1
|
Liu M, Zhang Y, Jian Y, Gu L, Zhang D, Zhou H, Wang Y, Xu ZX. The regulations of telomerase reverse transcriptase (TERT) in cancer. Cell Death Dis 2024; 15:90. [PMID: 38278800 PMCID: PMC10817947 DOI: 10.1038/s41419-024-06454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Abnormal activation of telomerase occurs in most cancer types, which facilitates escaping from cell senescence. As the key component of telomerase, telomerase reverse transcriptase (TERT) is regulated by various regulation pathways. TERT gene changing in its promoter and phosphorylation respectively leads to TERT ectopic expression at the transcription and protein levels. The co-interacting factors play an important role in the regulation of TERT in different cancer types. In this review, we focus on the regulators of TERT and these downstream functions in cancer regulation. Determining the specific regulatory mechanism will help to facilitate the development of a cancer treatment strategy that targets telomerase and cancer cell senescence. As the most important catalytic subunit component of telomerase, TERT is rapidly regulated by transcriptional factors and PTM-related activation. These changes directly influence TERT-related telomere maintenance by regulating telomerase activity in telomerase-positive cancer cells, telomerase assembly with telomere-binding proteins, and recruiting telomerase to the telomere. Besides, there are also non-canonical functions that are influenced by TERT, including the basic biological functions of cancer cells, such as proliferation, apoptosis, cell cycle regulation, initiating cell formation, EMT, and cell invasion. Other downstream effects are the results of the influence of transcriptional factors by TERT. Currently, some small molecular inhibitors of TERT and TERT vaccine are under research as a clinical therapeutic target. Purposeful work is in progress.
Collapse
Affiliation(s)
- Mingdi Liu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yuning Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Yongping Jian
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Liting Gu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Dan Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, Jilin, China.
- Department of Urology, The First Hospital of Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
2
|
Beckers C, Vasilikos L, Sanchez Fernandez A, Moor L, Pruschy M. Targeting the survival kinase DYRK1B: A novel approach to overcome radiotherapy-related treatment resistance. Radiother Oncol 2024; 190:110039. [PMID: 38040123 DOI: 10.1016/j.radonc.2023.110039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND Cancer cell survival under stress conditions is a prerequisite for the development of treatment resistance. The survival kinase DYRK1B is a key regulator of stress survival pathways and might thereby also contribute to radiation resistance. Here we investigate the strategy of targeting DYRK1B in combination with ionizing radiation (IR) to enhance tumor cell killing under stress conditions. METHODS DYRK1B expression, ROS formation and DNA damage were investigated under serum-starvation (0.1% FBS), hypoxia (0.2%, 1% O2) and IR. The combined treatment modality of IR and DYRK1B inhibition was investigated in 2D and in spheroids derived from the colorectal cancer cell line SW620, and in primary patient-derived colorectal carcinoma (CRC) organoids. RESULTS Expression of DYRK1B was upregulated under starvation and hypoxia, but not in response to IR. The small molecule DYRK1B inhibitor AZ191 and shRNA-mediated DYRK1B knockdown significantly reduced proliferative activity and clonogenicity of SW620 tumor cells alone and in combination with IR under serum-starved conditions, which correlated with increased ROS levels and DNA damage. Furthermore, AZ191 successfully targeted the hypoxic core of tumor spheroids while IR preferentially targeted normoxic cells in the rim of the spheroids. A combined treatment effect was also observed in CRC-organoids but not in healthy tissue-derived organoids. CONCLUSION Combined treatment with the DYRK1B inhibitor AZ191 and IR resulted in (supra-) additive tumor cell killing in colorectal tumor cell systems and in primary CRC organoids. Mechanistic investigations support the rational to target the stress-enhanced survival kinase DYRK1B in combination with irradiation to overcome hypoxia- and starvation-induced treatment resistances.
Collapse
Affiliation(s)
- Claire Beckers
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lazaros Vasilikos
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Alba Sanchez Fernandez
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Lorena Moor
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
3
|
Ucaryilmaz Metin C, Ozcan G. The HIF-1α as a Potent Inducer of the Hallmarks in Gastric Cancer. Cancers (Basel) 2022; 14:2711. [PMID: 35681691 PMCID: PMC9179860 DOI: 10.3390/cancers14112711] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia is the principal architect of the topographic heterogeneity in tumors. Hypoxia-inducible factor-1α (HIF-1α) reinforces all hallmarks of cancer and donates cancer cells with more aggressive characteristics at hypoxic niches. HIF-1α potently induces sustained growth factor signaling, angiogenesis, epithelial-mesenchymal transition, and replicative immortality. Hypoxia leads to the selection of cancer cells that evade growth suppressors or apoptotic triggers and deregulates cellular energetics. HIF-1α is also associated with genetic instability, tumor-promoting inflammation, and escape from immunity. Therefore, HIF-1α may be an important therapeutic target in cancer. Despite that, the drug market lacks safe and efficacious anti-HIF-1α molecules, raising the quest for fully unveiling the complex interactome of HIF-1α in cancer to discover more effective strategies. The knowledge gap is even wider in gastric cancer, where the number of studies on hypoxia is relatively low compared to other well-dissected cancers. A comprehensive review of the molecular mechanisms by which HIF-1α induces gastric cancer hallmarks could provide a broad perspective to the investigators and reveal missing links to explore in future studies. Thus, here we review the impact of HIF-1α on the cancer hallmarks with a specific focus on gastric cancer.
Collapse
Affiliation(s)
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
4
|
Telarovic I, Wenger RH, Pruschy M. Interfering with Tumor Hypoxia for Radiotherapy Optimization. J Exp Clin Cancer Res 2021; 40:197. [PMID: 34154610 PMCID: PMC8215813 DOI: 10.1186/s13046-021-02000-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/30/2021] [Indexed: 12/11/2022] Open
Abstract
Hypoxia in solid tumors is an important predictor of treatment resistance and poor clinical outcome. The significance of hypoxia in the development of resistance to radiotherapy has been recognized for decades and the search for hypoxia-targeting, radiosensitizing agents continues. This review summarizes the main hypoxia-related processes relevant for radiotherapy on the subcellular, cellular and tissue level and discusses the significance of hypoxia in radiation oncology, especially with regard to the current shift towards hypofractionated treatment regimens. Furthermore, we discuss the strategies to interfere with hypoxia for radiotherapy optimization, and we highlight novel insights into the molecular pathways involved in hypoxia that might be utilized to increase the efficacy of radiotherapy.
Collapse
Affiliation(s)
- Irma Telarovic
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Roland H Wenger
- Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
5
|
Ahmad IM, Dafferner AJ, O’Connell KA, Mehla K, Britigan BE, Hollingsworth MA, Abdalla MY. Heme Oxygenase-1 Inhibition Potentiates the Effects of Nab-Paclitaxel-Gemcitabine and Modulates the Tumor Microenvironment in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:2264. [PMID: 34066839 PMCID: PMC8125955 DOI: 10.3390/cancers13092264] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor prognosis. Tumor hypoxia plays an active role in promoting tumor progression, malignancy, and resistance to therapy in PDAC. We present evidence that nab-paclitaxel-gemcitabine (NPG) and/or a hypoxic tumor microenvironment (TME) up-regulate heme oxygenase-1 (HO-1), providing a survival advantage for tumors. Using PDAC cells in vitro and a PDAC mouse model, we found that NPG chemotherapy up-regulated expression of HO-1 in PDAC cells and increased its nuclear translocation. Inhibition of HO-1 with ZnPP and SnPP sensitized PDAC cells to NPG-induced cytotoxicity (p < 0.05) and increased apoptosis (p < 0.05). Additionally, HO-1 expression was increased in gemcitabine-resistant PDAC cells (p < 0.05), and HO-1 inhibition increased GEM-resistant PDAC sensitivity to NPG (p < 0.05). NPG combined with HO-1 inhibitor inhibited tumor size in an orthotopic model. In parallel, HO-1 inhibition abrogated the influx of macrophages and FoxP3+ cells, while increasing the proportion of CD8+ infiltration in the pancreatic tumors. These effects were mediated primarily by reducing expression of the immunosuppressive cytokine IL-10.
Collapse
Affiliation(s)
- Iman M. Ahmad
- College of Allied Health Professions, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Alicia J. Dafferner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Kelly A. O’Connell
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Kamiya Mehla
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Bradley E. Britigan
- Veterans Affairs Medical Center-Nebraska Western Iowa, Department of Internal Medicine and Research Service, Omaha, NE 68105, USA;
| | - Michael A. Hollingsworth
- Fred & Pamela Buffett Cancer Center, The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198, USA; (K.A.O.); (K.M.); (M.A.H.)
| | - Maher Y. Abdalla
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
6
|
Thiruthaneeswaran N, Bibby BAS, Yang L, Hoskin PJ, Bristow RG, Choudhury A, West C. Lost in application: Measuring hypoxia for radiotherapy optimisation. Eur J Cancer 2021; 148:260-276. [PMID: 33756422 DOI: 10.1016/j.ejca.2021.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/21/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
The history of radiotherapy is intertwined with research on hypoxia. There is level 1a evidence that giving hypoxia-targeting treatments with radiotherapy improves locoregional control and survival without compromising late side-effects. Despite coming in and out of vogue over decades, there is now an established role for hypoxia in driving molecular alterations promoting tumour progression and metastases. While tumour genomic complexity and immune profiling offer promise, there is a stronger evidence base for personalising radiotherapy based on hypoxia status. Despite this, there is only one phase III trial targeting hypoxia modification with full transcriptomic data available. There are no biomarkers in routine use for patients undergoing radiotherapy to aid management decisions, and a roadmap is needed to ensure consistency and provide a benchmark for progression to application. Gene expression signatures address past limitations of hypoxia biomarkers and could progress biologically optimised radiotherapy. Here, we review recent developments in generating hypoxia gene expression signatures and highlight progress addressing the challenges that must be overcome to pave the way for their clinical application.
Collapse
Affiliation(s)
- Niluja Thiruthaneeswaran
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.
| | - Becky A S Bibby
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Lingjang Yang
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
| | - Peter J Hoskin
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; Mount Vernon Cancer Centre, Northwood, UK
| | - Robert G Bristow
- Division of Cancer Sciences, The University of Manchester, Manchester, UK; CRUK Manchester Institute and Manchester Cancer Research Centre, Manchester, UK
| | - Ananya Choudhury
- Division of Cancer Sciences, The University of Manchester, Christie Hospital NHS Foundation Trust, Manchester, UK
| | - Catharine West
- Division of Cancer Sciences, The University of Manchester, Christie Hospital NHS Foundation Trust, Manchester, UK
| |
Collapse
|
7
|
Song H, Chen X, Jiao Q, Qiu Z, Shen C, Zhang G, Sun Z, Zhang H, Luo QY. HIF-1α-Mediated Telomerase Reverse Transcriptase Activation Inducing Autophagy Through Mammalian Target of Rapamycin Promotes Papillary Thyroid Carcinoma Progression During Hypoxia Stress. Thyroid 2021; 31:233-246. [PMID: 32772829 DOI: 10.1089/thy.2020.0023] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: It is important to properly understand the molecular mechanisms of aggressive tumors among papillary thyroid carcinomas (PTCs) that are often the most indolent. Hypoxia inducible factor-1α (HIF-1α), induced by hypoxia, plays pivotal roles in the development and metastasis of the many tumors, including PTCs. Upregulation of telomerase reverse transcriptase (TERT) activity is found in highly invasive PTCs. Further, previous studies have reported that autophagy serves as a protective mechanism to facilitate PTC cell survival. We, therefore, hypothesized that there was a link between HIF-1α, TERT, and autophagy in promoting PTC progression. Methods: Immunohistochemistry staining was conducted to evaluate the expressions of HIF-1α, TERT, and autophagy marker, LC3-II, in matched PTC tumors and corresponding nontumor tissues. Two PTC cell lines (TPC-1 and BCPAP) were used in subsequent cytological function studies. Cell viability, proliferation, apoptosis, migration, and invasion were assessed during hypoxia, genetic enhancement and inhibition of TERT, and chemical and genetic inhibition of autophagy. The protein expression levels of the corresponding biomarkers were determined by Western blotting, and autophagy flow was detected. We characterized the molecular mechanism of PTC cell progression. Results: The protein expression levels of HIF-1α, TERT, and LC3-II were upregulated in PTCs and were significantly correlated with high tumor-node-metastasis stage. Further, an in vitro study indicated that HIF-1α induced by hypoxia functioned as a transcriptional activator by binding with sequences potentially located in the TERT promoter and was positively correlated with the malignant behavior of PTC cell lines. Overexpression of TERT inhibited the kinase activity of mammalian target of rapamycin (mTOR), resulting in the activation of autophagy. Functionally, TERT-induced autophagy provided a survival advantage to PTC cells during hypoxia stress. Conclusions: We identified a novel molecular mechanism involving the HIF-1α/TERT axis, which promoted PTC progression by inducing autophagy through mTOR during hypoxia stress. These findings may provide a basis for the new treatment of aggressive PTCs.
Collapse
Affiliation(s)
- Hongjun Song
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyue Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiong Jiao
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenkui Sun
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Quan-Yong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Engin AB, Engin A. The Connection Between Cell Fate and Telomere. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:71-100. [PMID: 33539012 DOI: 10.1007/978-3-030-49844-3_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abolition of telomerase activity results in telomere shortening, a process that eventually destabilizes the ends of chromosomes, leading to genomic instability and cell growth arrest or death. Telomere shortening leads to the attainment of the "Hayflick limit", and the transition of cells to state of senescence. If senescence is bypassed, cells undergo crisis through loss of checkpoints. This process causes massive cell death concomitant with further telomere shortening and spontaneous telomere fusions. In functional telomere of mammalian cells, DNA contains double-stranded tandem repeats of TTAGGG. The Shelterin complex, which is composed of six different proteins, is required for the regulation of telomere length and stability in cells. Telomere protection by telomeric repeat binding protein 2 (TRF2) is dependent on DNA damage response (DDR) inhibition via formation of T-loop structures. Many protein kinases contribute to the DDR activated cell cycle checkpoint pathways, and prevent DNA replication until damaged DNA is repaired. Thereby, the connection between cell fate and telomere length-associated telomerase activity is regulated by multiple protein kinase activities. Contrarily, inactivation of DNA damage checkpoint protein kinases in senescent cells can restore cell-cycle progression into S phase. Therefore, telomere-initiated senescence is a DNA damage checkpoint response that is activated with a direct contribution from dysfunctional telomeres. In this review, in addition to the above mentioned, the choice of main repair pathways, which comprise non-homologous end joining and homologous recombination in telomere uncapping telomere dysfunctions, are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Department of Toxicology, Faculty of Pharmacy, Gazi University, Ankara, Turkey.
| | - Atilla Engin
- Department of General Surgery, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
9
|
Peixoto A, Relvas-Santos M, Azevedo R, Santos LL, Ferreira JA. Protein Glycosylation and Tumor Microenvironment Alterations Driving Cancer Hallmarks. Front Oncol 2019; 9:380. [PMID: 31157165 PMCID: PMC6530332 DOI: 10.3389/fonc.2019.00380] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Decades of research have disclosed a plethora of alterations in protein glycosylation that decisively impact in all stages of disease and ultimately contribute to more aggressive cell phenotypes. The biosynthesis of cancer-associated glycans and its reflection in the glycoproteome is driven by microenvironmental cues and these events act synergistically toward disease evolution. Such intricate crosstalk provides the molecular foundations for the activation of relevant oncogenic pathways and leads to functional alterations driving invasion and disease dissemination. However, it also provides an important source of relevant glyco(neo)epitopes holding tremendous potential for clinical intervention. Therefore, we highlight the transversal nature of glycans throughout the currently accepted cancer hallmarks, with emphasis on the crosstalk between glycans and the tumor microenvironment stromal components. Focus is also set on the pressing need to include glycans and glycoconjugates in comprehensive panomics models envisaging molecular-based precision medicine capable of improving patient care. We foresee that this may provide the necessary rationale for more comprehensive studies and molecular-based intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Tumour and Microenvironment Interactions Group, INEB-Institute for Biomedical Engineering, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal
| | - Rita Azevedo
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center, Porto, Portugal
| |
Collapse
|
10
|
Minassian LM, Cotechini T, Huitema E, Graham CH. Hypoxia-Induced Resistance to Chemotherapy in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1136:123-139. [PMID: 31201721 DOI: 10.1007/978-3-030-12734-3_9] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A major barrier to the successful management of cancer is the development of resistance to therapy. Chemotherapy resistance can either be an intrinsic property of malignant cells developed prior to therapy, or acquired following exposure to anti-cancer drugs. Given the impact of drug resistance to the overall poor survival of cancer patients, there is an urgent need to better understand the molecular pathways regulating this malignant phenotype. In this chapter we describe some of the molecular pathways that contribute to drug resistance in cancer, the role of a microenvironment deficient in oxygen (hypoxia) in malignant progression, and how hypoxia can be a significant factor in the development of drug resistance. We conclude by proposing potential therapeutic approaches that take advantage of a hypoxic microenvironment to chemosensitize therapy-resistant tumours.
Collapse
Affiliation(s)
- Lori M Minassian
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Tiziana Cotechini
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Erin Huitema
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Charles H Graham
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
11
|
Hu W, Jia Y, Xiao X, Lv K, Chen Y, Wang L, Luo X, Liu T, Li W, Li Y, Zhang C, Yu Z, Huang W, Sun B, Deng WG. KLF4 downregulates hTERT expression and telomerase activity to inhibit lung carcinoma growth. Oncotarget 2018; 7:52870-52887. [PMID: 27153563 PMCID: PMC5288155 DOI: 10.18632/oncotarget.9141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/16/2016] [Indexed: 12/12/2022] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor that contributes to diverse cellular processes and serves as a tumor suppressor or oncogene in various cancers. Previously, we have reported on the tumor suppressive function of KLF4 in lung cancer; however, its precise regulatory mechanism remains elusive. In this study, we found that KLF4 negatively regulated hTERT expression and telomerase activity in lung cancer cell lines and a mouse model. In addition, the KLF4 and hTERT expression levels were significantly related to the clinicopathological features of lung cancer patients. Promoter reporter analyses revealed the decreased hTERT promoter activity in cells infected with Ad-KLF4, and chromatin immunoprecipitation analysis demonstrated that endogenous KLF4 directly bound to the promoter region of hTERT. Furthermore, the MAPK signaling pathway was revealed to be involved in the KLF4/hTERT modulation pathway. Forced expression of KLF4 profoundly attenuated lung cell proliferation and cancer formation in a murine model. Moreover, hTERT overexpression can partially rescue the KLF4-mediated suppressive effect in lung cancer cells. Taken together, these results demonstrate that KLF4 suppresses lung cancer growth by inhibiting hTERT and MAPK signaling. Additionally, the KLF4/hTERT/MAPK pathway is a potential new therapeutic target for human lung cancer.
Collapse
Affiliation(s)
- Wenxian Hu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangsheng Xiao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Kezhen Lv
- Department of Breast Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao Luo
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianze Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Wenbin Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yixin Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Zhenglong Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenlin Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| | - Bing Sun
- Department of Thoracic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wu-Guo Deng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.,State Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China
| |
Collapse
|
12
|
Ravlić S, Škrobot Vidaček N, Nanić L, Laganović M, Slade N, Jelaković B, Rubelj I. Mechanisms of fetal epigenetics that determine telomere dynamics and health span in adulthood. Mech Ageing Dev 2017; 174:55-62. [PMID: 28847485 DOI: 10.1016/j.mad.2017.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 01/11/2023]
Abstract
Advances in epigenetics now enable us to better understand environmental influences on the genetic background of human diseases. This refers especially to fetal development where an adverse intrauterine environment impacts oxygen and nutrient supply to the fetus. Recently, differences in telomere length and telomere loss dynamics among individuals born with intrauterine growth restriction compared to normal controls have been described. In this paper we propose possible molecular mechanisms that (pre)program telomere epigenetics during pregnancy. This programming sets differences in telomere lengths and dynamics of telomere shortening in adulthood and therefore dictates the dynamics of aging and morbidity in later life.
Collapse
Affiliation(s)
- Sanda Ravlić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Nikolina Škrobot Vidaček
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Lucia Nanić
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| | - Mario Laganović
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Neda Slade
- Laboratory for Protein Dynamics, Division of Molecular Medicine, RBI, Zagreb, Croatia.
| | - Bojan Jelaković
- Department for Nephrology, Hypertension, Dialysis and Transplantation, University Hospital Centre Zagreb, Zagreb, Croatia.
| | - Ivica Rubelj
- Laboratory for Molecular and Cellular Biology, Division of Molecular Biology, RBI, Zagreb, Croatia.
| |
Collapse
|
13
|
Teichroeb JH, Kim J, Betts DH. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance. RNA Biol 2016; 13:707-19. [PMID: 26786236 DOI: 10.1080/15476286.2015.1134413] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation.
Collapse
Affiliation(s)
- Jonathan H Teichroeb
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Joohwan Kim
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada
| | - Dean H Betts
- a Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry , The University of Western Ontario , London , Ontario , Canada.,b Children's Health Research Institute, Lawson Health Research Institute , London , Ontario , Canada
| |
Collapse
|
14
|
Libertini G. Phylogeny of aging and related phenoptotic phenomena. BIOCHEMISTRY (MOSCOW) 2015; 80:1529-46. [DOI: 10.1134/s0006297915120019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Babizhayev MA, Yegorov YE. Tissue formation and tissue engineering through host cell recruitment or a potential injectable cell-based biocomposite with replicative potential: Molecular mechanisms controlling cellular senescence and the involvement of controlled transient telomerase activation therapies. J Biomed Mater Res A 2015; 103:3993-4023. [PMID: 26034007 DOI: 10.1002/jbm.a.35515] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/18/2015] [Indexed: 01/04/2023]
Abstract
Accumulated data indicate that wound-care products should have a composition equivalent to that of the skin: a combination of particular growth factors and extracellular matrix (ECM) proteins endogenous to the skin, together with viable epithelial cells, fibroblasts, and mesenchymal stem cells (MSCs). Strategies consisting of bioengineered dressings and cell-based products have emerged for widespread clinical use; however, their performance is not optimal because chronic wounds persist as a serious unmet medical need. Telomerase, the ribonucleoprotein complex that adds telomeric repeats to the ends of chromosomes, is responsible for telomere maintenance, and its expression is associated with cell immortalization and, in certain cases, cancerogenesis. Telomerase contains a catalytic subunit, the telomerase reverse transcriptase (hTERT). Introduction of TERT into human cells extends both their lifespan and their telomeres to lengths typical of young cells. The regulation of TERT involves transcriptional and posttranscriptional molecular biology mechanisms. The manipulation, regulation of telomerase is multifactorial in mammalian cells, involving overall telomerase gene expression, post-translational protein-protein interactions, and protein phosphorylation. Reactive oxygen species (ROS) have been implicated in aging, apoptosis, and necrosis of cells in numerous diseases. Upon production of high levels of ROS from exogenous or endogenous generators, the redox balance is perturbed and cells are shifted into a state of oxidative stress, which subsequently leads to modifications of intracellular proteins and membrane lipid peroxidation and to direct DNA damage. When the oxidative stress is severe, survival of the cell is dependent on the repair or replacement of damaged molecules, which can result in induction of apoptosis in the injured with ROS cells. ROS-mediated oxidative stress induces the depletion of hTERT from the nucleus via export through the nuclear pores. Nuclear export is initiated by ROS-induced phosphorylation of tyrosine 707 within hTERT by the Src kinase family. It might be presumed that protection of mitochondria against oxidative stress is an important telomere length-independent function for telomerase in cell survival. Biotechnology companies are focused on development of therapeutic telomerase vaccines, telomerase inhibitors, and telomerase promoter-driven cell killing in oncology, have a telomerase antagonist in late preclinical studies. Anti-aging medicine-oriented groups have intervened on the market with products working on telomerase activation for a broad range of degenerative diseases in which replicative senescence or telomere dysfunction may play an important role. Since oxidative damage has been shown to shorten telomeres in tissue culture models, the adequate topical, transdermal, or systemic administration of antioxidants (such as, patented ocular administration of 1% N-acetylcarnosine lubricant eye drops in the treatment of cataracts) may be beneficial at preserving telomere lengths and delaying the onset or in treatment of disease in susceptible individuals. Therapeutic strategies toward controlled transient activation of telomerase are targeted to cells and replicative potential in cell-based therapies, tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mark A Babizhayev
- Innovative Vision Products, Inc., 3511 Silverside Road, Suite 105, County of New Castle, Delaware, 19810
| | - Yegor E Yegorov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russian Federation
| |
Collapse
|
16
|
Mallm JP, Rippe K. Aurora Kinase B Regulates Telomerase Activity via a Centromeric RNA in Stem Cells. Cell Rep 2015; 11:1667-78. [PMID: 26051938 DOI: 10.1016/j.celrep.2015.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/28/2015] [Accepted: 05/11/2015] [Indexed: 11/29/2022] Open
Abstract
Non-coding RNAs can modulate histone modifications that, at the same time, affect transcript expression levels. Here, we dissect such a network in mouse embryonic stem cells (ESCs). It regulates the activity of the reverse transcriptase telomerase, which synthesizes telomeric repeats at the chromosome ends. We find that histone H3 serine 10 phosphorylation set by Aurora kinase B (AURKB) in ESCs during the S phase of the cell cycle at centromeric and (sub)telomeric loci promotes the expression of non-coding minor satellite RNA (cenRNA). Inhibition of AURKB induces silencing of cenRNA transcription and establishment of a repressive chromatin state with histone H3 lysine 9 trimethylation and heterochromatin protein 1 accumulation. This process results in a continuous shortening of telomeres. We further show that AURKB interacts with both telomerase and cenRNA and activates telomerase in trans. Thus, in mouse ESCs, telomere maintenance is regulated via expression of cenRNA in a cell-cycle-dependent manner.
Collapse
Affiliation(s)
- Jan-Philipp Mallm
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| | - Karsten Rippe
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Bioquant Center, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| |
Collapse
|
17
|
Wang Y, Zhou WD, Yang Y, Ma L, Zhao Y, Bai Z, Ge RL. Telomeres are elongated in rats exposed to moderate altitude. J Physiol Anthropol 2014; 33:19. [PMID: 24996852 PMCID: PMC4088304 DOI: 10.1186/1880-6805-33-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/20/2014] [Indexed: 12/01/2022] Open
Abstract
Background Leukocyte telomere length has been shown to be associated with life span. Hypoxia-associated changes of telomere length have been detected in cell cultures, but no in vivo studies have reported the changes of telomere length under different hypoxic conditions. This study aimed to evaluate the effects of altitude on telomere length in rat leukocytes. Methods One hundred and ten male Wistar rats were randomized into 3 groups and maintained at sea-level (altitude of 10 m) (SL group, n = 10), moderate altitude (2,260 m) (MA group, n = 50), or simulated high altitude (5,000 m (SHA group, n = 50). The last two groups were further divided into 5 subgroups and exposed to hypoxia for 1, 3, 7, 15, or 30 days (n = 10). The leukocyte telomere length, hemoglobin concentration, red blood cell count, hematocrit, and plasma levels of telomerase reverse transcriptase (TERT), hypoxia-inducible factor 1α (HIF-1α), malondialdehyde (MDA) and superoxide dismutase (SOD) were measured. Results Leukocyte telomere length was significantly longer in the MA group than in the SL or SHA groups, and the TERT expression changed in a similar manner as the leukocyte telomere length. However, HIF-1α level was significantly higher in both MA and SHA groups than the SL group. SOD level was decreased and MDA level was elevated in SHA group. Conclusions The telomere length of blood leukocytes is elongated at a moderate altitude, but not at a high altitude. A mild hypoxic state may increase telomere length.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ri-Li Ge
- Research Center for High Altitude Medical Sciences, University School of Medicine, 810001 Xining, Qinghai, China.
| |
Collapse
|
18
|
Guan JZ, Guan WP, Maeda T, Makino N. Alteration of telomere length and subtelomeric methylation in human endothelial cell under different levels of hypoxia. Arch Med Res 2012; 43:15-20. [PMID: 22374245 DOI: 10.1016/j.arcmed.2012.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 01/18/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND AIMS Hypoxia-associated changes of telomeric structure in cell cultures have been analyzed mainly in cancer cells, stem cells, or cells transduced with vectors containing the telomerase gene, but not in somatic cells. The stability of telomere structure has been reported to be associated with subtelomeric methylation status. However, there are no reports of epigenetic alterations of telomeric regions of human somatic cells under hypoxia. This study aims at detecting and analyzing the subtelomeric methylation status in human somatic cells cultured under hypoxia. METHODS Mean telomere length and telomerase activity of human umbilical vein endothelial cells (HUVECs) cultured in hypoxic conditions were measured. Subtelomeric methylation status of these cells was assessed by genomic Southern blot with telomere DNA probe using methylation-sensitive and -insensitive isoschizomers, MspI and HpaII. RESULTS The telomerase activity in HUVECs correlated inversely with the oxygen concentration. Mild hypoxia (10 or 15% oxygen) increased the telomere lengths, whereas the telomere lengths did not appear to change when <1% O(2). The subtelomere of the shortest telomere range was methylated the most at 1% O(2). CONCLUSIONS Subtelomeric hypermethylation of short telomeres at 1% O(2) compared to milder hypoxia implied that the subtelomeric hypermethylation may yield telomere stability and favor the cell survival of short telomere-bearing cells.
Collapse
Affiliation(s)
- Jing-Zhi Guan
- The 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | | | | | | |
Collapse
|
19
|
Shi AW, Gu N, Liu XM, Wang X, Peng YZ. Ginsenoside Rg1 enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro. J Int Med Res 2012; 39:1306-18. [PMID: 21986132 DOI: 10.1177/147323001103900418] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study investigated the effect of ginsenoside Rg1 on the functions of ex vivo cultivated endothelial progenitor cells (EPCs) and whether ginsenoside Rg1 prevented EPC senescence. EPCs isolated from peripheral blood from healthy volunteers were incubated with different concentrations of ginsenoside Rg1 and the effects were observed at different time points. Cell proliferation and in vitro vasculogenesis were assayed and flow cytometry was used to determine the effects of ginsenoside Rg1 on the cell cycle. Senescence and telomerase activity in EPCs were also assayed. It was found that ginsenoside Rg1 promoted EPC proliferation and vasculogenesis in dose-and time-dependent manners. Cell-cycle analysis showed that ginsenoside Rg1 increased the proliferative phase and decreased the resting phase of EPCs. β-Galactosidase and telomerase activities increased. These results support the view that ginsenoside Rg1 induces EPC proliferation and angiogenesis, and inhibits EPC senescence.
Collapse
Affiliation(s)
- A-W Shi
- Department of Cardiology, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | |
Collapse
|
20
|
Gladych M, Wojtyla A, Rubis B. Human telomerase expression regulation. Biochem Cell Biol 2011; 89:359-76. [DOI: 10.1139/o11-037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Since telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells, it has become a very promising target for anti-cancer therapy. A correlation between short telomere length and increased mortality was revealed in many studies. The telomerase expression/activity appears to be one of the most crucial factors to study to improve cancer therapy and prevention. However, this multisubunit enzymatic complex can be regulated at various levels. Thus, several strategies have been proposed to control telomerase in cancer cells such as anti-sense technology against TR and TERT, ribozymes against TERT, anti-estrogens, progesterone, vitamin D, retinoic acid, quadruplex stabilizers, telomere and telomerase targeting agents, modulation of interaction with other proteins involved in the regulation of telomerase and telomeres, etc. However, the transcription control of key telomerase subunits seems to play the crucial role in whole complexes activity and cancer cells immortality. Thus, the research of telomerase regulation can bring significant insight into the knowledge concerning stem cells metabolism but also ageing. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms at the transcription level in human that might become attractive anti-cancer therapy targets.
Collapse
Affiliation(s)
- Marta Gladych
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Aneta Wojtyla
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| | - Blazej Rubis
- Poznan University of Medical Sciences, Department of Clinical Chemistry and Molecular Diagnostics, Przybyszewskiego 49 St., 60-355 Poznan, Poland
| |
Collapse
|
21
|
Geifman-Holtzman O, Xiong Y, Holtzman EJ, Hoffman B, Gaughan J, Liebermann DA. Increased placental telomerase mRNA in hypertensive disorders of pregnancy. Hypertens Pregnancy 2011; 29:434-45. [PMID: 20642319 DOI: 10.3109/10641950903214625] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We assessed hTERT mRNA levels in normal versus preeclamptic placental samples, examining hTERT expression levels in different clinical manifestations of hypertensive disorder of pregnancy. METHODS We performed a single-site, prospective case-control study of hTERT mRNA levels in placentas from term and preterm pregnancies with hypertensive disorders compared with unaffected pregnancies. Placental biopsies were collected from 61 patients (preeclamptic: 32; non-preeclamptic (control): 29). Total RNA from placenta was isolated and reversely transcribed to c-DNA. A probe-specific real-time quantitative PCR assay was employed to determine the relative expressional levels of hTERT mRNA levels in these placentas from both unaffected and affected pregnancies with different categories of hypertensive disorders including preeclampsia, severe preeclampsia, eclampsia and HELLP syndrome (Hemolysis, Elevated Liver function tests, Low Platelet). RESULTS The average ratio of hTERT mRNA levels was 1.73 in the preeclamptic group and 1.02 for control group (p < 0.0001). The hTERT expression levels were elevated for each of the different categories of hypertensive disorders of pregnancy compared with control: HELLP syndrome 1.86, severe preeclampsia 1.81, eclampsia 1.71 and mild preeclampsia 1.63. In addition, hTERT levels were higher in severe than mild preeclampsia (p < 0.01). CONCLUSIONS Elevated hTERT mRNA expression is observed in placentas from pregnancies with different clinical manifestations of hypertensive disorders of pregnancy. The patho-physiological significance of this finding awaits further studies.
Collapse
Affiliation(s)
- Ossie Geifman-Holtzman
- Department of Obstetrics & Gynecology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Pacheco-Torres J, López-Larrubia P, Ballesteros P, Cerdán S. Imaging tumor hypoxia by magnetic resonance methods. NMR IN BIOMEDICINE 2011; 24:1-16. [PMID: 21259366 DOI: 10.1002/nbm.1558] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 03/21/2010] [Accepted: 04/01/2010] [Indexed: 05/10/2023]
Abstract
Tumor hypoxia results from the negative balance between the oxygen demands of the tissue and the capacity of the neovasculature to deliver sufficient oxygen. The resulting oxygen deficit has important consequences with regard to the aggressiveness and malignancy of tumors, as well as their resistance to therapy, endowing the imaging of hypoxia with vital repercussions in tumor prognosis and therapy design. The molecular and cellular events underlying hypoxia are mediated mainly through hypoxia-inducible factor, a transcription factor with pleiotropic effects over a variety of cellular processes, including oncologic transformation, invasion and metastasis. However, few methodologies have been able to monitor noninvasively the oxygen tensions in vivo. MRI and MRS are often used for this purpose. Most MRI approaches are based on the effects of the local oxygen tension on: (i) the relaxation times of (19)F or (1)H indicators, such as perfluorocarbons or their (1)H analogs; (ii) the hemodynamics and magnetic susceptibility effects of oxy- and deoxyhemoglobin; and (iii) the effects of paramagnetic oxygen on the relaxation times of tissue water. (19)F MRS approaches monitor tumor hypoxia through the selective accumulation of reduced nitroimidazole derivatives in hypoxic zones, whereas electron spin resonance methods determine the oxygen level through its influence on the linewidths of appropriate paramagnetic probes in vivo. Finally, Overhauser-enhanced MRI combines the sensitivity of EPR methodology with the resolution of MRI, providing a window into the future use of hyperpolarized oxygen probes.
Collapse
Affiliation(s)
- Jesús Pacheco-Torres
- Laboratory for Imaging and Spectroscopy by Magnetic Resonance LISMAR, Institute of Biomedical Research Alberto Sols, CSIC/UAM, c/Arturo Duperier 4, Madrid, Spain
| | | | | | | |
Collapse
|
23
|
Coussens M, Davy P, Brown L, Foster C, Andrews WH, Nagata M, Allsopp R. RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1alpha as critical for telomerase function in murine embryonic stem cells. Proc Natl Acad Sci U S A 2010; 107:13842-7. [PMID: 20643931 PMCID: PMC2922273 DOI: 10.1073/pnas.0913834107] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In various types of stem cells, including embryonic stem (ES) cells and hematopoietic stem cells, telomerase functions to ensure long-term self-renewal capacity via maintenance of telomere reserve. Expression of the catalytic component of telomerase, telomerase reverse transcriptase (Tert), which is essential for telomerase activity, is limiting in many types of cells and therefore plays an important role in establishing telomerase activity levels. However, the mechanisms regulating expression of Tert in cells, including stem cells, are presently poorly understood. In the present study, we sought to identify genes involved in the regulation of Tert expression in stem cells by performing a screen in murine ES (mES) cells using a shRNA expression library targeting murine transcriptional regulators. Of 18 candidate transcriptional regulators of Tert expression identified in this screen, only one candidate, hypoxia inducible factor 1 alpha (Hif1alpha), did not have a significant effect on mES cell morphology, survival, or growth rate. Direct shRNA-mediated knockdown of Hif1alpha expression confirmed that suppression of Hif1alpha levels was accompanied by a reduction in both Tert mRNA and telomerase activity levels. Furthermore, gradual telomere attrition was observed during extensive proliferation of Hif1alpha-targeted mES cells. Switching Hif1alpha-targeted mES cells to a hypoxic environment largely restored Hif1alpha levels, as well as Tert expression, telomerase activity levels, and telomere length. Together, these findings suggest a direct effect of Hif1alpha on telomerase regulation in mES cells, and imply that Hif1alpha may have a physiologically relevant role in maintenance of functional levels of telomerase in stem cells.
Collapse
Affiliation(s)
- Matthew Coussens
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96813; and
| | - Philip Davy
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96813; and
| | | | | | | | - Melissa Nagata
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96813; and
| | - Richard Allsopp
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96813; and
| |
Collapse
|
24
|
Kim J, Lee S, Bhattacharjee R, Khalyfa A, Kheirandish-Gozal L, Gozal D. Leukocyte telomere length and plasma catestatin and myeloid-related protein 8/14 concentrations in children with obstructive sleep apnea. Chest 2010; 138:91-9. [PMID: 20299626 PMCID: PMC2897695 DOI: 10.1378/chest.09-2832] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 02/05/2010] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) is common in children and leads to multiple end-organ morbidities induced by the cumulative burden of oxidative stress and inflammation. Leukocyte telomere length (LTL) reflects not only chronologic age but also the burden of disease. We hypothesized that LTL would be decreased in children with OSA. METHODS Two hundred thirteen children (mean age, 7.7 +/- 1.4 years) were included after a sleep study and a morning blood sample. LTL was examined by quantitative polymerase chain reaction in a case-control setting involving 111 OSA cases and 102 controls. Myeloid-related protein (MRP) 8/14 and catestatin plasma levels also were assayed using enzyme-linked immunosorbent assay. RESULTS Log LTL was significantly increased and OSA severity dependently increased in children (P = .012), was positively associated with apnea-hypopnea index (AHI) (r = 0.236; P < .01), and was inversely correlated with age (r = -0.145; P < .05). In a multivariate regression model, LTL was independently associated with AHI (beta = 0.28; P = .002) after adjusting for age, sex, BMI z score, and race. Children with OSA exhibited higher BP (P < .05), lower plasma catestatin (P = .009), and higher MRP 8/14 levels (P < .001) than controls. Of note, children with the lowest plasma catestatin levels (< 1.39 ng/mL) had 5.2-fold increased odds of moderate-to-severe OSA (95% CI, 1.19-23.4 ng/mL; P < .05) after adjusting for confounding variables. CONCLUSIONS In pediatric OSA, LTL is longer rather than shorter. Children with OSA have reduced plasma catestatin levels and increased BP along with increased MRP 8/14 levels that exhibit AHI dependencies. Thus, catestatin and MRP 8/14 levels may serve as biomarkers for cardiovascular risk in the context of pediatric OSA. However, the implications of increased LTL in children with OSA remain to be defined.
Collapse
Affiliation(s)
- Jinkwan Kim
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, 5721 S Maryland Ave, Chicago, IL 60637, USA
| | | | | | | | | | | |
Collapse
|
25
|
Transcriptional activity of telomerase complex in CD34- stem cells of cord blood in dependence of preparation time. Folia Histochem Cytobiol 2009; 47:265-74. [PMID: 19995714 DOI: 10.2478/v10042-009-0026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to determine whether the expression of telomerase subunits encoding genes changes during the process of cord blood preparation. It should establish if the commonly accepted 24 hours time interval in stem cells kriopreservation procedure significantly influences their immortalization and so decreases the "quality" of cord blood stem cells. Investigation includes 69 women. Spontaneous labour was the inclusion condition. The material was collected at birth after clamping of umbilical cord by direct vasopuncture. CD34- cells were extracted from cord blood (MACS, Miltenyi Biotec; Bisley, Surrey, UK). The expression profile of telomerase activators and inhibitors encoding genes was determined using HG_U133A oligonucleotide microarray (Affymetrix). We used a real-time quantitative RT-PCR assay to quantify the telomerase TERT, hTR and TP1 subunits mRNA copy numbers in CD34- cells in 0, 6, 12 and 24 hours after cord blood collection. We observed significant decrease of numbers of copies of TERTA+B mRNA within the successive hours of observation. Significant decrease of numbers of TERTA mRNA copies was confirmed after 24 hours. However, we observed significant increase of numbers of copies of TERTB mRNA after 6 hours of observation. Similar level was maintained during another 6h. The significantly lower number of copies of TERTB mRNA was observed after 24h. We also observed significant increase of number of copies of TERT mRNA after 6 hours. Number of copies of TERT mRNA significantly decreased after another 6h, remaining, however, on a higher then initial one. The significant lower number of copies of TERT mRNA was observed 24h after delivery. The possible explanation of those results is discussed in the paper.
Collapse
|
26
|
Abstract
Hypoxia has been recognized as one of the fundamentally important features of solid tumors and plays a critical role in various cellular and physiologic events, including cell proliferation, survival, angiogenesis, immunosurveillance, metabolism, as well as tumor invasion and metastasis. These responses to hypoxia are at least partially orchestrated by activation of the hypoxia-inducible factors (HIFs). HIF-1 is a key regulator of the response of mammalian cells to oxygen deprivation and plays critical roles in the adaptation of tumor cells to a hypoxic microenvironment. Hypoxia and overexpression of HIF-1 have been associated with radiation therapy and chemotherapy resistance, an increased risk of invasion and metastasis, and a poor clinical prognosis of solid tumors. The discovery of HIF-1 signaling has led to a rapidly increasing understanding of the complex mechanisms involved in tumor hypoxia and has helped greatly in screening novel anticancer agents. In this review, we will first introduce the cellular responses to hypoxia and HIF-1 signaling pathway in hypoxia, and then summarize the multifaceted role of hypoxia in the hallmarks of human cancers.
Collapse
Affiliation(s)
- Kai Ruan
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|
27
|
Jubb AM, Buffa FM, Harris AL. Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. J Cell Mol Med 2009; 14:18-29. [PMID: 19840191 PMCID: PMC3837600 DOI: 10.1111/j.1582-4934.2009.00944.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tumour cells exploit both genetic and adaptive means to survive and proliferate in hypoxic microenvironments, resulting in the outgrowth of more aggressive tumour cell clones. Direct measurements of tumour oxygenation, and surrogate markers of the hypoxic response in tumours (for instance, hypoxia inducible factor-1α, carbonic anhydrase 9 and glucose transporter-1) are well-established prognostic markers in solid cancers. However, individual markers do not fully capture the complex, dynamic and heterogeneous hypoxic response in cancer. To overcome this, expression profiling has been employed to identify hypoxia signatures in cohorts or models of human cancer. Several of these hypoxia signatures have demonstrated prognostic significance in independent cancer datasets. Nevertheless, individual hypoxia markers have been shown to predict the benefit from hypoxia-modifying or anti-angiogenic therapies. This review aims to discuss the clinical impact of translational work on hypoxia markers and to explore future directions for research in this area.
Collapse
Affiliation(s)
- Adrian M Jubb
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
28
|
Oh W, Ghim J, Lee EW, Yang MR, Kim ET, Ahn JH, Song J. PML-IV functions as a negative regulator of telomerase by interacting with TERT. J Cell Sci 2009; 122:2613-22. [PMID: 19567472 DOI: 10.1242/jcs.048066] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Maintaining proper telomere length requires the presence of the telomerase enzyme. Here we show that telomerase reverse transcriptase (TERT), a catalytic component of telomerase, is recruited to promyelocytic leukemia (PML) nuclear bodies through its interaction with PML-IV. Treatment of interferon-alpha (IFNalpha) in H1299 cells resulted in the increase of PML proteins with a concurrent decrease of telomerase activity, as previously reported. PML depletion, however, stimulated telomerase activity that had been inhibited by IFNalpha with no changes in TERT mRNA levels. Upon treatment with IFNalpha, exogenous TERT localized to PML nuclear bodies and binding between TERT and PML increased. Immunoprecipitation and immunofluorescence analyses showed that TERT specifically bound to PML-IV. Residues 553-633 of the C-terminal region of PML-IV were required for its interaction with the TERT region spanning residues 1-350 and 595-946. The expression of PML-IV and its deletion mutant, 553-633, suppressed intrinsic telomerase activity in H1299. TERT-mediated immunoprecipitation of PML or the 553-633 fragment demonstrated that these interactions inhibited telomerase activity. H1299 cell lines stably expressing PML-IV displayed decreased telomerase activity with no change of TERT mRNA levels. Accordingly, telomere length of PML-IV stable cell lines was shortened. These results indicate that PML-IV is a negative regulator of telomerase in the post-translational state.
Collapse
Affiliation(s)
- Wonkyung Oh
- Department of Biotechnology and Bioengineering, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | | | | | | | | | | |
Collapse
|
29
|
Brain tumor hypoxia: tumorigenesis, angiogenesis, imaging, pseudoprogression, and as a therapeutic target. J Neurooncol 2009; 92:317-35. [PMID: 19357959 DOI: 10.1007/s11060-009-9827-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 02/23/2009] [Indexed: 02/07/2023]
Abstract
Hypoxia is implicated in many aspects of tumor development, angiogenesis, and growth in many different tumors. Brain tumors, particularly the highly aggressive glioblastoma multiforme (GBM) with its necrotic tissues, are likely affected similarly by hypoxia, although this involvement has not been closely studied. Invasion, apoptosis, chemoresistance, resistance to antiangiogenic therapy, and radiation resistance may all have hypoxic mechanisms. The extent of the influence of hypoxia in these processes makes it an attractive therapeutic target for GBM. Because of their relationship to glioma and meningioma growth and angiogenesis, hypoxia-regulated molecules, including hypoxia inducible factor-1, carbonic anhydrase IX, glucose transporter 1, and vascular endothelial growth factor, may be suitable subjects for therapies. Furthermore, other novel hypoxia-regulated molecules that may play a role in GBM may provide further options. Emerging imaging techniques may allow for improved determination of hypoxia in human brain tumors to better focus therapeutic treatments; however, tumor pseudoprogression, which may be prompted by hypoxia, poses further challenges. An understanding of the role of hypoxia in tumor development and growth is important for physicians involved in the care of patients with brain tumors.
Collapse
|
30
|
Jakob S, Schroeder P, Lukosz M, Büchner N, Spyridopoulos I, Altschmied J, Haendeler J. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J Biol Chem 2008; 283:33155-61. [PMID: 18829466 DOI: 10.1074/jbc.m805138200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aging is one major risk factor for numerous diseases. The enzyme telomerase reverse transcriptase (TERT) plays an important role for aging and apoptosis. Previously, we demonstrated that inhibition of oxidative stress-induced Src kinase family-dependent nuclear export of TERT results in delayed replicative senescence and reduced apoptosis sensitivity. Therefore, the aim of this study was to investigate mechanisms inhibiting nuclear export of TERT. First, we demonstrated that H2O2-induced nuclear export of TERT was abolished in Src, Fyn, and Yes-deficient embryonic fibroblasts. Next, we wanted to identify one potential negative regulator of this export process. One candidate is the protein tyrosine phosphatase Shp-2 (Shp-2), which can counteract activities of the Src kinase family. Indeed, Shp-2 was evenly distributed between the nucleus and cytosol. Nuclear Shp-2 associates with TERT in endothelial cells and dissociates from TERT prior to its nuclear export. Overexpression of Shp-2 wt inhibited H2O2-induced export of TERT. Overexpression of the catalytically inactive, dominant negative Shp-2 mutant (Shp-2(C459S)) reduced endogenous as well as overexpressed nuclear TERT protein and telomerase activity, whereas it had no influence on TERT(Y707F). Binding of TERT(Y707F) to Shp-2 is reduced compared with TERTwt. Ablation of Shp-2 expression led only to an increased tyrosine phosphorylation of TERTwt, but not of TERT(Y707F). Moreover, reduced Shp-2 expression decreased nuclear telomerase activity, whereas nuclear telomerase activity was increased in Shp-2-overexpressing endothelial cells. In conclusion, Shp-2 retains TERT in the nucleus by regulating tyrosine 707 phosphorylation.
Collapse
Affiliation(s)
- Sascha Jakob
- Department of Molecular Cell & Aging Research, IUF at the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Promotion of glioma cell survival by acyl-CoA synthetase 5 under extracellular acidosis conditions. Oncogene 2008; 28:9-19. [DOI: 10.1038/onc.2008.355] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Sullivan R, Paré GC, Frederiksen LJ, Semenza GL, Graham CH. Hypoxia-induced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. Mol Cancer Ther 2008; 7:1961-73. [PMID: 18645006 DOI: 10.1158/1535-7163.mct-08-0198] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia in solid tumors is associated with the development of chemoresistance. Although many studies have focused on the effect of hypoxia on drug-induced apoptosis, the effect of nonapoptotic pathways on hypoxia-induced drug resistance has not been previously investigated. Here, we determined the effects of hypoxia on multiple forms of drug-induced death in human MDA-MB-231 breast carcinoma cells. Clonogenic assays showed that preexposure to hypoxia leads to resistance to various classes of chemotherapeutic agents, including anthracyclines (daunorubicin and doxorubicin), epipodophyllotoxins (etoposide), and anthracenediones (mitoxantrone). Results revealed a high degree of heterogeneity in nuclear and cytoplasmic alterations in response to acute drug exposure; however, the majority of exposed cells displayed morphologic and biochemical changes consistent with drug-induced senescence. Hypoxia decreased only the proportion of cells in the senescent population, whereas the small proportion of cells exhibiting features of apoptosis or mitotic catastrophe were unaffected. Similar results were obtained with human HCT116 colon carcinoma cells, indicating that the protective effect of hypoxia on drug-induced senescence is not unique to MDA-MB-231 cells. Treatment of MDA-MB-231 cells with small interfering RNA targeting the alpha-subunit of hypoxia-inducible factor-1 (HIF-1), a key regulator of cellular adaptations to hypoxia, prevented hypoxia-induced resistance. HIF-1alpha small interfering RNA also selectively abolished the hypoxia-induced changes in the senescent population, indicating that the increased survival was due to protection against drug-induced senescence. These results support a requirement for HIF-1 in the adaptations leading to drug resistance and reveal that decreased drug-induced senescence is also an important contributor to the development of hypoxia-induced resistance.
Collapse
Affiliation(s)
- Richard Sullivan
- Department of Anatomy and Cell Biology, Queen's University, Botterell Hall, Room 859, Kingston, Ontario, Canada K7L 3N6
| | | | | | | | | |
Collapse
|
33
|
Betts DH, Perrault SD, King WA. Low oxygen delays fibroblast senescence despite shorter telomeres. Biogerontology 2007; 9:19-31. [PMID: 17952625 DOI: 10.1007/s10522-007-9113-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 10/09/2007] [Indexed: 01/29/2023]
Abstract
It has been widely accepted that telomere shortening acts as a cell division counting mechanism that beyond a set critical length signals cells to enter replicative senescence. In this study, we demonstrate that by simply lowering the oxygen content of the cell culture environment 10-fold (20-2%) extends the replicative lifespan of fetal bovine fibroblasts at least five-times (30-150 days). Although, low oxygen fibroblasts display a slightly slower rate (P > 0.05) of telomere attrition than their high oxygen counterparts (171 bp versus 182 bp/PD), late passage fibroblasts (>50 PD) that have extended their replicative capacity under low oxygen conditions exhibited significantly (P < 0.05) shorter telomere lengths (11,135 +/- 467 bp) compared to senescent cells (25-34 PD) cultured under high oxygen conditions (14,827 +/- 1173 bp). There was a significant increase (P < 0.05) in chromosomal abnormalities with continual cell division under both high and low oxygen environments, however, fibroblasts displayed a significant reduction (P < 0.001) in chromosomal abnormalities at low oxygen tensions compared to those under 20% oxygen. These apparent protective effects on telomere shortening, delayed senescence and reduced chromosomal aberrations may be attributed to the up-regulation of telomerase activity observed for fibroblasts cultured under low oxygen. These results are consistent with the idea that a critically short telomere length may not be the sole trigger of replicative senescence, but may be regulated by the integrity of telomere structure itself and/or the amount of oxidative DNA damage in the cell.
Collapse
Affiliation(s)
- Dean H Betts
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada, N1G 2W1.
| | | | | |
Collapse
|
34
|
Lou F, Chen X, Jalink M, Zhu Q, Ge N, Zhao S, Fang X, Fan Y, Björkholm M, Liu Z, Xu D. The Opposing Effect of Hypoxia-Inducible Factor-2α on Expression of Telomerase Reverse Transcriptase. Mol Cancer Res 2007; 5:793-800. [PMID: 17699105 DOI: 10.1158/1541-7786.mcr-07-0065] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypoxia-inducible factor-1alpha (HIF-1alpha) has been implicated in the transcriptional regulation of the telomerase reverse transcriptase (hTERT) gene expression and telomerase activity, essential elements for cellular immortalization and transformation. However, controversial results were obtained in different studies. Moreover, it is totally unclear whether HIF-2alpha, the paralog of HIF-1alpha, plays a role in regulating hTERT expression. In the present study, we found that hypoxic treatment enhanced hTERT mRNA expression and telomerase activity in three renal cell carcinoma (RCC) cell lines with different genetic backgrounds. Both HIF-1alpha and HIF-2alpha were capable of significantly increasing the hTERT promoter activity in these cells. Moreover, depleting HIF-2alpha led to a down-regulation of hTERT mRNA level in RCC A498 cells expressing constitutive HIF-2alpha. It was found that HIF-2alpha bound to the hTERT proximal promoter and enhanced the recruitment of the histone acetyltransferase p300 and histone H3 acetylation locally in A498 cells treated with hypoxia. Increased levels of hTERT mRNA were observed in two of three hypoxia-treated malignant glioma cell lines. However, HIF-1alpha stimulated whereas HIF-2alpha inhibited the hTERT promoter activity in these glioma cell lines. Ectopic expression of HIF-2alpha resulted in diminished hTERT expression in glioma cells. Collectively, HIF-1alpha activates hTERT and telomerase expression in both RCC and glioma cells, and HIF-2alpha enhances hTERT expression in RCC cells, whereas it represses the hTERT transcription in glioma cells. These findings reveal a complex relationship between HIF-1alpha/2alpha and hTERT/telomerase expression in malignant cells, which may have both biological and clinical implications.
Collapse
Affiliation(s)
- Fenglan Lou
- Aging and Health Center, School of Nursing, Institute of Urology, The Second Hospital, and Department of Urology, Shandong University, College of Basic Medical Sciences, Jinan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tan EY, Campo L, Han C, Turley H, Pezzella F, Gatter KC, Harris AL, Fox SB. BNIP3 as a Progression Marker in Primary Human Breast Cancer; Opposing Functions in In situ Versus Invasive Cancer. Clin Cancer Res 2007; 13:467-74. [PMID: 17255267 DOI: 10.1158/1078-0432.ccr-06-1466] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE BNIP3 is involved in cell death and cell survival via autophagy. Its perinecrotic localization within ductal carcinoma in situ (DCIS) suggests an involvement in neoplastic cellular adaptation to low oxygen tension. This study has investigated the role of BNIP3 in normal and neoplastic breast. EXPERIMENTAL DESIGN Whole sections from 11 normal breast and microarrayed tissue cores from 81 DCIS and 251 invasive carcinomas were stained for BNIP3 and hypoxia-inducible factor-1alpha. The pattern and level of BNIP3 expression were correlated with clinicopathologic variables and hypoxia-inducible factor-1alpha. RESULTS BNIP3 expression was significantly up-regulated in the cytoplasm of DCIS and invasive carcinoma compared with normal breast (P = 0.0005 and P < 0.0001, respectively). Nuclear BNIP3 expression was associated with smaller tumor size (P = 0.04), low tumor grade (P = 0.005), and estrogen receptor positivity (P = 0.008) in invasive tumors. Nuclear BNIP3 expression was also associated with a longer disease-free survival among low-grade and estrogen receptor-positive tumors. (P = 0.03 and 0.04, respectively). Conversely, nuclear BNIP3 expression in DCIS was associated with a 3-fold increase in recurrence and a shorter disease-free survival (P = 0.03). CONCLUSIONS Up-regulation of BNIP3 expression in DCIS and invasive carcinoma suggests a significant role in breast tumor progression. Its association with good survival outcome in invasive carcinoma but with an increased risk of recurrence and shorter disease-free survival in DCIS may suggest a pivotal switch from a cell death to survival function during the transition from preinvasive to invasive breast cancer.
Collapse
Affiliation(s)
- Ern Yu Tan
- Nuffield Department of Clinical Laboratory Sciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lee CH, Wu CL, Shiau AL. Hypoxia-Induced Cytosine Deaminase Gene Expression for Cancer Therapy. Hum Gene Ther 2007; 18:27-38. [PMID: 17184154 DOI: 10.1089/hum.2005.239] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypoxia, a hallmark of many solid tumors, is associated with angiogenesis and tumor progression. It activates a signal cascade that culminates in the stabilization of hypoxia-inducible factor-1 (HIF-1) transcription factor and activation of genes that possess hypoxia response elements. The loss of tumor suppressors such as p53 has been shown to stabilize HIF-1alpha, which is overexpressed in the majority of human cancers, and its over-expression correlates with poor prognosis and treatment failure. Here we constructed hypoxia-inducible promoters and examined their activities in murine and human cancer cells with variable p53 status. Loss of p53 function in cancer cells resulted in increased HIF-1-dependent transcriptional activity. To investigate the feasibility of exploiting the hypoxic tumor microenvironment for targeted gene therapy of cancer, we constructed retroviral vectors harboring luciferase or Escherichia coli cytosine deaminase (CD) genes under the control of the hypoxia-inducible promoter. Murine Lewis lung carcinoma (LL2) cells carrying defective p53, when retrovirally transduced with the hypoxia-inducible promoter-driven luciferase gene under hypoxic conditions, increased luciferase reporter gene expression in vitro and in vivo. Significant antitumor effects were achieved in mice bearing LL2 tumors that expressed CD driven by a hypoxia-inducible promoter after treatment with 5-fluorocytosine. These results suggest the potential applications of suicide genes, such as the CD gene, under the control of hypoxia-inducible promoters for cancer gene therapy, which may target efficiently to hypoxic regions of tumors with p53 mutations.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/therapy
- Cell Line, Tumor
- Cytosine Deaminase/biosynthesis
- Cytosine Deaminase/genetics
- Escherichia coli Proteins/biosynthesis
- Escherichia coli Proteins/genetics
- Fluorouracil/pharmacology
- Genes, Transgenic, Suicide
- Genetic Therapy
- Humans
- Hypoxia/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1/biosynthesis
- Hypoxia-Inducible Factor 1/genetics
- Male
- Mice
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/therapy
- Response Elements/genetics
- Retroviridae
- Transduction, Genetic
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Che-Hsin Lee
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Taiwan
| | | | | |
Collapse
|
37
|
Zhang FX, Chen ML, Shan QJ, Zou JG, Chen C, Yang B, Xu DJ, Jin Y, Cao KJ. Hypoxia reoxygenation induces premature senescence in neonatal SD rat cardiomyocytes. Acta Pharmacol Sin 2007; 28:44-51. [PMID: 17184581 DOI: 10.1111/j.1745-7254.2007.00488.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIM To investigate whether hypoxia reoxygenation induces premature senescence in neonatal Sprague-Dawley (SD) rat cardiomyocytes. METHODS Cardiomyocytes were isolated from neonatal SD rat heart and identified by immunohistochemistry. The control cultures were incubated at 37 degree centigrade in a humidified atmosphere of 5% CO(2) and 95% air. The hypoxic cultures were incubated in a modular incubator chamber filled with 1% O(2), 5% CO(2), and balance N2 for 6 h. The reoxygenated cultures were subjected to 1% O(2) and 5% CO(2) for 6 h, then 21% oxygen for 4, 8, 12, 24, and 48 h, respectively. Cell proliferation was determined using bromodeoxyuridine labeling. The ultrastructure of cardiomyocytes was observed by using an electron microscope. beta-Galactosidase activity was determined by using a senescence beta-galactosidase Staining Kit. p16( INK4a ) and telomerase reverse transcriptase (TERT) mRNA levels were measured by real time quantitative PCR. TERT protein expression was determined by immunohistochemistry. Telomerase activities were assayed by using the Telo TAGGG Telomerase PCR ELISAplus kit. RESULTS The initial cultures consisted of pure cardiomyocytes identified by immunohistochemistry. The proportion of BrdU positive cells was reduced significantly in the hypoxia reoxygenation-treated group (P< 0.01). Under the condition of hypoxia reoxygenation, mitochondrial dehydration appeared; p16( INK4a ) and TERT mRNA levels, beta-galactosidase activity, TERT protein expression and telomerase activities were all significantly increased (P< 0.01 or P< 0.05). CONCLUSION These data indicate that premature senescence could be induced in neonatal SD rat cardiomyocytes exposed to hypoxia reoxygenation. Although TERT significantly increased, it could not block senescence.
Collapse
Affiliation(s)
- Feng-Xiang Zhang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lee CH, Wu CL, Shiau AL. Hypoxia-Induced Cytosine Deaminase Gene Expression for Cancer Therapy. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.18.ft-275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Yu RMK, Chen EXH, Kong RYC, Ng PKS, Mok HOL, Au DWT. Hypoxia induces telomerase reverse transcriptase (TERT) gene expression in non-tumor fish tissues in vivo: the marine medaka (Oryzias melastigma) model. BMC Mol Biol 2006; 7:27. [PMID: 16961934 PMCID: PMC1578579 DOI: 10.1186/1471-2199-7-27] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 09/11/2006] [Indexed: 11/29/2022] Open
Abstract
Background Current understanding on the relationships between hypoxia, hypoxia-inducible factor-1 (HIF-1) and telomerase reverse transcriptase (TERT) gene expression are largely based on in vitro studies in human cancer cells. Although several reports demonstrated HIF-1- mediated upregulation of the human TERT gene under hypoxia, conflicting findings have also been reported. Thus far, it remains uncertain whether these findings can be directly extrapolated to non-tumor tissues in other whole animal systems in vivo. While fish often encounter environmental hypoxia, the in vivo regulation of TERT by hypoxia in non-neoplastic tissues of fish remains virtually unknown. Results The adult marine medaka (Oryzias melastigma) was employed as a model fish in this study. We have cloned and characterized a 3261-bp full-length TERT cDNA, omTERT, which encodes a protein of 1086 amino acids. It contains all of the functional motifs that are conserved in other vertebrate TERTs. Motif E is the most highly conserved showing 90.9–100% overall identity among the fish TERTs and 63.6% overall identity among vertebrates. Analysis of the 5'-flanking sequence of the omTERT gene identified two HRE (hypoxia-responsive element; nt. – 283 and – 892) cores. Overexpression of the HIF-1α induced omTERT promoter activity as demonstrated using transient transfection assays. The omTERT gene is ubiquitously expressed in fish under normoxia, albeit at varying levels, where highest expression was observed in gonads and the lowest in liver. In vivo expression of omTERT was significantly upregulated in testis and liver in response to hypoxia (at 96 h and 48 h, respectively), where concomitant induction of the omHIF-1α and erythropoietin (omEpo) genes was also observed. In situ hybridization analysis showed that hypoxic induction of omTERT mRNA was clearly evident in hepatocytes in the caudal region of liver and in spermatogonia-containing cysts in testis. Conclusion This study demonstrates for the first time, hypoxic regulation of TERT expression in vivo in a whole fish system. Our findings support the notion that hypoxia upregulates omTERT expression via omHIF-1 in non-neoplastic fish liver and testis in vivo. Overall, the structure and regulation of the TERT gene is highly conserved in vertebrates from fish to human.
Collapse
Affiliation(s)
- Richard MK Yu
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Eric XH Chen
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Richard YC Kong
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Patrick KS Ng
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Helen OL Mok
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Doris WT Au
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
40
|
Marot D, Opolon P, Brailly-Tabard S, Elie N, Randrianarison V, Connault E, Foray N, Feunteun J, Perricaudet M. The tumor suppressor activity induced by adenovirus-mediated BRCA1 overexpression is not restricted to breast cancers. Gene Ther 2006; 13:235-44. [PMID: 16208422 DOI: 10.1038/sj.gt.3302637] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The BRCA1 (breast cancer 1) breast cancer susceptibility gene is recognized as responsible for most familial breast and ovarian cancers and is suggested to be a tissue-specific tumor suppressor gene. In this report, we investigated the tissue specificity of tumor inhibitory activities induced by a recombinant adenovirus coding for wild-type BRCA1 (wtAdBRCA1). We demonstrated a pronounced in vitro antiproliferative effect on H1299 lung and HT29 colon cells upon infection with AdBRCA1. We describe a prolonged G1 cell cycle arrest associated with a decrease in the hyperphosphorylated form of Rb, suggesting that the Rb/E2F pathway is implicated in BRCA1-induced cell growth arrest. We also observed a significant antitumor effect in these pre-established subcutaneous tumors after in situ delivery of AdBRCA1, although these two tumors do not express wt p53, and also estrogen alpha and beta, progesterone and androgen receptors. Moreover, BRCA1 can induce a strong prolonged cell cycle arrest and apoptotic cell death but no significant antiangiogenic effect in H1299 tumors. Finally, our data indicate that intratumor administration of wtAdBRCA1 significantly inhibits growth of lung and colon steroid hormone-independent tumors.
Collapse
Affiliation(s)
- D Marot
- UMR 8121 CNRS, Vectorologie et Transfert de gènes, Institut Gustave Roussy, Villejuif Cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Jensen RL. Hypoxia in the tumorigenesis of gliomas and as a potential target for therapeutic measures. Neurosurg Focus 2006; 20:E24. [PMID: 16709030 DOI: 10.3171/foc.2006.20.4.16] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
✓ In this article, the author provides a brief description of the role of hypoxia in the tumorigenesis of gliomas and suggests potential ways of exploiting this role to design treatment modalities. Tumor hypoxia predicts the likelihood of metastases, tumor recurrence, resistance to chemotherapy and radiation therapy, invasive potential, and decreased patient survival for many human malignancies. Various methods of measurement of tumor hypoxia are discussed, including direct measurement and imaging methods.
The role of hypoxia-responsive molecules, especially hypoxia-inducible factor-1 (HIF-1), in glioma tumorigenesis is explored. Treatment modalities regulated by hypoxia are proposed and some potential strategies reviewed. The progression of a low-grade astrocytoma to a glioblastoma multiforme may be mediated by hypoxia-induced phenotypic changes and subsequent clonal selection of cells that overexpress hypoxia-responsive molecules, such as HIF-1. In this model, intratumoral hypoxia causes genetic changes that produce a microenvironment that selects for cells of a more aggressive phenotype.
Collapse
Affiliation(s)
- Randy L Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah 84132, USA.
| |
Collapse
|
42
|
Lindkvist A, Franzén A, Ren ZP, Heldin NE, Paulsson-Karlsson Y. Differential effects of TGF-β1 on telomerase activity in thyroid carcinoma cell lines. Biochem Biophys Res Commun 2005; 338:1625-33. [PMID: 16288728 DOI: 10.1016/j.bbrc.2005.10.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 10/22/2005] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to investigate the effect of transforming growth factor-beta1 (TGF-beta1) on telomerase activity in a panel of human anaplastic thyroid carcinoma (ATC) cell lines. Addition of TGF-beta1 decreased the telomerase activity in HTh 74 and KTC-1 cells, while in C 643 and HTh 7 an increased activity was observed. The decreased telomerase activity appeared to be due to transcriptional repression of the hTERT promoter. Addition of a PI-3 kinase inhibitor (LY294002) abrogated the stimulatory effect of TGF-beta1 on the telomerase activity, indicating the possible involvement of hTERT activation via phosphorylation. Furthermore, the MEK-inhibitor U0126 had similar effects suggesting dual regulatory mechanisms. Interestingly, the cell lines differed genetically in that ATC cell lines responding with increased telomerase activity harbored a p53 mutation. In conclusion, TGF-beta1 exerts opposing effects on telomerase activity in ATC cell lines, possibly reflecting deregulation of TGF-beta1 signaling in a more malignant genotype.
Collapse
Affiliation(s)
- Anna Lindkvist
- Department of Genetics and Pathology, Uppsala University Hospital, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
43
|
Anderson CJ, Hoare SF, Ashcroft M, Bilsland AE, Keith WN. Hypoxic regulation of telomerase gene expression by transcriptional and post-transcriptional mechanisms. Oncogene 2005; 25:61-9. [PMID: 16170363 DOI: 10.1038/sj.onc.1209011] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Basal telomerase activity is dependent on expression of the hTERT and hTR genes and upregulation of telomerase gene expression is associated with tumour development. It is therefore possible that signal transduction pathways involved in tumour development and features of the tumour environment itself may influence telomerase gene regulation. The majority of solid tumours contain regions of hypoxia and it has recently been demonstrated that hypoxia can increase telomerase activity by mechanisms that are still poorly defined. Here, we show that hypoxia induces the transcriptional activity of both hTR and hTERT gene promoters. While endogenous hTR expression is regulated at the transcriptional level, hTERT is subject to regulation by alternative splicing under hypoxic conditions, which involves a switch in the splice pattern in favour of the active variant. Furthermore, analysis of the chromatin landscape of the telomerase promoters reveals dynamic recruitment of a transcriptional complex involving the hypoxia-inducible factor-1 transcription factor, p300, RNA polymerase II and TFIIB, to both promoters during hypoxia, which traffics along and remains associated with the hTERT gene as transcription proceeds. These studies show that hTERT and hTR are subject to similar controls under hypoxia and highlight the rapid and dynamic regulation of the telomerase genes in vivo.
Collapse
Affiliation(s)
- C J Anderson
- Cancer Research UK Beatson Laboratories, Centre for Oncology and Applied Pharmacology, University of Glasgow, Bearsden, Glasgow, UK
| | | | | | | | | |
Collapse
|
44
|
Kato H, Inoue T, Asanoma K, Nishimura C, Matsuda T, Wake N. Induction of human endometrial cancer cell senescence through modulation of HIF-1α activity by EGLN1. Int J Cancer 2005; 118:1144-53. [PMID: 16161047 DOI: 10.1002/ijc.21488] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Previous observations indicate that transfer of human chromosome (chr.) 1 induces senescence of endometrial cancer cells. To identify the gene(s) responsible for the senescence, we first analyzed the structural integrity of the introduced chr. 1 in immortal revertant from chr.1-transferred HHUA cells. The data demonstrated a correlation between nonrandom deletions within the 1q31-qter region and reversion to immortality. Next, by using a panel of 12 microsatellite markers, we found high frequencies of loss of heterozygosity in the particular 1q region (1q41-42), in surgically removed samples. Then, we screened the genetic mutation of the genes involved in this region, with endometrial cancer panel. Among them, EGLN1, that is a member of prolyl hydroxylase and can facilitate HIF-1 degradation by ubiquitination through the hydroxylation of HIF-1, was mutated at significantly higher frequencies (12/20, 60%). Introduction of wild-type EGLN1 into endometrial cancer cell lines (HHUA, Ishikawa and HWCA), that carry EGLN1 gene mutations induced senescence. This was invoked through the negative regulation of HIF-1 expression. In addition, alternative way of negative regulation of HIF-1 by Factor inhibiting HIF-1(FIH), SiRNA against HIF-1, and HIF-1 inhibitor, YC-1, could also induce senescence. Thus, EGLN1 can be considered as a candidate tumor suppressor on chr. 1q, and our observation could open the new aspect in exploring the machinery of senescence induction associated with HIF-1 signal transduction. These results also suggested the availability of negative regulation of HIF-1 signals for uterine cancer treatment, especially for uterine sarcomas that have worse prognosis and show a high frequency of EGLN1 gene abnormality.
Collapse
Affiliation(s)
- Hidenori Kato
- Department of Molecular Genetics, Division of Molecular and Cell Therapeutics, Medical Institute of Bioregulation, Kyushu University, Tsurumihara 4546, Beppu City, Oita 874-0838, Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Kotake-Nara E, Takizawa S, Quan J, Wang H, Saida K. Cobalt chloride induces neurite outgrowth in rat pheochromocytoma PC-12 cells through regulation of endothelin-2/vasoactive intestinal contractor. J Neurosci Res 2005; 81:563-71. [PMID: 15948191 DOI: 10.1002/jnr.20568] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We investigated whether endothelin-2/vasoactive intestinal contractor (ET-2/VIC) gene expression, upregulated by hypoxia in cancer cells, was associated with differentiation in neuronal cells. RT-PCR analysis, morphological observations, and immunostaining revealed that CoCl2, a hypoxic mimetic agent, at 200 microM increased expression of the ET-2/VIC gene, decreased expression of the ET-1 gene, and induced neurite outgrowth in PC-12 rat pheochromocytoma cells. These effects induced by 200 microM CoCl2 were completely inhibited by the antioxidant N-acetyl cysteine at 20 mM. In addition, CoCl2 increased the level of intracellular reactive oxygen species (ROS) at an early stage. Furthermore, interleukin (IL)-6 gene expression was upregulated upon the differentiation induced by CoCl2. These results suggest that expression of ET-2/VIC and ET-1 mediated by ROS may be associated with neuronal differentiation through the regulation of IL-6. When the cells were treated with 500 microM CoCl2 for 24 hr, however, ET-2/VIC gene expression disappeared, IL-6 gene expression was downregulated, and necrosis was subsequently induced in the PC-12 cells.
Collapse
Affiliation(s)
- Eiichi Kotake-Nara
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
46
|
Abstract
Neuroblastoma is a pediatric tumor that originates from precursor cells of the sympathetic nervous system that have discontinued their normal differentiation program. This review is focused on involvement of the Notch signaling cascade in the process of differentiation in neuroblastoma cells and normal cells of the sympathetic nervous system. Hypoxia induces dedifferentiation of neuroblastoma cells in vivo and in vitro, and under oxygen-compromised conditions the Notch cascade is activated. This activation might promote development of the dedifferentiated phenotype. The implications of these observations for tumor biology are also discussed.
Collapse
Affiliation(s)
- Sven Påhlman
- Department of Laboratory Medicine, Division of Molecular Medicine, Lund University, University Hospital MAS, Entrance 78, 3rd Floor, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
47
|
Yang SJ, Pyen J, Lee I, Lee H, Kim Y, Kim T. Cobalt chloride-induced apoptosis and extracellular signal-regulated protein kinase 1/2 activation in rat C6 glioma cells. BMB Rep 2004; 37:480-6. [PMID: 15469737 DOI: 10.5483/bmbrep.2004.37.4.480] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its IC(50) value was 400 microM. The DNA fragment became evident after incubation of the cells with 300 microM cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).
Collapse
Affiliation(s)
- Seung-Ju Yang
- Department of Biomedical Laboratory Science, College of Health Science, Wonju College of Medicine, Yonsei University, Wonju 220-710, Korea
| | | | | | | | | | | |
Collapse
|
48
|
Bekaert S, Derradji H, Baatout S. Telomere biology in mammalian germ cells and during development. Dev Biol 2004; 274:15-30. [PMID: 15355785 DOI: 10.1016/j.ydbio.2004.06.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2003] [Revised: 06/18/2004] [Accepted: 06/21/2004] [Indexed: 01/12/2023]
Abstract
The development of an organism is a strictly regulated program in which controlled gene expression guarantees the establishment of a specific phenotype. The chromosome termini or so-called telomeres preserve the integrity of the genome within developing cells. In the germline, during early development, and in highly proliferative organs, human telomeres are balanced between shortening processes with each cell division and elongation by telomerase, but once terminally differentiated or mature the equilibrium is shifted to gradual shortening by repression of the telomerase enzyme. Telomere length is to a large extent genetically determined and the neonatal telomere length equilibrium is, in fact, a matter of evolution. Gradual telomere shortening in normal human somatic cells during consecutive rounds of replication eventually leads to critically short telomeres that induce replicative senescence in vitro and probably in vivo. Hence, a molecular clock is set during development, which determines the replicative potential of cells during extrauterine life. Telomeres might be directly or indirectly implicated in longevity determination in vivo, and information on telomere length setting in utero and beyond should help elucidate presumed causal connections between early growth and aging disorders later in life. Only limited information exists concerning the mechanisms underlying overall telomere length regulation in the germline and during early development, especially in humans. The intent of this review is to focus on recent advances in our understanding of telomere biology in germline cells as well as during development (pre- and postimplantation periods) in an attempt to summarize our knowledge about telomere length determination and its importance for normal development in utero and the occurrence of the aging and abnormal phenotype later on.
Collapse
Affiliation(s)
- Sofie Bekaert
- Laboratory for Biochemistry and Molecular Cytology, Department for Molecular Biotechnology, FLTBW-Ghent University, Belgium
| | | | | |
Collapse
|
49
|
Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, Isaka K. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol Cell Biol 2004; 24:6076-83. [PMID: 15199161 PMCID: PMC480902 DOI: 10.1128/mcb.24.13.6076-6083.2004] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Revised: 12/10/2003] [Accepted: 04/05/2004] [Indexed: 01/01/2023] Open
Abstract
Hypoxia occurs during the development of the placenta in the first trimester and correlates with both trophoblast differentiation and the induction of telomerase activity through hTERT expression. We sought to determine the mechanism of regulation of hTERT expression during hypoxia. We show that hypoxia-inducible factor 1alpha (HIF-1alpha) and hTERT expression in the human placenta decrease with gestational age and that these are overexpressed in preeclamptic placenta, a major complication of pregnancy. Hypoxia not only transactivates the hTERT promoter activity but also enhances endogenous hTERT expression. The hTERT promoter region between -165 and +51 contains two HIF-1 consensus motifs, and in vitro reporter assays show that these are essential for hTERT transactivation by HIF-1. Introduction of an antisense oligonucleotide for HIF-1 diminishes hTERT expression during hypoxia, indicating that upregulation of hTERT by hypoxia is directly mediated through HIF-1. Our results provide persuasive evidence that the regulation of hTERT promoter activity by HIF-1 represents a mechanism for trophoblast growth during hypoxia and suggests that this may be a generalized response to hypoxia in various human disorders including resistance to cancer therapeutics by upregulating telomerase.
Collapse
Affiliation(s)
- Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Japan.
| | | | | | | | | | | |
Collapse
|
50
|
Yatabe N, Kyo S, Maida Y, Nishi H, Nakamura M, Kanaya T, Tanaka M, Isaka K, Ogawa S, Inoue M. HIF-1-mediated activation of telomerase in cervical cancer cells. Oncogene 2004; 23:3708-15. [PMID: 15048086 DOI: 10.1038/sj.onc.1207460] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a key regulator of O(2) homeostasis, which regulates the expression of several genes linked to angiogenesis and energy metabolism. Tumor hypoxia has been shown to be associated with poor prognosis in a variety of tumors, and HIF-1 induced by hypoxia plays pivotal roles in tumor progression. The presence of putative HIF-1-binding sites on the promoter of human telomerase reverse transcriptase gene (hTERT) prompted us to examine the involvement of HIF-1 in the regulation of hTERT and telomerase in tumor hypoxia. The telomeric repeat amplification protocol (TRAP) assay revealed that hypoxia activated telomerase in cervical cancer ME180 cells, with peak induction at 24-48 h of hypoxia. Notably, hTERT mRNA expression was upregulated at 6-12 h of hypoxia, concordant with the elevation of HIF-1 protein levels at 6 h. hTERT protein levels were subsequently upregulated at 24 h and later. Luciferase assays using reporter plasmids containing hTERT core promoter revealed that hTERT transcription was significantly activated in hypoxia and by HIF-1 overexpression, and that the two putative binding sites within the core promoter are responsible for this activation. Chromatin immunoprecipitation assay identified the specific binding of HIF-1 to these sites (competing with c-Myc), which was enhanced in hypoxia. The present findings suggest that hypoxia activates telomerase via transcriptional activation of hTERT, and that HIF-1 plays a critical role as a transcription factor. They also suggest the existence of novel mechanisms of telomerase activation in cancers, and have implications for the molecular basis of hypoxia-induced tumor progression and HIF-1-based cancer gene therapy.
Collapse
Affiliation(s)
- Noriyuki Yatabe
- 1Department of Obstetrics and Gynecology, Kanazawa University School of Medicine, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8641, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|