1
|
Kawade H, Morise J, Mishra SK, Tsujioka S, Oka S, Kizuka Y. Tissue-Specific Regulation of HNK-1 Biosynthesis by Bisecting GlcNAc. Molecules 2021; 26:5176. [PMID: 34500611 PMCID: PMC8434142 DOI: 10.3390/molecules26175176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023] Open
Abstract
Human natural killer-1 (HNK-1) is a sulfated glyco-epitope regulating cell adhesion and synaptic functions. HNK-1 and its non-sulfated forms, which are specifically expressed in the brain and the kidney, respectively, are distinctly biosynthesized by two homologous glycosyltransferases: GlcAT-P in the brain and GlcAT-S in the kidney. However, it is largely unclear how the activity of these isozymes is regulated in vivo. We recently found that bisecting GlcNAc, a branching sugar in N-glycan, suppresses both GlcAT-P activity and HNK-1 expression in the brain. Here, we observed that the expression of non-sulfated HNK-1 in the kidney is unexpectedly unaltered in mutant mice lacking bisecting GlcNAc. This suggests that the biosynthesis of HNK-1 in the brain and the kidney are differentially regulated by bisecting GlcNAc. Mechanistically, in vitro activity assays demonstrated that bisecting GlcNAc inhibits the activity of GlcAT-P but not that of GlcAT-S. Furthermore, molecular dynamics simulation showed that GlcAT-P binds poorly to bisected N-glycan substrates, whereas GlcAT-S binds similarly to bisected and non-bisected N-glycans. These findings revealed the difference of the highly homologous isozymes for HNK-1 synthesis, highlighting the novel mechanism of the tissue-specific regulation of HNK-1 synthesis by bisecting GlcNAc.
Collapse
Affiliation(s)
- Haruka Kawade
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Sushil K. Mishra
- Glycoscience Center of Research Excellence, The University of Mississippi, Oxford, MS 38677, USA;
| | - Shuta Tsujioka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (J.M.); (S.T.); (S.O.)
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
2
|
Site-specific HNK-1 epitope on alternatively spliced fibronectin type-III repeats in tenascin-C promotes neurite outgrowth of hippocampal neurons through contactin-1. PLoS One 2019; 14:e0210193. [PMID: 30629639 PMCID: PMC6328190 DOI: 10.1371/journal.pone.0210193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022] Open
Abstract
The human natural killer-1 (HNK-1) carbohydrate epitope, composed of a unique sulfated trisaccharide (HSO3–3GlcAβ1–3Galβ1–4GlcNAc-R), is highly expressed during brain development and regulates higher brain function. However, it remains unclear which glycoprotein carries the HNK-1 epitope in the embryonic brain and the functional role it plays. Here, we showed that one of the major HNK-1 carrier proteins in the embryonic brain is tenascin-C (TNC), an extracellular matrix protein that regulates neurite outgrowth by interacting with the GPI-anchored protein contactin-1 (CNTN). Because the alternatively spliced fibronectin type-III (FNIII) repeats in TNC give rise to many isoforms and affect neuronal function, we evaluated neurite outgrowth of primary hippocampal neurons on purified recombinant FNIII repeats with or without the HNK-1 epitope as a substrate. We found that the presence of the HNK-1 epitope on the C domain of TNC promoted neurite outgrowth, and that this signal was mediated by CNTN, which is an HNK-1-expressing neuronal receptor. The neurite-promoting activity of the HNK-1 epitope on TNC required neuronal HNK-1 expression, which was defective in neurons lacking the glucuronyltransferases GlcAT-P and GlcAT-S. These results suggest that the HNK-1 epitope is a key modifier of TNC and CNTN in the regulation of embryonic brain development.
Collapse
|
3
|
Manya H, Endo T. Glycosylation with ribitol-phosphate in mammals: New insights into the O-mannosyl glycan. Biochim Biophys Acta Gen Subj 2017; 1861:2462-2472. [PMID: 28711406 DOI: 10.1016/j.bbagen.2017.06.024] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. SCOPE OF REVIEW This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. MAJOR CONCLUSIONS Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. GENERAL SIGNIFICANCE O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
Affiliation(s)
- Hiroshi Manya
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| | - Tamao Endo
- Molecular Glycobiology, Research Team for Mechanism of Aging, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Itabashi-ku, Tokyo 173-0015, Japan.
| |
Collapse
|
4
|
Morise J, Takematsu H, Oka S. The role of human natural killer-1 (HNK-1) carbohydrate in neuronal plasticity and disease. Biochim Biophys Acta Gen Subj 2017; 1861:2455-2461. [PMID: 28709864 DOI: 10.1016/j.bbagen.2017.06.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/01/2017] [Accepted: 06/17/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND The human natural killer-1 (HNK-1) carbohydrate, a unique trisaccharide possessing sulfated glucuronic acid in a non-reducing terminus (HSO3-3GlcAß1-3Galß1-4GlcNAc-), is highly expressed in the nervous system and its spatiotemporal expression is strictly regulated. Mice deficient in the gene encoding a key enzyme, GlcAT-P, of the HNK-1 biosynthetic pathway exhibit almost complete disappearance of the HNK-1 epitope in the brain, significant reduction of long-term potentiation, and aberration of spatial learning and memory formation. In addition to its physiological roles in higher brain function, the HNK-1 carbohydrate has attracted considerable attention as an autoantigen associated with peripheral demyelinative neuropathy, which relates to IgM paraproteinemia, because of high immunogenicity. It has been suggested, however, that serum autoantibodies in IgM anti-myelin-associated glycoprotein (MAG) antibody-associated neuropathy patients show heterogeneous reactivity to the HNK-1 epitope. SCOPE OF REVIEW We have found that structurally distinct HNK-1 epitopes are expressed in specific proteins in the nervous system. Here, we overview the current knowledge of the involvement of these HNK-1 epitopes in the regulation of neural plasticity and discuss the impact of different HNK-1 antigens of anti-MAG neuropathy patients. MAJOR CONCLUSIONS We identified the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor subunit GluA2 and aggrecan as HNK-1 carrier proteins. The HNK-1 epitope on GluA2 and aggrecan regulates neural plasticity in different ways. Furthermore, we found the clinical relationship between reactivity of autoantibodies to the different HNK-1 epitopes and progression of anti-MAG neuropathy. GENERAL SIGNIFICANCE The HNK-1 epitope is indispensable for the acquisition of normal neuronal function and can be a good target for the establishment of diagnostic criteria for anti-MAG neuropathy.
Collapse
Affiliation(s)
- Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
5
|
Ma L, Shen HF, Shen YQ, Schachner M. The Adhesion Molecule-Characteristic HNK-1 Carbohydrate Contributes to Functional Recovery After Spinal Cord Injury in Adult Zebrafish. Mol Neurobiol 2017; 54:3253-3263. [PMID: 27086029 DOI: 10.1007/s12035-016-9876-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/18/2016] [Indexed: 02/05/2023]
Abstract
The human natural killer cell antigen-1 (HNK-1) is functionally important in development, synaptic activity, and regeneration after injury in the nervous system of several mammalian species. It contains a sulfated glucuronic acid which is carried by neural adhesion molecules and expressed in nonmammalian species, including zebrafish, which, as opposed to mammals, spontaneously regenerate after injury in the adult. To evaluate HNK-1's role in recovery of function after spinal cord injury (SCI) of adult zebrafish, we assessed the effects of the two HNK-1 synthesizing enzymes, glucuronyl transferase and HNK-1 sulfotransferase. Expression of these two enzymes was increased at the messenger RNA (mRNA) level 11 days after injury in the brainstem nuclei that are capable of regrowth of severed axons, namely, the nucleus of medial longitudinal fascicle and intermediate reticular formation, but not at earlier time points after SCI. mRNA levels of glucuronyl transferase and sulfotransferase were increased in neurons, not only of these nuclei but also in the spinal cord caudal to the injury site at 11 days. Mauthner neurons which are not capable of regeneration did not show increased levels of enzyme mRNAs after injury. Reducing protein levels of the enzymes by application of anti-sense morpholinos resulted in reduction of locomotor recovery for glucuronyl transferase, but not for HNK-1 sulfotransferase. The combined results indicate that HNK-1 is upregulated in expression only in those neurons that are intrinsically capable of regeneration and contributes to regeneration after spinal cord injury in adult zebrafish in the absence of its sulfate moiety.
Collapse
Affiliation(s)
- Liping Ma
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA
| | - Hui-Fan Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, P.R. China
| | - Yan-Qin Shen
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, P.R. China
- Department of Basic Medicine, Jiangnan University Medical School, Wuxi, Jiangsu, P.R. China
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854, USA.
- Center for Neuroscience, Shantou University Medical College, 22 Xin Ling Road, Shantou, Guangdong, 515041, P.R. China.
| |
Collapse
|
6
|
Kizuka Y. Expression of Neural Glycans and Their Role in Disease. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1613.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Kizuka Y. Expression of Neural Glycans and Their Role in Disease. TRENDS GLYCOSCI GLYC 2017. [DOI: 10.4052/tigg.1613.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
García-Ayllón MS, Botella-López A, Cuchillo-Ibañez I, Rábano A, Andreasen N, Blennow K, Ávila J, Sáez-Valero J. HNK-1 Carrier Glycoproteins Are Decreased in the Alzheimer's Disease Brain. Mol Neurobiol 2016; 54:188-199. [PMID: 26738850 DOI: 10.1007/s12035-015-9644-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/16/2015] [Indexed: 12/30/2022]
Abstract
The human natural killer-1 (HNK-1), 3-sulfonated glucuronic acid, is a glycoepitope marker of cell adhesion that participates in cell-cell and cell-extracellular matrix interactions and in neurite growth. Very little is known about the regulation of the HNK-1 glycan in neurodegenerative disease, particularly in Alzheimer's disease (AD). In this study, we investigate changes in the levels of HNK-1 carrier glycoproteins in AD. We demonstrate an overall decrease in HNK-1 immunoreactivity in glycoproteins extracted from the frontal cortex of AD subjects, compared with levels from non-demented controls (NDC). Immunoblotting of ventricular post-mortem and lumbar ante-mortem cerebrospinal fluid with HNK-1 antibodies indicate similar levels of carrier glycoproteins in AD and NDC samples. Decrease in HNK-1 carrier glycoproteins were not paralleled by changes in messenger RNA (mRNA) levels of the enzymes involved in the synthesis of the glycoepitope, β-1,4-galactosyltransferase (β4GalT), glucuronyltransferases GlcAT-P and GlcAT-S, or sulfotransferase HNK-1ST. Over-expression of amyloid precursor protein in Tg2576 transgenic mice and in vitro treatment of SH-SY5Y neuroblastoma cells with the amyloidogenic Aβ42 peptide resulted in a decrease in HNK-1 immunoreactivity levels in brain and cellular extracts, whereas the levels of soluble HNK-1 glycoproteins detected in culture media were not affected by Aβ treatment. HNK-1 levels remain unaffected in the brain extracts of Tg-VLW mice, a model of mutant hyperphosphorylated tau, and in SH-SY5Y cells over-expressing hyperphosphorylated wild-type tau. These results provide evidence that cellular levels of HNK-1 carrier glycoforms are decreased in the brain of AD subjects, probably influenced by the β-amyloid protein.
Collapse
Affiliation(s)
- María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain. .,Unidad de Investigación, Hospital General Universitario de Elche, FISABIO, Elche, Spain.
| | - Arancha Botella-López
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - Alberto Rábano
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Banco de Tejidos de la Fundación CIEN, CIEN Foundation, Carlos III Institute of Health, Alzheimer Center Reina Sofia Foundation, Madrid, Spain
| | - Niels Andreasen
- Karolinska Institute-Alzheimer Disease Research center, Stockholm, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Centro de Biología Molecular "Severo Ochoa", Universidad, Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, Madrid, Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
9
|
Yabuno K, Morise J, Kizuka Y, Hashii N, Kawasaki N, Takahashi S, Miyata S, Izumikawa T, Kitagawa H, Takematsu H, Oka S. A Sulfated Glycosaminoglycan Linkage Region is a Novel Type of Human Natural Killer-1 (HNK-1) Epitope Expressed on Aggrecan in Perineuronal Nets. PLoS One 2015; 10:e0144560. [PMID: 26659409 PMCID: PMC4686076 DOI: 10.1371/journal.pone.0144560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/19/2015] [Indexed: 01/18/2023] Open
Abstract
Human natural killer-1 (HNK-1) carbohydrate (HSO3-3GlcAβ1-3Galβ1-4GlcNAc-R) is highly expressed in the brain and required for learning and neural plasticity. We previously demonstrated that expression of the HNK-1 epitope is mostly abolished in knockout mice for GlcAT-P (B3gat1), a major glucuronyltransferase required for HNK-1 biosynthesis, but remained in specific regions such as perineuronal nets (PNNs) in these mutant mice. Considering PNNs are mainly composed of chondroitin sulfate proteoglycans (CSPGs) and regulate neural plasticity, GlcAT-P-independent expression of HNK-1 in PNNs is suggested to play a role in neural plasticity. However, the function, structure, carrier glycoprotein and biosynthetic pathway for GlcAT-P-irrelevant HNK-1 epitope remain unclear. In this study, we identified a unique HNK-1 structure on aggrecan in PNNs. To determine the biosynthetic pathway for the novel HNK-1, we generated knockout mice for GlcAT-S (B3gat2), the other glucuronyltransferase required for HNK-1 biosynthesis. However, GlcAT-P and GlcAT-S double-knockout mice did not exhibit reduced HNK-1 expression compared with single GlcAT-P-knockout mice, indicating an unusual biosynthetic pathway for the HNK-1 epitope in PNNs. Aggrecan was purified from cultured cells in which GlcAT-P and -S are not expressed and we determined the structure of the novel HNK-1 epitope using liquid chromatography/mass spectrometry (LC/MS) as a sulfated linkage region of glycosaminoglycans (GAGs), HSO3-GlcA-Gal-Gal-Xyl-R. Taken together, we propose a hypothetical model where GlcAT-I, the sole glucuronyltransferase required for synthesis of the GAG linkage, is also responsible for biosynthesis of the novel HNK-1 on aggrecan. These results could lead to discovery of new roles of the HNK-1 epitope in neural plasticity.
Collapse
Affiliation(s)
- Keiko Yabuno
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Jyoji Morise
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhiko Kizuka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Nana Kawasaki
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, 158-8501, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology Faculty of Medicine University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Shinji Miyata
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Tomomi Izumikawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe, 658-8558, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
10
|
Morise J, Kizuka Y, Yabuno K, Tonoyama Y, Hashii N, Kawasaki N, Manya H, Miyagoe-Suzuki Y, Takeda S, Endo T, Maeda N, Takematsu H, Oka S. Structural and biochemical characterization of O-mannose-linked human natural killer-1 glycan expressed on phosphacan in developing mouse brains. Glycobiology 2013; 24:314-24. [DOI: 10.1093/glycob/cwt116] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
11
|
Nakagawa N, Takematsu H, Oka S. HNK-1 sulfotransferase-dependent sulfation regulating laminin-binding glycans occurs in the post-phosphoryl moiety on α-dystroglycan. Glycobiology 2013; 23:1066-74. [PMID: 23723439 DOI: 10.1093/glycob/cwt043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Dystroglycan (DG) is a cell surface glycoprotein that connects extracellular matrix molecules to the intracellular cytoskeleton, functioning as mechanical and signaling axes in various physiological events. Since the ligand-binding activity of DG strictly depends on O-mannosyl glycans attached to its extracellular α-DG subunit, aberrant glycosylation causes dystroglycanopathy, a subclass of congenital muscular dystrophy. Accumulating evidence shows that like-acetylglucosaminyltransferase (LARGE), a glycosyltransferase involved in the biosynthesis of a phosphodiester-linked modification on O-mannose, is essential for α-DG to gain the ligand-binding activity. We previously reported that human natural killer-1 sulfotransferase (HNK-1ST), which was originally reported as one of the enzymes responsible for HNK-1 glycoepitope, had an ability to suppress the glycosylation and the function of α-DG. In this study, we investigated how HNK-1ST regulates the glycosylation of α-DG using deletion and mutation analyses. We generated an α-DG mutant which has only one threonine residue capable of being modified by LARGE. Focusing on the single post-phosphoryl modification site, we found that HNK-1ST showed an almost complete inhibition of the LARGE-dependent modification and transferred a sulfate group to the phosphodiester-linked moiety on O-mannose. Furthermore, using an in vitro enzymatic assay system, we demonstrated that the sulfated α-DG by HNK-1ST is no longer glycosylated by LARGE. These results illustrate one possible glycosylation pathway where α-DG function is regulated by opposing actions of HNK-1ST and LARGE.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
12
|
Kizuka Y, Oka S. Regulated expression and neural functions of human natural killer-1 (HNK-1) carbohydrate. Cell Mol Life Sci 2012; 69:4135-47. [PMID: 22669261 PMCID: PMC11114532 DOI: 10.1007/s00018-012-1036-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/15/2012] [Accepted: 05/16/2012] [Indexed: 12/23/2022]
Abstract
Human natural killer-1 (HNK-1) carbohydrate, comprising a unique trisaccharide HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc, shows well-regulated expression and unique functions in the nervous system. Recent studies have revealed sophisticated and complicated expression mechanisms for HNK-1 glycan. Activities of biosynthetic enzymes are controlled through the formation of enzyme-complexes and regulation of subcellular localization. Functional aspects of HNK-1 carbohydrate were examined by overexpression, knockdown, and knockout studies of these enzymes. HNK-1 is involved in several neural functions such as synaptic plasticity, learning and memory, and the underlying molecular mechanisms have been illustrated upon identification of the target carrier glycoproteins of HNK-1 such as the glutamate receptor subunit GluA2 or tenascin-R. In this review, we describe recent findings about HNK-1 carbohydrate that provide further insights into the mechanism of its expression and function in the nervous system.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Disease Glycomics Team, Systems Glycobiology Research Group, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
13
|
Nakagawa N, Manya H, Toda T, Endo T, Oka S. Human natural killer-1 sulfotransferase (HNK-1ST)-induced sulfate transfer regulates laminin-binding glycans on α-dystroglycan. J Biol Chem 2012; 287:30823-32. [PMID: 22801424 DOI: 10.1074/jbc.m112.363036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Retinoic acid (RA) is a well established anti-tumor agent inducing differentiation in various cancer cells. Recently, a robust up-regulation of human natural killer-1 sulfotransferase (HNK-1ST) was found in several subsets of melanoma cells during RA-mediated differentiation. However, the molecular mechanism underlying the tumor suppression mediated by HNK-1ST remains unclear. Here, we show that HNK-1ST changed the glycosylation state and reduced the ligand binding activity of α-dystroglycan (α-DG) in RA-treated S91 melanoma cells, which contributed to an attenuation of cell migration. Knockdown of HNK-1ST restored the glycosylation of α-DG and the migration of RA-treated S91 cells, indicating that HNK-1ST functions through glycans on α-DG. Using CHO-K1 cells, we provide direct evidence that HNK-1ST but not other homologous sulfotransferases (C4ST1 and GalNAc4ST1) suppresses the glycosylation of α-DG. The activity-abolished mutant of HNK-1ST did not show the α-DG-modulating function, indicating that the sulfotransferase activity of HNK-1ST is essential. Finally, the HNK-1ST-dependent incorporation of [(35)S]sulfate groups was detected on α-DG. These findings suggest a novel role for HNK-1ST as a tumor suppressor controlling the functional glycans on α-DG and the importance of sulfate transfer in the glycosylation of α-DG.
Collapse
Affiliation(s)
- Naoki Nakagawa
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | | | | | | | | |
Collapse
|
14
|
Pandey R, Blanco J, Udolph G. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila. PLoS One 2011; 6:e28106. [PMID: 22132223 PMCID: PMC3223219 DOI: 10.1371/journal.pone.0028106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022] Open
Abstract
During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC). We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.
Collapse
Affiliation(s)
- Rahul Pandey
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
| | - Jorge Blanco
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
| | - Gerald Udolph
- Neural Development and Repair, Institute of Medical Biology, Singapore, Singapore
- * E-mail:
| |
Collapse
|
15
|
Nakagawa N, Izumikawa T, Kitagawa H, Oka S. Sulfation of glucuronic acid in the linkage tetrasaccharide by HNK-1 sulfotransferase is an inhibitory signal for the expression of a chondroitin sulfate chain on thrombomodulin. Biochem Biophys Res Commun 2011; 415:109-13. [DOI: 10.1016/j.bbrc.2011.10.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
16
|
Kouno T, Kizuka Y, Nakagawa N, Yoshihara T, Asano M, Oka S. Specific enzyme complex of beta-1,4-galactosyltransferase-II and glucuronyltransferase-P facilitates biosynthesis of N-linked human natural killer-1 (HNK-1) carbohydrate. J Biol Chem 2011; 286:31337-46. [PMID: 21771787 DOI: 10.1074/jbc.m111.233353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human natural killer-1 (HNK-1) carbohydrate is highly expressed in the nervous system and is involved in synaptic plasticity and dendritic spine maturation. This unique carbohydrate, consisting of a sulfated trisaccharide (HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc-), is biosynthesized by the successive actions of β-1,4-galactosyltransferase (β4GalT), glucuronyltransferase (GlcAT-P and GlcAT-S), and sulfotransferase (HNK-1ST). A previous study showed that mice lacking β4GalT-II, one of seven β4GalTs, exhibited a dramatic loss of HNK-1 expression in the brain, although β4GalT-I-deficient mice did not. Here, we investigated the underlying molecular mechanism of the regulation of HNK-1 expression. First, focusing on a major HNK-1 carrier, neural cell adhesion molecule, we found that reduced expression of an N-linked HNK-1 carbohydrate caused by a deficiency of β4GalT-II is not likely due to a general loss of the β1,4-galactose residue as an acceptor for GlcAT-P. Instead, we demonstrated by co-immunoprecipitation and endoplasmic reticulum-retention analyses using Neuro2a (N2a) cells that β4GalT-II physically and specifically associates with GlcAT-P. In addition, we revealed by pulldown assay that Golgi luminal domains of β4GalT-II and GlcAT-P are sufficient for the complex to form. With an in vitro assay system, we produced the evidence that the kinetic efficiency k(cat)/K(m) of GlcAT-P in the presence of β4GalT-II was increased about 2.5-fold compared with that in the absence of β4GalT-II. Finally, we showed that co-expression of β4GalT-II and GlcAT-P increased HNK-1 expression on various glycoproteins in N2a cells, including neural cell adhesion molecule. These results indicate that the specific enzyme complex of β4GalT-II with GlcAT-P plays an important role in the biosynthesis of HNK-1 carbohydrate.
Collapse
Affiliation(s)
- Tetsuya Kouno
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Ariga T. The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:386-404. [PMID: 21785257 PMCID: PMC3171285 DOI: 10.2183/pjab.87.386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 05/13/2011] [Indexed: 05/31/2023]
Abstract
In IgM paraproteinemia and peripheral neuropathy, IgM M-protein secretion by B cells leads to a T helper cell response, suggesting that it is antibody-mediated autoimmune disease involving carbohydrate epitopes in myelin sheaths. An immune response against sulfoglucuronosyl glycosphingolipids (SGGLs) is presumed to participate in demyelination or axonal degeneration in the peripheral nervous system (PNS). SGGLs contain a 3-sulfoglucuronic acid residue that interacts with anti-myelin-associated glycoprotein (MAG) and the monoclonal antibody anti-HNK-1. Immunization of animals with sulfoglucuronosyl paragloboside (SGPG) induced anti-SGPG antibodies and sensory neuropathy, which closely resembles the human disease. These animal models might help to understand the disease mechanism and lead to more specific therapeutic strategies. In an in vitro study, destruction or malfunction of the blood-nerve barrier (BNB) was found, resulting in the leakage of circulating antibodies into the PNS parenchyma, which may be considered as the initial key step for development of disease.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| |
Collapse
|
18
|
|
19
|
Izumikawa T, Kitagawa H. Mice Deficient in Glucuronyltransferase-I. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010; 93:19-34. [DOI: 10.1016/s1877-1173(10)93002-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Morita I, Kakuda S, Takeuchi Y, Kawasaki T, Oka S. HNK-1 (human natural killer-1) glyco-epitope is essential for normal spine morphogenesis in developing hippocampal neurons. Neuroscience 2009; 164:1685-94. [PMID: 19796667 DOI: 10.1016/j.neuroscience.2009.09.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 09/02/2009] [Accepted: 09/24/2009] [Indexed: 01/12/2023]
Abstract
The human natural killer-1 (HNK-1) glyco-epitope possesses a unique structural feature, a sulfated glucuronic acid attached to lactosamine on the non-reducing termini of glycans. The expression of HNK-1 is temporally and spatially regulated by glucuronyltransferase (GlcAT-P) in the brain. Our previous report showed that mice lacking GlcAT-P almost completely lost HNK-1 expression in the brain and exhibited reduced long-term potentiation (LTP) at hippocampal CA1 synapses. GlcAT-P-deficient mice also showed impaired hippocampus-dependent spatial learning. Although HNK-1 plays an essential role in synaptic plasticity and memory formation, it remains unclear how HNK-1 regulates these functions. In this study, we showed that loss of the HNK-1 epitope resulted in an increase of filopodium-like immature spines and a decrease of mushroom-like mature spines in both the early postnatal mouse hippocampus and cultured hippocampal neurons. However, HNK-1 had no influence on spine density or filopodium formation. Immunofluorescence staining revealed that loss of HNK-1 altered the distribution of postsynaptic proteins such as alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA)-type glutamate receptor subunit GluR2 and PSD-95 from spine heads onto dendritic shafts without affecting synapse formation, resulting in an increase of shaft synapses in cultured GlcAT-P-deficient neurons. GluR2, a major HNK-1 carrier glycoprotein in postsynaptic density, has the ability to promote spine morphogenesis. Overexpression of GluR2 promoted spine growth in both wild-type and GlcAT-P-deficient neurons, but the increase in GlcAT-P-deficient neurons was lower than that in wild-type neurons. This is the first evidence that HNK-1 is a key factor for normal dendritic spine maturation and is involved in the distribution of postsynaptic proteins.
Collapse
Affiliation(s)
- I Morita
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
21
|
Morita I, Kakuda S, Takeuchi Y, Itoh S, Kawasaki N, Kizuka Y, Kawasaki T, Oka S. HNK-1 glyco-epitope regulates the stability of the glutamate receptor subunit GluR2 on the neuronal cell surface. J Biol Chem 2009; 284:30209-17. [PMID: 19729452 DOI: 10.1074/jbc.m109.024208] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HNK-1 (human natural killer-1) glyco-epitope, a sulfated glucuronic acid attached to N-acetyllactosamine on the nonreducing termini of glycans, is highly expressed in the nervous system. Our previous report showed that mice lacking a glucuronyltransferase (GlcAT-P), a key enzyme for biosynthesis of the HNK-1 epitope, showed reduced long term potentiation at hippocampal CA1 synapses. In this study, we identified an alpha-amino-3-hydroxy-5-methylisoxazole propionate (AMPA)-type glutamate receptor subunit, GluR2, which directly contributes to excitatory synaptic transmission and synaptic plasticity, as a novel HNK-1 carrier molecule. We demonstrated that the HNK-1 epitope is specifically expressed on the N-linked glycan(s) on GluR2 among the glutamate receptors tested, and the glycan structure, including HNK-1 on GluR2, was determined using liquid chromatography-tandem mass spectrometry. As for the function of HNK-1 on GluR2, we found that the GluR2 not carrying HNK-1 was dramatically endocytosed and expressed less on the cell surface compared with GluR2 carrying HNK-1 in both cultured hippocampal neurons and heterologous cells. These results suggest that HNK-1 stabilizes GluR2 on neuronal surface membranes and regulates the number of surface AMPA receptors. Moreover, we showed that the expression of the HNK-1 epitope enhanced the interaction between GluR2 and N-cadherin, which has important roles in AMPA receptor trafficking. Our findings suggest that the HNK-1 epitope on GluR2 regulates cell surface stability of GluR2 by modulating the interaction with N-cadherin.
Collapse
Affiliation(s)
- Ippei Morita
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Anzai D, Tonoyama Y, Ikeda A, Kawasaki T, Oka S. Regulated expression of the HNK-1 carbohydrate is essential for medaka (Oryzias latipes) embryogenesis. Glycobiology 2009; 19:868-78. [PMID: 19389918 DOI: 10.1093/glycob/cwp060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Carbohydrates are known to play essential roles in various biological processes including development. However, it remains largely unknown which carbohydrate structure takes part in each biological event. Here, we examined the roles of the human natural killer-1 (HNK-1) carbohydrate in medaka embryogenesis. We first cloned two medaka glucuronyltransferases, GlcAT-P and GlcAT-S, key enzymes for HNK-1 biosynthesis. Overexpression of these glucuronyltransferases affected morphogenetic processes. In addition, loss-of-function experiments revealed that GlcAT-P is physiologically indispensable for head morphogenesis and GlcAT-P depletion also led to markedly increased apoptosis. However, even when the apoptosis was blocked, abnormal head morphogenesis caused by GlcAT-P depletion was still observed, indicating that apoptosis was not the main cause of the abnormality. Moreover, in situ hybridization analyses indicated that GlcAT-P depletion resulted in the abnormal formation of the nervous system but not in cell specification. These results suggest that tight regulation of HNK-1 expression is essential for proper morphogenesis of medaka embryos.
Collapse
Affiliation(s)
- Daisuke Anzai
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
23
|
Kizuka Y, Tonoyama Y, Oka S. Distinct transport and intracellular activities of two GlcAT-P isoforms. J Biol Chem 2009; 284:9247-56. [PMID: 19181664 DOI: 10.1074/jbc.m807517200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A neural glycotope, human natural killer-1 carbohydrate, is involved in synaptic plasticity. The key biosynthetic enzyme is a glucuronyltransferase, GlcAT-P, a type II membrane protein comprising an N-terminal cytoplasmic tail, transmembrane domain, stem region, and C-terminal catalytic domain. Previously, we reported that GlcAT-P has two isoforms differing in only the presence or absence of the N-terminal 13 amino acids (P-N13) in the cytoplasmic tail, but the functional distinction of these two isoforms has not been reported. Herein, we show that when expressed in Neuro2A cells, short form GlcAT-P (sGlcAT-P) exhibited significantly higher glucuronylation activity than the longer form (lGlcAT-P), despite their comparable specific activities in vitro. In addition, sGlcAT-P was strictly localized in Golgi apparatus, whereas lGlcAT-P was mainly localized in Golgi but partly in the endoplasmic reticulum. We demonstrated that the small GTPase, Sar1, recognized a dibasic motif in the cytoplasmic tail near P-N13 that was important for exiting the endoplasmic reticulum, and Sar1 interacted with sGlcAT-P more strongly than lGlcAT-P. Finally, the attachment of P-N13 to another glycosyltransferase, polysialyltransferase-I (ST8Sia-IV), had similar effects, such as reduced activity and entrapment within endoplasmic reticulum. These results suggest that P-N13 can control glycosyltransferase transport through Sar1 binding interference.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
24
|
Nairn AV, York WS, Harris K, Hall EM, Pierce JM, Moremen KW. Regulation of glycan structures in animal tissues: transcript profiling of glycan-related genes. J Biol Chem 2008; 283:17298-313. [PMID: 18411279 DOI: 10.1074/jbc.m801964200] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glycan structures covalently attached to proteins and lipids play numerous roles in mammalian cells, including protein folding, targeting, recognition, and adhesion at the molecular or cellular level. Regulating the abundance of glycan structures on cellular glycoproteins and glycolipids is a complex process that depends on numerous factors. Most models for glycan regulation hypothesize that transcriptional control of the enzymes involved in glycan synthesis, modification, and catabolism determines glycan abundance and diversity. However, few broad-based studies have examined correlations between glycan structures and transcripts encoding the relevant biosynthetic and catabolic enzymes. Low transcript abundance for many glycan-related genes has hampered broad-based transcript profiling for comparison with glycan structural data. In an effort to facilitate comparison with glycan structural data and to identify the molecular basis of alterations in glycan structures, we have developed a medium-throughput quantitative real time reverse transcriptase-PCR platform for the analysis of transcripts encoding glycan-related enzymes and proteins in mouse tissues and cells. The method employs a comprehensive list of >700 genes, including enzymes involved in sugar-nucleotide biosynthesis, transporters, glycan extension, modification, recognition, catabolism, and numerous glycosylated core proteins. Comparison with parallel microarray analyses indicates a significantly greater sensitivity and dynamic range for our quantitative real time reverse transcriptase-PCR approach, particularly for the numerous low abundance glycan-related enzymes. Mapping of the genes and transcript levels to their respective biosynthetic pathway steps allowed a comparison with glycan structural data and provides support for a model where many, but not all, changes in glycan abundance result from alterations in transcript expression of corresponding biosynthetic enzymes.
Collapse
Affiliation(s)
- Alison V Nairn
- Complex Carbohydrate Research Center and the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kizuka Y, Kobayashi K, Kakuda S, Nakajima Y, Itoh S, Kawasaki N, Oka S. Laminin-1 is a novel carrier glycoprotein for the nonsulfated HNK-1 epitope in mouse kidney. Glycobiology 2008; 18:331-8. [PMID: 18263654 DOI: 10.1093/glycob/cwn012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The HNK-1 epitope has a unique structure comprising the sulfated trisaccharide (HSO(3)-3GlcAbeta1-3Galbeta1-4GlcNAc), and two glucuronyltransferases (GlcAT-P and GlcAT-S) are key enzymes for its biosynthesis. However, the different functional roles of these enzymes in its biosynthesis remain unclear. Recently, we reported that a nonsulfated form of this epitope, which is biosynthesized by GlcAT-S but not by GlcAT-P, is expressed on two metalloproteases in mouse kidney. In this study, we found that a novel glycoprotein carrying the nonsulfated HNK-1 epitope in mouse kidney was enriched in the nuclear fraction. The protein was affinity-purified and identified as laminin-1, and we also confirmed the N-linked oligosaccharide structure including nonsulfated HNK-1 epitope derived from laminin-1 by mass spectrometry. Curiously, immunofluorescence staining of kidney sections revealed that laminin-1 appeared not to be colocalized with the nonsulfated HNK-1 epitope. However, proteinase treatment strengthened the signals of both laminin-1 and the nonsulfated HNK-1 epitope, resulting in overlapping of them. These results indicate that the nonsulfated HNK-1 epitope on laminin-1 is usually embedded and masked in the robust basement membrane in tight association with other proteins. To clarify the associated proteins and the functional role of the carbohydrate epitope, we investigated the interaction between laminin-1 and alpha-dystroglycan through their glycans in mouse kidney using the overlay assay technique. We obtained evidence that glucuronic acid as well as sialic acid inhibited this interaction, suggesting that the nonsulfated HNK-1 epitope on laminin-1 may regulate its binding and play a role in maintenance of the proper structure in the kidney basal lamina.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Morita I, Kizuka Y, Kakuda S, Oka S. Expression and function of the HNK-1 carbohydrate. J Biochem 2007; 143:719-24. [PMID: 18024472 DOI: 10.1093/jb/mvm221] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Glycosylation is a major post-translational protein modification, especially for cell surface proteins, which play important roles in a variety of cellular functions, including recognition and adhesion. Among them, we have been interested in HNK-1 (human natural killer-1) carbohydrate, which is characteristically expressed on a series of cell adhesion molecules in the nervous system. The HNK-1 carbohydrate has a unique structural feature, i.e. a sulfated glucuronic acid is attached to the non-reducing terminal of an N-acetyllactosamine residue (HSO(3)-3GlcAbeta1-3Galbeta1-4GlcNAc-). We have cloned and characterized the biosynthetic enzymes (two glucuronyltransferases and a sulfotransferase), and also obtained evidence that the HNK-1 carbohydrate is involved in synaptic plasticity and memory formation. In this review, we describe recent findings regarding the expression mechanism and functional roles of this carbohydrate.
Collapse
Affiliation(s)
- Ippei Morita
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
27
|
Distributions of glucuronyltransferases, GlcAT-P and GlcAT-S, and their target substrate, the HNK-1 carbohydrate epitope in the adult mouse brain with or without a targeted deletion of the GlcAT-P gene. Brain Res 2007; 1179:1-15. [PMID: 17935701 DOI: 10.1016/j.brainres.2007.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 04/28/2007] [Accepted: 05/04/2007] [Indexed: 11/20/2022]
Abstract
The HNK-1 carbohydrate epitope, a sulfated glucuronic acid at the non-reducing terminus of glycans, is expressed on glycoproteins and glycolipids and modulates neurite outgrowth and synaptic plasticity by affecting the adhesive and anti-adhesive properties. It is known that the HNK-1 carbohydrate is synthesized through two key enzymes, glucuronyltransferases (GlcAT-P and GlcAT-S). In the present study, we investigated the localization of GlcAT transcripts and HNK-1 carbohydrate in the adult mouse brain with or without GlcAT-P gene using in situ hybridization histochemistry and immunohistochemistry. Region-specific expression patterns of both GlcAT transcripts were observed. Strong expression of GlcAT-P and moderate expression of GlcAT-S were seen in neuronal cells of several nuclei of limbic-related regions and of the sensory system and the cerebellum. It was shown histologically that the localization of HNK-1 carbohydrate paralleled the pattern of expression of GlcAT transcripts in the brain. Additionally, the localization of HNK-1 carbohydrate was restricted partially in the brain of GlcAT-P-deficient mice, while the HNK-1 carbohydrate was widely distributed over most of the brain of wild-type mice. The present study provides a new framework for understanding the network constructed by the HNK-1 carbohydrate in the central nervous system.
Collapse
|
28
|
Shiba T, Kakuda S, Ishiguro M, Morita I, Oka S, Kawasaki T, Wakatsuki S, Kato R. Crystal structure of GlcAT-S, a human glucuronyltransferase, involved in the biosynthesis of the HNK-1 carbohydrate epitope. Proteins 2006; 65:499-508. [PMID: 16897771 DOI: 10.1002/prot.21118] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The HNK-1 carbohydrate epitope is found in various neural cell adhesion molecules. Two glucuronyltransferases (GlcAT-P and GlcAT-S) are involved in the biosynthesis of HNK-1 carbohydrate. Our previous study on the crystal structure of GlcAT-P revealed the reaction and substrate recognition mechanisms of this enzyme. Comparative analyses of the enzymatic activities of GlcAT-S and GlcAT-P showed that there are notable differences in the acceptor substrate specificities of these enzymes. To elucidate differences between their specificities, we now solved the crystal structure of GlcAT-S. Residues interacting with UDP molecule, which is a part of the donor substrate, are highly conserved between GlcAT-P and GlcAT-S. On the other hand, there are some differences between these proteins in the manner they recognize their respective acceptor substrates. Phe245, one of the most important GlcAT-P residues for the recognition of acceptors, is a tryptophan in GlcAT-S. In addition, Val320, which is located on the C-terminal long loop of the neighboring molecule in the dimer and critical in the recognition of the acceptor sugar molecule by the GlcAT-P dimer, is an alanine in GlcAT-S. These differences play key roles in establishing the distinct specificity for the acceptor substrate by GlcAT-S, which is further supported by site-directed mutagenesis of GlcAT-S and a computer-aided model building of GlcAT-S/substrate complexes.
Collapse
Affiliation(s)
- Tomoo Shiba
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science,High Energy Acceleration Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Kizuka Y, Matsui T, Takematsu H, Kozutsumi Y, Kawasaki T, Oka S. Physical and Functional Association of Glucuronyltransferases and Sulfotransferase Involved in HNK-1 Biosynthesis. J Biol Chem 2006; 281:13644-13651. [PMID: 16543228 DOI: 10.1074/jbc.m601453200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HNK-1 carbohydrate expressed predominantly in the nervous system is considered to be involved in cell migration, recognition, adhesion, and synaptic plasticity. Human natural killer-1 (HNK-1) carbohydrate has a unique structure consisting of a sulfated trisaccharide (HSO3-3GlcAbeta1-3Galbeta1-4GlcNAc-) and is sequentially biosynthesized by one of two glucuronyltransferases (GlcAT-P or GlcAT-S) and a sulfotransferase (HNK-1ST). Considering that almost all the HNK-1 carbohydrate structures so far determined in the nervous system are sulfated, we hypothesized that GlcAT-P or GlcAT-S functionally associates with HNK-1ST, which results in efficient sequential biosynthesis of HNK-1 carbohydrate. In this study, we demonstrated that both GlcAT-P and GlcAT-S were co-immunoprecipitated with HNK-1ST with a transient expression system in Chinese hamster ovary cells. Immunofluorescence staining revealed that these enzymes are mainly co-localized in the Golgi apparatus. To determine which domain is involved in this interaction, we prepared the C-terminal catalytic domains of GlcAT-P, GlcAT-S, and HNK-1ST, and we then performed pulldown assays with the purified enzymes. As a result, we obtained evidence that mutual catalytic domains of GlcAT-P or GlcAT-S and HNK-1ST are important and sufficient for formation of an enzyme complex. With an in vitro assay system, the activity of HNK-1ST increased about 2-fold in the presence of GlcAT-P or GlcAT-S compared with that in its absence. These results suggest that the function of this enzyme complex is relevant to the efficient sequential biosynthesis of the HNK-1 carbohydrate.
Collapse
Affiliation(s)
- Yasuhiko Kizuka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences
| | - Takahiro Matsui
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromu Takematsu
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yasunori Kozutsumi
- Laboratory of Membrane Biochemistry and Biophysics, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Toshisuke Kawasaki
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences; Research Center for Glycobiotechnology, Ritsumeikan University, Shiga 525-8577, Japan
| | - Shogo Oka
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences.
| |
Collapse
|
30
|
Wu YT, Liu JY. Molecular cloning and characterization of a cotton glucuronosyltranferase gene. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:573-82. [PMID: 15940874 DOI: 10.1016/j.jplph.2004.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A glucuronosyltranferase gene has been isolated from cotton (Gossypium hirsutum) fiber cells using rapid amplification of the cDNA ends. The full-length cDNA, designated GhGlcAT1, is 1400 bp in length (AY346330) and contains an open reading frame of 1107 bp encoding a protein of 368 amino acids. Alignment of the GhGlcAT1 predicted amino acid sequence was shown to have high sequence similarity with animal glucuronosyltranferases. A phylogenic tree generated by the PHYLIP program package showed that GhGlcAT1 is clustered into the plant glucuronosyltranferase proteins and is distinct from those of other species. Homology modeling of the GhGlcAT1 structure using Homo sapiens native glucuronosyltranferase (1 kws and 1 fgg) structure as a template strongly suggests that the main-chain conformation and the folding patterns were similar to structural features characteristic of animal glucuronosyltranferases. Northern blot analysis showed that the transcripts of GhGlcAT1 were abundant in fiber cells, moderate in stem, but not detected in ovule, flower, seed, root and leaf. Transcripts were most abundant at 15dpa fiber. The transcription occurred at both the primary wall elongation stage and former stage of secondary cell thickening, suggesting that GhGLcAT1 may be involved in non-cellulose polysacchrides biosynthesis of the cotton cell wall.
Collapse
Affiliation(s)
- Yao-Ting Wu
- Laboratory of Molecular Biology and MOE Laboratory of Protein Science, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, PR China
| | | |
Collapse
|
31
|
Tagawa H, Kizuka Y, Ikeda T, Itoh S, Kawasaki N, Kurihara H, Onozato ML, Tojo A, Sakai T, Kawasaki T, Oka S. A non-sulfated form of the HNK-1 carbohydrate is expressed in mouse kidney. J Biol Chem 2005; 280:23876-83. [PMID: 15843379 DOI: 10.1074/jbc.m501728200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HNK-1 carbohydrate, which is recognized by anti-HNK-1 antibody, is well known to be expressed predominantly in the nervous system. The characteristic structural feature of the HNK-1 carbohydrate is 3-sulfo-glucuronyl residues attached to lactosamine structures (Gal beta1-4GlcNAc) on glycoproteins and glycolipids. The biosynthesis of the HNK-1 carbohydrate is regulated mainly by two glucuronyltransferases (GlcAT-P and GlcAT-S) and a sulfotransferase. In this study, we found that GlcAT-S mRNA was expressed at higher levels in the kidney than in the brain, but that both GlcAT-P and HNK-1 sulfotransferase mRNAs, which were expressed at high levels in the brain, were not detected in the kidney. These results suggested that the HNK-1 carbohydrate without sulfate (non-sulfated HNK-1 carbohydrate) is expressed in the kidney. We substantiated this hypothesis using two different monoclonal antibodies: one (anti-HNK-1 antibody) requires sulfate on glucuronyl residues for its binding, and the other (antibody M6749) does not. Western blot analyses of mouse kidney revealed that two major bands (80 and 140 kDa) were detected with antibody M6749, but not with anti-HNK-1 antibody. The 80- and 140-kDa band materials were identified as meprin alpha and CD13/aminopeptidase N, respectively. We also confirmed the presence of the non-sulfated HNK-1 carbohydrate on N-linked oligosaccharides by multistage tandem mass spectrometry. Immunofluorescence staining with antibody M6749 revealed that the non-sulfated HNK-1 carbohydrate was expressed predominantly on the apical membranes of the proximal tubules in the cortex and was also detected in the thin ascending limb in the inner medulla. This is the first study indicating the presence of the non-sulfated HNK-1 carbohydrate being synthesized by GlcAT-S in the kidney. The results presented here constitute novel knowledge concerning the function of the HNK-1 carbohydrate.
Collapse
Affiliation(s)
- Hideki Tagawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sawada S, Suzuki H, Ichimaida F, Yamaguchi MA, Iwashita T, Fukui Y, Hemmi H, Nishino T, Nakayama T. UDP-glucuronic acid:anthocyanin glucuronosyltransferase from red daisy (Bellis perennis) flowers. Enzymology and phylogenetics of a novel glucuronosyltransferase involved in flower pigment biosynthesis. J Biol Chem 2004; 280:899-906. [PMID: 15509561 DOI: 10.1074/jbc.m410537200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the wealth of biochemical and genetic information on vertebrate glucuronosyltransferases (UGATs), only limited information is available on the role and phylogenetics of plant UGATs. Here we report on the purification, characterization, and cDNA cloning of a novel UGAT involved in the biosynthesis of flower pigments in the red daisy (Bellis perennis). The purified enzyme, BpUGAT, was a soluble monomeric enzyme with a molecular mass of 54 kDa and catalyzed the regiospecific transfer of a glucuronosyl unit from UDP-glucuronate to the 2''-hydroxyl group of the 3-glucosyl moiety of cyanidin 3-O-6''-O-malonylglucoside with a kcat value of 34 s(-1) at pH 7.0 and 30 degrees C. BpUGAT was highlyspecific for cyanidin 3-O-glucosides (e.g. Km for cyanidin 3-O-6''-O-malonylglucoside, 19 microM) and UDP-glucuronate (Km, 476 microM). The BpUGAT cDNA was isolated on the basis of the amino acid sequence of the purified enzyme. Quantitative PCR analysis showed that transcripts of BpUGAT could be specifically detected in red petals, consistent with the temporal and spatial distributions of enzyme activity in the plant and also consistent with the role of the enzyme in pigment biosynthesis. A sequence analysis revealed that BpUGAT is related to the glycosyltransferase 1 (GT1) family of the glycosyltransferase superfamily (according to the Carbohydrate-Active Enzymes (CAZy) data base). Among GT1 family members that encompass vertebrate UGATs and plant secondary product glycosyltransferases, the highest sequence similarity was found with flavonoid rhamnosyltransferases of plants (28-40% identity). Although the biological role (pigment biosynthesis) and enzymatic properties of BpUGAT are significantly different from those of vertebrate UGATs, both of these UGATs share a similarity in that the products produced by these enzymes are more water-soluble, thus facilitating their accumulation in vacuoles (in BpUGAT) or their excretion from cells (in vertebrate UGATs), corroborating the proposed general significance of GT1 family members in the metabolism of small lipophilic molecules.
Collapse
Affiliation(s)
- Shin'ya Sawada
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba-yama 07, Sendai 980-8579, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kakuda S, Oka S, Kawasaki T. Purification and characterization of two recombinant human glucuronyltransferases involved in the biosynthesis of HNK-1 carbohydrate in Escherichia coli. Protein Expr Purif 2004; 35:111-9. [PMID: 15039073 DOI: 10.1016/j.pep.2003.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 12/25/2003] [Indexed: 11/26/2022]
Abstract
Two glucuronyltransferases (GlcAT-P and GlcAT-S) are involved in the biosynthesis of HNK-1 carbohydrate, which is spatially and temporally regulated in the nervous system. To clarify the enzymatic properties of the respective glucuronyltransferases, we established an expression system for producing large amounts of soluble forms of flag-tagged human GlcAT-P and GlcAT-S in Escherichia coli. Approximately 15 and 6 mg of enzymatically active flag-GlcAT-P and flag-GlcAT-S were purified from E. coli cells in 5 liters of culture medium, respectively. These recombinant enzymes transferred GlcA to a glycoprotein acceptor, asialo-orosomucoid (ASOR), as well as a glycolipid acceptor, paragloboside. The specific activity of the recombinant GlcAT-P (1100 nmol/min/mg) toward a glycoprotein acceptor, ASOR, was comparable to that of the enzyme (4300 nmol/min/mg) purified from rat brain. Phosphatidylinositol (PI) is specifically required for expression of the activity of the recombinant enzymes toward a glycolipid acceptor, paragloboside. The recombinant GlcAT-P was highly specific for the terminal type II structure, Galbeta1-4GlcNAc, while the recombinant GlcAT-S recognized not only the type II structure, Galbeta1-4GlcNAc, but also the type I structure, Galbeta1-3GlcNAc. These acceptor specificities were similar to those of the native enzymes.
Collapse
Affiliation(s)
- Shinako Kakuda
- Department of Biological Chemistry, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
34
|
Kakuda S, Shiba T, Ishiguro M, Tagawa H, Oka S, Kajihara Y, Kawasaki T, Wakatsuki S, Kato R. Structural basis for acceptor substrate recognition of a human glucuronyltransferase, GlcAT-P, an enzyme critical in the biosynthesis of the carbohydrate epitope HNK-1. J Biol Chem 2004; 279:22693-703. [PMID: 14993226 DOI: 10.1074/jbc.m400622200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HNK-1 carbohydrate epitope is found on many neural cell adhesion molecules. Its structure is characterized by a terminal sulfated glucuronyl acid. The glucuronyltransferases, GlcAT-P and GlcAT-S, are involved in the biosynthesis of the HNK-1 epitope, GlcAT-P as the major enzyme. We overexpressed and purified the recombinant human GlcAT-P from Escherichia coli. Analysis of its enzymatic activity showed that it catalyzed the transfer reaction for N-acetyllactosamine (Galbeta1-4GlcNAc) but not lacto-N-biose (Galbeta1-3GlcNAc) as an acceptor substrate. Subsequently, we determined the first x-ray crystal structures of human GlcAT-P, in the absence and presence of a donor substrate product UDP, catalytic Mn(2+), and an acceptor substrate analogue N-acetyllactosamine (Galbeta1-4GlcNAc) or an asparagine-linked biantennary nonasaccharide. The asymmetric unit contains two independent molecules. Each molecule is an alpha/beta protein with two regions that constitute the donor and acceptor substrate binding sites. The UDP moiety of donor nucleotide sugar is recognized by conserved amino acid residues including a DXD motif (Asp(195)-Asp(196)-Asp(197)). Other conserved amino acid residues interact with the terminal galactose moiety of the acceptor substrate. In addition, Val(320) and Asn(321), which are located on the C-terminal long loop from a neighboring molecule, and Phe(245) contribute to the interaction with GlcNAc moiety. These three residues play a key role in establishing the acceptor substrate specificity.
Collapse
Affiliation(s)
- Shinako Kakuda
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inamori KI, Endo T, Gu J, Matsuo I, Ito Y, Fujii S, Iwasaki H, Narimatsu H, Miyoshi E, Honke K, Taniguchi N. N-Acetylglucosaminyltransferase IX acts on the GlcNAc beta 1,2-Man alpha 1-Ser/Thr moiety, forming a 2,6-branched structure in brain O-mannosyl glycan. J Biol Chem 2004; 279:2337-2340. [PMID: 14617637 DOI: 10.1074/jbc.c300480200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammals contain O-linked mannose residues with 2-mono- and 2,6-di-substitutions by GlcNAc in brain glycoproteins. It has been demonstrated that the transfer of GlcNAc to the 2-OH position of the mannose residue is catalyzed by the enzyme, protein O-mannose beta1,2-N-acetylglucosaminyltransferase (POMGnT1), but the enzymatic basis of the transfer to the 6-OH position is unknown. We recently reported on a brain-specific beta1,6-N-acetylglucosaminyltransferase, GnT-IX, that catalyzes the transfer of GlcNAc to the 6-OH position of the mannose residue of GlcNAcbeta1,2-Manalpha on both the alpha1,3- and alpha1,6-linked mannose arms in the core structure of N-glycan (Inamori, K., Endo, T., Ide, Y., Fujii, S., Gu, J., Honke, K., and Taniguchi, N. (2003) J. Biol. Chem. 278, 43102-43109). Here we examined the issue of whether GnT-IX is able to act on the same sequence of the GlcNAcbeta1,2-Manalpha in O-mannosyl glycan. Using three synthetic Ser-linked mannose-containing saccharides, Manalpha1-Ser, GlcNAcbeta1,2-Manalpha1-Ser, and Galbeta1,4-GlcNAcbeta1,2-Manalpha1-Ser as acceptor substrates, the findings show that (14)C-labeled GlcNAc was incorporated only into GlcNAcbeta1,2-Manalpha1-Ser after separation by thin layer chromatography. To simplify the assay, high performance liquid chromatography was employed, using a fluorescence-labeled acceptor substrate GlcNAcbeta1,2-Manalpha1-Ser-pyridylaminoethylsuccinamyl (PAES). Consistent with the above data, GnT-IX generated a new product which was identified as GlcNAcbeta1,2-(GlcNAcbeta1,6-)Manalpha1-Ser-PAES by mass spectrometry and (1)H NMR. Furthermore, incorporation of an additional GlcNAc residue into a synthetic mannosyl peptide Ac-Ala-Ala-Pro-Thr(Man)-Pro-Val-Ala-Ala-Pro-NH(2) by GnT-IX was only observed in the presence of POMGnT1. Collectively, these results strongly suggest that GnT-IX may be a novel beta1,6-N-acetylglucosaminyltransferase that is responsible for the formation of the 2,6-branched structure in the brain O-mannosyl glycan.
Collapse
Affiliation(s)
- Kei-ichiro Inamori
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kanda T, Ariga T, Kubodera H, Jin HL, Owada K, Kasama T, Yamawaki M, Mizusawa H. Glycosphingolipid composition of primary cultured human brain microvascular endothelial cells. J Neurosci Res 2004; 78:141-50. [PMID: 15372501 DOI: 10.1002/jnr.20228] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Glycosphingolipid (GSL) antigens have been considered to be involved in the pathogenesis of autoimmune neurologic disorders including multiple sclerosis. To establish the GSL pattern specific for endothelial cells forming blood-brain barrier (BBB), we established a method to yield sufficient quantities of highly purified human brain microvascular endothelial cells (HBMECs) and compared their GSL composition to that of human umbilical cord vein endothelial cells (HUVECs), as the representative of endothelial cells not forming BBB. The major gangliosides were GM3 and sialyl paragloboside (LM1), and the major neutral GSLs were lactosylceramide (LacCer), globotriaosylceramide (Gb3), and globoside (Gb4). Trace amounts of GM1, GD1a, GD1b, GT1b, and sulfoglucuronosyl paragloboside (SGPG) could be detected by the high performance thin layer chromatography-overlay method. SGPG was detected only at a nonconfluent state in an amount almost 1/30 that of in nonconfluent HUVECs. Conversely, GM3 and LM1 increased significantly after confluency. The amount of Gb3 in HBMECs was almost as twice that in HUVECs. The significance of these differences in GSL content between HBMECs and HUVECs and between confluent and nonconfluent states is obscure. It might be related, however, to the defense mechanism at the BBB and to the susceptibility of the central nervous system in some disorders that target cell surface GSL, such as hemolytic uremic syndrome.
Collapse
Affiliation(s)
- Takashi Kanda
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Wei G, Bai X, Esko JD. Temperature-sensitive glycosaminoglycan biosynthesis in a Chinese hamster ovary cell mutant containing a point mutation in glucuronyltransferase I. J Biol Chem 2003; 279:5693-8. [PMID: 14623881 DOI: 10.1074/jbc.m311621200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In previous studies, we reported the isolation and characterization of a Chinese hamster ovary cell mutant (pgsG) defective in glucuronyltransferase I (GlcATI). This enzyme adds the terminal GlcA residue in the core protein-linkage tetrasaccharide (GlcAbeta1,3Galbeta1,3Galbeta1, 4Xylbeta-O-) on which glycosaminoglycan assembly occurs (Bai, X. M., Wei, G., Sinha, A., and Esko, J. D. (1999) J. Biol. Chem. 274, 13017-13024; Wei, G., Bai, X. M., Sarkar, A. K., and Esko, J. D. (1999) J. Biol. Chem. 274, 7857-7864). Here we show that incorporation of 35SO4 into glycosaminoglycans in the mutant is temperature-sensitive, with greater synthesis occurring at 33 degrees C compared with 37 degrees C. Wild-type cells show the opposite thermal dependence. Rabbit antiserum to hamster GlcATI failed to detect cross-reactive material in pgsG cells by immunofluorescence and Western blotting. Furthermore, expression of chimeric proteins composed of mutant GlcATI fused to IgG binding domain of protein A or to green fluorescent protein did not yield the proteins at the expected mass. The green fluorescent protein-tagged version appeared as a truncated protein, and immunofluorescence showed large perinuclear bodies at 30 degrees C. At 37 degrees C, the fusion protein was not readily detectable. Sequencing cDNAs from mutant and wild-type cells revealed a single base transition (G331A) in the open reading frame in pgsG cells, which resulted in a Val-111-->Met substitution. These data suggest that pgsG cells contain a labile form of GlcATI that causes conditional expression of glycosaminoglycans dependent on temperature.
Collapse
Affiliation(s)
- Ge Wei
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California 92093-0687, USA
| | | | | |
Collapse
|
38
|
Nagase T, Sanai Y, Nakamura S, Asato H, Harii K, Osumi N. Roles of HNK-1 carbohydrate epitope and its synthetic glucuronyltransferase genes on migration of rat neural crest cells. J Anat 2003; 203:77-88. [PMID: 12892407 PMCID: PMC1571138 DOI: 10.1046/j.1469-7580.2003.00205.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HNK-1 carbohydrate epitope is localized on the surface of avian neural crest cells (NCCs), and is necessary for their migration. However, it is still disputed whether the epitope works in similar ways in mammalian embryos. In this study, we found that HNK-1 carbohydrate epitope was specifically detected in some of the cranial ganglia, migrating trunk NCCs and some non-NCC derivatives in the rat embryo. Two genes encoding glucuronyltransferases that synthesize the HNK-1 epitope in vitro (GlcAT-P and GlcAT-D) were recently identified in the rat. Interestingly, the NCCs in the cranial ganglia expressed the GlcAT-D gene, whereas the migrating trunk NCCs expressed the GlcAT-P gene. To investigate in vivo functions of the GlcATs in the NCC migration further, we overexpressed GlcAT genes by electroporation in the cranial NCCs in cultured rat embryos. Transfection of both GlcAT genes resulted in efficient synthesis of the HNK-1 epitope in the NCCs. GlcAT-P overexpression increased distance of cranial NCC migration, whereas GlcAT-D overexpression did not show this effect. Our data suggest that the HNK-1 epitope synthesized by different GlcATs is involved in migration in the sublineages of the NCCs in the rat embryo, and that GlcAT-P and GlcAT-D mediate different effects on the NCC migration.
Collapse
Affiliation(s)
- Takashi Nagase
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of TokyoTokyo, Japan
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Yutaka Sanai
- Department of Biochemical Cell Research, Tokyo Metropolitan Institute of Medical Science (RINSHOKEN)Tokyo, Japan
| | - Shun Nakamura
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyo, Japan
| | - Hirotaka Asato
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of TokyoTokyo, Japan
| | - Kiyonori Harii
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of TokyoTokyo, Japan
- Department of Plastic and Reconstructive Surgery, School of Medicine, Kyorin UniversityTokyo, Japan
| | - Noriko Osumi
- Division of Developmental Neuroscience, Tohoku University Graduate School of MedicineSendai, Japan
| |
Collapse
|
39
|
Kim BT, Tsuchida K, Lincecum J, Kitagawa H, Bernfield M, Sugahara K. Identification and characterization of three Drosophila melanogaster glucuronyltransferases responsible for the synthesis of the conserved glycosaminoglycan-protein linkage region of proteoglycans. Two novel homologs exhibit broad specificity toward oligosaccharides from proteoglycans, glycoproteins, and glycosphingolipids. J Biol Chem 2003; 278:9116-24. [PMID: 12511570 DOI: 10.1074/jbc.m209344200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Drosophila melanogaster genome contains three putative glucuronyltransferases homologous to human GlcAT-I and GlcAT-P. These enzymes are predicted to be beta1,3-glucuronyltransferases involved in the synthesis of the glycosaminoglycan (GAG)-protein linkage region of proteoglycans and the HNK-1 carbohydrate epitope of glycoproteins, respectively. The genes encode active enzymes, which we have designated DmGlcAT-I, DmGlcAT-BSI, and DmGlcAT-BSII (where BS stands for "broad specificity"). Protein A-tagged truncated soluble forms of all three enzymes efficiently transfer GlcUA from UDP-GlcUA to the linkage region trisaccharide Galbeta1-3Galbeta1-4Xyl. Strikingly, DmGlcAT-I has specificity for Galbeta1-3Galbeta1-4Xyl, whereas DmGlcAT-BSI and DmGlcAT-BSII act on a wide array of substrates with non-reducing terminal beta1,3- and beta1,4-linked Gal residues. Their highest activities are obtained with asialoorosomucoid with a terminal Galbeta1-4GlcNAc sequence, indicating their possible involvement in the synthesis of the HNK-1 epitope in addition to the GAG-protein linkage region. Galbeta1-3GlcNAc and Galbeta1-3GalNAc, disaccharide structures widely found in N- and O-glycans of glycoproteins and glycolipids, also serve as acceptors for DmGlcAT-BSI and -BSII. Transcripts of all three enzymes are ubiquitously expressed throughout the developmental stages and in adult tissues of Drosophila. Thus, all three glucuronyltransferases are likely involved in the synthesis of the GAG-protein linkage region in Drosophila, and DmGlcAT-BSI and -BSII appear to be involved in various GlcUA transfer reactions for the synthesis of proteoglycans, glycoproteins, and glycolipids. This activity distinguishes these glucuronyltransferases from their mammalian homologs GlcAT-P and GlcAT-D (or -S). Sequence alignment of the Drosophila glucuronyltransferases with homologs in human, rat, and Caenorhabditis elegans demonstrates the conservation of a majority of the critical amino acid residues in the active sites of the three Drosophila enzymes.
Collapse
Affiliation(s)
- Byung-Taek Kim
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Domowicz MS, Mueller MM, Novak TE, Schwartz LE, Schwartz NB. Developmental expression of the HNK-1 carbohydrate epitope on aggrecan during chondrogenesis. Dev Dyn 2003; 226:42-50. [PMID: 12508223 DOI: 10.1002/dvdy.10214] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Previously, we showed that the HNK-1 carbohydrate epitope is expressed on aggrecan synthesized in the notochord but not in mature cartilage. In the present study, we demonstrate that in immature cartilage (embryonic day 6) the HNK-1 epitope is also expressed predominantly on aggrecan proteoglycan molecules. This finding was verified by using an aggrecan-deficient mutant, the nanomelic chick, which lacks HNK-1 immunostaining in the extracellular matrix of dividing and hypertrophic chondrocytes as late as embryonic day 12. By using both biochemical and immunologic approaches, the initially prominent expression of the HNK-1 epitope is down-regulated as development of limb and vertebral cartilage proceeds, so that by embryonic day 14 no HNK-1 is detectable. Localization changes with development and the HNK-1-aggrecan matrix becomes restricted to dividing and hypertrophic chondrocytes and is particularly concentrated in the intraterritorial matrix. Concomitant with the temporal and spatial decreases in HNK-1, there is a significant increase in keratan-sulfate content and the aggrecan-borne HNK-1 epitope is closely associated with proteolytic peptides that contain keratan sulfate chains, rather than chondroitin sulfate chains or carbohydrate-free domains. Lastly, the diminution in HNK-1 expression is consistent with a reduction in mRNA transcripts specific for at least one of the key enzymes in HNK-1 oligosaccharide biosynthesis, the HNK-1 sulfotransferase. These findings indicate that the HNK-1 carbohydrate may be a common modifier of several proteoglycans (such as aggrecan) that are usually expressed early in development, and that HNK-1 addition to these molecules may be regulated by tissue- and temporal-specific expression of requisite sulfotransferases and glycosyltransferases.
Collapse
Affiliation(s)
- Miriam S Domowicz
- Department of Pediatrics, The University of Chicago, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
41
|
Abstract
Virtually every cell type in metazoan organisms produces heparan sulfate. These complex polysaccharides provide docking sites for numerous protein ligands and receptors involved in diverse biological processes, including growth control, signal transduction, cell adhesion, hemostasis, and lipid metabolism. The binding sites consist of relatively small tracts of variably sulfated glucosamine and uronic acid residues in specific arrangements. Their formation occurs in a tissue-specific fashion, generated by the action of a large family of enzymes involved in nucleotide sugar metabolism, polymer formation (glycosyltransferases), and chain processing (sulfotransferases and an epimerase). New insights into the specificity and organization of the biosynthetic apparatus have emerged from genetic studies of cultured cells, nematodes, fruit flies, zebrafish, rodents, and humans. This review covers recent developments in the field and provides a resource for investigators interested in the incredible diversity and specificity of this process.
Collapse
Affiliation(s)
- Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California at San Diego, La Jolla, California, 92093-0687, USA.
| | | |
Collapse
|
42
|
Abstract
Structural diversity of the sugar chains attached to proteins and lipids that arises from the variety of combinations of different monosaccharides, different types of linkages, branch formation and secondary modifications, such as sulfation, possesses a large amount of biological information. A number of proteoglycans, glycoproteins, and glycolipids contain sulfated carbohydrates. Their sulfate groups provide a negative charge and play a role in a specific molecular recognition process. The sulfation of oligosaccharides is catalyzed by the Golgi-associated sulfotransferases. Recent success in molecular cloning of these sulfotransferases has brought a breakthrough in the understanding of biological function of sulfated oligosaccharides in a variety of contexts. Investigations on the relationship of sulfated oligosaccharides to human diseases including hereditary deficiency, cancer, inflammation, and infection may provide hints for curing disastrous diseases.
Collapse
Affiliation(s)
- Koichi Honke
- Department of Biochemistry, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | |
Collapse
|
43
|
Ogata N, Takahashi I, Nakazawa K. Purification and characterization of chick corneal beta-D-glucuronyltransferase involved in chondroitin sulfate biosynthesis. Biol Pharm Bull 2002; 25:1282-8. [PMID: 12392079 DOI: 10.1248/bpb.25.1282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Beta-D-Glucuronyltransferase, which transfers D-glucuronic acid (GlcA) from UDP-GlcA to N-acetyl-D-galactosamine (GalNAc) at the nonreducing end of chondro-pentasaccharide-PA (pyridylamino-), GalNAcbeta1-(4GlcAbeta1-3GalNAcbeta1)2-PA, was purified 339-fold with an 11.0% yield from 2-d-old chick corneas by chromatography on DEAE-Sepharose, WGA-agarose, heparin-Sepharose, and 1st and 2nd UDP-GlcA-agarose (in the presence of Gal) columns. The activity was detected by fluorescence of PA residues of the product. The purified enzyme has an optimum pH of 7.0 (Mes buffer), and much higher activity toward chondro-heptasaccharide-PA than toward the chondro-pentasaccharide-PA, but no activity toward p-nitrophenyl-beta-GalNAc. The enzyme activity was almost completely inhibited by GalNAc (20 mm). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the purified enzyme fraction showed one band of 38 kDa with many other bands. The amino acid sequence was determined for the tryptic digests of the 38 kDa band protein. The sequences determined showed no homology to those of several beta-glucuronyltransferases reported previously. It seems that the enzyme is involved in the elongation of chondroitin sulfate chains in vivo.
Collapse
Affiliation(s)
- Nana Ogata
- Section of Radiochemistry, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|
44
|
Imiya K, Ishizaki T, Seiki T, Saito F, Inazawa J, Oka S, Kawasaki T. cDNA cloning, genomic structure and chromosomal mapping of the mouse glucuronyltransferase-S involved in the biosynthesis of the HNK-1 carbohydrate epitope. Gene 2002; 296:29-36. [PMID: 12383500 DOI: 10.1016/s0378-1119(02)00840-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The HNK-1 carbohydrate epitope is expressed on a series of cell adhesion molecules and some glycolipids in the nervous system. Two glucuronyltransferases (GlcAT-P and GlcAT-S) are involved in the biosynthesis of the HNK-1 carbohydrate epitope. In this study, we isolated cDNA and genomic clones encoding the mouse glucuronyltransferase-S involved in the biosynthesis of the HNK-1 carbohydrate epitope and determined the structural organization of the gene. The deduced amino acid sequence of mouse GlcAT-S consists of 324 amino acids and has a type II membrane topology. The predicted amino acid sequence of mouse GlcAT-S is 98.1% identical to that of rat GlcAT-S. Northern blot analysis revealed that the mouse GlcAT-S transcript is specifically expressed in the nervous system. Moreover, the mouse GlcAT-S gene is composed of four exons spanning over more than 25 kilobase pairs. Southern blot analysis and chromosomal mapping indicated that the mouse GlcAT-S gene is a single copy gene and it was mapped to the A4-B region of mouse chromosome 1.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- CD57 Antigens/metabolism
- Chromosome Mapping
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Epitopes/biosynthesis
- Exons
- Gene Expression Regulation, Enzymologic
- Genes/genetics
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Introns
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Sequence Analysis, DNA
- Transcription Initiation Site
Collapse
Affiliation(s)
- Kimiyuki Imiya
- Department of Biological Chemistry and CREST (Core Research for Educational Science and Technology) Project, Japan Science and Technology Corporation, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Yamamoto S, Oka S, Inoue M, Shimuta M, Manabe T, Takahashi H, Miyamoto M, Asano M, Sakagami J, Sudo K, Iwakura Y, Ono K, Kawasaki T. Mice deficient in nervous system-specific carbohydrate epitope HNK-1 exhibit impaired synaptic plasticity and spatial learning. J Biol Chem 2002; 277:27227-31. [PMID: 12032138 DOI: 10.1074/jbc.c200296200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The HNK-1 carbohydrate epitope, a sulfated glucuronic acid at the non-reducing terminus of glycans, is expressed characteristically on a series of cell adhesion molecules and is synthesized through a key enzyme, glucuronyltransferase (GlcAT-P). We generated mice with a targeted deletion of the GlcAT-P gene. The GlcAT-P -/- mice exhibited normal development of gross anatomical features, but the adult mutant mice exhibited reduced long term potentiation at the Schaffer collateral-CA1 synapses and a defect in spatial memory formation. This is the first evidence that the loss of a single non-reducing terminal carbohydrate residue attenuates brain higher functions.
Collapse
Affiliation(s)
- Shoji Yamamoto
- Department of Biological Chemistry and CREST (Core Research for Educational Science and Technology) Project, Japan Science and Technology Corporation, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Baboval T, Liang S, Smith FI. Viral vector-mediated delivery of competing glycosyltransferases modifies epitope expression cell specifically. J Neurosci Res 2002; 67:583-94. [PMID: 11891771 DOI: 10.1002/jnr.10149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The glycoconjugate epitopes 3-fucosyl-N-acetyllactosamine (CD15) and sulfoglucuronylcarbohydrate (SGC) mediate cell adhesion events in several systems, and are regulated both spatially and temporally during cerebellar development. In cotransfection studies using COS-1 cells, competition between glycosyltransferases that utilize a common precursor involved in the final synthetic steps of these epitopes, can modulate epitope expression. For example, cotransfection of rat alpha1,3-fucosyltransferase IV (Fuc-TIV) and either rat glucuronic acid transferase P (GlcAT) or pig alpha1,3-galactosyltransferase (GalT) resulted in the dominance of either SGC or GalalphaGal epitope expression, respectively, with blockage of CD15 epitope expression. Viral vectors expressing these glycosyltransferases were used to determine whether competition plays a role in establishing epitope dominance in cerebellar cells, and whether overexpression of competing glycosyltransferases could be used to block epitope expression. Infection of cerebellar astrocytes with viral vectors expressing either Fuc-TIV, or Fuc-TIX, caused dramatic increases in CD15 expression in the presence of continued endogenous SGC epitope expression. Likewise, viral transduction with GalT resulted in GalalphaGal expression without affecting endogenous CD15 or SGC expression. Thus, competition between these enzymes does not appear to play a role in establishing epitope expression in astrocytes, and transduction of these enzymes does not provide a method of blocking the expression of endogenous epitopes. In contrast to what was observed for astrocytes, infection with viral vectors expressing either Fuc-T, GlcAT, or GalT did not result in significant expression of the relevant epitopes (CD15, SGC or GalalphaGal, respectively) on granule neurons. These results suggest a different complement of precursors are present in granule neurons and astrocytes, presumably due to the presence of different complements of glycosyltransferases in these cells.
Collapse
Affiliation(s)
- Thia Baboval
- Biomedical Sciences Department, E.K. Shriver Center for Mental Retardation, Waltham, Massachusetts 02452, USA
| | | | | |
Collapse
|
47
|
Nagase T, Nakamura S, Harii K, Osumi N. Ectopically localized HNK-1 epitope perturbs migration of the midbrain neural crest cells in Pax6 mutant rat. Dev Growth Differ 2001; 43:683-92. [PMID: 11737148 DOI: 10.1046/j.1440-169x.2001.00611.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small eye rats, which have a mutation in a gene encoding transcription factor Pax6, exhibit impaired migration of the midbrain neural crest cells, thereby showing severe craniofacial defects. Orthotopic grafting of the midbrain neural crest cells taken from the wild-type into Pax6 mutant embryos has suggested environmental defects along the migratory pathway of the midbrain crest cells. In the present study we found that the HNK-1 carbohydrate epitope was ectopically localized in the frontonasal epithelium of Pax6 mutant embryos. The GlcAT-P gene, encoding an enzyme for the synthesis of the HNK-1 epitope, was also expressed ectopically in the frontonasal epithelium of the mutant. In explant cultures, the migration rate of neural crest cells from the midbrain, but not from the forebrain, was significantly less in HNK-1-coated dishes than in non-coated dishes. These results suggest that the arrested migration of the midbrain crest cells in Pax6 mutant embryos may, at least in part, be due to the inhibitory effect of the HNK-1 epitope ectopically localized in the frontonasal epithelium.
Collapse
Affiliation(s)
- T Nagase
- Division of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan
| | | | | | | |
Collapse
|
48
|
Geyer H, Bahr U, Liedtke S, Schachner M, Geyer R. Core structures of polysialylated glycans present in neural cell adhesion molecule from newborn mouse brain. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6587-99. [PMID: 11737213 DOI: 10.1046/j.0014-2956.2001.02613.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polysialylation of the neural cell adhesion molecule (N-CAM) is known to destabilize cell-cell adhesion and to promote plasticity in cell-cell interactions. To gain more insights into the molecular mechanisms regulating the selective expression of polysialic acid on distinct glycan chains, the underlying core structures of polysialylated N-CAM glycans from newborn mouse brain were examined. Starting from low picomolar amounts of oligosaccharides, a multistep approach was used that was based on various mass spectrometric techniques with minimized sample consumption. Evidence could be provided that polysialylated murine N-CAM glycans comprise diantennary, triantennary and tetraantennary core structures carrying, in part, type-1 N-acetyllactosamine antennae, sulfate groups linked to terminal galactose or subterminal N-acetylglucosamine residues and, as a characteristic feature, a sulfated glucuronic acid unit which was bound exclusively to C3 of terminal galactose in Manalpha3-linked type-2 antennae. Hence, our results reveal that part of the murine N-CAM carbohydrates are modified within a single oligosaccharide by polysialic acid plus a HSO3-GlcA-moiety, which is likely to represent a HNK1-epitope. As HNK1-carbohydrates are also known to modulate cell-cell interactions, the simultaneous presence of both carbohydrate epitopes may reflect a new mechanism involved in the fine-tuning of N-CAM functions.
Collapse
Affiliation(s)
- H Geyer
- Institute of Biochemistry, University of Giessen, Germany
| | | | | | | | | |
Collapse
|
49
|
Zamze S, Wing DR, Wormald MR, Hunter AP, Dwek RA, Harvey DJ. A family of novel, acidic N-glycans in Bowes melanoma tissue plasminogen activator have L2/HNK-1-bearing antennae, many with sulfation of the fucosylated chitobiose core. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:4063-78. [PMID: 11454001 DOI: 10.1046/j.1432-1327.2001.02320.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A family of about 20 novel acidic bi- and tri-antennary N-glycans, amounting to almost half those expressed on Bowes melanoma tissue-plasminogen activator (t-PA) were found to possess Galbeta1-->4GlcNAcbeta1-->, sulfated and sialylated GalNAcbeta1-->4GlcNAcbeta1--> or sulfated GlcAbeta1--> 3Galbeta1-->4GlcNAcbeta1--> antennae, of which those containing sulfated GlcA, depicting the L2/HNK-1 carbohydrate epitope, were preferentially located on the 6 arm. A proportion of the glycans were highly charged, because of multiple and variously distributed sulfation, some of which was located on the fucosylated chitobiose core. Multiple expression of the L2/HNK-1 epitope on a single glycan was observed. The most abundant compound was a biantennary glycan carrying sulfated GlcA on the 6-branched antenna and an alpha2-->6 sialylated GalNAc on the other. The N-glycosylation sequon containing Asn448, which is known to express all of the sulfate-carrying N-glycans contains, unusually, an arginine residue. An electrostatic interaction between this cationic amino acid and the core-sulfate group of the N-glycan is proposed to reduce mobility of the carbohydrate in the region of the t-PA active site. Because of the 'brain-type' nature of the N-glycans described in this neuro-ectodermal cell line, the possibility of neural t-PA interacting with the L2/HNK-1-recognizing molecule, laminin, of the central nervous system extracellular matrix is discussed.
Collapse
Affiliation(s)
- S Zamze
- Oxford Glycobiology Institute, Department of Biochemistry, South Parks Road, Oxford, UK
| | | | | | | | | | | |
Collapse
|
50
|
Uusitalo M, Kivelä T. The HNK-1 carbohydrate epitope in the eye: basic science and functional implications. Prog Retin Eye Res 2001; 20:1-28. [PMID: 11070366 DOI: 10.1016/s1350-9462(00)00018-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The HNK-1 carbohydrate epitope is part of many cell membrane and extracellular matrix molecules. It has been implicated in cell to cell and cell to extracellular matrix adhesion, and antibodies to the HNK-1 epitope are emerging as a versatile tool in eye research. They have been used to identify a novel cell type in the human eye, the subepithelial matrix cells that reside in the inner connective tissue layer (ICTL) of the ciliary body. Although these cells resemble fibroblasts in ultrastructure, they form a distinct cell population that differs in its antigenic profile from fibroblasts of other tissues. These cells are associated with the elastic fiber system of the ICTL. Other structures in the human eye that harbor the HNK-1 epitope in a nonrandom pattern are the ciliary and iris epithelia, the zonular lamella, the lens capsule, the retina, glial cells of the optic and ciliary nerves, and scleral fibroblasts. The HNK-1 epitope in the eye appears early during embryonic development and is phylogenetically conserved, but many interspecies differences exist in its distribution. The role of the HNK-1 epitope may be to structurally stabilize the ciliary body and the retina, and to participate in zonular attachments. The HNK-1 epitope has been linked with many common eye diseases. The subepithelial matrix cells seem to be susceptible to undergo irreversible damage as a result of glaucoma, thermal injury, and tissue compression. This epitope has proved to be useful in identifying intraocular deposits of exfoliation syndrome. It can explain the adhesiveness of exfoliation material. Intraocular exfoliation material differs in HNK-1 immunoreactivity from the extraocular fibrillopathy of exfoliation syndrome and its presence in fellow eyes also argues against the concept of unilateral exfoliation syndrome. The HNK-1 epitope is found in the extracellular matrix of secondary cataract and anterior subcapsular cataract, and it may contribute to their pathogenesis. Finally, the HNK-1 epitope can be used to trace neuroepithelial derivatives of the optic vesicle in developmental anomalies and in tumors of the eye. Eventual identification of molecules that bear the HNK-1 epitope in the eye will likely shed light on many aspects of ocular physiology and pathobiology
Collapse
Affiliation(s)
- M Uusitalo
- Ophthalmic Pathology Laboratory, Department of Ophthalmology, Helsinki University Central Hospital, PO Box 220 (Haartmaninkatu 4C, Helsinki), FIN-00029, HUS, Finland.
| | | |
Collapse
|