1
|
Jankowski WM, Fichna J, Tarasiuk-Zawadzka A. Molecular mechanisms and pathophysiological implications of mucin-type O-glycosylation dysregulation in colorectal cancer progression. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04181-0. [PMID: 40257491 DOI: 10.1007/s00210-025-04181-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 04/12/2025] [Indexed: 04/22/2025]
Abstract
Colorectal cancer (CRC) is among the most prevalent malignancies globally, with 1.9 million new cases annually. While CRC pathogenesis has been widely attributed to the adenoma-carcinoma and serrated sequences, our study highlights the critical and multifaceted role of O-glycosylation impairment in this malignancy. Mucin-type O-glycosylation, a key post-translational modification, exerts significant effects on tumor cells, impacting their proliferation, migration, and invasiveness. Additionally, its influence on the immune response to CRC presents novel perspectives for potential therapeutic interventions. The authors conducted a systematic literature review following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, using databases such as Google Scholar, PubMed, and Scopus. In this article, we provide a comprehensive analysis of the mechanisms underlying mucin-type O-glycosylation disruption in CRC and examine how these mechanisms could serve as biomarkers for early diagnosis and personalized treatment strategies. Our findings contribute to a more detailed understanding of CRC pathogenesis and offer promising directions for innovative diagnostic and therapeutic approaches, which in the future may lead to improved patient prognosis.
Collapse
Affiliation(s)
- Wojciech Michał Jankowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92 - 215, Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92 - 215, Lodz, Poland
| | - Aleksandra Tarasiuk-Zawadzka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Mazowiecka 5, 92 - 215, Lodz, Poland.
| |
Collapse
|
2
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
3
|
Dong Z, Zhang X, Zhang Q, Tangthianchaichana J, Guo M, Du S, Lu Y. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Int J Nanomedicine 2024; 19:1017-1039. [PMID: 38317847 PMCID: PMC10840538 DOI: 10.2147/ijn.s445333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Traditional chemotherapy is one of the main methods of cancer treatment, which is largely limited by severe side effects and frequent development of multi-drug resistance by cancer cells. Antimicrobial peptides (AMPs) with high efficiency and low toxicity, as one of the most promising new drugs to replace chemoradiotherapy, have become a current research hotspot, attracting the attention of worldwide researchers. AMPs are natural-source small peptides from the innate immune system, and certain AMPs can selectively kill a broad spectrum of cancer cells while exhibiting less damage to normal cells. Although it involves intracellular mechanisms, AMPs exert their anti-cancer effects mainly through membrane destruction effect; thus, AMPs also hold unique advantages in fighting drug-resistant cancer cells. However, the poor stability and hemolytic toxicity of peptides limit their clinical application. Fortunately, functionalized nanoparticles have many possibilities in overcoming the shortcomings of AMPs, which provides a huge prospect for better application of AMPs. In this paper, we briefly introduce the characteristics and different sources of AMPs, review and summarize the mechanisms of action and the research status of AMPs used as an anticancer therapy, and finally focus on the further use of AMPs nano agents in the anti-cancer direction.
Collapse
Affiliation(s)
- Ziyi Dong
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Research and Development Centre in Beijing, CSPC Pharmaceutical Group Limited, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qing Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jakkree Tangthianchaichana
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Mingxue Guo
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shouying Du
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Lu
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Liu Q, Wang L, He D, Wu Y, Liu X, Yang Y, Chen Z, Dong Z, Luo Y, Song Y. Application Value of Antimicrobial Peptides in Gastrointestinal Tumors. Int J Mol Sci 2023; 24:16718. [PMID: 38069041 PMCID: PMC10706433 DOI: 10.3390/ijms242316718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Gastrointestinal cancer is a common clinical malignant tumor disease that seriously endangers human health and lacks effective treatment methods. As part of the innate immune defense of many organisms, antimicrobial peptides not only have broad-spectrum antibacterial activity but also can specifically kill tumor cells. The positive charge of antimicrobial peptides under neutral conditions determines their high selectivity to tumor cells. In addition, antimicrobial peptides also have unique anticancer mechanisms, such as inducing apoptosis, autophagy, cell cycle arrest, membrane destruction, and inhibition of metastasis, which highlights the low drug resistance and high specificity of antimicrobial peptides. In this review, we summarize the related studies on antimicrobial peptides in the treatment of digestive tract tumors, mainly oral cancer, esophageal cancer, gastric cancer, liver cancer, pancreatic cancer, and colorectal cancer. This paper describes the therapeutic advantages of antimicrobial peptides due to their unique anticancer mechanisms. The length, net charge, and secondary structure of antimicrobial peptides can be modified by design or modification to further enhance their anticancer effects. In summary, as an emerging cancer treatment drug, antimicrobial peptides need to be further studied to realize their application in gastrointestinal cancer diseases.
Collapse
Affiliation(s)
- Qi Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Lei Wang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Dongxia He
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuewei Wu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xian Liu
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yahan Yang
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhizhi Chen
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhan Dong
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ying Luo
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuzhu Song
- College of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
- Medical College, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
5
|
Gholizadeh S, Jalili A, Mosaffa F, Jamialahmadi K. Brevinin-2R: Antimicrobial Peptide with Cytotoxic and Apoptogenic Activity Against Daunorubicin Resistant Gastric Cancer Cells. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
6
|
Expanding therapeutic strategies for intracellular bacterial infections through conjugates of apoptotic body-antimicrobial peptides. Drug Discov Today 2023; 28:103444. [PMID: 36400344 DOI: 10.1016/j.drudis.2022.103444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Macrophage intracellular infections are difficult to treat because conventional antibiotics tend to have poor penetration of mammalian cells. As a consequence, the immune response is affected and bacteria remain protected inside macrophages. The use of antimicrobial peptides (AMPs) is one of the alternatives developed as new treatments because of their broad spectrum of action. To improve drug delivery into the intracellular space, extracellular vesicles (EVs) have emerged as an innovative strategy for drug delivery. In particular, apoptotic bodies (ApoBDs) are EVs that exhibit attraction to macrophages, which makes them a promising means of improving AMP delivery to treat macrophage intracellular infections. Here, we review important aspects that should be taken into account when developing ApoBD-AMP conjugates.
Collapse
|
7
|
Nguyen T, Guo R, Chai J, Wu J, Liu J, Chen X, Abdel-Rahman MA, Xia H, Xu X. Smp24, a Scorpion-Venom Peptide, Exhibits Potent Antitumor Effects against Hepatoma HepG2 Cells via Multi-Mechanisms In Vivo and In Vitro. Toxins (Basel) 2022; 14:toxins14100717. [PMID: 36287985 PMCID: PMC9607800 DOI: 10.3390/toxins14100717] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Scorpion-venom-derived peptides have become a promising anticancer agent due to their cytotoxicity against tumor cells via multiple mechanisms. The suppressive effect of the cationic antimicrobial peptide Smp24, which is derived from the venom of ScorpioMaurus palmatus, on the proliferation of the hepatoma cell line HepG2 has been reported earlier. However, its mode of action against HepG2 hepatoma cells remains unclear. In the current research, Smp24 was discovered to suppress the viability of HepG2 cells while having a minor effect on normal LO2 cells. Moreover, endocytosis and pore formation were demonstrated to be involved in the uptake of Smp24 into HepG2 cells, which subsequently interacted with the mitochondrial membrane and caused the decrease in its potential, cytoskeleton reorganization, ROS accumulation, mitochondrial dysfunction, and alteration of apoptosis- and autophagy-related signaling pathways. The protecting activity of Smp24 in the HepG2 xenograft mice model was also demonstrated. Therefore, our data suggest that the antitumor effect of Smp24 is closely related to the induction of cell apoptosis, cycle arrest, and autophagy via cell membrane disruption and mitochondrial dysfunction, suggesting a potential alternative in hepatocellular carcinoma treatment.
Collapse
Affiliation(s)
- Tienthanh Nguyen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ruiyin Guo
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junfang Liu
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | | | - Hu Xia
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Correspondence: (H.X.); (X.X.); Tel.: +86-20-61648537 (X.X.)
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- Correspondence: (H.X.); (X.X.); Tel.: +86-20-61648537 (X.X.)
| |
Collapse
|
8
|
Zhao C, Yan S, Song Y, Xia X. Roles of Antimicrobial Peptides in Gynecological Cancers. Int J Mol Sci 2022; 23:ijms231710104. [PMID: 36077500 PMCID: PMC9456504 DOI: 10.3390/ijms231710104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides (AMPs) are essential components of the mucosal barrier of the female reproductive tract (FRT) and are involved in many important physiological processes, including shaping the microbiota and maintaining normal reproduction and pregnancy. Gynecological cancers seriously threaten women's health and bring a heavy burden to society so that new strategies are needed to deal with these diseases. Recent studies have suggested that AMPs also have a complex yet intriguing relationship with gynecological cancers. The expression level of AMPs changes during tumor progression and they may act as promising biomarkers in cancer detection and prognosis prediction. Although AMPs have long been considered as host protective, they actually play a "double-edged sword" role in gynecological cancers, either tumorigenic or antitumor, depending on factors such as AMP and cancer types, as well as AMP concentrations. Moreover, AMPs are associated with chemoresistance and regulation of AMPs' expression may alter sensitivity of cancer cells to chemotherapy. However, more work is needed, especially on the identification of molecular mechanisms of AMPs in the FRT, as well as the clinical application of these AMPs in detection, diagnosis and treatment of gynecological malignancies.
Collapse
|
9
|
Ramos-Martín F, D'Amelio N. Biomembrane lipids: When physics and chemistry join to shape biological activity. Biochimie 2022; 203:118-138. [PMID: 35926681 DOI: 10.1016/j.biochi.2022.07.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
Biomembranes constitute the first lines of defense of cells. While small molecules can often permeate cell walls in bacteria and plants, they are generally unable to penetrate the barrier constituted by the double layer of phospholipids, unless specific receptors or channels are present. Antimicrobial or cell-penetrating peptides are in fact highly specialized molecules able to bypass this barrier and even discriminate among different cell types. This capacity is made possible by the intrinsic properties of its phospholipids, their distribution between the internal and external leaflet, and their ability to mutually interact, modulating the membrane fluidity and the exposition of key headgroups. Although common phospholipids can be found in the membranes of most organisms, some are characteristic of specific cell types. Here, we review the properties of the most common lipids and describe how they interact with each other in biomembrane. We then discuss how their assembly in bilayers determines some key physical-chemical properties such as permeability, potential and phase status. Finally, we describe how the exposition of specific phospholipids determines the recognition of cell types by membrane-targeting molecules.
Collapse
Affiliation(s)
- Francisco Ramos-Martín
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| | - Nicola D'Amelio
- Unité de Génie Enzymatique et Cellulaire UMR 7025 CNRS, Université de Picardie Jules Verne, Amiens, 80039, France.
| |
Collapse
|
10
|
Ciesla J, Moreno I, Munger J. TNFα-induced metabolic reprogramming drives an intrinsic anti-viral state. PLoS Pathog 2022; 18:e1010722. [PMID: 35834576 PMCID: PMC9321404 DOI: 10.1371/journal.ppat.1010722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/26/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022] Open
Abstract
Cytokines induce an anti-viral state, yet many of the functional determinants responsible for limiting viral infection are poorly understood. Here, we find that TNFα induces significant metabolic remodeling that is critical for its anti-viral activity. Our data demonstrate that TNFα activates glycolysis through the induction of hexokinase 2 (HK2), the isoform predominantly expressed in muscle. Further, we show that glycolysis is broadly important for TNFα-mediated anti-viral defense, as its inhibition attenuates TNFα’s ability to limit the replication of evolutionarily divergent viruses. TNFα was also found to modulate the metabolism of UDP-sugars, which are essential precursor substrates for glycosylation. Our data indicate that TNFα increases the concentration of UDP-glucose, as well as the glucose-derived labeling of UDP-glucose and UDP-N-acetyl-glucosamine in a glycolytically-dependent manner. Glycolysis was also necessary for the TNFα-mediated accumulation of several glycosylated anti-viral proteins. Consistent with the importance of glucose-driven glycosylation, glycosyl-transferase inhibition attenuated TNFα’s ability to promote the anti-viral cell state. Collectively, our data indicate that cytokine-mediated metabolic remodeling is an essential component of the anti-viral response. Viral infection often activates a host cell’s intrinsic immune response resulting in the cellular secretion of cytokines, important host-defense molecules. These cytokines act on neighboring cells to make them less permissive to viral infection. Many of the mechanisms through which cytokines promote a less permissive cell state remain unclear. Our data indicate that treatment with the anti-viral cytokine TNFα induces substantial changes to cellular metabolic activity, including activating glucose metabolism. We find that these TNFα-induced metabolic changes are critical for TNFα to limit the replication of diverse viruses including Human Cytomegalovirus and two Coronaviruses, OC43 and SARS-CoV-2. Inhibition of glucose metabolism during TNFα treatment prevented the expression of a variety of known cellular anti-viral proteins. Collectively, our data indicate that cytokine-induced metabolic remodeling is an important component of TNFα’s ability to promote a less permissive cell state and raises further questions about the mechanisms through which specific cytokine-induced metabolic activities contribute to various aspects of anti-viral defense.
Collapse
Affiliation(s)
- Jessica Ciesla
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Isreal Moreno
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Joshua Munger
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
A Comprehensive Review on the Anticancer Potential of Bacteriocin: Preclinical and Clinical Studies. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10386-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Kumar N, Fazal S, Miyako E, Matsumura K, Rajan R. Avengers against cancer: A new era of nano-biomaterial-based therapeutics. MATERIALS TODAY 2021; 51:317-349. [DOI: 10.1016/j.mattod.2021.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
McKitrick TR, Bernard SM, Noll AJ, Collins BC, Goth CK, McQuillan AM, Heimburg-Molinaro J, Herrin BR, Wilson IA, Cooper MD, Cummings RD. Novel lamprey antibody recognizes terminal sulfated galactose epitopes on mammalian glycoproteins. Commun Biol 2021; 4:674. [PMID: 34083726 PMCID: PMC8175384 DOI: 10.1038/s42003-021-02199-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
The terminal galactose residues of N- and O-glycans in animal glycoproteins are often sialylated and/or fucosylated, but sulfation, such as 3-O-sulfated galactose (3-O-SGal), represents an additional, but poorly understood modification. To this end, we have developed a novel sea lamprey variable lymphocyte receptor (VLR) termed O6 to explore 3-O-SGal expression. O6 was engineered as a recombinant murine IgG chimera and its specificity and affinity to the 3-O-SGal epitope was defined using a variety of approaches, including glycan and glycoprotein microarray analyses, isothermal calorimetry, ligand-bound crystal structure, FACS, and immunohistochemistry of human tissue macroarrays. 3-O-SGal is expressed on N-glycans of many plasma and tissue glycoproteins, but recognition by O6 is often masked by sialic acid and thus exposed by treatment with neuraminidase. O6 recognizes many human tissues, consistent with expression of the cognate sulfotransferases (GAL3ST-2 and GAL3ST-3). The availability of O6 for exploring 3-O-SGal expression could lead to new biomarkers for disease and aid in understanding the functional roles of terminal modifications of glycans and relationships between terminal sulfation, sialylation and fucosylation.
Collapse
Affiliation(s)
- Tanya R McKitrick
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Steffen M Bernard
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander J Noll
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Enteric Disease Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - Bernard C Collins
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Christoffer K Goth
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alyssa M McQuillan
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jamie Heimburg-Molinaro
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Brantley R Herrin
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Acceleron Pharma, Boston, MA, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Fuchigami T, Chiga T, Yoshida S, Oba M, Fukushima Y, Inoue H, Matsuura A, Toriba A, Nakayama M. Synthesis and Characterization of Radiogallium-Labeled Cationic Amphiphilic Peptides as Tumor Imaging Agents. Cancers (Basel) 2021; 13:cancers13102388. [PMID: 34069243 PMCID: PMC8155856 DOI: 10.3390/cancers13102388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
SVS-1 is a cationic amphiphilic peptide (CAP) that exhibits a preferential cytotoxicity towards cancer cells over normal cells. In this study, we developed radiogallium-labeled SVS-1 (67Ga-NOTA-KV6), as well as two SVS-1 derivatives, with the repeating KV residues replaced by RV or HV (67Ga-NOTA-RV6 and 67Ga-NOTA-HV6). All three peptides showed high accumulation in epidermoid carcinoma KB cells (53-143% uptake/mg protein). Though 67Ga-NOTA-RV6 showed the highest uptake among the three CAPs, its uptake in 3T3-L1 fibroblasts was just as high, indicating a low selectivity. In contrast, the uptake of 67Ga-NOTA-KV6 and 67Ga-NOTA-HV6 into 3T3-L1 cells was significantly lower than that in KB cells. An endocytosis inhibition study suggested that the three 67Ga-NOTA-CAPs follow distinct pathways for internalization. In the biodistribution study, the tumor uptakes were found to be 4.46%, 4.76%, and 3.18% injected dose/g of tissue (% ID/g) for 67Ga-NOTA-KV6, 67Ga-NOTA-RV6, and 67Ga-NOTA-HV6, respectively, 30 min after administration. Though the radioactivity of these peptides in tumor tissue decreased gradually, 67Ga-NOTA-KV6, 67Ga-NOTA-RV6, and 67Ga-NOTA-HV6 reached high tumor/blood ratios (7.7, 8.0, and 3.8, respectively) and tumor/muscle ratios (5.0, 3.3, and 4.0, respectively) 120 min after administration. 67Ga-NOTA-HV6 showed a lower tumor uptake than the two other tracers, but it exhibited very low levels of uptake into peripheral organs. Overall, the replacement of lysine in SVS-1 with other basic amino acids significantly influenced its binding and internalization into cancer cells, as well as its in vivo pharmacokinetic profile. The high accessibility of these peptides to tumors and their ability to target the surface membranes of cancer cells make radiolabeled CAPs excellent candidates for use in tumor theranostics.
Collapse
Affiliation(s)
- Takeshi Fuchigami
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
- Correspondence: (T.F.); (M.N.); Tel.: +81-95-819-2442 (T.F.)
| | - Takeshi Chiga
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
| | - Sakura Yoshida
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
| | - Makoto Oba
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1–5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-0823, Japan;
| | - Yu Fukushima
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
| | - Hiromi Inoue
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
| | - Akari Matsuura
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
| | - Morio Nakayama
- Department of Hygienic Chemistry, Graduate School of Biomedical Sciences, Nagasaki University, 1–14 Bunkyo-machi, Nagasaki 852-8521, Japan; (T.C.); (S.Y.); (Y.F.); (H.I.); (A.M.); (A.T.)
- Correspondence: (T.F.); (M.N.); Tel.: +81-95-819-2442 (T.F.)
| |
Collapse
|
15
|
Fathizadeh H, Saffari M, Esmaeili D, Moniri R, Kafil HS. Bacteriocins: New Potential Therapeutic Candidates in Cancer Therapy. Curr Mol Med 2021; 21:211-220. [PMID: 33109060 DOI: 10.2174/1566524020999200817113730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 11/22/2022]
Abstract
Cancer is one of the most important disorders which is associated with high mortality and high costs of treatment for patients. Despite several efforts, finding, designing and developing, new therapeutic platforms in the treatment of cancer patients are still required. Utilization of microorganisms, particularly bacteria has emerged as new therapeutic approaches in the treatment of various cancers. Increasing data indicated that bacteria could be used in the production of a wide range of anti-cancer agents, including bacteriocins, antibiotics, peptides, enzymes, and toxins. Among these anti-cancer agents, bacteriocins have attractive properties, which make them powerful anti-cancer drugs. Multiple lines evidence indicated that several bacteriocins (i.e., colcins, nisins, pediocins, pyocins, and bovocins) via activation/inhibition different cellular and molecular signaling pathways are able to suppress tumor growth in various stages. Hence, identification and using various bacteriocins could lead to improve and introduce them to clinical practices. Here, we summarized various bacteriocins which could be employed as anti-cancer agents in the treatment of many cancers.
Collapse
Affiliation(s)
- Hadis Fathizadeh
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahmood Saffari
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems biology and poisonings institute, Baqiyatallah University of Medical sciences, Tehran, Iran
| | - Rezvan Moniri
- Department of Microbiology and immunology, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Samadi Kafil
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
16
|
Singh A, Malhotra S, Bimal D, Bouchet LM, Wedepohl S, Calderón M, Prasad AK. Synthesis, Self-Assembly, and Biological Activities of Pyrimidine-Based Cationic Amphiphiles. ACS OMEGA 2021; 6:103-112. [PMID: 33458463 PMCID: PMC7807463 DOI: 10.1021/acsomega.0c03623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 05/08/2023]
Abstract
Pyrimidine-based cationic amphiphiles (PCAms), i.e., di-trifluoroacetic acid salts of N1-[1'-(1″,3″-diglycinatoxy-propane-2″-yl)-1',2',3'-triazole-4'-yl]methyl-N3-alkylpyrimidines have been synthesized utilizing naturally occurring biocompatible precursors, like glycerol, glycine, and uracil/ thymine in good yields. Synthesized PCAms consist of a hydrophilic head group comprising TFA salt of glyceryl 1,3-diglycinate and hydrophobic tail comprising of C-7 and C-12 N3-alkylated uracil or thymine conjugated via a 4-methylene-1,2,3-triazolyl linker. The physicochemical properties of all PCAms, such as critical aggregation concentration, hydrodynamic diameter, shape, and zeta potential (surface charge) were analyzed. These PCAms were also evaluated for their anti-proliferative and anti-tubercular activities. One of the synthesized PCAm exhibited 4- to 75-fold more activity than first-line anti-tubercular drugs streptomycin and isoniazid, respectively, against the multidrug resistant clinical isolate 591 of Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Ankita Singh
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Shashwat Malhotra
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
- Kirori
Mal College, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Devla Bimal
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
| | - Lydia M. Bouchet
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Berlin 14195, Germany
| | - Stefanie Wedepohl
- Freie
Universität Berlin, Institute of
Chemistry and Biochemistry, Berlin 14195, Germany
| | - Marcelo Calderón
- POLYMAT
and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Bilbao 48013, Spain
| | - Ashok K Prasad
- Bioorganic
Laboratory, Department of Chemistry, University
of Delhi, Delhi 110007, India
- . Tel. +91-11-27662486
| |
Collapse
|
17
|
Chai KF, Voo AYH, Chen WN. Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Compr Rev Food Sci Food Saf 2020; 19:3825-3885. [PMID: 33337042 DOI: 10.1111/1541-4337.12651] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/03/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Bioactive peptides (BPs) are specific protein fragments that exert various beneficial effects on human bodies and ultimately influence health, depending on their structural properties and amino acid composition and sequences. By offering promising solutions to solve diverse health issues, the production, characterization, and applications of food-derived BPs have drawn great interest in the current literature and are of particular interest to the food and pharmaceutical industries. The microbial fermentation of protein from various sources is indubitably a novel way to produce BPs with numerous beneficial health effects. Apart from its lower cost as compared to enzymes, the BPs produced from microbial fermentation can be purified without further hydrolysis. Despite these features, current literature shows dearth of information on the BPs produced from food via microbial fermentation. Hence, there is a strong necessity to explore the BPs obtained from food fermentation for the development of commercial nutraceuticals and functional foods. As such, this review focuses on the production of BPs from different food sources, including the extensively studied milk and milk products, with emphasis on microbial fermentation. The structure-activity (antihypertensive, antioxidant, antimicrobial, opiate-like, anti-inflammatory, anticancer/antiproliferative, antithrombotic, hypolipidemic, hypocholesterolemic, and mineral binding) relationship, potential applications, future development, and challenges of BPs obtained from food fermentation are also discussed.
Collapse
Affiliation(s)
- Kong Fei Chai
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Amanda Ying Hui Voo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
18
|
Daba GM, Elkhateeb WA. Bacteriocins of lactic acid bacteria as biotechnological tools in food and pharmaceuticals: Current applications and future prospects. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101750] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Agrawal P, Bhagat D, Mahalwal M, Sharma N, Raghava GPS. AntiCP 2.0: an updated model for predicting anticancer peptides. Brief Bioinform 2020; 22:5881378. [PMID: 32770192 DOI: 10.1093/bib/bbaa153] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing use of therapeutic peptides for treating cancer has received considerable attention of the scientific community in the recent years. The present study describes the in silico model developed for predicting and designing anticancer peptides (ACPs). ACPs residue composition analysis show the preference of A, F, K, L and W. Positional preference analysis revealed that residues A, F and K are favored at N-terminus and residues L and K are preferred at C-terminus. Motif analysis revealed the presence of motifs like LAKLA, AKLAK, FAKL and LAKL in ACPs. Machine learning models were developed using various input features and implementing different machine learning classifiers on two datasets main and alternate dataset. In the case of main dataset, dipeptide composition based ETree classifier model achieved maximum Matthews correlation coefficient (MCC) of 0.51 and 0.83 area under receiver operating characteristics (AUROC) on the training dataset. In the case of alternate dataset, amino acid composition based ETree classifier performed best and achieved the highest MCC of 0.80 and AUROC of 0.97 on the training dataset. Five-fold cross-validation technique was implemented for model training and testing, and their performance was also evaluated on the validation dataset. Best models were implemented in the webserver AntiCP 2.0, which is freely available at https://webs.iiitd.edu.in/raghava/anticp2/. The webserver is compatible with multiple screens such as iPhone, iPad, laptop and android phones. The standalone version of the software is available at GitHub; docker-based container also developed.
Collapse
Affiliation(s)
- Piyush Agrawal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Dhruv Bhagat
- Indraprastha Institute of Information Technology, New Delhi, India
| | - Manish Mahalwal
- Indraprastha Institute of Information Technology, New Delhi, India
| | - Neelam Sharma
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
20
|
Pothuraju R, Krishn SR, Gautam SK, Pai P, Ganguly K, Chaudhary S, Rachagani S, Kaur S, Batra SK. Mechanistic and Functional Shades of Mucins and Associated Glycans in Colon Cancer. Cancers (Basel) 2020; 12:E649. [PMID: 32168759 PMCID: PMC7139953 DOI: 10.3390/cancers12030649] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Mucus serves as the chief protective barrier against pathogenic and mechanical insults in respiratory, gastrointestinal, and urogenital tracts. Altered mucin expression, the major component of mucus, in conjunction with differential glycosylation has been strongly associated with both benign and malignant pathologies of colon. Mucins and their associated glycans arbitrate their impact sterically as well as mechanically by altering molecular and microbial spectrum during pathogenesis. Mucin expression in normal and pathological conditions is regulated by nonspecific (dietary factors and gut microbiota) and specific (epigenetic and transcriptional) modulators. Further, recent studies highlight the impact of altering mucin glycome (cancer-associated carbohydrate antigens including Tn, Sialyl-Tn, Sialyl-Lew A, and Sialyl-Lewis X) on host immunomodulation, antitumor immunity, as well as gut microbiota. In light of emerging literature, the present review article digs into the impact of structural organization and of expressional and glycosylation alteration of mucin family members on benign and malignant pathologies of colorectal cancer.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Shailendra K. Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Priya Pai
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (R.P.); (S.R.K.); (S.K.G.); (P.P.); (K.G.); (S.C.); (S.R.); (S.K.)
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
21
|
Chen D, Zhou X, Chen X, Huang L, Xi X, Ma C, Zhou M, Wang L, Chen T. Evaluating the Bioactivity of a Novel Antimicrobial and Anticancer Peptide, Dermaseptin-PS4(Der-PS4), from the Skin Secretion of Phyllomedusa sauvagii. Molecules 2019; 24:molecules24162974. [PMID: 31426323 PMCID: PMC6719146 DOI: 10.3390/molecules24162974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
Dermaseptins belonging to a large family of cationic membrane-disruption antimicrobial peptides display extensive antibacterial and antiproliferative activities depending on a coil-to-helix transition and the specific structural parameters. Herein, a novel dermaseptin peptide named Der-PS4 was discovered from the skin secretion of the waxy monkey tree frog, Phyllomedusa sauvagii. The complementary DNA (cDNA)-encoding precursor was obtained relying on "shotgun" cloning, and afterwards, a mature peptide amino acid sequence was identified by reverse-phase high performance liquid chromatography (RP-HPLC) and MS/MS. Specimens were chemically synthesized and applied for further functional studies. Structural analysis demonstrated a higher α-helical content in the membrane-mimetic environment compared with that in the ammonium acetate/water circumstance. Der-PS4 displayed a broad spectrum of antimicrobial activities against tested pathogenic microorganisms, however, exhibiting slight membrane-damaging effectiveness towards horse red blood cells. Coincident with the inhibitory activities on pathogens, Der-PS4 also showed considerable biofilm eradicating impact. Also, Der-PS4 penetrated cell membrane in a relative short period under each minimum bactericidal concentration. In addition, Der-PS4 possessed antiproliferative capacity against five cancer cell lines, while presenting slight suppressing effect on human microvascular endothelial, HMEC-1. These findings provide a promising insight for the discovery and development of novel drugs from a natural source.
Collapse
Affiliation(s)
- Dong Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK
| | - Xiaowei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK
- Department of Nutrition, Henry Fok School of Food Science and Engineering, Shaoguan University, Shaoguan 512005, China
| | - Xi Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK
| | - Linyuan Huang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK.
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing 211198, China.
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK.
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, UK
| |
Collapse
|
22
|
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. ACPred: A Computational Tool for the Prediction and Analysis of Anticancer Peptides. Molecules 2019; 24:E1973. [PMID: 31121946 PMCID: PMC6571645 DOI: 10.3390/molecules24101973] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/07/2019] [Accepted: 05/17/2019] [Indexed: 01/01/2023] Open
Abstract
Anticancer peptides (ACPs) have emerged as a new class of therapeutic agent for cancer treatment due to their lower toxicity as well as greater efficacy, selectivity and specificity when compared to conventional small molecule drugs. However, the experimental identification of ACPs still remains a time-consuming and expensive endeavor. Therefore, it is desirable to develop and improve upon existing computational models for predicting and characterizing ACPs. In this study, we present a bioinformatics tool called the ACPred, which is an interpretable tool for the prediction and characterization of the anticancer activities of peptides. ACPred was developed by utilizing powerful machine learning models (support vector machine and random forest) and various classes of peptide features. It was observed by a jackknife cross-validation test that ACPred can achieve an overall accuracy of 95.61% in identifying ACPs. In addition, analysis revealed the following distinguishing characteristics that ACPs possess: (i) hydrophobic residue enhances the cationic properties of α-helical ACPs resulting in better cell penetration; (ii) the amphipathic nature of the α-helical structure plays a crucial role in its mechanism of cytotoxicity; and (iii) the formation of disulfide bridges on β-sheets is vital for structural maintenance which correlates with its ability to kill cancer cells. Finally, for the convenience of experimental scientists, the ACPred web server was established and made freely available online.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
23
|
Czupiel PP, Delplace V, Shoichet MS. Cationic block amphiphiles show anti-mitochondrial activity in multi-drug resistant breast cancer cells. J Control Release 2019; 305:210-219. [PMID: 31071370 DOI: 10.1016/j.jconrel.2019.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/21/2022]
Abstract
Currently, there are limited treatment options for multi-drug resistant breast cancer. Lipid-modified cationic peptides have the potential to reach the mitochondria, which are attractive targets for the treatment of multi-drug resistant (MDR) breast cancer; yet, little is known about their mitochondrial targeting and anti-cancer activity. Interestingly, lipid-modified cationic peptides, typically used as gene transfection agents, exhibit similar structural features to mitochondrial targeted peptides. Using octahistidine-octaarginine (H8R8) as a model cationic peptide for cell penetration and endosomal escape, we explored the anti-cancer potential of lipid-modified cationic peptides as a function of amphiphilicity, biodegradability and lipid structure. We found that cationic peptides modified with a lipid that is at least 12 carbons in length exhibit potent anti-cancer activity in the low micromolar range in both EMT6/P and EMT6/AR-1 breast cancer cells. Comparing degradable and non-degradable linkers, as well as L- and D-amino acid sequences, we found that the anti-cancer activity is mostly independent of the biodegradation of the lipid-modified cationic peptides. Two candidates, stearyl-H8R8 (Str-H8R8) and vitamin E succinate-H8R8 (VES-H8R8) were cytotoxic to cancer cells by mitochondria depolarization. We observed increased reactive oxygen species (ROS) production, reduced cell bioenergetics and drug efflux, triggering apoptosis and G1 cell cycle arrest. Compared to Str-H8R8, VES-H8R8 showed enhanced cancer cell selectivity and drug efflux inhibition, thereby serving as a potential novel therapeutic agent. This study deepens our understanding of lipid-modified cationic peptides and uncovers their potential in multi-drug resistant breast cancer.
Collapse
Affiliation(s)
- Petro P Czupiel
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Vianney Delplace
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON M5S 3G9, Canada; Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
24
|
Peptide-based targeted therapeutics: Focus on cancer treatment. J Control Release 2018; 292:141-162. [DOI: 10.1016/j.jconrel.2018.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/03/2018] [Accepted: 11/03/2018] [Indexed: 12/14/2022]
|
25
|
Crusca E, Basso LGM, Altei WF, Marchetto R. Biophysical characterization and antitumor activity of synthetic Pantinin peptides from scorpion's venom. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2155-2165. [DOI: 10.1016/j.bbamem.2018.08.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/24/2018] [Accepted: 08/19/2018] [Indexed: 01/30/2023]
|
26
|
Baindara P, Korpole S, Grover V. Bacteriocins: perspective for the development of novel anticancer drugs. Appl Microbiol Biotechnol 2018; 102:10393-10408. [PMID: 30338356 DOI: 10.1007/s00253-018-9420-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 11/26/2022]
Abstract
Antimicrobial peptides (AMPs) from prokaryotic source also known as bacteriocins are ribosomally synthesized by bacteria belonging to different eubacterial taxonomic branches. Most of these AMPs are low molecular weight cationic membrane active peptides that disrupt membrane by forming pores in target cell membranes resulting in cell death. While these peptides known to exhibit broad-spectrum antimicrobial activity, including antibacterial and antifungal, they displayed minimal cytotoxicity to the host cells. Their antimicrobial efficacy has been demonstrated in vivo using diverse animal infection models. Therefore, we have discussed some of the promising peptides for their ability towards potential therapeutic applications. Further, some of these bacteriocins have also been reported to exhibit significant biological activity against various types of cancer cells in different experimental studies. In fact, differential cytotoxicity towards cancer cells as compared to normal cells by certain bacteriocins directs for a much focused research to utilize these compounds as novel therapeutic agents. In this review, bacteriocins that demonstrated antitumor activity against diverse cancer cell lines have been discussed emphasizing their biochemical features, selectivity against extra targets and molecular mechanisms of action.
Collapse
Affiliation(s)
- Piyush Baindara
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Suresh Korpole
- MTCC and Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Vishakha Grover
- Dr. HS Judge Dental Institute and Hospital, Punjab University, Sector 25, Chandigarh, 160014, India.
| |
Collapse
|
27
|
Aronson MR, Simonson AW, Orchard LM, Llinás M, Medina SH. Lipopeptisomes: Anticancer peptide-assembled particles for fusolytic oncotherapy. Acta Biomater 2018; 80:269-277. [PMID: 30240951 DOI: 10.1016/j.actbio.2018.09.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 09/17/2018] [Indexed: 12/31/2022]
Abstract
Anticancer peptides (ACPs) are cationic amphiphiles that preferentially kill cancer cells through folding-dependent membrane disruption. Although ACPs represent attractive therapeutic candidates, particularly against drug-resistant cancers, their successful translation into clinical practice has gone unrealized due to their poor bioavailability, serum instability and, most importantly, severe hemolytic toxicity. Here, we exploit the membrane-specific interactions of ACPs to prepare a new class of peptide-lipid particle, we term a lipopeptisome (LP). This design sequesters loaded ACPs within a lipid lamellar corona to avoid contact with red blood cells and healthy tissues, while affording potent lytic destruction of cancer cells following LP-membrane fusion. Biophysical studies show ACPs rapidly fold at, and integrate into, liposomal membranes to form stable LPs with high loading efficiencies (>80%). Rational design of the particles to possess lipid combinations mimicking that of the aberrant cancer cell outer leaflet allows LPs to rapidly fuse with tumor cell membranes and afford localized assembly of loaded ACPs within the bilayer. This leads to preferential fusolytic killing of cancer cells with minimal collateral toxicity towards non-cancerous cells and erythrocytes, thereby imparting clinically relevant therapeutic indices to otherwise toxic ACPs. Thus, integration of ACPs into self-assembled LPs represents a new delivery strategy to improve the therapeutic utility of oncolytic agents, and suggests this technology may be added to targeted combinatorial approaches in precision medicine. STATEMENT OF SIGNIFICANCE: Despite their significant clinical potential, the therapeutic utility of many ACPs has been limited by their collateral hemolysis during administration. Leveraging the membrane-specific interactions of ACPs, here we prepare self-assembled peptide-lipid nanoparticles, or 'lipopeptisomes' (LPs), capable of preferentially fusing with and lysing cancer cell membranes. Key to this fusolytic action is the construction of LPs from lipids simulating the cancer cell outer leaflet. This design recruits the oncolytic peptide payload into the carrier lamella and allows for selective destruction of cancer cells without disrupting healthy cells. Consequently, LPs impart clinically relevant therapeutic indexes to previously toxic ACPs, and thus open new opportunities to improve the clinical translation of oncolytics challenged by narrow therapeutic windows.
Collapse
Affiliation(s)
- Matthew R Aronson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew W Simonson
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Lindsey M Orchard
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA; Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA
| | - Scott H Medina
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
28
|
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2018; 8:46635-46651. [PMID: 28422728 PMCID: PMC5542299 DOI: 10.18632/oncotarget.16743] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Rothan HA, Ambikabothy J, Ramasamy TS, Rashid NN, Yusof R. A Preliminary Study in Search of Potential Peptide Candidates for a Combinational Therapy with Cancer Chemotherapy Drug. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9646-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Idowu T, Samadder P, Arthur G, Schweizer F. Amphiphilic Modulation of Glycosylated Antitumor Ether Lipids Results in a Potent Triamino Scaffold against Epithelial Cancer Cell Lines and BT474 Cancer Stem Cells. J Med Chem 2017; 60:9724-9738. [DOI: 10.1021/acs.jmedchem.7b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Temilolu Idowu
- Department
of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| | - Pranati Samadder
- Department
of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Gilbert Arthur
- Department
of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, 745 Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Frank Schweizer
- Department
of Chemistry, Faculty of Science, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
31
|
Kuzmin DV, Emelianova AA, Kalashnikova MB, Panteleev PV, Balandin SV, Serebrovskaya EO, Belogurova-Ovchinnikova OY, Ovchinnikova TV. Comparative in vitro study on cytotoxicity of recombinant β-hairpin peptides. Chem Biol Drug Des 2017; 91:294-303. [PMID: 28815904 DOI: 10.1111/cbdd.13081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023]
Abstract
Natural antimicrobial peptides (AMPs) are important components of the innate immune system with a wide spectrum of biological activity. In this study, we investigated the cytotoxic effect of three recombinant β-hairpin cationic AMPs: arenicin-1 from the polychaeta Arenicola marina, tachyplesin I from the horseshoe crab Tachypleus tridentatus, and gomesin from the spider Acanthoscurria gomesiana. All the three β-hairpin AMPs were overexpressed in Escherichia coli. Different cell lines were incubated with various concentrations of the investigated AMPs in order to evaluate their cytotoxic activity. Double staining with subsequent flow cytometric analysis was used to determine the predominant way of cell death mediated by each AMP. Hemolytic activity of the peptides was tested against fresh human red blood cells. Our results indicated that all the three AMPs exhibited significant cytotoxic effect against cancer cells that varied depending on the cell line type and, in most cases, on the presence of serum components. Flow cytometric analysis implicitly indicated that tachyplesin I mostly promoted late apoptosis/necrosis, while arenicin-1 and gomesin induced early apoptosis under the same conditions. Tachyplesin I proved to be the most promising therapeutic candidate as it displayed the highest specific cytotoxicity against cancer cell lines, independent of the serum presence.
Collapse
Affiliation(s)
- Denis V Kuzmin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Anna A Emelianova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Mariana B Kalashnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Pavel V Panteleev
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Sergey V Balandin
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina O Serebrovskaya
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Tatiana V Ovchinnikova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
One-dimensional poly(L-lysine)-block-poly(L-threonine) assemblies exhibit potent anticancer activity by enhancing membranolysis. Acta Biomater 2017; 55:283-295. [PMID: 28412555 DOI: 10.1016/j.actbio.2017.04.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 12/19/2022]
Abstract
Herein, we report the oncolytic activity of cationic, one-dimensional (1D) fibril assemblies formed from coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides for cancer therapy. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via the mitochondria-lytic effect. The concept is analogous to that of 1D drug carriers that exhibit enhanced cell penetration. In comparison to free PLL chains, PLL-b-PLT fibril assemblies exhibit selective cytotoxicity toward cancer cells, low hemolysis activity, enhanced membranolytic activity, and a different apoptosis pathway, which may be due to differences in the peptide-membrane interactions. Antitumor studies using a metastatic LL2 lung carcinoma model indicate that the fibril assemblies significantly inhibited tumor growth, improved survival in tumor-bearing mice and suppressed lung metastasis without obvious body weight loss. An additive efficacy was also observed for treatment with both PLL-b-PLT and cisplatin. These results support the feasibility of using 1D fibril assemblies as potential apoptotic anticancer therapeutics. STATEMENT OF SIGNIFICANCE We report that cationic, one-dimensional (1D) fibril assemblies formed by coil-sheet poly(L-lysine)-block-poly(L-threonine) (PLL-b-PLT) block copolypeptides exhibited potent anticancer activity by enhancing membranolysis. The 1D fibril assemblies can efficiently interact with negatively charged cellular and mitochondrial membranes via electrostatic interactions, leading to necrosis via membrane lysis and apoptosis via mitochondria-lytic effect. Moreover, the fibril assemblies exhibited low hemolytic activity and selective cytotoxicity toward cancer cell, which is advantageous as compared to PLL and most antimicrobial/anticancerous peptides. This study provides a new concept of using cationic, 1D fibril assemblies for cancer therapy.
Collapse
|
33
|
Cole MA, Scott TF, Mello CM. Bactericidal Hydrogels via Surface Functionalization with Cecropin A. ACS Biomater Sci Eng 2016; 2:1894-1904. [PMID: 33440526 DOI: 10.1021/acsbiomaterials.6b00266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The immobilization of antimicrobial peptides (AMPs) to surfaces, enabling their utilization in biosensor and antibacterial/antifouling coating applications, is typically performed using rigid, solid support materials such as glass or gold and may require lengthy, temperamental protocols. Here, we employ a hydrogel immobilization platform to afford facile fabrication and surface functionalization while offering improved biocompatibility for evaluating the influence of linker length, surface density, and AMP conjugation site on retained peptide activity. Rapid, interfacial photo-polymerization using the radical-mediated thiol-ene addition mechanism was used to generate cross-linked, polymeric coatings bearing residual thiol moieties on prefabricated poly(ethylene glycol) (PEG)-based hydrogel supports. The photo-polymerized coatings were 60 μm thick and contained 0.55 nmol of unreacted free thiols, corresponding to a concentration of 410 μM, for use as cecropin A (CPA) immobilization handles via thiol-maleimide conjugation, where the CPA-bound maleimide moiety was localized at either the carboxyl terminus or midsequence between Ala22 and Gly23. Surface presentation of the thiol handles was controlled by varying the thiolated PEG monomer (PEGSH) used in the photo-polymerizable formulation. Bactericidal activity of CPA functionalized hydrogels against E. coli K235 indicated that CPA immobilized at the carboxyl terminus killed 94 ± 6% of the inoculated pathogens when coatings were prepared with high molecular weight PEGSH and 99 ± 1% when prepared with low molecular weight PEGSH. E. coli cell death demonstrated a stronger dependence on peptide concentration than PEG linker length or degree of thiol functionalization, with activity ranging from 34 ± 13% to 99 ± 1% bacterial cells killed as the prefunctionalization thiol concentration in the coatings was increased from 90 to 990 μM. Finally, the immobilization site on the surface-bound CPA strongly affected antibacterial activity; when midsequence modified CPA was bound to a hydrogel coating bearing 990 μM thiol, only 20 ± 4% of the E. coli population was killed.
Collapse
Affiliation(s)
- Megan A Cole
- U.S. Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760, United States
| | - Timothy F Scott
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.,Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charlene M Mello
- U.S. Army Natick Soldier Research, Development, and Engineering Center, Natick, Massachusetts 01760, United States
| |
Collapse
|
34
|
Li Z, Liu X, Li Y, Lan X, Leung PH, Li J, Li G, Xie M, Han Y, Lin X. Composite Membranes of Recombinant Silkworm Antimicrobial Peptide and Poly (L-lactic Acid) (PLLA) for biomedical application. Sci Rep 2016; 6:31149. [PMID: 27503270 PMCID: PMC4977571 DOI: 10.1038/srep31149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022] Open
Abstract
Antimicrobial peptides, produced by innate immune system of hosts in response to invading pathogens, are capable of fighting against a spectrum of bacteria, viruses, fungi, parasites and cancer cells. Here, a recombinant silkworm AMP Bmattacin2 from heterologous expression is studied, indicating a broad spectrum of antibacterial activity and showing selective killing ability towards skin and colon cancer cells over their normal cell counterparts. For the purpose of biomedical application, the electrospinning fabrication technique is employed to load Bmattacin2 into PLLA nanofibrous membrane. In addition to a good compatibility with the normal cells, Bmattacin2 loaded nanofibrous membranes demonstrate instant antibacterial effects and sustained anticancer effects. The cancer cell and bacteria targeting dynamics of recombinant Bmattacin2 are investigated. With these characteristics, PLLA/Bmattacin2 composite membranes have a great potential for developing novel biomedical applications such as cancer therapies and wound healing treatments.
Collapse
Affiliation(s)
- Zhi Li
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, College of Textiles and Garments, Southwest University, Chongqing, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xuan Liu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yi Li
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- School of Materials, The University of Manchester Manchester M13 9PL, UK
| | - Xiqian Lan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Polly Hangmei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jiashen Li
- School of Materials, The University of Manchester Manchester M13 9PL, UK
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Maobin Xie
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yanxia Han
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiaofen Lin
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
35
|
Zhou XR, Zhang Q, Tian XB, Cao YM, Liu ZQ, Fan R, Ding XF, Zhu Z, Chen L, Luo SZ. From a pro-apoptotic peptide to a lytic peptide: One single residue mutation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1914-25. [DOI: 10.1016/j.bbamem.2016.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
|
36
|
A re-examination of the role of the acute phase protein response in innate cancer defence. Med Hypotheses 2016; 93:93-6. [PMID: 27372864 DOI: 10.1016/j.mehy.2016.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/21/2016] [Indexed: 01/24/2023]
Abstract
Anti-cancer host defense mechanisms are traditionally considered to consist of tumor suppressor genes and immune surveillance by cells of the innate and adaptive immune systems. However, there is mounting evidence that components of the acute phase protein response (APPR), and, in particular, certain cationic host defense peptides (HDPs), also contribute to anti-cancer host defense. In a number of in vitro studies, certain HDPs have been shown to be cytotoxic to tumor cells either directly through cancer cell membrane destabilization and lysis or through the initiation of apoptosis in the cancer cell. In addition, many cancer cells elaborate the pro-inflammatory cytokine interleukin-6, which in turn produces an APPR that involves the release of HDPs. It is therefore possible that the release of pro-inflammatory cytokines by cancer cells initiates a poorly understood anti-tumor response by the host that involves HDP induction. We hypothesize that the APPR may form an important anti-cancer host defense response. This may be an important consideration in light of cancer treatments designed to decrease systemic inflammation. Blunting of the anti-cancer effect of the APPR may also contribute to the increased cancer rates seen in chronic immunosuppressive states.
Collapse
|
37
|
Alves ID, Carré M, Lavielle S. A Pathway Toward Tumor Cell-Selective CPPs? Methods Mol Biol 2016. [PMID: 26202276 DOI: 10.1007/978-1-4939-2806-4_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Despite the great potential of CPPs in therapeutics and diagnosis, their application still suffers from a non-negligible drawback: a complete lack of cell-type specificity. In the innumerous routes proposed for CPP cell entry there is common agreement that electrostatic interactions between cationic CPPs and anionic components in membranes, including lipids and glycosaminoglycans, play a crucial role. Tumor cells have been shown to overexpress certain glycosaminoglycans at the cell membrane surface and to possess a higher amount of anionic lipids in their outer leaflet when compared with healthy cells. Such molecules confer tumor cell membranes an enhanced anionic character, a property that could be exploited by CPPs to preferentially target these cells. Herein, these aspects are discussed in an attempt to confer CPPs certain selectivity toward cancer cells.
Collapse
Affiliation(s)
- Isabel D Alves
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Institut Polytechnique Bordeaux, Universite Bordeaux, All. Geoffroy Saint-Hilaire, 33600, Pessac, France,
| | | | | |
Collapse
|
38
|
Zhao J, Huang Y, Liu D, Chen Y. Two hits are better than one: synergistic anticancer activity of α-helical peptides and doxorubicin/epirubicin. Oncotarget 2015; 6:1769-78. [PMID: 25593197 PMCID: PMC4359330 DOI: 10.18632/oncotarget.2754] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/15/2014] [Indexed: 11/25/2022] Open
Abstract
This study explored combinational anticancer therapy using α-helical peptides HPRP-A1/HPRP-A2 with the chemical drugs doxorubicin (DOX) and epirubicin (EPI). The in vitro activity of these drugs against different cancer cell lines was synergistically increased, as was their activity in a HeLa xenograft model in BALB/c nude mice. We delineated the mechanism of this synergy by studying the apoptosis pathway and morphologic changes in the HeLa cell membrane. The mechanism of the HPRP-A1/DOX combination was found to involve enhanced apoptosis, which seemed to be caspase-dependent and involved both the extrinsic and intrinsic parts of the caspase cascade in HeLa cells. Combined application of HPRP-A1 and DOX at low concentrations was significantly more effective than either drug alone against HeLa tumors in the mouse xenograft model. This type of combination therapy appears to have great clinical potential.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China.,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Dong Liu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun, China.,National Engineering Laboratory for AIDS Vaccine, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
39
|
The phospholipid code: a key component of dying cell recognition, tumor progression and host-microbe interactions. Cell Death Differ 2015; 22:1893-905. [PMID: 26450453 DOI: 10.1038/cdd.2015.122] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 02/06/2023] Open
Abstract
A significant effort is made by the cell to maintain certain phospholipids at specific sites. It is well described that proteins involved in intracellular signaling can be targeted to the plasma membrane and organelles through phospholipid-binding domains. Thus, the accumulation of a specific combination of phospholipids, denoted here as the 'phospholipid code', is key in initiating cellular processes. Interestingly, a variety of extracellular proteins and pathogen-derived proteins can also recognize or modify phospholipids to facilitate the recognition of dying cells, tumorigenesis and host-microbe interactions. In this article, we discuss the importance of the phospholipid code in a range of physiological and pathological processes.
Collapse
|
40
|
In vitro Characterization of the Rapid Cytotoxicity of Anticancer Peptide HPRP-A2 through Membrane Destruction and Intracellular Mechanism against Gastric Cancer Cell Lines. PLoS One 2015; 10:e0139578. [PMID: 26422386 PMCID: PMC4589244 DOI: 10.1371/journal.pone.0139578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
In this study, HPRP-A2, a synthetic 15-mer cationic peptides with all D-amino acids, effectively inhibited the survival of gastric cell lines in a dose-dependent manner. Gastric tumor cells killing by HPRP-A2 involves a rapid collapse of the membrane integrity and intracellular pathways. Propidium iodide (PI) and lactate dehydrogenase (LDH) assays demonstrated that one-hour treatment with HPRP-A2 led to membrane permeability changes of BGC-823 cells in a dose-dependent manner. Moreover, HPRP-A2 induced apoptosis in BGC-823 cells involves a marked increase in generation of reactive oxygen species (ROS),caspase-3, -8 and -9 activation, a reduction of mitochondrial membrane potential (MMP), and cell cycle arrest in G1 phase. In addition to its inherent cytotoxicity, HPRP-A2 synergized strongly with doxorubicin (DOX) to enhance the efficacy of killing gastric tumor cells in vitro. We believe that HPRP-A2 with all D-amino acids could be a potent candidate of anticancer therapeutics, especially in combination therapy.
Collapse
|
41
|
Cancer cell surface induced peptide folding allows intracellular translocation of drug. J Control Release 2015; 209:317-26. [PMID: 25979324 DOI: 10.1016/j.jconrel.2015.05.267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/11/2015] [Indexed: 12/31/2022]
Abstract
Many lead molecules identified in drug discovery campaigns are eliminated from consideration due to poor solubility and low cell permeability. These orphaned molecules could have clinical value if solubilized and delivered properly. SVS-1 is a de novo designed peptide that preferentially folds at the surface of tumor cells, adopting a β-hairpin conformation that rapidly translocates into the cytoplasm, and ultimately nucleus, of cells. SVS-1 is stable in serum and small molecules attached to the peptide are effectively delivered to cancer cells via mechanisms involving physical translocation and, to a lesser extent, clathrin-dependent endocytosis. For example, ligating the model hydrophobic drug Paclitaxel (PTX) to SVS-1 improved its aqueous solubility by ~1000-fold and successfully delivered and released PTX to cancer cells in vitro and tumors in vivo without toxic adjuvants. These results suggest that SVS-1 can serve as a simple, effective delivery platform for molecules with poor solubility and permeability.
Collapse
|
42
|
Deng X, Qiu Q, Yang B, Wang X, Huang W, Qian H. Design, synthesis and biological evaluation of novel peptides with anti-cancer and drug resistance-reversing activities. Eur J Med Chem 2015; 89:540-8. [DOI: 10.1016/j.ejmech.2014.10.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 10/24/2022]
|
43
|
Li G, Huang Y, Feng Q, Chen Y. Tryptophan as a probe to study the anticancer mechanism of action and specificity of α-helical anticancer peptides. Molecules 2014; 19:12224-12241. [PMID: 25123187 PMCID: PMC6271632 DOI: 10.3390/molecules190812224] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/14/2014] [Accepted: 08/04/2014] [Indexed: 01/10/2023] Open
Abstract
In the present study, a single tryptophan, as a fluorescence probe, was shifted from the N-terminus to the middle and to the C-terminus of a 26-residue α-helical anticancer peptide sequence to study the mechanism of action and specificity. The hydrophobicity of peptides, as well as peptide helicity and self-associating ability, were slightly influenced by the position change of tryptophan in the peptide sequence, while the hemolytic activity and anticancer activity of the peptide analogs remained the same. The tryptophan fluorescence experiment demonstrated that peptide analogs were more selective against LUVs mimicking cancer cell membranes than LUVs mimicking normal cell membranes. During the interaction with target membranes, the N-terminus of an anticancer peptide may be inserted vertically or tilted into the hydrophobic components of the phospholipid bilayer first. The thermodynamic parameters of the peptides PNW and PCW, when interacting with zwitterionic DMPC or negatively charged DMPS, were determined by ITC. DSC experiments showed that peptide analogs significantly altered the phase transition profiles of DMPC, but did not dramatically modify the phase transition of DMPS. It is demonstrated that hydrophobic interactions are the main driving force for peptides interacting with normal cell membranes, whilst, electrostatic interactions dominate the interactions between peptides and cancer cell membranes. Utilizing tryptophan as a fluorescence probe molecule appears to be a practicable approach to determine the interaction of peptides with phospholipid bilayers.
Collapse
Affiliation(s)
- Guirong Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yibing Huang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Qi Feng
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China
| | - Yuxin Chen
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130012, China.
| |
Collapse
|
44
|
Yata T, Lee KY, Dharakul T, Songsivilai S, Bismarck A, Mintz PJ, Hajitou A. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e185. [PMID: 25118171 PMCID: PMC4221597 DOI: 10.1038/mtna.2014.37] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/24/2014] [Indexed: 02/07/2023]
Abstract
Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage.
Collapse
Affiliation(s)
- Teerapong Yata
- Phage Therapy Group, Department of Medicine, Imperial College London, London, UK
| | - Koon-Yang Lee
- Polymers and Composites Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, London, UK
| | - Tararaj Dharakul
- National Nanotechnology Center, National Science and Technology Development Agency, Khlong Luang Pathumthani, Thailand
| | - Sirirurg Songsivilai
- National Nanotechnology Center, National Science and Technology Development Agency, Khlong Luang Pathumthani, Thailand
| | - Alexander Bismarck
- Polymers and Composites Engineering (PaCE) Group, Department of Chemical Engineering, Imperial College London, London, UK
| | - Paul J Mintz
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Amin Hajitou
- Phage Therapy Group, Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
45
|
Szczepanski C, Tenstad O, Baumann A, Martinez A, Myklebust R, Bjerkvig R, Prestegarden L. Identification of a novel lytic peptide for the treatment of solid tumours. Genes Cancer 2014; 5:186-200. [PMID: 25061502 PMCID: PMC4104761 DOI: 10.18632/genesandcancer.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/26/2014] [Indexed: 12/12/2022] Open
Abstract
Originally known as host defence peptides for their substantial bacteriotoxic effects, many cationic antimicrobial peptides also exhibit a potent cytotoxic activity against cancer cells. Their mode of action is characterized mostly by electrostatic interactions with the plasma membrane, leading to membrane disruption and rapid necrotic cell death. In this work, we have designed a novel cationic peptide of 27 amino acids (Cypep-1), which shows efficacy against a number of cancer cell types, both in vitro and in vivo, while normal human fibroblasts were significantly less affected. Surface plasmon resonance experiments as well as liposome leakage assays monitored by fluorescence spectroscopy revealed a substantial binding affinity of Cypep-1 to negatively charged liposomes and induced significant leakage of liposome content after exposure to the peptide. The observed membranolytic effect of Cypep-1 was confirmed by scanning electron microscopy (SEM) as well as by time-lapse confocal microscopy. Pharmacokinetic profiling of Cypep-1 in rats showed a short plasma half-life after i.v. injection, followed mainly by retention in the liver, spleen and kidneys. Extremely low concentrations within the organs of the central nervous system indicated that Cypep-1 did not pass the blood-brain-barrier. Local treatment of 4T1 murine mammary carcinoma allografts by means of a single local bolus injection of Cypep-1 led to a significant reduction of tumour growth in the following weeks and prolonged survival. Detailed histological analysis of the treated tumours revealed large areas of necrosis. In sum, our findings show that the novel cationic peptide Cypep-1 displays a strong cytolytic activity against cancer cells both in vitro and in vivo and thus holds a substantial therapeutic potential.
Collapse
Affiliation(s)
| | - Olav Tenstad
- Cardiovascular Research Group, Dept. of Biomedicine, University of Bergen, Norway
| | - Anne Baumann
- Biorecognition Group, Dept. of Biomedicine, University of Bergen, Norway
| | - Aurora Martinez
- Biorecognition Group, Dept. of Biomedicine, University of Bergen, Norway
| | - Reidar Myklebust
- NorLux Neuro-Oncology, Dept. of Biomedicine, University of Bergen, Norway
| | - Rolf Bjerkvig
- NorLux Neuro-Oncology, Dept. of Biomedicine, University of Bergen, Norway.,Centre de Recherche Public de la Santé, Luxembourg, Luxemburg
| | - Lars Prestegarden
- NorLux Neuro-Oncology, Dept. of Biomedicine, University of Bergen, Norway.,Dept. of Dermatology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
46
|
Dong N, Zhu X, Lv YF, Ma QQ, Jiang JG, Shan AS. Cell specificity and molecular mechanism of antibacterial and antitumor activities of carboxyl-terminal RWL-tagged antimicrobial peptides. Amino Acids 2014; 46:2137-54. [DOI: 10.1007/s00726-014-1761-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/07/2014] [Indexed: 10/25/2022]
|
47
|
Poon IKH, Baxter AA, Lay FT, Mills GD, Adda CG, Payne JAE, Phan TK, Ryan GF, White JA, Veneer PK, van der Weerden NL, Anderson MA, Kvansakul M, Hulett MD. Phosphoinositide-mediated oligomerization of a defensin induces cell lysis. eLife 2014; 3:e01808. [PMID: 24692446 PMCID: PMC3968744 DOI: 10.7554/elife.01808] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/22/2014] [Indexed: 12/28/2022] Open
Abstract
Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique 'cationic grip' configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001.
Collapse
Affiliation(s)
- Ivan KH Poon
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Amy A Baxter
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Fung T Lay
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Grant D Mills
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Christopher G Adda
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Jennifer AE Payne
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Thanh Kha Phan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Gemma F Ryan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Julie A White
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Prem K Veneer
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Nicole L van der Weerden
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Marilyn A Anderson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Marc Kvansakul
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Mark D Hulett
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
48
|
Gu Y, Dong N, Shan A, Ma Q, Li J, Cheng B. Antitumor effect of the antimicrobial peptide GLI13-8 derived from domain of the avian β-defensin-4. Acta Biochim Biophys Sin (Shanghai) 2013; 45:904-11. [PMID: 24047976 DOI: 10.1093/abbs/gmt098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We previously reported that GLI13-8, one of cationic antimicrobial peptides from linear avian β-defensin-4 (RL38) analogs, exhibited high antimicrobial activities against both Gram-negative and Gram-positive bacteria. In the present study, we reported the in vitro cytotoxicity of GLI13-8 using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results showed that the cytotoxicity of GLI13-8 in three human carcinoma cells (HepG2, SGC7901, and A375) was in a dose-dependent manner. When the concentration of GLI13-8 is <128 μM, it had no toxicity towards the normal human fibroblasts (MRC-5). The Annexin-V-FITC/PI staining assay, the Hoechst 33258/PI staining assay, the permeability of fluorescein macromolecules and scanning electron microscope assays, mitochondrial membrane potential assay, caspases-3 and poly ADP-ribose polymerase (PARP) assays have been carried out. Results indicated that apoptosis was induced by GLI13-8 in HepG2 cells, and demonstrated that GLI13-8 induced loss of mitochondrial membrane potential, disruption of HepG2 cell membranes, and activation of caspase-3 and PARP. These findings suggested that GLI13-8 may be an effective agent for HepG2 cells.
Collapse
Affiliation(s)
- Yao Gu
- Laboratory of Molecular Nutrition and Immunity, Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | |
Collapse
|
49
|
Almaaytah A, Tarazi S, Mhaidat N, Al-Balas Q, Mukattash TL. Mauriporin, a Novel Cationic α-Helical Peptide with Selective Cytotoxic Activity Against Prostate Cancer Cell Lines from the Venom of the Scorpion Androctonus mauritanicus. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9350-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Wang C, Tian LL, Li S, Li HB, Zhou Y, Wang H, Yang QZ, Ma LJ, Shang DJ. Rapid cytotoxicity of antimicrobial peptide tempoprin-1CEa in breast cancer cells through membrane destruction and intracellular calcium mechanism. PLoS One 2013; 8:e60462. [PMID: 23577112 PMCID: PMC3618425 DOI: 10.1371/journal.pone.0060462] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/26/2013] [Indexed: 12/27/2022] Open
Abstract
Temporin-1CEa is an antimicrobial peptide isolated from the skin secretions of the Chinese brown frog (Rana chensinensis). We have previously reported the rapid and broad-spectrum anticancer activity of temporin-1CEa in vitro. However, the detailed mechanisms for temporin-1CEa-induced cancer cell death are still weakly understood. In the present study, the mechanisms of temporin-1CEa-induced rapid cytotoxicity on two human breast cancer cell lines, MDA-MB-231 and MCF-7, were investigated. The MTT assay and the LDH leakage assay indicated that one-hour of incubation with temporin-1CEa led to cytotoxicity in a dose-dependent manner. The morphological observation using electronic microscopes suggested that one-hour exposure of temporin-1CEa resulted in profound morphological changes in both MDA-MB-231 and MCF-7 cells. The membrane-disrupting property of temporin-1CEa was further characterized by induction of cell-surface exposure of phosphatidylserine, elevation of plasma membrane permeability and rapid depolarization of transmembrane potential. Moreover, temporin-1CEa evoked intracellular calcium ion and reactive oxygen species (ROS) elevations as well as collapse of mitochondrial membrane potential (Δφm). In summary, the present study indicates that temporin-1CEa triggers rapid cell death in breast cancer cells. This rapid cytotoxic activity might be mediated by both membrane destruction and intracellular calcium mechanism.
Collapse
Affiliation(s)
- Che Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Li-Li Tian
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Song Li
- Laboratory of Biophysics and Pharmacology, School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian, China
| | - Hui-Bing Li
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Yang Zhou
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - He Wang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Qing-Zhu Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Li-Jie Ma
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - De-Jing Shang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Faculty of Life Science, Liaoning Normal University, Dalian, China
- * E-mail:
| |
Collapse
|