1
|
Luo Y, Gao J, Jiang X, Zhu L, Zhou QT, Murray M, Li J, Zhou F. Molecular Insights to the Structure-Interaction Relationships of Human Proton-Coupled Oligopeptide Transporters (PepTs). Pharmaceutics 2023; 15:2517. [PMID: 37896276 PMCID: PMC10609898 DOI: 10.3390/pharmaceutics15102517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/06/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Human proton-coupled oligopeptide transporters (PepTs) are important membrane influx transporters that facilitate the cellular uptake of many drugs including ACE inhibitors and antibiotics. PepTs mediate the absorption of di- and tri-peptides from dietary proteins or gastrointestinal secretions, facilitate the reabsorption of peptide-bound amino acids in the kidney, and regulate neuropeptide homeostasis in extracellular fluids. PepT1 and PepT2 have been the most intensively investigated of all PepT isoforms. Modulating the interactions of PepTs and their drug substrates could influence treatment outcomes and adverse effects with certain therapies. In recent studies, topology models and protein structures of PepTs have been developed. The aim of this review was to summarise the current knowledge regarding structure-interaction relationships (SIRs) of PepTs and their substrates as well as the potential applications of this information in therapeutic optimisation and drug development. Such information may provide insights into the efficacy of PepT drug substrates in patients, mechanisms of drug-drug/food interactions and the potential role of PepTs targeting in drug design and development strategies.
Collapse
Affiliation(s)
- Yining Luo
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia; (Y.L.); (J.G.); (M.M.)
| | - Jingchun Gao
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia; (Y.L.); (J.G.); (M.M.)
| | - Xukai Jiang
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China;
| | - Ling Zhu
- Macular Research Group, Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia;
| | - Qi Tony Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA;
| | - Michael Murray
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia; (Y.L.); (J.G.); (M.M.)
| | - Jian Li
- Biomedicine Discovery Institute, Department of Microbiology, Monash University, Melbourne 3800, Australia;
| | - Fanfan Zhou
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia; (Y.L.); (J.G.); (M.M.)
| |
Collapse
|
2
|
Wang C, Chu C, Ji X, Luo G, Xu C, He H, Yao J, Wu J, Hu J, Jin Y. Biology of Peptide Transporter 2 in Mammals: New Insights into Its Function, Structure and Regulation. Cells 2022; 11:cells11182874. [PMID: 36139448 PMCID: PMC9497230 DOI: 10.3390/cells11182874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Peptide transporter 2 (PepT2) in mammals plays essential roles in the reabsorption and conservation of peptide-bound amino acids in the kidney and in maintaining neuropeptide homeostasis in the brain. It is also of significant medical and pharmacological significance in the absorption and disposing of peptide-like drugs, including angiotensin-converting enzyme inhibitors, β-lactam antibiotics and antiviral prodrugs. Understanding the structure, function and regulation of PepT2 is of emerging interest in nutrition, medical and pharmacological research. In this review, we provide a comprehensive overview of the structure, substrate preferences and localization of PepT2 in mammals. As PepT2 is expressed in various organs, its function in the liver, kidney, brain, heart, lung and mammary gland has also been addressed. Finally, the regulatory factors that affect the expression and function of PepT2, such as transcriptional activation and posttranslational modification, are also discussed.
Collapse
Affiliation(s)
- Caihong Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
| | - Chu Chu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiang Ji
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Guoliang Luo
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Chunling Xu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Houhong He
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jianbiao Yao
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jian Wu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
| | - Jiangning Hu
- Zhejiang Conba Pharmaceutical Limited Company, Hangzhou 310052, China
- Zhejiang Institute of Modern Chinese Medicine and Natural Medicine, Hangzhou 310052, China
- Correspondence: (J.H.); (Y.J.)
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
- Correspondence: (J.H.); (Y.J.)
| |
Collapse
|
3
|
Killer M, Wald J, Pieprzyk J, Marlovits TC, Löw C. Structural snapshots of human PepT1 and PepT2 reveal mechanistic insights into substrate and drug transport across epithelial membranes. SCIENCE ADVANCES 2021; 7:eabk3259. [PMID: 34730990 PMCID: PMC8565842 DOI: 10.1126/sciadv.abk3259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The uptake of peptides in mammals plays a crucial role in nutrition and inflammatory diseases. This process is mediated by promiscuous transporters of the solute carrier family 15, which form part of the major facilitator superfamily. Besides the uptake of short peptides, peptide transporter 1 (PepT1) is a highly abundant drug transporter in the intestine and represents a major route for oral drug delivery. PepT2 also allows renal drug reabsorption from ultrafiltration and brain-to-blood efflux of neurotoxic compounds. Here, we present cryogenic electron microscopy (cryo-EM) structures of human PepT1 and PepT2 captured in four different states throughout the transport cycle. The structures reveal the architecture of human peptide transporters and provide mechanistic insights into substrate recognition and conformational transitions during transport. This may support future drug design efforts to increase the bioavailability of different drugs in the human body.
Collapse
Affiliation(s)
- Maxime Killer
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Faculty of Biosciences, Im Neuenheimer Feld 234, D-69120 Heidelberg, Germany
| | - Jiri Wald
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestrasse 85, D-22607 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Joanna Pieprzyk
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Thomas C. Marlovits
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- Institute of Structural and Systems Biology, University Medical Center Hamburg-Eppendorf, Notkestrasse 85, D-22607 Hamburg, Germany
- Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), Notkestrasse 85, D-22607 Hamburg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg Unit c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg, Germany
- Corresponding author.
| |
Collapse
|
4
|
Rogachevsky IV, Kalinina AD, Penniyaynen VA, Terekhin SG, Podzorova SA, Krylov BV, Plakhova VB. A Possible Mechanism of Modulation of Slow Sodium Channels in the Sensory Neuron Membrane by Short Peptides. Biophysics (Nagoya-shi) 2021. [DOI: 10.1134/s0006350921040205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Omori A, Fujisawa Y, Sasaki S, Shimono K, Kikukawa T, Miyauchi S. Protonation State of a Histidine Residue in Human Oligopeptide Transporter 1 (hPEPT1) Regulates hPEPT1-Mediated Efflux Activity. Biol Pharm Bull 2021; 44:678-685. [PMID: 33952823 DOI: 10.1248/bpb.b20-01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the role of an amino acid residue in the pH-dependent efflux process in Chinese hamster ovary (CHO) cells expressing the human oligopeptide transporter hPEPT1 (CHO/hPEPT1), we determined the effect of extracellular pH on the hPEPT1-mediated efflux process. The efflux of glycylsarcosine (Gly-Sar), a typical substrate for hPEPT1, was determined using an infinite dilution method after cells were preloaded with [3H]-Gly-Sar. The efflux of [3H]-Gly-Sar was stimulated by 5 mM unlabeled hPEPT1 substrates in the medium. This trans-stimulation phenomenon showed that hPEPT1 mediated the efflux of [3H]-Gly-Sar from CHO/hPEPT1 and that hPEPT1 is a bi-directional transporter. We then determined the effect of extracellular pH (varying from 8.0 to 3.5) on the efflux activity. The efflux activity by hPEPT1 decreased with the decrease in extracellular pH. The Henderson-Hasselbälch-type equation, which fitted well to the pH-profile of efflux activity, indicated that a single amino acid residue with a pKa value of approximately 5.7 regulates the efflux activity. The pH-profile of the efflux activity remained almost unchanged irrespective of the proton gradient across the plasma membrane. In addition, the chemical modification of the histidine residue with diethylpyrocarbonate completely abolished the efflux activity from cells, which could be prevented by the presence of 10 mM Gly-Sar. These data indicate that the efflux process of hPEPT1 is also regulated in a pH-dependent manner by the protonation state of a histidine residue located at or near the substrate recognition site facing the extracellular space.
Collapse
Affiliation(s)
- Akiko Omori
- Faculty of Pharmaceutical Sciences, Toho University
| | - Yuki Fujisawa
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | | | | | - Takashi Kikukawa
- Laboratory of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Hokkaido University
| | | |
Collapse
|
6
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
7
|
Hong M. Biochemical studies on the structure-function relationship of major drug transporters in the ATP-binding cassette family and solute carrier family. Adv Drug Deliv Rev 2017; 116:3-20. [PMID: 27317853 DOI: 10.1016/j.addr.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022]
Abstract
Human drug transporters often play key roles in determining drug accumulation within cells. Their activities are often directly related to therapeutic efficacy, drug toxicity as well as drug-drug interactions. However, the progress for interpretation of their crystal structures is relatively slow. Hence, conventional biochemical studies together with computer modeling became useful manners to reveal essential structures of these membrane proteins. Over the years, quite a few structure-function relationship information had been obtained for members of the two major transporter families: the ATP-binding cassette family and the solute carrier family. Critical structural features of drug transporters include transmembrane domains, post-translational modification sites and domains for cell surface assembly and protein-protein interactions. Alterations at these important sites may affect protein stability, trafficking to the plasma membrane and/or ability of transporters to interact with substrates.
Collapse
|
8
|
Stelzl T, Geillinger-Kästle KE, Stolz J, Daniel H. Glycans in the intestinal peptide transporter PEPT1 contribute to function and protect from proteolysis. Am J Physiol Gastrointest Liver Physiol 2017; 312:G580-G591. [PMID: 28336547 DOI: 10.1152/ajpgi.00343.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/16/2017] [Accepted: 03/17/2017] [Indexed: 01/31/2023]
Abstract
Despite the fact that many membrane proteins carry extracellular glycans, little is known about whether the glycan chains also affect protein function. We recently demonstrated that the proton-coupled oligopeptide transporter 1 (PEPT1) in the intestine is glycosylated at six asparagine residues (N50, N406, N439, N510, N515, and N532). Mutagenesis-induced disruption of the individual N-glycosylation site N50, which is highly conserved among mammals, was detected to significantly enhance the PEPT1-mediated inward transport of peptides. Here, we show that for the murine protein the inhibition of glycosylation at sequon N50 by substituting N50 with glutamine, lysine, or cysteine or by replacing S52 with alanine equally altered PEPT1 transport kinetics in oocytes. Furthermore, we provide evidence that the uptake of [14C]glycyl-sarcosine in immortalized murine small intestinal (MODE-K) or colonic epithelial (PTK-6) cells stably expressing the PEPT1 transporter N50Q is also significantly increased relative to the wild-type protein. By using electrophysiological recordings and tracer flux studies, we further demonstrate that the rise in transport velocity observed for PEPT1 N50Q is bidirectional. In line with these findings, we show that attachment of biotin derivatives, comparable in weight with two to four monosaccharides, to the PEPT1 N50C transporter slows down the transport velocity. In addition, our experiments provide strong evidence that glycosylation of PEPT1 confers resistance against proteolytic cleavage by proteinase K, whereas a remarkable intrinsic stability against trypsin, even in the absence of N-linked glycans, was detected.NEW & NOTEWORTHY This study highlights the role of N50-linked glycans in modulating the bidirectional transport activity of the murine peptide transporter PEPT1. Electrophysiological and tracer flux measurements in Xenopus oocytes have shown that removal of the N50 glycans increases the maximal peptide transport rate in the inward and outward directions. This effect could be largely reversed by replacement of N50 glycans with structurally dissimilar biotin derivatives. In addition, N-glycans were detected to stabilize PEPT1 against proteolytic cleavage.
Collapse
Affiliation(s)
- Tamara Stelzl
- Nutritional Physiology, Technische Universität München, Freising, Germany
| | | | - Jürgen Stolz
- Nutritional Physiology, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- Nutritional Physiology, Technische Universität München, Freising, Germany
| |
Collapse
|
9
|
Abstract
Oligopeptide transporters serve important functions in nutrition and pharmacology. In particular, these transporters help maintain the homeostasis of peptides. The peptide-transporter PEPT2 is a high-affinity and low-capacity type oligopeptide transporter from the proton-coupled oligopeptide transporter family. PEPT2 has recently received attention because of its potential application in targeted drug delivery. PEPT2 is widely distributed in kidney, central nervous system, and lung of organisms. In general, all dipeptides, tripeptides, and peptide-like drugs such as β-lactam antibiotics and angiotensin-converting enzyme inhibitors could be mediated and transported as a substrate of PEPT2. The design of many extant drugs and prodrugs is based on the substrate structure of PEPT2 to accelerate absorption via peptide transporters. Thus, this paper summarizes the substrate features of PEPT2 to promote the rational design of drugs and prodrugs that target peptide transporters.
Collapse
Affiliation(s)
- Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology
| | | |
Collapse
|
10
|
Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 2013; 34:323-36. [PMID: 23506874 DOI: 10.1016/j.mam.2012.11.003] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/22/2012] [Indexed: 01/04/2023]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.
Collapse
Affiliation(s)
- David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
11
|
Protein cold adaptation strategy via a unique seven-amino acid domain in the icefish (Chionodraco hamatus) PEPT1 transporter. Proc Natl Acad Sci U S A 2013; 110:7068-73. [PMID: 23569229 DOI: 10.1073/pnas.1220417110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Adaptation of organisms to extreme environments requires proteins to work at thermodynamically unfavorable conditions. To adapt to subzero temperatures, proteins increase the flexibility of parts of, or even the whole, 3D structure to compensate for the lower thermal kinetic energy available at low temperatures. This may be achieved through single-site amino acid substitutions in regions of the protein that undergo large movements during the catalytic cycle, such as in enzymes or transporter proteins. Other strategies of cold adaptation involving changes in the primary amino acid sequence have not been documented yet. In Antarctic icefish (Chionodraco hamatus) peptide transporter 1 (PEPT1), the first transporter cloned from a vertebrate living at subzero temperatures, we came upon a unique principle of cold adaptation. A de novo domain composed of one to six repeats of seven amino acids (VDMSRKS), placed as an extra stretch in the cytosolic COOH-terminal region, contributed per se to cold adaptation. VDMSRKS was in a protein region uninvolved in transport activity and, notably, when transferred to the COOH terminus of a warm-adapted (rabbit) PEPT1, it conferred cold adaptation to the receiving protein. Overall, we provide a paradigm for protein cold adaptation that relies on insertion of a unique domain that confers greater affinity and maximal transport rates at low temperatures. Due to its ability to transfer a thermal trait, the VDMSRKS domain represents a useful tool for future cell biology or biotechnological applications.
Collapse
|
12
|
Khomane KS, Nandekar PP, Wahlang B, Bagul P, Shaikh N, Pawar YB, Meena CL, Sangamwar AT, Jain R, Tikoo K, Bansal AK. Mechanistic Insights into PEPT1-Mediated Transport of a Novel Antiepileptic, NP-647. Mol Pharm 2012; 9:2458-68. [DOI: 10.1021/mp200672d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kailas S. Khomane
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Prajwal P. Nandekar
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Banrida Wahlang
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Pravin Bagul
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Naeem Shaikh
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Yogesh B. Pawar
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Chhuttan Lal Meena
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Abhay T. Sangamwar
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Rahul Jain
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - K. Tikoo
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| | - Arvind K. Bansal
- Department
of Pharmaceutics, ‡Department of Pharmacoinformatics, §Department of Medicinal Chemistry, and ∥Department of
Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67,
SAS Nagar, Mohali, Punjab, India
| |
Collapse
|
13
|
Alternating access mechanism in the POT family of oligopeptide transporters. EMBO J 2012; 31:3411-21. [PMID: 22659829 PMCID: PMC3419923 DOI: 10.1038/emboj.2012.157] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/03/2012] [Indexed: 01/16/2023] Open
Abstract
Proton-dependent oligopeptide transporters are required for the uptake of diet-derived peptides in all kingdoms of life. The crystal structure of a bacterial transporter in the inward open conformation, together with a published structure in an occluded conformation, reveals the peptide transport mechanism. Short chain peptides are actively transported across membranes as an efficient route for dietary protein absorption and for maintaining cellular homeostasis. In mammals, peptide transport occurs via PepT1 and PepT2, which belong to the proton-dependent oligopeptide transporter, or POT family. The recent crystal structure of a bacterial POT transporter confirmed that they belong to the major facilitator superfamily of secondary active transporters. Despite the functional characterization of POT family members in bacteria, fungi and mammals, a detailed model for peptide recognition and transport remains unavailable. In this study, we report the 3.3-Å resolution crystal structure and functional characterization of a POT family transporter from the bacterium Streptococcus thermophilus. Crystallized in an inward open conformation the structure identifies a hinge-like movement within the C-terminal half of the transporter that facilitates opening of an intracellular gate controlling access to a central peptide-binding site. Our associated functional data support a model for peptide transport that highlights the importance of salt bridge interactions in orchestrating alternating access within the POT family.
Collapse
|
14
|
Bucking C, Schulte PM. Environmental and nutritional regulation of expression and function of two peptide transporter (PepT1) isoforms in a euryhaline teleost. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:379-87. [PMID: 22227314 DOI: 10.1016/j.cbpa.2011.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/13/2011] [Accepted: 12/17/2011] [Indexed: 12/17/2022]
Abstract
Expression and function of the oligopeptide transporter PepT1 in response to changes in environmental salinity have received little study despite the important role that dipeptides play in piscine nutrition. We cloned and sequenced two novel full-length cDNAs that encode Fundulus heteroclitus PepT1-type oligopeptide transporters, and examined their expression and functional properties in freshwater- and seawater-acclimated fish and in response to fasting and re-feeding. Phylogenetic analysis of vertebrate SLC15A1 sequences confirms the presence of two PepT1 isoforms, named SLC15A1a and SLC15A1b, in fish. Similar to other vertebrate SLC15A1s, these isoforms have 12 transmembrane domains, and amino acids essential for PepT1 function are conserved. Expression analysis revealed novel environment-specific expression of the SLC15A1 isoforms in F. heteroclitus, with only SLC15A1b expressed in seawater-acclimated fish, and both isoforms expressed in freshwater-acclimated fish. Fasting and re-feeding induced changes in the expression of SLC15A1a and SLC15A1b mRNA. Short-term fasting resulted in up-regulation of PepT1 mRNA levels, while prolonged fasting resulted in down-regulation. The resumption of feeding resulted in up-regulation of PepT1 above pre-fasted levels. Experiments using the in vitro gut sac technique suggest that the PepT1 isoforms differ in functional characteristics. An increased luminal pH resulted in decreased intestinal dipeptide transport in freshwater-acclimated fish but suggested an increased dipeptide transport in seawater-acclimated fish. Overall, this is the first evidence of multiple isoforms of PepT1 in fish whose expression is environmentally dependent and results in functional differences in intestinal dipeptide transport.
Collapse
Affiliation(s)
- Carol Bucking
- University of British Columbia, Department of Zoology, 6270 University Blvd, Vancouver, BC, Canada V6T 1Z4.
| | | |
Collapse
|
15
|
Malle E, Zhou H, Neuhold J, Spitzenberger B, Klepsch F, Pollak T, Bergner O, Ecker GF, Stolt-Bergner PC. Random mutagenesis of the prokaryotic peptide transporter YdgR identifies potential periplasmic gating residues. J Biol Chem 2011; 286:23121-31. [PMID: 21558271 DOI: 10.1074/jbc.m111.239657] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The peptide transporter (PTR) family represents a group of proton-coupled secondary transporters responsible for bulk uptake of amino acids in the form of di- and tripeptides, an essential process employed across species ranging from bacteria to humans. To identify amino acids critical for peptide transport in a prokaryotic PTR member, we have screened a library of mutants of the Escherichia coli peptide transporter YdgR using a high-throughput substrate uptake assay. We have identified 35 single point mutations that result in a full or partial loss of transport activity. Additional analysis, including homology modeling based on the crystal structure of the Shewanella oneidensis peptide transporter PepT(so), identifies Glu(56) and Arg(305) as potential periplasmic gating residues. In addition to providing new insights into transport by members of the PTR family, these mutants provide valuable tools for further study of the mechanism of peptide transport.
Collapse
Affiliation(s)
- Elisabeth Malle
- Research Institute of Molecular Pathology, Dr. Bohr-gasse 7, 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cano-Soldado P, Pastor-Anglada M. Transporters that translocate nucleosides and structural similar drugs: structural requirements for substrate recognition. Med Res Rev 2011; 32:428-57. [DOI: 10.1002/med.20221] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pedro Cano-Soldado
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| | - Marçal Pastor-Anglada
- Departament de Bioquímica i Biologia Molecular; Institut de Biomedicina de la Universitat de Barcelona (IBUB); Universitat de Barcelona and CIBER EHD; Barcelona Spain
| |
Collapse
|
17
|
Foley DW, Rajamanickam J, Bailey PD, Meredith D. Bioavailability through PepT1: the role of computer modelling in intelligent drug design. Curr Comput Aided Drug Des 2010; 6:68-78. [PMID: 20370696 DOI: 10.2174/157340910790980133] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to being responsible for the majority of absorption of dietary nitrogen, the mammalian proton-coupled di- and tri-peptide transporter PepT1 is also recognised as a major route of drug delivery for several important classes of compound, including beta-lactam antibiotics and angiotensin-converting enzyme inhibitors. Thus there is considerable interest in the PepT1 protein and especially its substrate binding site. In the absence of a crystal structure, computer modelling has been used to try to understand the relationship between PepT1 3D structure and function. Two basic approaches have been taken: modelling the transporter protein, and modelling the substrate. For the former, computer modelling has evolved from early interpretations of the twelve transmembrane domain structure to more recent homology modelling based on recently crystallised bacterial members of the major facilitator superfamily (MFS). Substrate modelling has involved the proposal of a substrate binding template, to which all substrates must conform and from which the affinity of a substrate can be estimated relatively accurately, and identification of points of potential interaction of the substrate with the protein by developing a pharmacophore model of the substrates. Most recently, these two approaches have moved closer together, with the attempted docking of a substrate library onto a homology model of the human PepT1 protein. This article will review these two approaches in which computers have been applied to peptide transport and suggest how such computer modelling could affect drug design and delivery through PepT1.
Collapse
Affiliation(s)
- David W Foley
- Faculty of Natural Sciences, Keele University, Keele, Staffs ST5 5BG, UK
| | | | | | | |
Collapse
|
18
|
Brandsch M, Knütter I, Bosse-Doenecke E. Pharmaceutical and pharmacological importance of peptide transporters. J Pharm Pharmacol 2010; 60:543-85. [DOI: 10.1211/jpp.60.5.0002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractPeptide transport is currently a prominent topic in membrane research. The transport proteins involved are under intense investigation because of their physiological importance in protein absorption and also because peptide transporters are possible vehicles for drug delivery. Moreover, in many tissues peptide carriers transduce peptidic signals across membranes that are relevant in information processing. The focus of this review is on the pharmaceutical relevance of the human peptide transporters PEPT1 and PEPT2. In addition to their physiological substrates, both carriers transport many β-lactam antibiotics, valaciclovir and other drugs and prodrugs because of their sterical resemblance to di- and tripeptides. The primary structure, tissue distribution and substrate specificity of PEPT1 and PEPT2 have been well characterized. However, there is a dearth of knowledge on the substrate binding sites and the three-dimensional structure of these proteins. Until this pivotal information becomes available by X-ray crystallography, the development of new drug substrates relies on classical transport studies combined with molecular modelling. In more than thirty years of research, data on the interaction of well over 700 di- and tripeptides, amino acid and peptide derivatives, drugs and prodrugs with peptide transporters have been gathered. The aim of this review is to put the reports on peptide transporter-mediated drug uptake into perspective. We also review the current knowledge on pharmacogenomics and clinical relevance of human peptide transporters. Finally, the reader's attention is drawn to other known or proposed human peptide-transporting proteins.
Collapse
Affiliation(s)
- Matthias Brandsch
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Ilka Knütter
- Membrane Transport Group, Biozentrum of the Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| | - Eva Bosse-Doenecke
- Institute of Biochemistry/Biotechnology, Faculty of Science I, Martin-Luther-University Halle-Wittenberg, D-06120 Halle, Germany
| |
Collapse
|
19
|
The transmembrane tyrosines Y56, Y91 and Y167 play important roles in determining the affinity and transport rate of the rabbit proton-coupled peptide transporter PepT1. Int J Biochem Cell Biol 2009; 41:2204-13. [PMID: 19389486 PMCID: PMC3510438 DOI: 10.1016/j.biocel.2009.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/09/2009] [Accepted: 04/15/2009] [Indexed: 11/24/2022]
Abstract
The mammalian proton-coupled peptide transporter PepT1 is widely accepted as the major route of uptake for dietary nitrogen, as well as being responsible for the oral absorption of a number of classes of drugs, including β-lactam antibiotics and angiotensin-converting enzyme (ACE) inhibitors. Using site-directed mutagenesis and zero-trans transport assays, we investigated the role of conserved tyrosines in the transmembrane domains (TMDs) of rabbit PepT1 as predicted by hydropathy plots. All the individual TMD tyrosines were substituted with phenylalanine and shown to retain the ability to traffic to the plasma membrane of Xenopus laevis oocytes. These single substitutions of TMD tyrosines by phenylalanine residues did not affect the proton dependence of peptide uptake, with all retaining wild-type PepT1-like pH dependence. Individual mutations of four of the nine TMD residue tyrosines (Y64, Y287, Y345 and Y587) were without measurable effect on PepT1 function, whereas the other five (Y12, Y56, Y91, Y167 and Y345) were shown to result in altered transport function compared to the wild-type PepT1. Intriguingly, the affinity of Y56F-PepT1 was found to be dramatically increased (approximately 100-fold) in comparison to that of the wild-type rabbit PepT1. Y91 mutations also affected the substrate affinity of the transporter, which increased in line with the hydrophilicity of the substituted amino acid (F > Y > Q > R). Y167 was demonstrated to play a pivotal role in rabbit PepT1 function since Y167F, Y167R and Y167Q demonstrated very little transport function. These results are discussed with regard to a proposed mechanism for PepT1 substrate binding.
Collapse
|
20
|
Rubio-Aliaga I, Daniel H. Peptide transporters and their roles in physiological processes and drug disposition. Xenobiotica 2008; 38:1022-42. [PMID: 18668438 DOI: 10.1080/00498250701875254] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. The peptide transporters belong to the peptide transporter (PTR) family and serve as integral membrane proteins for the cellular uptake of di- and tripeptides in the organism. By their ability also to transport peptidomimetics and other substrates with therapeutic activities or precursors of pharmacologically active agents, they are of considerable importance in pharmacology. 2. PEPT1 is the low-affinity, high-capacity transporter and is mainly expressed in the small intestine, whereas PEPT2 is the high-affinity, low-capacity transporter and has a broader distribution in the organism. 3. Targeted mouse models have revealed PEPT2 to be the dominant transporter for the reabsorption of di- and tripeptides and its pharmacological substrates in the organism, and for the removal of these substrates from the cerebrospinal fluid. Moreover, the peptide transporters undergo physiological and pharmacological regulation and, of great interest, are present in disease states where PEPT1 exhibits ectopic expression in colonic inflammation. 4. The paper reviews the structural characteristics of the peptide transporters, the structural requirements for substrates, the distribution of the peptide transporters in the organism, and finally their regulation in the organism in healthy and pathological situations.
Collapse
Affiliation(s)
- I Rubio-Aliaga
- Molecular Nutrition Unit, Technical University of Munich, Freising-Weihenstephan, Germany
| | | |
Collapse
|
21
|
Gilbert ER, Wong EA, Webb KE. Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J Anim Sci 2008; 86:2135-55. [PMID: 18441086 DOI: 10.2527/jas.2007-0826] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the last 50 yr, the study of intestinal peptide transport has rapidly evolved into a field with exciting nutritional and biomedical applications. In this review, we describe from a historical and current perspective intestinal peptide transport, the importance of peptides to whole-body nutrition, and the cloning and characterization of the intestinal peptide transporter, PepT1. We focus on the nutritional significance of peptide transport and relate these findings to livestock and poultry. Amino acids are transported into the enterocyte as free AA by a variety of AA transporters that vary in substrate specificity or as di- and tripeptides by the peptide transporter, PepT1. Expression of PepT1 is largely restricted to the small intestine in most species; however, in ruminants, peptide transport and activity is observed in the rumen and omasum. The extent to which peptides are absorbed and utilized is still unclear. In ruminants, peptides make a contribution to the portal-drained visceral flux of total AA and are detected in circulating plasma. Peptides can be utilized by the mammary gland for milk protein synthesis and by a variety of other tissues. We discuss the factors known to regulate expression of PepT1 including development, diet, hormones, diurnal rhythm, and disease. Expression of PepT1 is detected during embryological stages in both birds and mammals and increases with age, a strategic event that allows for the immediate uptake of nutrients after hatch or birth. Both increasing levels of protein in the diet and dietary protein deficiencies are found to upregulate the peptide transporter. We also include in this review a discussion of the use of dietary peptides and potential alternate routes of nutrient delivery to the cell. Our goal is to impart to the reader the nutritional implications of peptide transport and dietary peptides and share discoveries that shed light on various biological processes, including rapid establishment of intestinal function in early neonates and maintenance of intestinal function during fasting, starvation, and disease states.
Collapse
Affiliation(s)
- E R Gilbert
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg 24061-0306, USA
| | | | | |
Collapse
|
22
|
Knütter I, Hartrodt B, Tóth G, Keresztes A, Kottra G, Mrestani-Klaus C, Born I, Daniel H, Neubert K, Brandsch M. Synthesis and characterization of a new and radiolabeled high-affinity substrate for H+/peptide cotransporters. FEBS J 2007; 274:5905-14. [DOI: 10.1111/j.1742-4658.2007.06113.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Weitz D, Harder D, Casagrande F, Fotiadis D, Obrdlik P, Kelety B, Daniel H. Functional and structural characterization of a prokaryotic peptide transporter with features similar to mammalian PEPT1. J Biol Chem 2006; 282:2832-9. [PMID: 17158458 DOI: 10.1074/jbc.m604866200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ydgR gene of Escherichia coli encodes a protein of the proton-dependent oligopeptide transporter (POT) family. We cloned YdgR and overexpressed the His-tagged fusion protein in E. coli BL21 cells. Bacterial growth inhibition in the presence of the toxic phosphonopeptide alafosfalin established YgdR functionality. Transport was abolished in the presence of the proton ionophore carbonyl cyanide p-chlorophenylhydrazone, suggesting a proton-coupled transport mechanism. YdgR transports selectively only di- and tripeptides and structurally related peptidomimetics (such as aminocephalosporins) with a substrate recognition pattern almost identical to the mammalian peptide transporter PEPT1. The YdgR protein was purified to homogeneity from E. coli membranes. Blue native-polyacrylamide gel electrophoresis and transmission electron microscopy of detergent-solubilized YdgR suggest that it exists in monomeric form. Transmission electron microscopy revealed a crown-like structure with a diameter of approximately 8 nm and a central density. These are the first structural data obtained from a proton-dependent peptide transporter, and the YgdR protein seems an excellent model for studies on substrate and inhibitor interactions as well as on the molecular architecture of cell membrane peptide transporters.
Collapse
Affiliation(s)
- Dietmar Weitz
- Molecular Nutrition Unit, Department of Food and Nutrition, Technical University of Munich, 85350 Freising, Germany
| | | | | | | | | | | | | |
Collapse
|
24
|
Kulkarni AA, Davies DL, Links JS, Patel LN, Lee VHL, Haworth IS. A charge pair interaction between Arg282 in transmembrane segment 7 and Asp341 in transmembrane segment 8 of hPepT1. Pharm Res 2006; 24:66-72. [PMID: 17009102 DOI: 10.1007/s11095-006-9119-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 07/12/2006] [Indexed: 11/30/2022]
Abstract
PURPOSE To determine whether R282 in transmembrane segment 7 (TMS7) of hPepT1 forms a salt bridge with D341 in TMS8. METHODS Mutated hPepT1 transporters containing point mutations at R282 and/or D341 were transiently transfected into HEK293 cells. Their steady state expression and functional activity were measured using immunoprecipitation and 3H-gly-sar uptake, respectively. Gly-sar uptake by cysteine mutants (R282C and D341C) was also measured in the presence and absence of cysteine-modifying MTS reagents. RESULTS The reverse-charge mutants R282D-hPepT1 and D341R-hPepT1 showed significantly reduced gly-sar uptake, but the double mutant (R282D/D341R-hPepT1) has functionality comparable to that of wild-type hPepT1. Gly-sar uptake by R282C-hPepT1 is reduced, but pre-incubation with 1 mM MTSET, a positively charged cysteine-modifying reagent, restored function to wild-type levels. Similarly, pre-incubation of D341C-hPepT1 with 10 mM MTSES, a negatively charged cysteine-modifying reagent, increased gly-sar uptake compared to unmodified D341C-hPepT1. In contrast, MTSET modification of D341C-hPepT1 (giving a positive charge at position 341) resulted in significant reduction in gly-sar uptake, compared to D341C-hPepT1. CONCLUSION Our results are consistent with a salt bridge between R282 and D341 in hPepT1, and we use these and other data to propose a role for the R282-D341 charge pair in the hPepT1 translocation mechanism.
Collapse
Affiliation(s)
- Ashutosh A Kulkarni
- Department of Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089-9121, USA
| | | | | | | | | | | |
Collapse
|
25
|
Anderle P, Nielsen CU, Pinsonneault J, Krog PL, Brodin B, Sadée W. Genetic variants of the human dipeptide transporter PEPT1. J Pharmacol Exp Ther 2006; 316:636-46. [PMID: 16258023 DOI: 10.1124/jpet.105.094615] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We tested whether genetic polymorphisms affect activity of the dipeptide transporter PEPT1, which mediates bioavailability of peptidomimetic drugs. All 23 exons and adjoining intronic sections of PEPT1 (SLC15A1) were sequenced in 247 individuals of various ethnic origins (Coriell collection). Of 38 single nucleotide polymorphisms (SNPs), 21 occurred in intronic and noncoding regions and 17 in exonic coding region, of which nine were nonsynonymous. Eight nonsynonymous variants were cloned into expression vectors and functionally characterized after transient transfection into Cos7 and Chinese hamster ovary cells. None of the variants had altered transport activity for various ligands, supporting previous results, except for the new, low-frequency PEPT1-F28Y. This variant displayed significantly reduced cephalexin uptake attributable to increased K(m). Altered pH dependence of substrate transport suggested a role for F28Y in H(+)-driven translocation. Haplotype analysis revealed significant differences among ethnic populations. To search for cis-acting polymorphisms affecting transcription and mRNA processing, we measured allelic PEPT1 mRNA expression in human intestinal biopsy samples using a frequent-marker SNP in exon 17. Of 24 heterozygous samples, significant differences in allelic mRNA levels of 20 to 30% were observed in seven tissues. However, the small difference suggests that cis-acting regulatory factors have only limited effects on transporter activity. We also measured the relative formation of a splice variant (PEPT1-RF). PEPT1-RF mRNA levels ranged from 2 to 44% of total PEPT1-related mRNA, with potential consequences for drug absorption. Together with previous results, this study reveals a relatively low level of genetic variability in polymorphisms affecting both protein function and gene regulation.
Collapse
Affiliation(s)
- Pascale Anderle
- Department of Pharmacology, Program in Pharmacogenomics, College of Medicine and Public Health, The Ohio State University, Columbus, 43210, USA
| | | | | | | | | | | |
Collapse
|
26
|
Benjdia M, Rikirsch E, Müller T, Morel M, Corratgé C, Zimmermann S, Chalot M, Frommer WB, Wipf D. Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). THE NEW PHYTOLOGIST 2006; 170:401-10. [PMID: 16608464 DOI: 10.1111/j.1469-8137.2006.01672.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Constraints on plant growth imposed by low availability of nitrogen are a characteristic feature of ecosystems dominated by ectomycorrhizal plants. Ectomycorrhizal fungi play a key role in the N nutrition of plants, allowing their host plants to access decomposition products of dead plant and animal materials. Ectomycorrhizal plants are thus able to compensate for the low availability of inorganic N in forest ecosystems. The capacity to take up peptides, as well as the transport mechanisms involved, were analysed in the ectomycorrhizal fungus Hebeloma cylindrosporum. The present study demonstrated that H. cylindrosporum mycelium was able to take up di- and tripeptides and use them as sole N source. Two peptide transporters (HcPTR2A and B) were isolated by yeast functional complementation using an H. cylindrosporum cDNA library, and were shown to mediate dipeptide uptake. Uptake capacities and expression regulation of both genes were analysed, indicating that HcPTR2A was involved in the high-efficiency peptide uptake under conditions of limited N availability, whereas HcPTR2B was expressed constitutively.
Collapse
Affiliation(s)
- Mariam Benjdia
- ZMBP, Plant Physiology, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Nielsen CU, Våbenø J, Andersen R, Brodin B, Steffansen B. Recent advances in therapeutic applications of human peptide transporters. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.2.153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
28
|
Van L, Pan YX, Bloomquist JR, Webb KE, Wong EA. Developmental regulation of a turkey intestinal peptide transporter (PepT1). Poult Sci 2005; 84:75-82. [PMID: 15685945 DOI: 10.1093/ps/84.1.75] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A cDNA encoding a turkey intestinal peptide transporter, tPepT1, was isolated from a turkey small intestinal cDNA library. The tPepT1 cDNA encodes a 714-amino acid protein with 12 predicted transmembrane domains. The amino acid sequence of tPepT1 is 94.3% identical to chicken PepT1 and approximately 60% identical to PepT1 from rat, sheep, rabbit, and human. Using a 2-electrode voltage-clamp technique in Xenopus oocytes expressing tPepT1, Gly-Sar transport was pH dependent but was independent of Na+ and K+. For the dipeptides Gly-Sar and Met-Met, the evoked inward currents indicated that the transporter was saturable and had high affinity (0.69 +/- 0.14 mM and 0.23 +/- 0.04 mM, respectively) for these substrates. However, transport of the tetrapeptide, Met-Gly-Met-Met, exhibited apparent substrate inhibition at high substrate concentrations. To study developmental regulation of PepT1 mRNA in turkey embryos, embryos (6 males and 6 females) were sampled daily from 5 d before hatch to the day of hatch (d 0). The abundance of PepT1 mRNA in the small intestine was quantified densitometrically from Northern blots after hybridization with full-length tPepT1 cDNA as probe. A 3.2-fold increase in PepT1 mRNA was observed in intestinal tissue from 5 d before hatch to d 0. This increase in PepT1 mRNA abundance indicates that the PepT1 gene is developmentally regulated and that there may be an important role for PepT1 in the neonatal poult.
Collapse
Affiliation(s)
- L Van
- Department of Animal and Poultry Sciences (0306), Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | |
Collapse
|
29
|
Zhang EY, Fu DJ, Pak YA, Stewart T, Mukhopadhyay N, Wrighton SA, Hillgren KM. Genetic polymorphisms in human proton-dependent dipeptide transporter PEPT1: implications for the functional role of Pro586. J Pharmacol Exp Ther 2004; 310:437-45. [PMID: 15075386 DOI: 10.1124/jpet.104.065912] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human proton-dependent dipeptide transporter (PEPT1, gene SLC15A1) is important for intestinal absorption of di- and tripeptides and a variety of peptidomimetic compounds. Using a DNA polymorphism discovery panel of 44 ethnically diverse individuals, nine nonsynonymous and four synonymous coding-region single-nucleotide polymorphisms (SNPs) were identified in PEPT1. HeLa cells were transiently transfected with plasmids constructed by site-directed mutagenesis for each of the nine nonsynonymous variants. Quantitative polymerase chain reaction showed that the mRNA transcription level of all of the mutants was comparable with the mRNA transcription level of the reference sequence in transfected HeLa cells. Functional analysis in transiently transfected HeLa cells revealed that all nonsynonymous variants retained similar pH-dependent activity and K(t) values for [glycyl-1,2-(14)C]glycylsarcosine (Gly-Sar) uptake as the reference PEPT1. In addition, a group of seven peptide-like drugs showed inhibitory effect on Gly-Sar uptake by these variants comparable with the reference, suggesting conserved drug recognition. Of the nine nonsynonymous SNPs, a single SNP (P586L) demonstrated significantly reduced transport capacity as evidenced by a much lower V(max) value. This was consistent with lower immunoactive protein level (Western analysis) and lower plasma membrane expression (immunocytochemical analysis). Therefore, Pro(586) may have profound effect on PEPT1 translation, degradation, and/or membrane insertion.
Collapse
Affiliation(s)
- Eric Y Zhang
- Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Groneberg DA, Fischer A, Chung KF, Daniel H. Molecular mechanisms of pulmonary peptidomimetic drug and peptide transport. Am J Respir Cell Mol Biol 2004; 30:251-60. [PMID: 14969997 DOI: 10.1165/rcmb.2003-0315tr] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The aerosolic administration of peptidomimetic drugs could play a major role in the future treatment of various pulmonary and systemic diseases, because rational drug design offers the potential to specifically generate compounds that are transported efficiently into the epithelium by distinct carrier proteins such as the peptide transporters. From the two presently known peptide transporters, PEPT1 and PEPT2, which have been cloned from human tissues, the high-affinity transporter PEPT2 is expressed in the respiratory tract epithelium. The transporter is an integral membrane protein with 12 membrane-spanning domains and mediates electrogenic uphill peptide and peptidomimetic drug transport by coupling of substrate translocation to a transmembrane electrochemical proton gradient serving as driving force. In human airways, PEPT2 is localized to bronchial epithelium and alveolar type II pneumocytes, and transport studies revealed that both peptides and peptidomimetic drugs such as antibiotic, antiviral, and antineoplastic drugs are carried by the system. PEPT2 is also responsible for the transport of delta-aminolevulinic acid, which is used for photodynamic therapy and the diagnostics of pulmonary neoplasms. Based on the recent progress in understanding the structural requirements for substrate binding and transport, PEPT2 becomes a target for a rational drug design that may lead to a new generation of respiratory drugs and prodrugs that can be delivered to the airways via the peptide transporter.
Collapse
Affiliation(s)
- David A Groneberg
- Deptartment of Pediatric Pneumology and Immunology/Medicine, Charité School of Medicine, Humboldt-University; CVK OR-1 R.3.0073, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | |
Collapse
|
31
|
Abstract
Intestinal protein digestion generates a huge variety and quantity of short chain peptides that are absorbed into intestinal epithelial cells by the PEPT1 transporter in the apical membrane of enterocytes. PEPT1 operates as an electrogenic proton/peptide symporter with the ability to transport essentially every possible di- and tripeptide. Transport is enantio-selective and involves a variable proton-to-substrate stoichiometry for uptake of neutral and mono- or polyvalently charged peptides. Neither free amino acids nor peptides containing four or more amino acids are accepted as substrates. The structural similarity of a variety of drugs with the basic structure of di- or tripeptides explains the transport of aminocephalosporins and aminopenicillins, selected angiotensin-converting inhibitors, and amino acid-conjugated nucleoside-based antiviral agents by PEPT1. The high transport capacity of PEPT1 allows fast and efficient intestinal uptake of the drugs but also of amino acid nitrogen even in states of impaired mucosal functions. Transcriptional and post-transcriptional regulation of PEPT1 occurs in response to alterations in the nutritional status and in disease states, suggesting a prime role of this transporter in amino acid absorption.
Collapse
Affiliation(s)
- Hannelore Daniel
- Molecular Nutrition Unit, Technical University of Munich, D-85350 Freising-Weihenstephan, Germany.
| |
Collapse
|
32
|
Daniel H, Kottra G. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch 2004; 447:610-8. [PMID: 12905028 DOI: 10.1007/s00424-003-1101-4] [Citation(s) in RCA: 320] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Revised: 04/25/2003] [Accepted: 04/29/2003] [Indexed: 02/07/2023]
Abstract
Mammalian members of the SLC15 family are electrogenic transporters that utilize the proton-motive force for uphill transport of short chain peptides and peptido-mimetics into a variety of cells. The prototype transporters of this family are PEPT1 (SLC15A1) and PEPT2 (SLC15A2), which mediate the uptake of peptide substrates into intestinal and renal epithelial cells. More recently, other sites of functional expression of the two proteins have been identified such as bile duct epithelium (PEPT1), glia cells and epithelia of the choroid plexus, lung and mammary gland (PEPT2). Both proteins can transport essentially every possible di- and tripeptide regardless of the substrate's net charge, but operate stereoselectively. Based on peptide-like structures, various drugs and prodrugs are transported as well, allowing efficient intestinal absorption of the compounds via PEPT1. In kidney tubules both peptide transporters can mediate the renal reabsorption of the filtered compounds thus affecting their pharmacokinetics. Recently, two new peptide transporters, PHT1 (SLC15A4) and PHT2 (SLC15A3), were identified in mammals. They possess an overall amino acid identity with the PEPT-series of 20% to 25%. PHT1 and PHT2 were shown to transport free histidine and certain di- and tripeptides, but it is not yet clear whether they are located on the plasma membrane or represent lysosomal transporters for the proton-dependent export of histidine and dipeptides from lysosomal protein degradation into the cytosol.
Collapse
Affiliation(s)
- Hannelore Daniel
- Molecular Nutrition Unit, Institute of Nutritional Sciences, Technical University of Munich, Hochfeldweg 2, 85354, Freising-Weihenstephan, Germany
| | | |
Collapse
|
33
|
Kulkarni AA, Haworth IS, Uchiyama T, Lee VHL. Analysis of Transmembrane Segment 7 of the Dipeptide Transporter hPepT1 by Cysteine-scanning Mutagenesis. J Biol Chem 2003; 278:51833-40. [PMID: 14532279 DOI: 10.1074/jbc.m308356200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the involvement of transmembrane segment 7 (TMS7) of hPepT1 in forming the putative central aqueous channel through which the substrate traverses, we individually mutated each of the 21 amino acids in TMS7 to a cysteine and analyzed the mutated transporters using the scanning cysteine accessibility method. Y287C- and M292C-hPepT1 did not express at the plasma membrane. Out of the remaining 19 transporters, three (F293C-, L296C-, and F297C-hPepT1) showed negligible glycyl-sarcosine (gly-sar) uptake activity and may play an important role in defining the overall hPepT1 structure. K278C-hPepT1 showed approximately 40% activity and the 15 other transporters exhibited more than 50% gly-sar uptake when compared with wild type (WT)-hPepT1. Gly-sar uptake for the 16 active transporters containing cysteine mutations was then measured in the presence of 2.5 mM 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA) or 1 mM [2-(trimethylammonium) ethyl] methanethiosulfonate bromide (MTSET). Gly-sar uptake was significantly inhibited for each of the 16 single cysteine mutants in the presence of 2.5 mM MTSEA. In contrast, significant inhibition of uptake was only observed for K278C-, M279C-, V280C-, T281C-, M284C-, L286C-, P291C-, and D298C-hPepT1 in the presence of 1 mM MTSET. MTSET modification of R282C-hPepT1 resulted in a significant increase in gly-sar uptake. To investigate this further, we mutated WT-hPepT1 to R282A-, R282E-, and R282K-hPepT1. R282E-hPepT1 showed a 43% reduction in uptake activity, whereas R282A- and R282K-hPepT1 had activities comparable with WT-hPepT1, suggesting a role for the Arg-282 positive charge in substrate translocation. Most of the amino acids that were MTSET-sensitive upon cysteine mutation, including R282C, are located toward the intracellular end of TMS7. Hence, our results suggest that TMS7 of hPepT1 is relatively solvent-accessible along most of its length but that the intracellular end of the transmembrane domain is particularly so. From a structure-function perspective, we speculate that the extracellular end of TMS7 may shift following substrate binding, providing the basis for channel opening and substrate translocation.
Collapse
Affiliation(s)
- Ashutosh A Kulkarni
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121, USA
| | | | | | | |
Collapse
|
34
|
Herrera-Ruiz D, Knipp GT. Current perspectives on established and putative mammalian oligopeptide transporters. J Pharm Sci 2003; 92:691-714. [PMID: 12661057 DOI: 10.1002/jps.10303] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Peptides and peptide-based drugs are increasingly being utilized as therapeutic agents for the treatment of numerous disorders. The increasing development of peptide-based therapeutic agents is largely due to technological advances including the advent of combinatorial peptide libraries, peptide synthesis strategies, and peptidomimetic design. Peptides and peptide-based agents have a broad range of potential clinical applications in the treatment of many disorders including AIDS, hypertension, and cancer. Peptides are generally hydrophilic and often exhibit poor passive transcellular diffusion across biological barriers. Insights into strategies for increasing their intestinal absorption have been derived from the numerous studies demonstrating that the absorption of protein digestion products occurs primarily in the form of small di- and tripeptides. The characterization of the pathways of intestinal, transepithelial transport of peptides and peptide-based drugs have demonstrated that a significant degree of absorption occurs through the role of proteins within the proton-coupled, oligopeptide transporter (POT) family. Considerable focus has been traditionally placed on Peptide Transporter 1 (PepT1) as the main mammalian POT member regulating intestinal peptide absorption. Recently, several new POT members, including Peptide/Histidine Transporter 1 (PHT1) and Peptide/Histidine Transporter 2 (PHT2) and their splice variants have been identified. This has led to an increased need for new experimental methods enabling better characterization of the biophysical and biochemical barriers and the role of these POT isoforms in mediating peptide-based drug transport.
Collapse
Affiliation(s)
- Dea Herrera-Ruiz
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854-8022, USA
| | | |
Collapse
|
35
|
Abstract
Peptide transporters are integral plasma membrane proteins that mediate the cellular uptake of dipeptides and tripeptides in addition to a variety of peptidomimetics. The carriers, which occur predominantly in the brush-border membranes of epithelial cells of the small intestine, lung, choroid plexus and kidney, contribute to absorption, distribution and elimination of their substrates. The cellular uptake of peptides and peptidomimetics involves the cotransport of protons down an inwardly directed, electrochemical proton gradient that provides the driving force and causes the electrogenicity of the translocation step. Peptide transporters represent excellent targets for the delivery of pharmacologically active compounds because their substrate-binding site can accommodate a wide range of molecules of differing size, hydrophobicity and charge.
Collapse
Affiliation(s)
- Isabel Rubio-Aliaga
- Institute of Nutritional Sciences, Molecular Nutrition Unit, Technical University of Munich, Hochfeldweg 2, D-85350,., Freising, Germany
| | | |
Collapse
|
36
|
Chen H, Pan Y, Wong EA, Bloomquist JR, Webb KE. Molecular cloning and functional expression of a chicken intestinal peptide transporter (cPepT1) in Xenopus oocytes and Chinese hamster ovary cells. J Nutr 2002; 132:387-93. [PMID: 11880560 DOI: 10.1093/jn/132.3.387] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To study peptide absorption in chickens, an intestinal peptide transporter cDNA (cPepT1) was isolated from a chicken duodenal cDNA library. The cDNA was 2914 bp long and encoded a protein of 714 amino acid residues with an estimated molecular size of 79.3 kDa and an isoelectric point of 7.48. cPepT1 protein is similar60% identical to PepT1 from rabbits, humans, mice, rats and sheep. Sixteen dipeptides, three tripeptides and four tetrapeptides that contained the essential amino acids Met, Lys and(or) Trp were used for functional analysis of cPepT1 in Xenopus oocytes and Chinese hamster ovary cells. For most di- and tripeptides tested, the substrate affinities were in the micromolar range, indicating that cPepT1 has high affinity for these peptides. Lys-Lys and Lys-Trp-Lys were exceptions, with substrate affinities in the millimolar range. Neither free amino acids nor tetrapeptides were transported by cPepT1. Northern blot analysis using a full-length cPepT1 cDNA as the probe demonstrated that cPepT1 is expressed strongly in the duodenum, jejunum and ileum, and at lower levels in kidney and ceca. The present study demonstrated for the first time the presence and functional characteristics of a peptide transport system from an avian species.
Collapse
Affiliation(s)
- Hong Chen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
37
|
Kottra G, Daniel H. Bidirectional electrogenic transport of peptides by the proton-coupled carrier PEPT1 in Xenopus laevis oocytes: its asymmetry and symmetry. J Physiol 2001; 536:495-503. [PMID: 11600684 PMCID: PMC2278880 DOI: 10.1111/j.1469-7793.2001.0495c.xd] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
1. The giant patch clamp technique in the inside-out configuration and the two-electrode voltage clamp technique were used to characterize the bidirectional transport properties of the proton-coupled peptide carrier PEPT1 expressed in Xenopus laevis oocytes. 2. The addition of the neutral dipeptide Gly-L-Gln to the cytoplasmic solution induced a net outward transport current in a membrane potential range between -80 and +60 mV, even in the absence of a pH gradient. 3. The concentration dependency of the outwardly directed transport currents followed Michaelis-Menten-type kinetics, with an apparent K0.5 of 3.28 mM (at pH 7.5 and +60 mV membrane potential). This apparent affinity is around fivefold lower than the apparent affinity measured for the inward transport mode (K0.5 of 0.70 mM (at pH 7.5 and -60 mV) under identical experimental conditions). 4. Apparent K0.5 values were strongly pH and potential dependent only on the external face for inward transport. The transport currents were potential dependent, but essentially pH independent for inward transport and only modestly altered by pH in the reverse direction. In addition to the membrane potential, the transmembrane substrate gradient acts as a driving force and contributes significantly to total transport currents. 5. The differences in apparent substrate affinity under identical experimental conditions suggest major differences in the conformation of the substrate binding pocket of PEPT1 when exposed to the external versus the internal face of the membrane. The lower affinity on the internal face allows the substrate to be released into the cytosolic compartment even in the absence of a proton-motive force. 6. Our study demonstrates for the first time that PEPT1 can transport dipeptides bidirectionally in an electrogenic and proton-coupled symport mode. When substrates are present on both sides of the membrane in sufficiently high concentrations, the direction and rate of transport are solely dependent on the membrane potential, and transport occurs symmetrically.
Collapse
Affiliation(s)
- G Kottra
- Molecular Nutrition Unit, Institute of Nutritional Science, Technical University of Munich, Hochfeldweg 2, D-85350 Freising-Weihenstephan, Germany.
| | | |
Collapse
|
38
|
Merlin D, Si-Tahar M, Sitaraman SV, Eastburn K, Williams I, Liu X, Hediger MA, Madara JL. Colonic epithelial hPepT1 expression occurs in inflammatory bowel disease: transport of bacterial peptides influences expression of MHC class 1 molecules. Gastroenterology 2001; 120:1666-79. [PMID: 11375948 DOI: 10.1053/gast.2001.24845] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS hPepT1 is an intestinal epithelial apical membrane transporter responsible for uptake of di/tripeptides (including bacterial derived proinflammatory n-formyl peptides). hPepT1 expression normally has a strict axial gradient-highest in the proximal small intestine with no expression in the colon. METHODS Small intestinal-like cells (Caco2-BBE), and colonic-like cells (HT29-Cl.19A), and colonic mucosa from diseased and control patients were used in the present study. RESULTS hPepT1 expression occurs aberrantly in the colon with chronic ulcerative colitis (6 patients) and Crohn's disease (4 patients), but not in normal colon (4 patients) or colon with microscopic colitis (4 patients). To model expression of hPepT1 by colonic-like cells in inflamed states, we stably transfected HT29-Cl.19A cells with a modified hPepT1 tagged on the N-terminus with green fluorescence protein. Analysis of transfected cells revealed that: GFP-hPepT1 protein, like the natural protein, is targeted to the apical plasma membrane. In addition, the tagged protein retains the capability of di/tripeptide absorption, and the expression of the tagged protein by HT29-Cl.19A cells permits absorption of N-formyl-methionyl-leucyl-phenylalanine (fMLP), as occurs in hPepT1 expressing Caco2-BBE cells. fMLP uptake by colonic cells expressing GFP-hPepT1 specifically enhances major histocompatibility complex class I surface expression. CONCLUSIONS These data collectively indicate that, in some states of chronic inflammation, hPepT1 may be anomolously expressed in the colon. Further, transport of fMLP by hPepT1 potentially stimulates expression of key accessory immune molecule, MHC-1.
Collapse
Affiliation(s)
- D Merlin
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Carrier-mediated drug transport is relatively unexplored in comparison with passive transcellular and paracellular drug transport. Yet, there is a host of transporter proteins that can be targeted for improving epithelial drug absorption. Generally, these are transport mechanisms for amino acids, dipeptides, monosaccharides, monocarboxylic acids, organic cations, phosphates, nucleosides, and water-soluble vitamins. Among them, the dipeptide transporter mechanism has received the most attention. Dipeptide transporters are H(+)-coupled, energy-dependent transporters that are known to play an essential role in the oral absorption of beta-lactam antibiotics, angiotensin-converting enzyme (ACE) inhibitors, renin inhibitors, and an anti-tumor drug, bestatin. Moreover, several investigators have demonstrated the utility of the dipeptide transporter as a platform for improving the oral bioavailability of drugs such as zidovudine and acyclovir through dipeptide prodrug derivatization. Thus far, at least four proton-coupled peptide transporters have been cloned. The first one cloned was PepT1 from the rabbit small intestine. The focus of this presentation will be structure-function, intracellular trafficking, and regulation of PepT1. Disease, dietary, and possible excipient influences on PepT1 function will also be discussed.
Collapse
Affiliation(s)
- V H Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 708, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
40
|
Urtti A, Johns SJ, Sadée W. Genomic structure of proton-coupled oligopeptide transporter hPEPT1 and pH-sensing regulatory splice variant. AAPS PHARMSCI 2000; 3:E6. [PMID: 11741257 PMCID: PMC2751238 DOI: 10.1208/ps030106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Proton-coupled oligopeptide transporter PEPT1 facilitates the transport of dipeptides and peptoid drugs (including antibiotics) across the cell membranes of endothelial and epithelial cells. Substrate transport by the proton symport is driven by pH gradients, while the profile of pH sensitivity is regulated by a closely related protein, hPEPT1-RF. We investigated the genomic structure of hPEPT1 and hPEPT1-RF. Analysis of the high-throughput genomic sequence (HTGS) database revealed that hPEPT1 and hPEPT1-RF are splice variants encoded by the same gene located in chromosome 13, consisting of 24 exons. hPEPT1 is encoded by 23 exons and hPEPT1-RF by 6 exons. Coding sequences of hPEPT1-RF share 3 exons completely and 2 exons partially with hPEPT1. The genomic organization of hPEPT1 shows high similarity with its mouse orthologue. Exon-intron boundaries occur mostly in the loops connecting transmembrane segments (TMSs), suggesting a modular gene structure reflecting the TMS-loop repeat units in hPEPT1. The putative promoter region of hPEPT1 contains TATA boxes and GC-rich regions and a potential insulin responsive element.
Collapse
Affiliation(s)
- A Urtti
- Department of Biopharmaceutical Sciences, University of California San Francisco, CA 94143-0446, USA.
| | | | | |
Collapse
|