1
|
McCarty KD, Guengerich FP. Liver fatty acid binding protein FABP1 transfers substrates to cytochrome P450 4A11 for catalysis. J Biol Chem 2025:108168. [PMID: 39793892 DOI: 10.1016/j.jbc.2025.108168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
Cytochrome P450 (P450) 4A11 is a human P450 family 4 ω-oxidase that selectively catalyzes the hydroxylation of the terminal methyl group of fatty acids. Cytosolic lipids are the substrates for the enzyme but are considered to be primarily bound in cells by liver fatty acid binding protein (FABP1). Lipid binding to recombinant FABP1 with a fluorophore displacement assay showed substantial preference of FABP1 for ≥16-carbon fatty acids (Kd < 70 nM). Comparison of palmitate binding studies revealed that FABP1 bound the lipid >100-fold more tightly than P450 4A11. Tight binding of P450 4A11 to Alexa-488 dye-labeled FABP1 was observed in fluorescence assays, and the interaction was dependent on ionic strength (Kd 3-124 nM). Kinetic studies with Alexa-FABP1 indicated that the rate of protein-protein association is fast (∼2 s-1), and a palmitate delivery experiment suggested that substrate transfer (from FABP1 to P450) is not rate-limiting. From these results we constructed a kinetic model of the FABP1-P450 interaction and applied it to a catalytic study of FABP1 on P450 4A11 palmitate ω-hydroxylation, the results of which conclusively rejected the free ligand hypothesis. Our results are explained by a direct transfer model in which lipid-bound FABP1 interacts with P450 4A11, transfers the substrate, and a slower P450 conformational change follows to position the molecule in a mode for oxidation. Given the limited free lipid pool in vivo, interaction with FABP1 may be a dominant mechanism by which P450 4A11 accesses its substrates and may offer a novel means to target P450 4A11 activity.
Collapse
Affiliation(s)
- Kevin D McCarty
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States.
| |
Collapse
|
2
|
Mokkawes T, de Visser SP. Melatonin Activation by Cytochrome P450 Isozymes: How Does CYP1A2 Compare to CYP1A1? Int J Mol Sci 2023; 24:3651. [PMID: 36835057 PMCID: PMC9959256 DOI: 10.3390/ijms24043651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cytochrome P450 enzymes are versatile enzymes found in most biosystems that catalyze mono-oxygenation reactions as a means of biosynthesis and biodegradation steps. In the liver, they metabolize xenobiotics, but there are a range of isozymes with differences in three-dimensional structure and protein chain. Consequently, the various P450 isozymes react with substrates differently and give varying product distributions. To understand how melatonin is activated by the P450s in the liver, we did a thorough molecular dynamics and quantum mechanics study on cytochrome P450 1A2 activation of melatonin forming 6-hydroxymelatonin and N-acetylserotonin products through aromatic hydroxylation and O-demethylation pathways, respectively. We started from crystal structure coordinates and docked substrate into the model, and obtained ten strong binding conformations with the substrate in the active site. Subsequently, for each of the ten substrate orientations, long (up to 1 μs) molecular dynamics simulations were run. We then analyzed the orientations of the substrate with respect to the heme for all snapshots. Interestingly, the shortest distance does not correspond to the group that is expected to be activated. However, the substrate positioning gives insight into the protein residues it interacts with. Thereafter, quantum chemical cluster models were created and the substrate hydroxylation pathways calculated with density functional theory. These relative barrier heights confirm the experimental product distributions and highlight why certain products are obtained. We make a detailed comparison with previous results on CYP1A1 and identify their reactivity differences with melatonin.
Collapse
Affiliation(s)
- Thirakorn Mokkawes
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Sam P. de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
3
|
Nowrouzi B, Lungang L, Rios-Solis L. Exploring optimal Taxol® CYP725A4 activity in Saccharomyces cerevisiae. Microb Cell Fact 2022; 21:197. [PMID: 36123694 PMCID: PMC9484169 DOI: 10.1186/s12934-022-01922-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Background CYP725A4 catalyses the conversion of the first Taxol® precursor, taxadiene, to taxadiene-5α-ol (T5α-ol) and a range of other mono- and di-hydroxylated side products (oxygenated taxanes). Initially known to undergo a radical rebound mechanism, the recent studies have revealed that an intermediate epoxide mediates the formation of the main characterised products of the enzyme, being T5α-ol, 5(12)-oxa-3(11)-cyclotaxane (OCT) and its isomer, 5(11)-oxa-3(11)-cyclotaxane (iso-OCT) as well as taxadienediols. Besides the high side product: main product ratio and the low main product titre, CYP725A4 is also known for its slow enzymatic activity, massively hindering further progress in heterologous production of Taxol® precursors. Therefore, this study aimed to systematically explore the key parameters for improving the regioselectivity and activity of eukaryotic CYP725A4 enzyme in a whole-cell eukaryotic biocatalyst, Saccharomyces cerevisiae. Results Investigating the impact of CYP725A4 and reductase gene dosages along with construction of self-sufficient proteins with strong prokaryotic reductases showed that a potential uncoupling event accelerates the formation of oxygenated taxane products of this enzyme, particularly the side products OCT and iso-OCT. Due to the harmful effect of uncoupling products and the reactive metabolites on the enzyme, the impact of flavins and irons, existing as prosthetic groups in CYP725A4 and reductase, were examined in both their precursor and ready forms, and to investigate the changes in product distribution. We observed that the flavin adenine dinucleotide improved the diterpenoids titres and biomass accumulation. Hemin was found to decrease the titre of iso-OCT and T5α-ol, without impacting the side product OCT, suggesting the latter being the major product of CYP725A4. The interaction between this iron and the iron precursor, δ-Aminolevulinic acid, seemed to improve the production of these diterpenoids, further denoting that iso-OCT and T5α-ol were the later products. While no direct correlation between cellular-level oxidative stress and oxygenated taxanes was observed, investigating the impact of salt and antioxidant on CYP725A4 further showed the significant drop in OCT titre, highlighting the possibility of enzymatic-level uncoupling event and reactivity as the major mechanism behind the enzyme activity. To characterise the product spectrum and production capacity of CYP725A4 in the absence of cell growth, resting cell assays with optimal neutral pH revealed an array of novel diterpenoids along with higher quantities of characterised diterpenoids and independence of the oxygenated product spectra from the acidity effect. Besides reporting on the full product ranges of CYP725A4 in yeast for the first time, the highest total taxanes of around 361.4 ± 52.4 mg/L including 38.1 ± 8.4 mg/L of T5α-ol was produced herein at a small, 10-mL scale by resting cell assay, where the formation of some novel diterpenoids relied on the prior existence of other diterpenes/diterpenoids as shown by statistical analyses. Conclusions This study shows how rational strain engineering combined with an efficient design of experiment approach systematically uncovered the promoting effect of uncoupling for optimising the formation of the early oxygenated taxane precursors of Taxol®. The provided strategies can effectively accelerate the design of more efficient Taxol®-producing yeast strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01922-1.
Collapse
Affiliation(s)
- Behnaz Nowrouzi
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Liang Lungang
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, EH9 3BF, UK. .,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, EH9 3BD, UK. .,School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
4
|
Sadeghi SJ, Gilardi G. Chimeric P450 enzymes: Activity of artificial redox fusions driven by different reductases for biotechnological applications. Biotechnol Appl Biochem 2013; 60:102-10. [DOI: 10.1002/bab.1086] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022]
|
5
|
Kasai N, Ikushiro S, Hirosue S, Arisawa A, Ichinose H, Uchida Y, Wariishi H, Ohta M, Sakaki T. Atypical kinetics of cytochromes P450 catalysing 3'-hydroxylation of flavone from the white-rot fungus Phanerochaete chrysosporium. J Biochem 2009; 147:117-25. [PMID: 19819902 DOI: 10.1093/jb/mvp155] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We cloned full-length cDNAs of 130 cytochrome P450s (P450s) derived from Phanerochaete chrysosporium and successfully expressed 70 isoforms in Saccharomyces cerevisiae. To elucidate substrate specificity of P. chrysosporium P450s, we examined various substrates including steroid hormones, several drugs, flavonoids and polycyclic aromatic hydrocarbons using the recombinant S. cerevisiae cells. Of these P450s, two CYPs designated as PcCYP50c and PcCYP142c with 14% identity in their amino acid sequences catalyse 3'-hydroxylation of flavone and O-deethylation of 7-ethoxycoumarin. Kinetic data of both enzymes on both reactions fitted not to the Michaelis-Menten equation but to Hill's equation with a coefficient of 2, suggesting that two substrates bind to the active site. Molecular modelling of PcCYP50c and a docking study of flavone to its active site supported this hypothesis. The enzymatic properties of PcCYP50c and PcCYP142c resemble mammalian drug-metabolizing P450s, suggesting that their physiological roles are metabolism of xenobiotics. It is noted that these unique P. chrysosporium P450s have a potential for the production of useful flavonoids.
Collapse
Affiliation(s)
- Noriyuki Kasai
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kasai N, Ikushiro SI, Hirosue S, Arisawa A, Ichinose H, Wariishi H, Ohta M, Sakaki T. Enzymatic properties of cytochrome P450 catalyzing 3'-hydroxylation of naringenin from the white-rot fungus Phanerochaete chrysosporium. Biochem Biophys Res Commun 2009; 387:103-8. [PMID: 19576179 DOI: 10.1016/j.bbrc.2009.06.134] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 06/29/2009] [Indexed: 11/29/2022]
Abstract
We cloned full-length cDNAs of more than 130 cytochrome P450s (P450s) derived from Phanerochaete chrysosporium, and successfully expressed 70 isoforms using a co-expression system of P. chrysosporium P450 and yeast NADPH-P450 reductase in Saccharomyces cerevisiae. Of these P450s, a microsomal P450 designated as PcCYP65a2 consists of 626 amino acid residues with a molecular mass of 68.3kDa. Sequence alignment of PcCYP65a2 and human CYP1A2 revealed a unique structure of PcCYP65a2. Functional analysis of PcCYP65a2 using the recombinant S. cerevisiae cells demonstrated that this P450 catalyzes 3'-hydroxylation of naringenin to yield eriodictyol, which has various biological and pharmacological properties. In addition, the recombinant S. cerevisiae cells expressing PcCYP65a2 metabolized such polyaromatic compounds as dibenzo-p-dioxin (DD), 2-monochloroDD, biphenyl, and naphthalene. These results suggest that PcCYP65a2 is practically useful for both bioconversion and bioremediation.
Collapse
Affiliation(s)
- Noriyuki Kasai
- Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Miller WL, Huang N, Agrawal V, Giacomini KM. Genetic variation in human P450 oxidoreductase. Mol Cell Endocrinol 2009; 300:180-4. [PMID: 18930113 DOI: 10.1016/j.mce.2008.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/03/2008] [Accepted: 09/15/2008] [Indexed: 11/28/2022]
Abstract
Catalysis by all 50 Type II (microsomal) P450 enzymes, including steroidogenic P450c17, P450c21, and P450aro and hepatic drug-metabolizing enzymes requires electron donation from P450 oxidoreductase (POR). POR knockout mice are embryonic lethal, but human POR mutations cause a complex disorder of steroidogenesis. Disorders of hepatic drug metabolism in human POR deficiency have not yet been described. To understand the potential contribution of POR to pharmacogenetics, we sequenced the POR gene in 842 normal persons from 4 ethnic groups. We detected 140 single nucleotide sequence variants of which 43 were in >1% of alleles, including 15 missense mutants; this brings the total of known POR missense mutants to 35. A503V was found on 28% of alleles, varying from 19% in African Americans to 37% in Chinese Americans. We expressed all 35 missense mutants in E. coli and assayed their activities to: oxidize NADPH, reduce cytochrome c, support the 17alpha-hydroxylase and 17,20 lyase activities of bacterially expressed human P450c17, and support the metabolism of fluorogenic EOMCC by bacterially expressed human CYP1A2 and CYP2C19. These data show that there are great differences in the activities of some POR mutants depending on the electron recipient assayed; for example, Q153R causes severely impaired steroid biosynthesis in human patients and in vitro, but is a gain-of-function mutant with CYP1A2 and 2C19. A503V reduces both activities of P450c17 in half, but had no effect on CYP1A2 or 2C19. POR variants are a previously unappreciated source of genetic variation in patterns of steroid synthesis and drug metabolism.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, University of California, San Francisco, United States.
| | | | | | | |
Collapse
|
8
|
Sue Masters B, Marohnic CC. Cytochromes P450—A Family of Proteins and Scientists–Understanding their Relationships. Drug Metab Rev 2008; 38:209-25. [PMID: 16684658 DOI: 10.1080/03602530600570065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The unifying thread of this review involves NADPH-cytochrome P450 reductase (CYPOR), the microsomal enzyme responsible for transferring electrons to cytochromes P450, as well as several other monooxygenase systems, a lifelong interest of the corresponding author. The intersection of her research with that of Dr. David Kupfer, their resulting collaboration, and the beginning of a long-standing study of fatty acid- and eicosanoid-metabolizing cytochromes P450 (CYP4A gene subfamily), including the role of cytochrome b5, will be reported. The culmination of this interest now involves purification and characterization of the human mutants of CYPOR that have been implicated in pathologies, such as Antley-Bixler syndrome.
Collapse
|
9
|
Marohnic CC, Panda SP, Martásek P, Masters BS. Diminished FAD binding in the Y459H and V492E Antley-Bixler syndrome mutants of human cytochrome P450 reductase. J Biol Chem 2006; 281:35975-82. [PMID: 16998238 DOI: 10.1074/jbc.m607095200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous mutations/polymorphisms of the POR gene, encoding NADPH:cytochrome P450 oxidoreductase (CYPOR), have been described in patients with Antley-Bixler syndrome (ABS), presenting with craniofacial dysmorphogenesis, and/or disordered steroidogenesis, exhibiting ambiguous genitalia. CYPOR is the obligate electron donor to 51 microsomal cytochromes P450 that catalyze critical steroidogenic and xenobiotic reactions, and to two heme oxygenase isoforms, among other redox partners. To address the molecular basis of CYPOR dysfunction in ABS patients, the soluble catalytic domain of human CYPOR was bacterially expressed. WT enzyme was green, due to air-stable FMN semiquinone (blue) and oxidized FAD (yellow). The ABS mutant V492E was blue-gray. Flavin analysis indicated that WT had a protein:FAD:FMN ratio of approximately 1:1:1, whereas approximately 1:0.1:0.9 was observed for V492E, which retained 9% of the WT k(cat)/K(m) in NADPH:cytochrome c reductase assays. V492E was reconstituted upon addition of FAD, post-purification, as shown by flavin analysis, activity assay, and near UV-visible CD. Both Y459H and V492E were expressed as membrane anchor-containing proteins, which also exhibited FAD deficiency. CYP4A4-catalyzed omega-hydroxylation of prostaglandin E1 was supported by WT CYPOR but not by either of the ABS mutants. Hydroxylation activity was rescued for both Y459H and V492E upon addition of FAD to the reaction. Based on these findings, decreased FAD-binding affinity is proposed as the basis of the observed loss of CYPOR function in the Y459H and V492E POR mutations in ABS.
Collapse
Affiliation(s)
- Christopher C Marohnic
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.
Collapse
MESH Headings
- Adrenal Hyperplasia, Congenital/complications
- Adrenal Hyperplasia, Congenital/enzymology
- Adrenal Hyperplasia, Congenital/genetics
- Bone Diseases, Developmental/enzymology
- Bone Diseases, Developmental/etiology
- Bone Diseases, Developmental/genetics
- Bone Diseases, Endocrine/enzymology
- Bone Diseases, Endocrine/etiology
- Bone Diseases, Endocrine/genetics
- Bone Diseases, Metabolic/enzymology
- Bone Diseases, Metabolic/etiology
- Bone Diseases, Metabolic/genetics
- Cytochrome P-450 Enzyme System/metabolism
- Genotype
- Humans
- Oxidoreductases/deficiency
- Phenotype
Collapse
Affiliation(s)
- Christa E Flück
- Pediatric Endocrinology and Diabetology, University Children's Hospital Bern, Bern, Switzerland
| | | |
Collapse
|
11
|
Miller WL, Huang N, Pandey AV, Flück CE, Agrawal V. P450 oxidoreductase deficiency: a new disorder of steroidogenesis. Ann N Y Acad Sci 2006; 1061:100-8. [PMID: 16467261 DOI: 10.1196/annals.1336.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microsomal P450 enzymes, which metabolize drugs and catalyze steroid biosynthesis require electron donation from NADPH via P450 oxidoreductase (POR). POR knockout mice are embryonically lethal, but we found recessive human POR missense mutations causing disordered steroidogenesis and Antley-Bixler syndrome (ABS), a skeletal malformation syndrome featuring craniosynostosis. Dominant mutations in exons 8 and 10 of fibroblast growth factor receptor 2 (FGFR2) cause phenotypically related craniosynostosis syndromes and were reported in patients with ABS and normal steroidogenesis. Sequencing POR and FGFR2 exons in 32 patients with ABS and/or hormonal findings suggesting POR deficiency showed complete genetic segregation of POR and FGFR2 mutations. Fifteen patients carried POR mutations on both alleles, four carried POR mutations on 1 allele, nine carried FGFR2/3 mutations on one allele and no mutation was found in three patients. The 34 affected POR alleles included 10 with A287P, 7 with R457H, 9 other missense mutations and 7 frameshifts. These 11 missense mutations and 10 others identified by database mining were expressed in E. coli, purified to apparent homogeneity, and their catalytic capacities were measured in four assays: reduction of cytochrome c, oxidation of NADPH, and support of the 17alpha-hydroxylase and 17,20 lyase activities of human P450c17. As assessed by Vmax/Km, 17,20 lyase activity provided the best correlation with clinical findings. Modeling human POR on the X-ray crystal structure of rat POR shows that these mutant activities correlate well with their locations in the structure. POR deficiency is a new disease, distinct from the craniosynostosis syndromes caused by FGFR mutations.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Bldg. MR-IV, Room 209, University of California, San Francisco, San Francisco 94143-0978, USA.
| | | | | | | | | |
Collapse
|
12
|
Yoshioka H, Kasai N, Ikushiro S, Shinkyo R, Kamakura M, Ohta M, Inouye K, Sakaki T. Enzymatic properties of human CYP2W1 expressed in Escherichia coli. Biochem Biophys Res Commun 2006; 345:169-74. [PMID: 16677611 DOI: 10.1016/j.bbrc.2006.04.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 04/16/2006] [Indexed: 10/24/2022]
Abstract
The human genome project revealed a new member of the P450 family 2, CYP2W1, which has orthologous form in other vertebrate species, suggesting CYP2W1's significant physiological function. Recently, it was reported that CYP2W1 can metabolize arachidonic acid. In this study, we isolated human CYP2W1 cDNA, and successfully expressed truncated CYP2W1 lacking N-terminal 20 amino acids in Escherichia coli cells. In the bicistronic expression system for human CYP2W1 and NADPH-P450 reductase, the formation of blue pigment, indigo, was observed in bacterial cultures. Based on this result, we revealed that CYP2W1 catalyzes the oxidation of indole. In addition, CYP2W1 showed monooxygenase activity towards 3-methylindole and chlorzoxazone. However, no activity was observed towards fatty acids including arachidonic acid. Further analysis using an E. coli expression system will reveal substrate specificity of CYP2W1 and why this P450 isoform is universally conserved in vertebrates.
Collapse
Affiliation(s)
- Hidenori Yoshioka
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hamamoto H, Kusudo T, Urushino N, Masuno H, Yamamoto K, Yamada S, Kamakura M, Ohta M, Inouye K, Sakaki T. Structure-function analysis of vitamin D 24-hydroxylase (CYP24A1) by site-directed mutagenesis: amino acid residues responsible for species-based difference of CYP24A1 between humans and rats. Mol Pharmacol 2006; 70:120-8. [PMID: 16617161 DOI: 10.1124/mol.106.023275] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies revealed the species-based difference of CYP24A1-dependent vitamin D metabolism. Although human CYP24A1 catalyzes both C-23 and C-24 oxidation pathways, rat CYP24A1 shows almost no C-23 oxidation pathway. We tried to identify amino acid residues that cause the species-based difference by site-directed mutagenesis. In the putative substrate-binding regions, amino acid residue of rat CYP24A1 was converted to the corresponding residue of human CYP24A1. Among eight mutants examined, T416M and I500T showed C-23 oxidation pathway. In addition, the mutant I500F showed quite a different metabolism of 1alpha,25-dihydroxyvitamin D3 [1alpha,25(OH)2D3] from both human and rat CYP24A1. These results strongly suggest that the amino acid residues at positions 416 and 500 play a crucial role in substrate binding and greatly affect substrate orientation. A three-dimensional model of CYP24A1 indicated that the A-ring and triene part of 1alpha,25(OH)2D3 could be located close to amino acid residues at positions 416 and 500, respectively. Our findings provide useful information for the development of new vitamin D analogs for clinical use.
Collapse
Affiliation(s)
- Hiromi Hamamoto
- Biotechnology Research Center, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Yamamoto K, Uchida E, Urushino N, Sakaki T, Kagawa N, Sawada N, Kamakura M, Kato S, Inouye K, Yamada S. Identification of the amino acid residue of CYP27B1 responsible for binding of 25-hydroxyvitamin D3 whose mutation causes vitamin D-dependent rickets type 1. J Biol Chem 2005; 280:30511-6. [PMID: 15972816 DOI: 10.1074/jbc.m505244200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously reported the three-dimensional structure of human CYP27B1 (25-hydroxyvitamin D3 1alpha-hydroxylase) constructed by homology modeling. Using the three-dimensional model we studied the docking of the substrate, 25-hydroxyvitamin D3, into the substrate binding pocket of CYP27B1. In this study, we focused on the amino acid residues whose point mutations cause vitamin D-dependent rickets type 1, especially unconserved residues among mitochondrial CYPs such as Gln65 and Thr409. Recently, we successfully overexpressed mouse CYP27B1 by using a GroEL/ES co-expression system. In a mutation study of mouse CYP27B1 that included spectroscopic analysis, we concluded that in a 1alpha-hydroxylation process, Ser408 of mouse CYP27B1 corresponding to Thr409 of human CYP27B1 forms a hydrogen bond with the 25-hydroxyl group of 25-hydroxyvitamin D3. This is the first report that shows a critical amino acid residue recognizing the 25-hydroxyl group of the vitamin D3.
Collapse
Affiliation(s)
- Keiko Yamamoto
- Institute of Biomaterials and Bioengineering & School of Biomedical Sciences, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Cytochrome P450 enzymes catalyze the degradation of drugs and xenobiotics, but also catalyze a wide variety of biosynthetic processes, including most steps in steroidogenesis. The catalytic rate of a P450 enzyme is determined in large part by the rate of electron transfer from its redox partners. Type I P450 enzymes, found in mitochondria, receive electrons from reduced nicotinamide adenine dinucleotide (NADPH) via the intermediacy of two proteins-ferredoxin reductase (a flavoprotein) and ferredoxin (an iron/sulfur protein). Type I P450 enzymes include the cholesterol side-chain cleavage enzyme (P450scc), the two isozymes of 11-hydroxylase (P450c11beta and P450c11AS), and several vitamin D-metabolizing enzymes. Disorders of these enzymes, but not of the two redox partners, have been described. Type II P450 enzymes, found in the endoplasmic reticulum, receive electrons from NADPH via P450 oxidoreductase (POR), which contains two flavin moieties. Steroidogenic Type II P450 enzymes include 17alpha-hydroxylase/17,20 lyase (P450c17), 21-hydroxylase (P450c21), and aromatase (P450aro). All P450 enzymes catalyze multiple reactions, but P450c17 appears to be unique in that the ratio of its activities is regulated at a posttranslational level. Three factors can increase the degree of 17,20 lyase activity relative to the 17alpha-hydroxylase activity by increasing electron flow from POR: a high molar ratio of POR to P450c17, serine phosphorylation of P450c17, and the presence of cytochrome b(5), acting as an allosteric factor to promote the interaction of POR with P450c17. POR is required for the activity of all 50 human Type II P450 enzymes, and ablation of the Por gene in mice causes embryonic lethality. Nevertheless, mutation of the human POR gene is compatible with life, causing multiple steroidogenic defects and a skeletal dysplasia called Antley-Bixler syndrome.
Collapse
Affiliation(s)
- Walter L Miller
- Department of Pediatrics, Building MR-4, Room 209, University of California, San Francisco, San Francisco, California 94143-0978, USA
| |
Collapse
|
16
|
Huang N, Pandey AV, Agrawal V, Reardon W, Lapunzina PD, Mowat D, Jabs EW, Vliet GV, Sack J, Flück CE, Miller WL. Diversity and function of mutations in p450 oxidoreductase in patients with Antley-Bixler syndrome and disordered steroidogenesis. Am J Hum Genet 2005; 76:729-49. [PMID: 15793702 PMCID: PMC1199364 DOI: 10.1086/429417] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/04/2005] [Indexed: 11/03/2022] Open
Abstract
P450 oxidoreductase (POR) is the obligatory flavoprotein intermediate that transfers electrons from reduced nicotinamide adenine dinucleotide phosphate (NADPH) to all microsomal cytochrome P450 enzymes. Although mouse Por gene ablation causes embryonic lethality, POR missense mutations cause disordered steroidogenesis, ambiguous genitalia, and Antley-Bixler syndrome (ABS), which has also been attributed to fibroblast growth factor receptor 2 (FGFR2) mutations. We sequenced the POR gene and FGFR2 exons 8 and 10 in 32 individuals with ABS and/or hormonal findings that suggested POR deficiency. POR and FGFR2 mutations segregated completely. Fifteen patients carried POR mutations on both alleles, 4 carried mutations on only one allele, 10 carried FGFR2 or FGFR3 mutations, and 3 patients carried no mutations. The 34 affected POR alleles included 10 with A287P (all from whites) and 7 with R457H (four Japanese, one African, two whites); 17 of the 34 alleles carried 16 "private" mutations, including 9 missense and 7 frameshift mutations. These 11 missense mutations, plus 10 others found in databases or reported elsewhere, were recreated by site-directed mutagenesis and were assessed by four assays: reduction of cytochrome c, oxidation of NADPH, support of 17alpha-hydroxylase activity, and support of 17,20 lyase using human P450c17. Assays that were based on cytochrome c, which is not a physiologic substrate for POR, correlated poorly with clinical phenotype, but assays that were based on POR's support of catalysis by P450c17--the enzyme most closely associated with the hormonal phenotype--provided an excellent genotype/phenotype correlation. Our large survey of patients with ABS shows that individuals with an ABS-like phenotype and normal steroidogenesis have FGFR mutations, whereas those with ambiguous genitalia and disordered steroidogenesis should be recognized as having a distinct new disease: POR deficiency.
Collapse
Affiliation(s)
- Ningwu Huang
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Amit V. Pandey
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Vishal Agrawal
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - William Reardon
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Pablo D. Lapunzina
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - David Mowat
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Ethylin Wang Jabs
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Guy Van Vliet
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Joseph Sack
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Christa E. Flück
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| | - Walter L. Miller
- Department of Pediatrics, University of California, San Francisco; Department of Clinical Genetics, Our Lady’s Hospital for Sick Children, Dublin, Ireland; Department of Medical Genetics, Hospital Universitario La Paz, Madrid, Spain; Department of Medical Genetics, Sydney Children’s Hospital, Sydney, Australia; Department of Pediatrics, Medicine, and Surgery, Johns Hopkins University, Baltimore; Department of Pediatrics, University of Montreal, Montreal, Canada; Department of Pediatrics, Tel Aviv University, Tel Aviv, Israel; and Pediatric Endocrinology, University Children’s Hospital, Bern, Switzerland
| |
Collapse
|
17
|
Shinkyo R, Sakaki T, Kamakura M, Ohta M, Inouye K. Metabolism of vitamin D by human microsomal CYP2R1. Biochem Biophys Res Commun 2004; 324:451-7. [PMID: 15465040 DOI: 10.1016/j.bbrc.2004.09.073] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2004] [Indexed: 01/13/2023]
Abstract
The activation of vitamin D requires 25-hydroxylation in the liver and 1alpha-hydroxylation in the kidney. However, it remains unclear which enzyme is relevant to vitamin D 25-hydroxylation. Recently, human CYP2R1 has been reported to be a potential candidate for a hepatic vitamin D 25-hydroxylase. Thus, vitamin D metabolism by CYP2R1 was compared with human mitochondrial CYP27A1, which used to be considered a physiologically important vitamin D(3) 25-hydroxylase. A clear difference was observed between CYP2R1 and CYP27A1 in the metabolism of vitamin D(2). CYP2R1 hydroxylated vitamin D(2) at the C-25 position while CYP27A1 hydroxylated it at positions C-24 and C-27. The K(m) and k(cat) values for the CYP2R1-dependent 25-hydroxylation activity toward vitamin D(3) were 0.45microM and 0.97min(-1), respectively. The k(cat)/K(m) value of CYP2R1 was 26-fold higher than that of CYP27A1. These results strongly suggest that CYP2R1 plays a physiologically important role in the vitamin D 25-hydroxylation in humans.
Collapse
Affiliation(s)
- Raku Shinkyo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | |
Collapse
|
18
|
Uchida E, Kagawa N, Sakaki T, Urushino N, Sawada N, Kamakura M, Ohta M, Kato S, Inouye K. Purification and characterization of mouse CYP27B1 overproduced by an Escherichia coli system coexpressing molecular chaperonins GroEL/ES. Biochem Biophys Res Commun 2004; 323:505-11. [PMID: 15369780 DOI: 10.1016/j.bbrc.2004.08.110] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Indexed: 11/15/2022]
Abstract
The expression of mouse CYP27B1 in Escherichia coli has been dramatically enhanced by coexpression of GroEL/ES. To reveal the enzymatic properties of CYP27B1, we measured its hydroxylation activity toward vitamin D3 and 1alpha-hydroxyvitamin D3 (1alpha(OH)D3) in addition to the physiological substrate 25(OH)D3. Surprisingly, CYP27B1 converted vitamin D3 to 1alpha,25(OH)D3. Both 1alpha-hydroxylation activity toward vitamin D3, and 25-hydroxylation activity toward 1alpha(OH)D3 were observed. The Km and Vmax values for 25-hydroxylation activity toward 1alpha(OH)D3 were estimated to be 1.7 microM and 0.51 mol/min/mol P450, respectively, while those for 1alpha-hydroxylation activity toward 25(OH)D3 were 0.050 microM and 2.73 mol/min/mol P450, respectively. Note that the substrate must be fixed in the opposite direction in the substrate-binding pocket of CYP27B1 between 1alpha-hydroxylation and 25-hydroxylation. Based on these results and the fact that human CYP27A1 and Streptomyces CYP105A1 also convert vitamin D3 to 1alpha,25(OH)D3, 1alpha-hydroxylation, and 25-hydroxylation of vitamin D3 appear to be closely linked together.
Collapse
Affiliation(s)
- Eriko Uchida
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sawada N, Sakaki T, Yoneda S, Kusudo T, Shinkyo R, Ohta M, Inouye K. Conversion of vitamin D3 to 1alpha,25-dihydroxyvitamin D3 by Streptomyces griseolus cytochrome P450SU-1. Biochem Biophys Res Commun 2004; 320:156-64. [PMID: 15207715 DOI: 10.1016/j.bbrc.2004.05.140] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Indexed: 11/28/2022]
Abstract
Streptomyces griseolus cytochrome P450SU-1 (CYP105A1) was expressed in Escherichia coli at a level of 1.0 micromol/L culture and purified with a specific content of 18.0 nmol/mg protein. Enzymatic studies revealed that CYP105A1 had 25-hydroxylation activity towards vitamin D2 and vitamin D3. Surprisingly, CYP105A1 also showed 1alpha-hydroxylation activity towards 25(OH)D3. As mammalian mitochondrial CYP27A1 catalyzes a similar two-step hydroxylation towards vitamin D3, the enzymatic properties of CYP105A1 were compared with those of human CYP27A1. The major metabolite of vitamin D2 by CYP105A1 was 25(OH)D2, while the major metabolites by CYP27A1 were both 24(OH)D2 and 27(OH)D2. These results suggest that CYP105A1 recognizes both vitamin D2 and vitamin D3 in a similar manner, while CYP27A1 does not. The Km values of CYP105A1 for vitamin D2 25-hydroxylation, vitamin D3 25-hydroxylation, and 25-hydroxyvitamin D3 1alpha-hydroxylation were 0.59, 0.54, and 0.91 microM, respectively, suggesting a high affinity of CYP105A1 for these substrates.
Collapse
Affiliation(s)
- Natsumi Sawada
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Shinkyo R, Sakaki T, Takita T, Ohta M, Inouye K. Generation of 2,3,7,8-TCDD-metabolizing enzyme by modifying rat CYP1A1 through site-directed mutagenesis. Biochem Biophys Res Commun 2003; 308:511-7. [PMID: 12914780 DOI: 10.1016/s0006-291x(03)01439-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) are known as g environmental contaminants on account of the extreme toxicity. Among these compounds, 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is regarded as the most toxic one. The extremely high toxicity of 2,3,7,8-TetraCDD is based on its high affinity for Ah receptor and nearly undetectable metabolism in mammalian body. Based on our previous studies, we assumed that enlarging the space of substrate-binding pocket of rat CYP1A1 might generate the catalytic activity toward 2,3,7,8-TetraCDD. Large-sized amino acid residues located at putative substrate-binding sites of rat CYP1A1 were substituted for alanine by site-directed mutagenesis. Among eight mutants examined, the mutant in the putative F-G loop, F240A, showed metabolic activity toward 2,3,7,8-TetraCDD. HPLC and GC-MS analyses strongly suggested that the metabolite was 8-hydroxy-2,3,7-TriCDD. Ah receptor assay revealed that the affinity of 8-hydroxy-2,3,7-TriCDD for Ah receptor was less than 0.01% of 2,3,7,8-TetraCDD, indicating that the F240A-dependent metabolism resulted in remarkable detoxification of 2,3,7,8-TetraCDD. The novel 2,3,7,8-TetraCDD-metabolizing enzyme could be applicable to bioremediation of contaminated soils with dioxin, elimination of dioxin from foods, and clinical treatment for people who accidentally take dioxin into their systems.
Collapse
Affiliation(s)
- Raku Shinkyo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
21
|
Hayashi S, Omata Y, Sakamoto H, Hara T, Noguchi M. Purification and characterization of a soluble form of rat liver NADPH-cytochrome P-450 reductase highly expressed in Escherichia coli. Protein Expr Purif 2003; 29:1-7. [PMID: 12729719 DOI: 10.1016/s1046-5928(03)00023-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A recombinant cDNA of rat liver NADPH-cytochrome P-450 reductase (CPR), which lacks the N-terminal hydrophobic region, was amplified by PCR and cloned. The N-truncated cDNA named tCPR was ligated into a pBAce vector and expressed. The tCPR protein expressed in Escherichia coli was recovered into the soluble fraction of the cell lysate and purified to homogeneity by three sequential purification procedures; (I) anion-exchange chromatography on a DEAE-cellulose (DE-52) column, (II) affinity chromatography on 2('),5(')-ADP Sepharose 4B, and (III) chromatography on a hydroxyapatite column. The average yield was 47mg per liter of culture medium. The absorption spectrum of the purified tCPR protein was identical to that of a native full-length CPR purified from rat liver, indicating that tCPR also possesses one molecule each of FAD and FMN. The tCPR protein was able to reduce cytochrome c and was also able to assist heme degradation by a soluble form of rat heme oxygenase-1. However, it failed to support the O-deethylation of 7-ethoxycoumarin by cytochrome P-450 1A1, indicating that the presence of the N-terminal hydrophobic domain is necessary for CPR to interact with cytochrome P-450. Previously, to prepare a soluble form of CPR, full-length CPR was treated with proteinases that selectively removed the N-terminal domain. With the expression system established in this study, however, the soluble and biologically active tCPR protein can be readily prepared in large amounts. This expression system will be useful for mechanistic as well as structural studies of CPR.
Collapse
Affiliation(s)
- Shunsuke Hayashi
- Department of Medical Biochemistry, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | |
Collapse
|
22
|
Shinkyo R, Sakaki T, Ohta M, Inouye K. Metabolic pathways of dioxin by CYP1A1: species difference between rat and human CYP1A subfamily in the metabolism of dioxins. Arch Biochem Biophys 2003; 409:180-7. [PMID: 12464257 DOI: 10.1016/s0003-9861(02)00366-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolism of polychlorinated dibenzo-p-dioxins by CYP1A subfamily was examined by using the recombinant yeast microsomes. In substrate specificity and reaction specificity, considerable species differences between rats and humans were observed in both CYP1A1- and CYP1A2-dependent metabolism of dioxins. Among four CYPs, rat CYP1A1 showed the highest activity toward dibenzo-p-dioxin (DD) and mono-, di-, and trichloroDDs. To reveal the mechanism of dioxin metabolism, we examined rat CYP1A1-dependent metabolism of 2-chloro-dibenzo-p-dioxin. In addition to hydroxylation at an unsubstituted position, hydroxylation with migration of a chloride substituent, hydroxylation with elimination of a chloride substituent, and cleavage of an ether linkage of the dioxin ring were observed. In particular, the cleavage of an ether linkage of the dioxin ring appeared most important for the detoxication of dioxins. Based on these results, the metabolic pathways of 2-chloro-dibenzo-p-dioxin by rat CYP1A1 were proposed. The metabolic pathways contain most of the metabolites observed in vivo using experimental animals, suggesting that P450 monooxygenase systems including CYP1A1 are greatly responsible for dioxin metabolism in vivo.
Collapse
Affiliation(s)
- Raku Shinkyo
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Japan
| | | | | | | |
Collapse
|
23
|
Inouye K, Shinkyo R, Takita T, Ohta M, Sakaki T. Metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) by human cytochrome P450-dependent monooxygenase systems. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:5496-5502. [PMID: 12207498 DOI: 10.1021/jf020415z] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Metabolism of polychlorinated dibenzo-p-dioxins (PCDDs) by monooxygenase systems dependent on 12 forms of human cytochrome P450 (CYP) was examined with the recombinant yeast microsomes containing each of the human CYP. The metabolites of PCDDs were analyzed by HPLC and GC-MS. Remarkable metabolism by the multiple CYP forms was observed toward dibenzo-p-dioxin (DD) and mono-, di-, and trichloroDDs. The metabolism contained multiple reactions such as hydroxylation at an unsubstituted position, hydroxylation with migration of a chloride substituent, and hydroxylation with elimination of a chloride substituent. Although major CYPs in human liver such as CYP2C8, CYP2C9, and CYP3A4 showed no significant metabolism toward the PCDDs, CYP1A1 and CYP1A2 showed high catalytic activity toward DD and mono-, di-, and trichloroDDs. The kinetic parameters K(m)(app) and V(max) of the CYP1A1-dependent 8-hydroxylation activity of 2,3,7-trichloro-DD (2,3,7-triCDD) were estimated to be 0.30 microM and 51 (mol/min/mol of P450), respectively, suggesting that 2,3,7-triCDD was a good substrate for CYP1A1. However, none of the CYPs showed any detectable activity [<0.01 mol/min/mol of P450)] toward 2,3,7,8-tetraCDD. Substrate-induced absorption spectrum and inhibition studies indicated that CYP1A1 could bind 2,3,7,8-tetraCDD with considerably high affinity. It was strongly suggested that the long half-life (7.1 years) of 2,3,7,8-tetraCDD in humans was due to an extremely low activity of CYPs toward 2,3,7,8-tetraCDD in addition to its chemical stability.
Collapse
Affiliation(s)
- Kuniyo Inouye
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | | | |
Collapse
|
24
|
Inouye K, Kondo S, Yamamura M, Nakanishi D, Sakaki T. Inhibitory effects of detergents on rat CYP1A1-dependent monooxygenase: comparison of mixed and fused systems consisting of rat CYP 1A1 and yeast NADPH-P450 reductase. Biochem Biophys Res Commun 2001; 280:1346-51. [PMID: 11162677 DOI: 10.1006/bbrc.2001.4293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibitory effects of detergents Triton X-100 and Chaps on 7-ethoxycoumarin O-deethylation activity were examined in the recombinant microsomes containing both rat CYP1A1 and yeast NADPH-P450 reductase (the mixed system) and their fused enzyme (the fused system). Triton X-100 showed competitive inhibition in both mixed and fused systems with K(i) values of 24.6 and 21.5 microM, respectively. These results strongly suggest that Triton X-100 binds to the substrate-binding pocket of CYP1A1. These K(i) values are far below the critical micelle concentration of Triton X-100 (240 microM). Western blot analysis revealed no disruption of the microsomal membrane by Triton X-100 in the presence of 0-77 microM Triton X-100. On the other hand, Chaps gave distinct inhibitory effects to the mixed and fused systems. In the fused system, a mixed-type inhibition was observed with K(i) and K(i)' values of 1.2 and 5.4 mM of Chaps, respectively. However, in the mixed system, multiple inhibition modes by Chaps were observed. Western blot analysis revealed that the solubilized fused enzyme by Chaps preserved the activity whereas the solubilized CYP1A1 and NADPH-P450 reductase reductase showed no activity in the mixed system. Thus, the comparison of the mixed and fused systems appears quite useful to elucidate inhibition mechanism of detergents.
Collapse
Affiliation(s)
- K Inouye
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | | | | | | | |
Collapse
|
25
|
Inouye K, Mizokawa T, Saito A, Tonomura B, Ohkawa H. Biphasic kinetic behavior of rat cytochrome P-4501A1-dependent monooxygenation in recombinant yeast microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:265-72. [PMID: 11018717 DOI: 10.1016/s0167-4838(00)00135-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rat cytochrome P-4501A1-dependent monooxygenase activities were examined in detail using recombinant yeast microsomes containing rat cytochrome P-4501A1 and yeast NADPH-P-450 reductase. On 7-ethoxycoumarin, which is one of the most popular substrates of P-4501A1, the relationship between the initial velocity (v) and the substrate concentration ([S]) exhibited non-linear Michaelis-Menten kinetics. Hanes-Woolf plots ([S]/v vs. [S]) clearly showed a biphasic kinetic behavior. Aminopyrine N-demethylation also showed a biphasic kinetics. The regression analyses on the basis of the two-substrate binding model proposed by Korzekwa et al. (Biochemistry 37 (1998) 4137-4147) strongly suggest the presence of the two substrate-binding sites in P-4501A1 molecules for those substrates. An Arrhenius plot with high 7-ethoxycoumarin concentration showed a breakpoint at around 28 degrees C probably due to the change of the rate-limiting step of P-4501A1-dependent 7-ethoxycoumarin O-deethylation. However, the addition of 30% glycerol to the reaction mixture prevented observation of the breakpoint. The methanol used as a solvent of 7-ethoxycoumarin was found to be a non-competitive inhibitor. Based on the inhibition kinetics, the real V(max) value in the absence of methanol was calculated. These results strongly suggest that the recombinant yeast microsomal membrane containing a single P-450 isoform and yeast NADPH-P-450 reductase is quite useful for kinetic studies on P-450-dependent monooxygenation including an exact evaluation of inhibitory effects of organic solvents.
Collapse
Affiliation(s)
- K Inouye
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
26
|
Sawada N, Sakaki T, Ohta M, Inouye K. Metabolism of vitamin D(3) by human CYP27A1. Biochem Biophys Res Commun 2000; 273:977-84. [PMID: 10891358 DOI: 10.1006/bbrc.2000.3050] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human vitamin D(3) 25-hydroxylase (CYP27A1) cDNA was expressed in Escherichia coli, and its enzymatic properties were revealed. The reconstituted system containing the membrane fraction prepared from the recombinant E. coli cells was examined for the metabolism of vitamin D(3). Surprisingly, at least eight forms of metabolites including the major product 25(OH)D(3) were observed. HPLC analysis and mass spectrometric analysis suggested that those metabolites were 25(OH)D(3), 26(OH)D(3), 27(OH)D(3), 24R,25(OH)(2)D(3), 1alpha, 25(OH)(2)D(3, )25,26(OH)(2)D(3) (25,27(OH)(2)D(3)), 27-oxo-D(3) and a dehydrogenated form of vitamin D(3). These results suggest that human CYP27A1 catalyzes multiple reactions and multiple-step metabolism toward vitamin D(3). The K(m) and V(max) values for vitamin D(3) 25-hydroxylation and 25(OH)D(3) 1alpha-hydroxylation were estimated to be 3.2 microM and 0.27 (mol/min/mol P450), and 3.5 microM and 0.021 (mol/min/mol P450), respectively. These kinetic studies have made it possible to evaluate a physiological meaning of each reaction catalyzed by CYP27A1.
Collapse
Affiliation(s)
- N Sawada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | | | | | | |
Collapse
|
27
|
Inouye K, Mae T, Kondo S, Ohkawa H. Inhibitory effects of vitamin A and vitamin K on rat cytochrome P4501A1-dependent monooxygenase activity. Biochem Biophys Res Commun 1999; 262:565-9. [PMID: 10462515 DOI: 10.1006/bbrc.1999.1240] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The inhibitory effects of vitamins A and K toward P4501A1-dependent 7-ethoxycoumarin O-deethylation were examined in the reconstituted system containing the microsomal fraction prepared from the recombinant Saccharomyces cerevisiae cells producing rat P4501A1 and yeast NADPH-P450 reductase. On vitamins A, all-trans-retinol, all-trans-retinal, all-trans-retinoic acid and retinol-palmitate showed competitive inhibition with K(i) values of 0.068, 0.079, 2.6 and 2.0 microM, respectively. Judging from the K(i) values, the inhibitory effects of those vitamins A appear to have physiological significance on the basis of their contents in liver, lung and kidney. On vitamins K, vitamin K(1) showed competitive inhibition with K(i) value of 24 microM, while vitamin K(2) showed noncompetitive inhibition with K(i) value of 60 microM. Judging from these K(i) values together with the contents of these vitamins K in liver, the inhibitory effects of the vitamins K are not as significant as those of vitamins A. These results suggest that the ingestion of enough amounts of vitamins A from foods might lead to the inhibition of the activity of P4501A1 which is known to be induced by smoking, drugs such as omeprazole and lansoprazole, and environmental pollutants like dioxins.
Collapse
Affiliation(s)
- K Inouye
- Graduate School of Agriculture, Kyoto University, Kitashirakawa, Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
| | | | | | | |
Collapse
|