion kinase in embryonic stem cell derived neurons: normal electrophysiological and morphological properties in vitro. BMC Neurosci 2006; 7:47. [PMID: 16768796 PMCID: PMC1538614 DOI: 10.1186/1471-2202-7-47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Accepted: 06/12/2006] [Indexed: 01/28/2023] Open
Abstract
Background Genetically manipulated embryonic stem (ES) cell derived neurons (ESNs) provide a powerful system with which to study the consequences of gene manipulation in mature, synaptically connected neurons in vitro. Here we report a study of focal adhesion kinase (FAK), which has been implicated in synapse formation and regulation of ion channels, using the ESN system to circumvent the embryonic lethality of homozygous FAK mutant mice. Results Mouse ES cells carrying homozygous null mutations (FAK-/-) were generated and differentiated in vitro into neurons. FAK-/- ESNs extended axons and dendrites and formed morphologically and electrophysiologically intact synapses. A detailed study of NMDA receptor gated currents and voltage sensitive calcium currents revealed no difference in their magnitude, or modulation by tyrosine kinases. Conclusion FAK does not have an obligatory role in neuronal differentiation, synapse formation or the expression of NMDA receptor or voltage-gated calcium currents under the conditions used in this study. The use of genetically modified ESNs has great potential for rapidly and effectively examining the consequences of neuronal gene manipulation and is complementary to mouse studies.
Collapse
Affiliation(s)
- P Charlesworth
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK
| | - NH Komiyama
- Centre for Neuroscience Research, University of Edinburgh, Edinburgh, UK
| | - SGN Grant
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
24
|
Essayem S, Kovacic-Milivojevic B, Baumbusch C, McDonagh S, Dolganov G, Howerton K, Larocque N, Mauro T, Ramirez A, Ramos DM, Fisher SJ, Jorcano JL, Beggs HE, Reichardt LF, Ilic D. Hair cycle and wound healing in mice with a keratinocyte-restricted deletion of FAK. Oncogene 2006; 25:1081-9. [PMID: 16247468 PMCID: PMC2710133 DOI: 10.1038/sj.onc.1209130] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Focal adhesion kinase (FAK) is a critical component in transducing signals downstream of both integrins and growth factor receptors. To determine how the loss of FAK affects the epidermis in vivo, we have generated a mouse model with a keratinocyte-restricted deletion of fak (FAKK5 KO mice). FAK(K5 KO) mice displayed three major phenotypes--irregularities of hair cycle, sebaceous glands hypoplasia, and a thinner epidermis--pointing to defects in the proliferative capacity of multipotent stem cells found in the bulge. FAK-null keratinocytes in conventional primary culture undergo massive apoptosis hindering further analyses, whereas the defects observed in vivo do not shorten the mouse lifespan. These results suggest that the structure and the signaling environment of the native tissue may overcome the lack of signaling through FAK. Our findings point to the importance of in vivo and three-dimensional in vitro models in analyses of cell migration, proliferation, and survival. Surprisingly, the difference between FAKloxP/+ and FAKK5 KO mice in wound closure was not statistically significant, suggesting that in vivo loss of FAK does not affect migration/proliferation of basal keratinocytes in the same way as it affects multipotent stem cells of the skin.
Collapse
Affiliation(s)
- S Essayem
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - B Kovacic-Milivojevic
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - C Baumbusch
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - S McDonagh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - G Dolganov
- Department of Pulmonary, University of California San Francisco, San Francisco, CA, USA
| | - K Howerton
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - N Larocque
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - T Mauro
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - A Ramirez
- Department of Epithelial Damage, Repair and Tissue Engineering Program, CIEMAT, Madrid, Spain
| | - DM Ramos
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - SJ Fisher
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| | - JL Jorcano
- Department of Epithelial Damage, Repair and Tissue Engineering Program, CIEMAT, Madrid, Spain
| | - HE Beggs
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - LF Reichardt
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - D Ilic
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
25
|
Hakuno D, Takahashi T, Lammerding J, Lee RT. Focal adhesion kinase signaling regulates cardiogenesis of embryonic stem cells. J Biol Chem 2005; 280:39534-44. [PMID: 16157602 DOI: 10.1074/jbc.m505575200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The signaling steps that induce cardiac differentiation in embryonic stem (ES) cells are incompletely understood. We examined the effect of adhesion signaling including Src and focal adhesion kinase (FAK) on cardiogenesis in mouse ES cells using alpha-myosin heavy chain promoter-driven enhanced green fluorescent protein or luciferase as reporters. Cardiac transcription factors including Nkx2.5 and Tbx5 mRNA were first expressed at day 4 in hanging drop embryoid bodies, and adhesion of embryoid bodies to surfaces at or before that day strongly inhibited differentiation of ES cells to cardiomyocytes. Since adhesion signaling could suppress cardiogenesis through Src kinases, embryoid bodies were exposed to the small molecule PP2, known as a Src family kinase inhibitor. PP2 during embryoid body adhesion dramatically increased cardiomyocyte differentiation and decreased mRNA expression of neuronal cellular adhesion molecule and alpha-fetoprotein, neuroectodermal, and endodermal markers, respectively. Surprisingly, although there was an interaction between Src and FAK in cardiogenesis, the procardiogenic effect of PP2 appeared incompletely explained by Src kinase inhibition, since another Src family kinase inhibitor, SU6656, failed to induce cardiogenesis. Instead, PP2 specifically inhibited adhesion-induced FAK phosphorylation. In ES cells stably expressing FAK-related nonkinase, which functions as a dominant negative FAK, cell migration from embryoid bodies was inhibited, whereas alpha-myosin heavy chain expression and myosin-stained cardiomyocytes were increased, suggesting that reducing cell motility may contribute to cardiogenesis. These data indicate that FAK is a key regulator of cardiogenesis in mouse ES cells and that FAK signaling within embryoid bodies can direct stem cell lineage commitment.
Collapse
Affiliation(s)
- Daihiko Hakuno
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
26
|
Tilghman RW, Slack-Davis JK, Sergina N, Martin KH, Iwanicki M, Hershey ED, Beggs HE, Reichardt LF, Parsons JT. Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J Cell Sci 2005; 118:2613-23. [PMID: 15914540 DOI: 10.1242/jcs.02380] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The process of cell migration is initiated by protrusion at the leading edge of the cell, the formation of peripheral adhesions, the exertion of force on these adhesions, and finally the release of the adhesions at the rear of the cell. Focal adhesion kinase (FAK) is intimately involved in the regulation of this process, although the precise mechanism(s) whereby FAK regulates cell migration is unclear. We have used two approaches to reduce FAK expression in fibroblasts. Treatment of cells with FAK-specific siRNAs substantially reduced FAK expression and inhibited the spreading of fibroblasts in serum-free conditions, but did not affect the rate of spreading in the presence of serum. In contrast with the wild-type cells, the FAK siRNA-treated cells exhibited multiple extensions during cell spreading. The extensions appeared to be inappropriately formed lamellipodia as evidenced by the localization of cortactin to lamellipodial structures and the inhibition of such structures by expression of dominant-negative Rac. The wild-type phenotype was restored by reexpressing wild-type FAK in the knockdown cells, but not by expression of FAK containing a point mutation at the autophosphorylation site (FAK Y397F). In wound-healing assays, FAK knockdown cells failed to form broad lamellipodia, instead forming multiple leading edges. Similar results were obtained using primary mouse embryo fibroblasts from FAK-flox mice in which Cre-mediated excision was used to ablate the expression of FAK. These data are consistent with a role for FAK in regulating the formation of a leading edge during cell migration by coordinating integrin signaling to direct the correct spatial activation of membrane protrusion.
Collapse
Affiliation(s)
- Robert W Tilghman
- Department of Microbiology, University of Virginia Health System, Charlottesville, 22908, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Orr AW, Pallero MA, Xiong WC, Murphy-Ullrich JE. Thrombospondin Induces RhoA Inactivation through FAK-dependent Signaling to Stimulate Focal Adhesion Disassembly. J Biol Chem 2004; 279:48983-92. [PMID: 15371459 DOI: 10.1074/jbc.m404881200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells utilize dynamic interactions with the extracellular matrix to adapt to changing environmental conditions. Thrombospondin 1 (TSP1) induces focal adhesion disassembly and cell migration through a sequence (hep I) in its heparin-binding domain signaling through the calreticulin-low density lipoprotein receptor-related protein receptor complex. This involves the Galphai-dependent activation of ERK and phosphoinositide (PI) 3-kinase, both of which are required for focal adhesion disassembly. Focal adhesion kinase (FAK) regulates adhesion dynamics, acting in part by modulating RhoA activity, and FAK is implicated in ERK and PI 3-kinase activation. In this work, we sought to determine the role of FAK in TSP1-induced focal adhesion disassembly. TSP1/hep I does not stimulate focal adhesion disassembly in FAK knockout fibroblasts, whereas re-expressing FAK rescues responsiveness. Inhibiting FAK signaling through FRNK or FAK Y397F expression in endothelial cells also abrogates this response. TSP1/hep I stimulates a transient increase in FAK phosphorylation that requires calreticulin and Galphai, but not ERK or PI 3-kinase. Hep I does not activate ERK or PI 3-kinase in FAK knockout fibroblasts, suggesting activation occurs downstream of FAK. TSP1/hep I stimulates RhoA inactivation with kinetics corresponding to focal adhesion disassembly in a FAK, ERK, and PI 3-kinase-dependent manner. Furthermore, hep I does not stimulate focal adhesion disassembly in cells expressing constitutively active RhoA, suggesting that RhoA inactivation is required for this response. This is the first work to illustrate a connection between FAK phosphorylation in response to a soluble factor and RhoA inactivation, as well as the first report of PI 3-kinase and ERK in FAK regulation of RhoA activity.
Collapse
Affiliation(s)
- Anthony Wayne Orr
- Department of Pathology, Division of Molecular and Cellular Pathology and the Cell Adhesion and Matrix Research Center, University of Alabama, Birmingham, Alabama 35294-9340, USA
| | | | | | | |
Collapse
|
28
|
Lunn JA, Rozengurt E. Hyperosmotic stress induces rapid focal adhesion kinase phosphorylation at tyrosines 397 and 577. Role of Src family kinases and Rho family GTPases. J Biol Chem 2004; 279:45266-78. [PMID: 15302877 DOI: 10.1074/jbc.m314132200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperosmotic stress induced by treatment of Swiss 3T3 cells with the non-permeant solutes sucrose or sorbitol, rapidly and robustly stimulated endogenous focal adhesion kinase (FAK) phosphorylation at Tyr-397, the major autophosphorylation site, and at Tyr-577, within the kinase activation loop. Hyperosmotic stress-stimulated FAK phosphorylation at Tyr-397 occurred via a Src-independent pathway, whereas Tyr-577 phosphorylation was completely blocked by exposure to the Src family kinase inhibitor PP-2. Inhibition of p38 MAP kinase or phosphatidylinositol 3-kinases did not prevent FAK phosphorylation stimulated by hyperosmotic stress. Overexpression of N17 RhoA did not reduce hyperosmotic stress-mediated localization of phosphorylated FAK to focal contacts and treatment with the Rho-associated kinase inhibitor Y-27632 did not prevent FAK translocation and tyrosine phosphorylation in response to hyperosmotic stress. Overexpression of N17 Rac only slightly altered the hyperosmotic stress-mediated localization of phosphorylated FAK to focal contacts. In contrast, overexpression of the N17 mutant of Cdc42 disrupted hyperosmotic stress-stimulated FAK Tyr-397 localization to focal contacts. Additionally, treatment of cells with Clostridium difficile toxin B potently inhibited hyperosmotic stress-induced FAK tyrosine phosphorylation. Furthermore, FAK null fibroblasts compared with their FAK containing controls show markedly increased sensitivity, manifest by subsequent apoptosis, to sustained hyperosmotic stress. Our results indicate that FAK plays a fundamental role in protecting cells from hyperosmotic stress, and that the pathway(s) that mediates FAK autophosphorylation at Tyr-397 in response to osmotic stress can be distinguished from the pathways utilized by many other stimuli, including neuropeptides and bioactive lipids (Rho- and Rho-associated kinase-dependent), tyrosine kinase receptor agonists (phosphatidylinositol 3-kinase-dependent), and integrins (Src-dependent).
Collapse
Affiliation(s)
- J Adrian Lunn
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, UCLA-CURE, Digestive Diseases Research Center and Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | |
Collapse
|
29
|
Schlaepfer DD, Mitra SK, Ilic D. Control of motile and invasive cell phenotypes by focal adhesion kinase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:77-102. [PMID: 15246681 DOI: 10.1016/j.bbamcr.2004.04.008] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 04/08/2004] [Indexed: 01/09/2023]
Abstract
Cell motility is stimulated by extracellular stimuli and initiated by intracellular signaling proteins that localize to sites of cell contact with the extracellular matrix termed focal contacts. Focal adhesion kinase (FAK) is an intracellular protein-tyrosine kinase (PTK) that acts to regulate the cycle of focal contact formation and disassembly required for efficient cell movement. FAK is activated by a variety of cell surface receptors and transmits signals to a range of targets. Thus, FAK acts as an integrator of cell motility-associated signaling events. We will review the stimulatory and regulatory mechanisms of FAK activation, the different signaling connections of FAK that are mediated by a growing number of FAK-interacting proteins, and the modulation of FAK function by tyrosine and serine phosphorylation. We will also summarize findings with regard to FAK function in vertebrate and invertebrate development as well as recent insights into the mechanistic role(s) of FAK in promoting cell migration. As increased FAK expression and tyrosine phosphorylation have been correlated with the progression to an invasive cell phenotype, there is growing interest in elucidating the important FAK-related signaling connections promoting invasive tumor cell movement. To this end, we will discuss the effects of FAK inhibition via the dominant-negative expression of the FAK C-terminal domain termed FAK-related non-kinase (FRNK) and how these studies have uncovered a distinct role for FAK in promoting cell invasion that may differ from its role in promoting cell motility.
Collapse
Affiliation(s)
- David D Schlaepfer
- Department of Immunology, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
30
|
Vial D, Oliver C, Jamur MC, Pastor MVD, da Silva Trindade E, Berenstein E, Zhang J, Siraganian RP. Alterations in Granule Matrix and Cell Surface of Focal Adhesion Kinase-Deficient Mast Cells. THE JOURNAL OF IMMUNOLOGY 2003; 171:6178-86. [PMID: 14634134 DOI: 10.4049/jimmunol.171.11.6178] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor protein tyrosine kinase that plays an important role in many cellular processes and is tyrosine phosphorylated after FcepsilonRI aggregation in mast cells. In mice, null mutation of the fak gene results in a lethal phenotype in which the embryos fail to develop past day 8.5 of gestation. To study the role of FAK in these mast cells, 8.5-day embryos were isolated and placed in culture with IL-3 and stem cell factor (SCF). Although FAK was not required for the development of mast cells in culture, the FAK(-/-) embryo-derived mast cells had several distinct characteristics. Compared with the controls, the mast cells that lack FAK were less metachromatic and by electron microscopy had granules that appeared largely electron lucid, although their histamine content was unchanged. The FAK-deficient mast cells had a reduction in the content of chondroitin/dermatan sulfate, the major glycosaminoglycan component of the granular matrix. The FAK-deficient cells had fewer microvilli that were fused with each other, giving the cell surface a ruffled appearance. There was also a 3-fold increase in the number of cells highly expressing beta(7) integrin. However, signal transduction from the high affinity IgE receptor for the secretion of histamine was similar in the wild-type, heterozygote, and the FAK-deficient cells. The FcepsilonRI-induced tyrosine phosphorylation of paxillin, Crk-associated tyrosine kinase substrate (CAS), and mitogen-activated protein kinase proteins was independent of FAK. These results indicate that FAK plays a role in regulating the glycosaminoglycan content of the secretory granules and influences the cell surface morphology of mast cells.
Collapse
Affiliation(s)
- Daniel Vial
- Receptors and Signal Transduction Section, Oral Infection and Immunity Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ilic D, Kovacic B, McDonagh S, Jin F, Baumbusch C, Gardner DG, Damsky CH. Focal adhesion kinase is required for blood vessel morphogenesis. Circ Res 2003; 92:300-7. [PMID: 12595342 DOI: 10.1161/01.res.0000055016.36679.23] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nonreceptor tyrosine kinase focal adhesion kinase (FAK) is a point of convergence for signals from extracellular matrix, soluble factors, and mechanical stimuli. Targeted disruption of the fak gene in mice leads to death at embryonic day 8.5 (E8.5). FAK-/- embryos have severely impaired blood vessel development. Gene expression and in vitro differentiation studies revealed that endothelial cell differentiation was comparable in FAK-/- and wild-type E8.5 embryos. We examined the role of FAK in blood vessel morphogenesis using an in vitro tubulogenesis assay and three different culture systems: FAK+/+ and FAK-/- embryoid bodies, FAK+/+ and FAK-/- endothelial cells, and human umbilical vein endothelial cells expressing antisense FAK, a dominant-negative fragment of FAK, or wild-type FAK. In all of these systems, endothelial cells deficient in FAK expression or function displayed a severely reduced ability to form tubules in Matrigel. These studies demonstrate clearly that the vascular defects in FAK-/- mice result from the inability of FAK-deficient endothelial cells to organize themselves into vascular networks, rather than from defects in tissue-specific differentiation.
Collapse
Affiliation(s)
- Dusko Ilic
- Department of Stomatology, University of California San Francisco, San Francisco, Calif 94143-0512, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Rigacci S, Rovida E, Dello Sbarba P, Berti A. Low Mr phosphotyrosine protein phosphatase associates and dephosphorylates p125 focal adhesion kinase, interfering with cell motility and spreading. J Biol Chem 2002; 277:41631-6. [PMID: 12055185 DOI: 10.1074/jbc.m201709200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Low M(r) phosphotyrosine protein phosphatase interferes in vivo with the activation of several growth factor receptors and is transiently redistributed, following cell stimulation with platelet-derived growth factor, from the cytosol to the cytoskeleton. We demonstrate here that this phosphatase also participates in the regulation of cell spreading and migration, pointing to its involvement in cytoskeleton organization. Low M(r) phosphotyrosine protein phosphatase-overexpressing fibroblasts are, indeed, less spread than controls and display a significantly decreased number of focal adhesions and increased cell motility. Furthermore, p125 focal adhesion kinase is associated to, and dephosphorylated by, low M(r) phosphotyrosine protein phosphatase both in vitro and in vivo. This event is consistent with an altered association of pp60(src) with focal adhesion kinase. The activation of extracellular signal-regulated kinase, another well known event downstream of the focal adhesion kinase, is also affected. On the other hand, cells overexpressing the dominant-negative form of low M(r) phosphotyrosine protein phosphatase exhibit hyperphosphorylated focal adhesion kinase, reduced motility, and an increased number of focal adhesions, which are distributed all over the ventral cell surface. Taken together, the results reported here are in keeping with low M(r) phosphotyrosine protein phosphatase participation in FAK-mediated focal adhesion remodeling.
Collapse
Affiliation(s)
- Stefania Rigacci
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, Italy
| | | | | | | |
Collapse
|
33
|
Gu JL, Müller S, Mancino V, Offermanns S, Simon MI. Interaction of G alpha(12) with G alpha(13) and G alpha(q) signaling pathways. Proc Natl Acad Sci U S A 2002; 99:9352-7. [PMID: 12077299 PMCID: PMC123144 DOI: 10.1073/pnas.102291599] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The G(12) subfamily of heterotrimeric G-proteins consists of two members, G(12) and G(13). Gene-targeting studies have revealed a role for G(13) in blood vessel development. Mice lacking the alpha subunit of G(13) die around embryonic day 10 as the result of an angiogenic defect. On the other hand, the physiological role of G(12) is still unclear. To address this issue, we generated G alpha(12)-deficient mice. In contrast to the G alpha(13)-deficient mice, G alpha(12)-deficient mice are viable, fertile, and do not show apparent abnormalities. However, G alpha(12) does not seem to be entirely redundant, because in the offspring generated from G alpha(12)+/- G alpha(13)+/- intercrosses, at least one intact G alpha(12) allele is required for the survival of animals with only one G alpha(13) allele. In addition, G alpha(12) and G alpha(13) showed a difference in mediating cell migratory response to lysophosphatidic acid in embryonic fibroblast cells. Furthermore, mice lacking both G alpha(12) and G alpha(q) die in utero at about embryonic day 13. These data indicate that the G alpha(12)-mediated signaling pathway functionally interacts not only with the G alpha(13)- but also with the G alpha(q/11)-mediated signaling systems.
Collapse
Affiliation(s)
- Jennifer L Gu
- Division of Biology, 147-75 California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
34
|
Schratt G, Philippar U, Berger J, Schwarz H, Heidenreich O, Nordheim A. Serum response factor is crucial for actin cytoskeletal organization and focal adhesion assembly in embryonic stem cells. J Cell Biol 2002; 156:737-50. [PMID: 11839767 PMCID: PMC2174087 DOI: 10.1083/jcb.200106008] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of serum response factor (SRF), an essential transcription factor in mouse gastrulation, is regulated by changes in actin dynamics. Using Srf(-/-) embryonic stem (ES) cells, we demonstrate that SRF deficiency causes impairments in ES cell spreading, adhesion, and migration. These defects correlate with defective formation of cytoskeletal structures, namely actin stress fibers and focal adhesion (FA) plaques. The FA proteins FA kinase (FAK), beta1-integrin, talin, zyxin, and vinculin were downregulated and/or mislocalized in ES cells lacking SRF, leading to inefficient activation of the FA signaling kinase FAK. Reduced overall actin expression levels in Srf(-/-) ES cells were accompanied by an offset treadmilling equilibrium, resulting in lowered F-actin levels. Expression of active RhoA-V14 rescued F-actin synthesis but not stress fiber formation. Introduction of constitutively active SRF-VP16 into Srf(-/-) ES cells, on the other hand, strongly induced expression of FA components and F-actin synthesis, leading to a dramatic reorganization of actin filaments into stress fibers and lamellipodia. Thus, using ES cell genetics, we demonstrate for the first time the importance of SRF for the formation of actin-directed cytoskeletal structures that determine cell spreading, adhesion, and migration. Our findings suggest an involvement of SRF in cell migratory processes in multicellular organisms.
Collapse
Affiliation(s)
- Gerhard Schratt
- Interfakultäres Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Kimura C, Shen MM, Takeda N, Aizawa S, Matsuo I. Complementary functions of Otx2 and Cripto in initial patterning of mouse epiblast. Dev Biol 2001; 235:12-32. [PMID: 11412024 DOI: 10.1006/dbio.2001.0289] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of the mammalian antero-posterior (A-P) axis is proposed to be established by distinct anterior and posterior signaling centers, anterior visceral endoderm and primitive streak, respectively. Knock-out studies in mice have shown that Otx2 and Cripto have crucial roles in the generation and/or functions of these anterior and posterior centers, respectively. In both Otx2 and Cripto single mutants, the initial formation of the A-P axis takes place in a proximal-distal (P-D) orientation, but subsequent axis rotation fails to occur. To examine the developmental consequences of the lack of these two genes, we have analyzed the Otx2(-/-);Cripto(-/-) double homozygous mutant phenotype. In the double mutants, the expression of the A-P axis markers Cer-l, Lim1, and Wnt3 was not induced, while expression of Fgf8 and T was expanded throughout the epiblast, indicating that the double mutants could not form the A-P axis even in its initial P-D orientation. In addition, the double mutants displayed defects in differentiation of the visceral endoderm overlying the epiblast, as well as in the extraembryonic ectoderm. Furthermore, differentiation of neuroectoderm was accelerated as judged by the reduction of Oct4 expression and emergence of Sox1 and Gbx2 expression in the double mutant epiblast. The resulting ectoderm only displayed characteristics of anterior hindbrain, implicating it as a ground state in the mammalian body plan. Our results indicate that complementary functions of Otx2 and Cripto are essential for initial patterning of the A-P axis in the mouse embryo.
Collapse
Affiliation(s)
- C Kimura
- Department of Morphogenesis, Division of Transgenic Technology, Vertebrate Body Plan Group, Institute of Molecular Embryology and Genetics, Center for Animal Resources and Development , Honjo 2-2-1, Kumamoto, 860-0811, Japan
| | | | | | | | | |
Collapse
|
36
|
Martens HJ, Geenen V. Focal adhesion kinases: interest in immunoendocrinology, developmental biology, and cancer. Endocrine 2000; 13:233-42. [PMID: 11216633 DOI: 10.1385/endo:13:3:233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2000] [Revised: 05/01/2000] [Accepted: 05/10/2000] [Indexed: 12/27/2022]
Abstract
The research field on focal adhesion-related kinases started a decade ago, but the term focal adhesion was introduced for the first time nearly 20 yr before. Since its identification, many studies have enlightened the role of the first intermediate of focal adhesion-related signals in a large number of biologic and physiologic processes. In this review, we try to integrate the most recent data about the known focal adhesion-related kinases, and we focus on three topics in which they deserve great interest: neuroendocrine-immune interactions, developmental biology, and proliferative diseases.
Collapse
Affiliation(s)
- H J Martens
- Department of Medicine, Institute of Pathology, University of Liege, Liege-Sart Tilman, Belgium.
| | | |
Collapse
|
37
|
Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:435-78. [PMID: 10354709 DOI: 10.1016/s0079-6107(98)00052-2] [Citation(s) in RCA: 940] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrin receptor binding to extracellular matrix proteins generates intracellular signals via enhanced tyrosine phosphorylation events that are important for cell growth, survival, and migration. This review will focus on the functions of the focal adhesion kinase (FAK) protein-tyrosine kinase (PTK) and its role in linking integrin receptors to intracellular signaling pathways. FAK associates with several different signaling proteins such as Src-family PTKs, p130Cas, Shc, Grb2, PI 3-kinase, and paxillin. This enables FAK to function within a network of integrin-stimulated signaling pathways leading to the activation of targets such as the ERK and JNK/mitogen-activated protein kinase pathways. Focus will be placed on the structural domains and sites of FAK tyrosine phosphorylation important for FAK-mediated signaling events and how these sites are conserved in the FAK-related PTK, Pyk2. We will review what is known about FAK activation by integrin receptor-mediated events and also non-integrin stimuli. In addition, we discuss the emergence of a consensus FAK substrate phosphorylation sequence. Emphasis will also be placed on the role of FAK in generating cell survival signals and the cleavage of FAK during caspase-mediated apoptosis. An in-depth discussion will be presented of integrin-stimulated signaling events occurring in the FAK knockout fibroblasts (FAK-) and how these cells exhibit deficits in cell migration. FAK re-expression in the FAK- cells confirms the role of this PTK in the regulation of cell morphology and in promoting cell migration events. In addition, these results reinforce the potential role for FAK in promoting an invasive phenotype in human tumors.
Collapse
Affiliation(s)
- D D Schlaepfer
- Scripps Research Institute, Department of Immunology, La Jolla, CA 92037, USA.
| | | | | |
Collapse
|
38
|
Abstract
Pluripotent mouse embryonic stem (ES) cell lines have provided a means to analyze gene function in development via gene targeting. At the same time, they provide an opportunity to directly probe gene function by assessing the in vitro differentiation capacity of the ES cells themselves. In addition to providing direct data on lineage decisions not accessible in the complex three-dimensional milieu of the early mouse embryo, controlled differentiation of ES into specific lineages may provide a source of cells for transplantation and gene therapy.
Collapse
Affiliation(s)
- K S O'Shea
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616, USA.
| |
Collapse
|
39
|
Suda Y, Nakabayashi J, Matsuo I, Aizawa S. Functional equivalency between Otx2 and Otx1 in development of the rostral head. Development 1999; 126:743-57. [PMID: 9895322 DOI: 10.1242/dev.126.4.743] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mice have two Otx genes, Otx1 and Otx2. Prior to gastrulation, Otx2 is expressed in the epiblast and visceral endoderm. As the primitive streak forms, Otx2 expression is restricted to the anterior parts of all three germ layers. Otx1 expression begins at the 1 to 3 somite stage in the anterior neuroectoderm. Otx2 is also expressed in cephalic mesenchyme. Otx2 homozygous mutants fail to develop structures anterior to rhombomere 3 (r3), and Otx2 heterozygotes exhibit craniofacial defects. Otx1 homozygous mutants do not show apparent defects in early brain development. In Otx1 and Otx2 double heterozygotes, rostral neuroectoderm is induced normally, but development of the mes/diencephalic domain is impaired starting at around the 3 to 6 somite stage, suggesting cooperative interactions between the two genes in brain regionalization. To determine whether Otx1 and Otx2 genes are functionally equivalent, we generated knock-in mice in which Otx2 was replaced by Otx1. In homozygous mutants, gastrulation occurred normally, and rostral neuroectoderm was induced at 7.5 days postcoitus (7.5 dpc), but the rostral brain failed to develop. Anterior structures such as eyes and the anterior neural ridge were lost by 8.5 dpc, but the isthmus and r1 and r2 were formed. In regionalization of the rostral neuroectoderm, the cooperative interaction of Otx2 with Otx1 revealed by the phenotype of Otx2 and Otx1 double heterozygotes was substitutable by Otx1. The otocephalic phenotype indicative of Otx2 haploinsufficiency was also largely restored by knocked-in Otx1. Thus most Otx2 functions were replaceable by Otx1, but the requirement for Otx2 in the anterior neuroectoderm prior to onset of Otx1 expression was not. These data indicate that Otx2 may have evolved new functions required for establishment of anterior neuroectoderm that Otx1 cannot perform.
Collapse
Affiliation(s)
- Y Suda
- Department of Morphogenesis, Institute of Molecular Embryology and Genetics, Department of Psychiatry, Kumamoto University School of Medicine, Kumamoto-860, Japan
| | | | | | | |
Collapse
|
40
|
Ilić D, Almeida EA, Schlaepfer DD, Dazin P, Aizawa S, Damsky CH. Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 1998; 143:547-60. [PMID: 9786962 PMCID: PMC2132850 DOI: 10.1083/jcb.143.2.547] [Citation(s) in RCA: 376] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1998] [Revised: 09/03/1998] [Indexed: 11/22/2022] Open
Abstract
In many malignant cells, both the anchorage requirement for survival and the function of the p53 tumor suppressor gene are subverted. These effects are consistent with the hypothesis that survival signals from extracellular matrix (ECM) suppress a p53-regulated cell death pathway. We report that survival signals from fibronectin are transduced by the focal adhesion kinase (FAK). If FAK or the correct ECM is absent, cells enter apoptosis through a p53-dependent pathway activated by protein kinase C lambda/iota and cytosolic phospholipase A2. This pathway is suppressible by dominant-negative p53 and Bcl2 but not CrmA. Upon inactivation of p53, cells survive even if they lack matrix signals or FAK. This is the first report that p53 monitors survival signals from ECM/FAK in anchorage- dependent cells.
Collapse
Affiliation(s)
- D Ilić
- Departments of Stomatology and Anatomy, University of California San Francisco, San Francisco, California 94143-0512, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ilić D, Damsky CH, Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. J Cell Sci 1997; 110 ( Pt 4):401-7. [PMID: 9067592 DOI: 10.1242/jcs.110.4.401] [Citation(s) in RCA: 201] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Morphogenetic processes during development, including cell migration, depend on signals from both the extracellular matrix (ECM) and soluble signaling factors. Extensive evidence has shown that the nonreceptor tyrosine kinase, focal adhesion kinase (FAK), is activated in response to both kind of signal. The most definitive evidence that FAK is directly downstream of signals initiated by the ECM comes from comparing the phenotypes of mice deficient for FAK and the ECM molecule, fibronectin: in both cases embryos die at about E8.5 and display almost identical severe vascular and other mesodermal defects. It is now clear that there are additional FAK-like proteins, indicating the existence of a FAK family. Furthermore, FAK is not located at adhesive sites in all cells where it is expressed. This, plus extensive data indicating that FAK becomes activated in response to several soluble signaling factors, suggests that the FAK family may be at the crossroads of multiple signaling pathways that affect cell and developmental processes.
Collapse
Affiliation(s)
- D Ilić
- Department of Oncology, Institute of Medical Science, Tokyo University, Minato-ku, Japan
| | | | | |
Collapse
|
42
|
Yoshida M, Suda Y, Matsuo I, Miyamoto N, Takeda N, Kuratani S, Aizawa S. Emx1 and Emx2 functions in development of dorsal telencephalon. Development 1997; 124:101-11. [PMID: 9006071 DOI: 10.1242/dev.124.1.101] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes Emx1 and Emx2 are mouse cognates of a Drosophila head gap gene, empty spiracles, and their expression patterns have suggested their involvement in regional patterning of the forebrain. To define their functions we introduced mutations into these loci. The newborn Emx2 mutants displayed defects in archipallium structures that are believed to play essential roles in learning, memory and behavior: the dentate gyrus was missing, and the hippocampus and medial limbic cortex were greatly reduced in size. In contrast, defects were subtle in adult Emx1 mutant brain. In the early developing Emx2 mutant forebrain, the evagination of cerebral hemispheres was reduced and the roof between the hemispheres was expanded, suggesting the lateral shift of its boundary. Defects were not apparent, however, in the region where Emx1 expression overlaps that of Emx2, nor was any defect found in the early embryonic forebrain caused by mutation of the Emx1 gene, of which expression principally occurs within the Emx2-positive region. Emx2 most likely delineates the palliochoroidal boundary in the absence of Emx1 expression during early dorsal forebrain patterning. In the more lateral region of telencephalon, Emx2-deficiency may be compensated for by Emx1 and vice versa. Phenotypes of newborn brains also suggest that these genes function in neurogenesis corresponding to their later expressions.
Collapse
Affiliation(s)
- M Yoshida
- Department of Morphogenesis, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Tani T, von Koskull H, Virtanen I. Focal adhesion kinase pp125FAK is associated with both intercellular junctions and matrix adhesion sites in vivo. Histochem Cell Biol 1996; 105:17-25. [PMID: 8824902 DOI: 10.1007/bf01450874] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have characterized pp125FAK as a focal adhesion (FA)-associated non-receptor tyrosine kinase. However, there are few data available on the expression and localization of this kinase in tissues. In this study we show that in human tissues the highest expression of pp125FAK is found in some developing epithelia, where pp125FAK is associated with either intercellular junctions or with sites of adhesion to the basement membrane, whereas the same adult tissues show only a faint reactivity. Connective tissue cells do not show any reactivity for pp125FAK in vivo, but developing arterial smooth muscle expresses pp125FAK at high levels. The expression pattern in malignant tissues is variable, but most carcinomas do not express this kinase. In primary cultures of human amnion epithelial cells pp125FAK first becomes associated with the polarized adhesion lamellae, but is subsequently translocated to the forming adherens junctions (AJs). Later upon culturing pp125FAK becomes associated with prominent FAs, as in cultured cell lines. Taken together, our results suggest that the association of pp125FAK with FAs in cultured cells is principally due to a process of adaptation, whereas in vivo pp125FAK mainly functions as a regulatory component of intercellular AJs and cell-matrix adhesions of developing epithelia and also in developing arterial smooth muscle.
Collapse
Affiliation(s)
- T Tani
- Department of Anatomy, University of Helsinki, Finland
| | | | | |
Collapse
|
44
|
Ilić D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N, Nomura S, Fujimoto J, Okada M, Yamamoto T. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377:539-44. [PMID: 7566154 DOI: 10.1038/377539a0] [Citation(s) in RCA: 1372] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The intracellular protein tyrosine kinase FAK (focal adhesion kinase) was originally identified gy its high level of tyrosine phosphorylation in v-src-transformed cells. FAK is also highly phosphorylated during early development. In cultured cells it is localized to focal adhesion contacts and becomes phosphorylated and activated in response to integrin-mediated binding of cells to the extracellular matrix, suggesting an important role in cell adhesion and/or migration. We have generated FAK-deficient mice by gene targeting to examine the role of FAK during development. Mutant embryos displayed a general defect of mesoderm development, and cells from these embryos had reduced mobility in vitro. Surprisingly, the number of focal adhesions was increased in FAK-deficient cells, suggesting that FAK may be involved in the turnover of focal adhesion contacts during cell migration.
Collapse
Affiliation(s)
- D Ilić
- Department of Morphogenesis, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|