1
|
Kwarteng A, Mensah C, Osei‐Poku P. Eosinophil: An innate immune cell with anti-filarial vaccine and biomarker potential. Health Sci Rep 2023; 6:e1320. [PMID: 37283884 PMCID: PMC10240928 DOI: 10.1002/hsr2.1320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Background Filarial infections continue to pose a great challenge in endemic countries. One of the central goals in the fight against human filarial infections is the development of strategies that will lead to the inhibition of microfilariae (mf) transmission. Keeping mf under a certain threshold within endemic populations will stop transmission and eliminate the infection. Method A narrative review was carried out to identify the possibilities and limitations of exploring the use of eosinophil responses as an anti-filarial vaccine, and biomarker for the detection of filarial infections. An extensive literature search was performed in online scientific databases including PubMed Central, PubMed, BioMed Central, with the use of predefined search terms. Results A better understanding of the parasite-host interactions will lead to the development of improved and better treatment or vaccine strategies that could eliminate filariasis as soon as possible. Highlighted in this review is the explorative use of eosinophil-producing CLC/Galectin-10 as a potential biomarker for filarial infections. Also discussed are some genes, and pathways involved in eosinophil recruitments that could be explored for anti-filarial vaccine development. Conclusion In this short communication, we discuss how eosinophil-regulated genes, pathways, and networks could be critical in providing more information on how reliably a front-line immune player could be exploited for anti-filarial vaccine development and early infection biomarker.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Caleb Mensah
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| | - Priscilla Osei‐Poku
- Department of Biochemistry and BiotechnologyKwame Nkrumah University of Science and TechnologyKumasiGhana
- Kumasi Centre for Collaborative Research in Tropical MedicineKwame Nkrumah University of Science and TechnologyKumasiGhana
| |
Collapse
|
2
|
Yamaguchi N. [Novel Tyrosine Phosphorylation Signals in the Nucleus and on Mitotic Spindle Fibers and Lysosomes Revealed by Strong Inhibition of Tyrosine Dephosphorylation]. YAKUGAKU ZASSHI 2021; 141:927-947. [PMID: 34193653 DOI: 10.1248/yakushi.21-00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein-tyrosine phosphorylation is one of the posttranslational modifications and plays critical roles in regulating a wide variety of cellular processes, such as cell proliferation, differentiation, adhesion, migration, survival, and apoptosis. Protein-tyrosine phosphorylation is reversibly regulated by protein-tyrosine kinases and protein-tyrosine phosphatases. Strong inhibition of protein-tyrosine phosphatase activities is required to undoubtedly detect tyrosine phosphorylation. Our extremely careful usage of Na3VO4, a potent protein-tyrosine phosphatase inhibitor, has revealed not only the different intracellular trafficking pathways of Src-family tyrosine kinase members but also novel tyrosine phosphorylation signals in the nucleus and on mitotic spindle fibers and lysosomes. Furthermore, despite that the first identified oncogene product v-Src is generally believed to induce transformation through continuous stimulation of proliferation signaling by its strong tyrosine kinase activity, v-Src-driven transformation was found to be caused not by continuous proliferation signaling but by v-Src tyrosine kinase activity-dependent stochastic genome alterations. Here, I summarize our findings regarding novel tyrosine phosphorylation signaling in a spatiotemporal sense and highlight the significance of the roles of tyrosine phosphorylation in transcriptional regulation inside the nucleus and chromosome dynamics.
Collapse
Affiliation(s)
- Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
3
|
Identification of the SRC-family tyrosine kinase HCK as a therapeutic target in mantle cell lymphoma. Leukemia 2020; 35:881-886. [PMID: 32591642 PMCID: PMC7932922 DOI: 10.1038/s41375-020-0934-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 01/20/2023]
Abstract
Mantle cell lymphoma (MCL) is an aggressive non-Hodgkin lymphoma subtype arising from naïve B cells. Although novel therapeutics have improved patient prognosis, drug resistance remains a key problem. Here, we show that the SRC-family tyrosine kinase hematopoietic cell kinase (HCK), which is primarily expressed in the hematopoietic lineage but not in mature B cells, is aberrantly expressed in MCL, and that high expression of HCK is associated with inferior prognosis of MCL patients. HCK expression is controlled by the toll-like receptor (TLR) adaptor protein MYD88 and can be enhanced by TLR agonists in MCL cell lines and primary MCL. In line with this, primary MCL with high HCK expression are enriched for a TLR-signaling pathway gene set. Silencing of HCK expression results in cell cycle arrest and apoptosis. Furthermore, HCK controls integrin-mediated adhesion of MCL cells to extracellular matrix and stromal cells. Taken together, our data indicate that TLR/MYD88-controlled aberrant expression of HCK plays a critical role in MCL proliferation and survival as well as in retention of the malignant cells in the growth- and survival-supporting lymphoid organ microenvironment, thereby contributing to lymphomagenesis. These novel insights provide a strong rationale for therapeutic targeting of HCK in MCL.
Collapse
|
4
|
Shen ZJ, Hu J, Kashi VP, Kelly EA, Denlinger LC, Lutchman K, McDonald JG, Jarjour NN, Malter JS. Epstein-Barr Virus-induced Gene 2 Mediates Allergen-induced Leukocyte Migration into Airways. Am J Respir Crit Care Med 2017; 195:1576-1585. [PMID: 28125291 DOI: 10.1164/rccm.201608-1580oc] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE Leukocyte recruitment to sites of allergic inflammation depends on the local production of priming cytokines, chemokines, and potentially other mediators. Previously, we showed that eosinophils (Eos) express numerous orphan G-protein-coupled receptors, including Epstein-Barr virus-induced gene 2 (EBI2). Despite its contribution to inflammatory diseases, the role of EBI2 in pulmonary eosinophilia is unknown. OBJECTIVES To determine whether oxysterol ligands for EBI2 are increased in asthma exacerbation, and if or how they promote Eos pulmonary migration. METHODS EBI2 ligands and pulmonary eosinophilia were measured in the bronchoalveolar lavage fluid from patients with mild asthma 48 hours after acute allergen challenge. In vitro, the ability of EBI2 ligands alone or in combination with IL-5 priming to induce the migration of human blood Eos was assessed. MEASUREMENTS AND MAIN RESULTS EBI2 was constitutively and stably expressed in peripheral blood Eos. Eos treated with the EBI2 ligands showed significantly increased transwell migration that was enhanced by priming with physiologic doses of IL-5. Migration was suppressed by inhibitors of the prolyl isomerase Pin1 or extracellular signal-regulated kinases (ERK) 1/2 or by pertussis toxin. EBI2 signaling activated Pin1 isomerase activity through a cascade that was sensitive to ERK inhibitors and pertussis toxin. The concentration of EBI2 ligands was significantly increased in the bronchoalveolar lavage fluid 48 hours after segmental allergen challenge and strongly correlated with the increased numbers of Eos, lymphocytes, and neutrophils in the airways. CONCLUSIONS Oxysterols are increased in inflamed airways after allergen challenge and, through G-protein subunit α, ERK, and Pin1 signaling, likely participate in the regulation of Eos migration into the lung in people with asthma.
Collapse
Affiliation(s)
| | - Jie Hu
- 1 Department of Pathology and
| | | | - Elizabeth A Kelly
- 2 Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Loren C Denlinger
- 2 Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Jeffrey G McDonald
- 3 Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas; and
| | - Nizar N Jarjour
- 2 Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | |
Collapse
|
5
|
Slapničková M, Volkova V, Čepičková M, Kobets T, Šíma M, Svobodová M, Demant P, Lipoldová M. Gene-specific sex effects on eosinophil infiltration in leishmaniasis. Biol Sex Differ 2016; 7:59. [PMID: 27895891 PMCID: PMC5120444 DOI: 10.1186/s13293-016-0117-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 11/15/2016] [Indexed: 12/11/2022] Open
Abstract
Background Sex influences susceptibility to many infectious diseases, including some manifestations of leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen, liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance. Methods We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3,-4,-5,-7,-9,-11,-12,-15,-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental “donor” strain STS and 87.5% genes from the “background” strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA. Results The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage analysis in F2 hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14 (chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmr14 functions only in males, the effect of Lmr25 is sex independent. Lmr15 (chromosome 11) and Lmr26 (chromosome 9) operate in cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F2 hybrids in males, but not in females. Conclusions We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic infiltration reflects ineffective inflammation.
Collapse
Affiliation(s)
- Martina Slapničková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Valeriya Volkova
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Marie Čepičková
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Tatyana Kobets
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Matyáš Šíma
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Milena Svobodová
- Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Peter Demant
- Roswell Park Cancer Institute, Buffalo, NY 14263 USA
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
6
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
7
|
Milara J, Martinez-Losa M, Sanz C, Almudéver P, Peiró T, Serrano A, Morcillo EJ, Zaragozá C, Cortijo J. Bafetinib inhibits functional responses of human eosinophils in vitro. Eur J Pharmacol 2013; 715:172-80. [PMID: 23747655 DOI: 10.1016/j.ejphar.2013.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/08/2013] [Accepted: 05/24/2013] [Indexed: 01/21/2023]
Abstract
Eosinophils play a prominent role in the process of allergic inflammation. Non-receptor associated Lyn tyrosine kinases generate key initial signals in eosinophils. Bafetinib, a specific Abl/Lyn tyrosine kinase inhibitor has shown a potent antiproliferative activity in leukemic cells, but its effects on eosinophils have not been reported. Therefore, we studied the effects of bafetinib on functional and mechanistic responses of isolated human eosinophils. Bafetinib was more potent than non-specific tyrosin kinase comparators genistein and tyrphostin inhibiting superoxide anion triggered by N-formyl-Met-Leu-Phe (fMLF; 100 nM) (-log IC50=7.25 ± 0.04 M; 6.1 ± 0.04 M; and 6.55 ± 0.03 M, respectively). Bafetinib, genistein and tyrphostin did not modify the [Ca(2+)]i responses to fMLF. Bafetinib inhibited the release of EPO induced by fMLF with higher potency than genistein and tyrphostin (-log IC50=7.24 ± 0.09 M; 5.36 ± 0.28 M; and 5.37 ± 0.19 M, respectively), and nearly suppressed LTC4, ECP and chemotaxis. Bafetinib, genistein and tyrphostin did not change constitutive apoptosis. However bafetinib inhibited the ability of granulocyte-monocyte colony-stimulating factor to prevent apoptosis. The activation of Lyn tyrosine kinase, p-ERK1/2 and p-38 induced by fMLF was suppressed by bafetinib and attenuated by genistein and tyrphostin. In conclusion, bafetinib inhibits oxidative burst and generation of inflammatory mediators, and reverses the eosinophil survival. Therefore, future anti-allergic therapies based on bafetinib, could help to suppress excessive inflammatory response of eosinophils at inflammatory sites.
Collapse
Affiliation(s)
- Javier Milara
- Clinical Research Unit (UIC), University General Hospital Consortium, Av. tres cruces s/n, Valencia E-46014, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
El-Shazly AE, Henket M, Lefebvre PP, Louis R. 2B4 (CD244) is involved in eosinophil adhesion and chemotaxis, and its surface expression is increased in allergic rhinitis after challenge. Int J Immunopathol Pharmacol 2011; 24:949-960. [PMID: 22230401 DOI: 10.1177/039463201102400413] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A role for the subtypes of CD2 Ig superfamily receptors has been recently demonstrated in eosinophilic inflammation in experimental asthma and atopic asthmatics. We investigated the functions of 2B4 (CD244) molecules in eosinophil adhesion and chemotaxis, and correlated the results to the pathophysiology of allergic rhinitis (AR). Herein, we show that agonistic stimulation of 2B4 by C1.7, the anti-human 2B4 functional grade purified antibody, resulted in significant increase of eosinophils and eosinophil cell line (Eol-1 cells) adhesion to collagen type IV, and random migration. These functions were associated with tyrosine kinase phosphorylation of several protein residues of low molecular weight. Flow cytometry (FACS) experiments demonstrated that Eol-1 cells, normal peripheral blood eosinophils and eosinophils from AR patients, express surface 2B4 molecules. In vitro AR model demonstrated that the CC-chemokine receptor CCR3 stimulation by eotaxin induced significant increase in the expression of surface 2B4 in eosinophils and Eol-1 cells. Immunofluorescence confocal microscopy images showed that eotaxin induces also redistribution of 2B4 molecules towards the pseudopods in eosinophils and Eol-1 cells, changing their shape. Blocking of 2B4 molecules by the corresponding neutralizing antibody inhibited eotaxin induced Eol-1-adhesion, chemotaxis and the cytoskeleton changes. Pretreatment of Eol-1 cells with 1 microM genistein blocked eotaxin-induced Eol-1 adhesion, chemotaxis and 2B4 up-regulated expression. In vivo correlation demonstrated the expression of 2B4 molecules in eosinophils from AR patients to be significantly increased, after nasal provocation challenge. These results identify a novel role for 2B4 molecules in eosinophil functional migratory response and may point to a novel tyrosine kinase-mediated ligation between CCR3 receptor and 2B4 co-receptor in eosinophil chemotaxis. If so, then 2B4 molecules would be a novel target for therapeutic modalities in diseases characterized by eosinophilia such as AR.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/metabolism
- Cell Adhesion/drug effects
- Cell Line
- Cell Membrane/drug effects
- Cell Membrane/immunology
- Cell Shape
- Chemotaxis, Leukocyte/drug effects
- Eosinophils/drug effects
- Eosinophils/immunology
- Flow Cytometry
- Fluorescent Antibody Technique
- Humans
- Microscopy, Confocal
- Nasal Provocation Tests
- Protein Kinase Inhibitors/pharmacology
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Pyroglyphidae/immunology
- Receptors, CCR3/immunology
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/metabolism
- Rhinitis, Allergic, Perennial/diagnosis
- Rhinitis, Allergic, Perennial/immunology
- Signal Transduction
- Signaling Lymphocytic Activation Molecule Family
Collapse
Affiliation(s)
- A E El-Shazly
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, Liege University Hospitals, Liege, Belgium.
| | | | | | | |
Collapse
|
9
|
Zhu Y, Bertics PJ. Chemoattractant-induced signaling via the Ras-ERK and PI3K-Akt networks, along with leukotriene C4 release, is dependent on the tyrosine kinase Lyn in IL-5- and IL-3-primed human blood eosinophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:516-26. [PMID: 21106848 PMCID: PMC3156584 DOI: 10.4049/jimmunol.1000955] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human blood eosinophils exhibit a hyperactive phenotype in response to chemotactic factors after cell "priming" with IL-5 family cytokines. Earlier work has identified ERK1/2 as molecular markers for IL-5 priming, and in this article, we show that IL-3, a member of the IL-5 family, also augments fMLP-stimulated ERK1/2 phosphorylation in primary eosinophils. Besides ERK1/2, we also observed an enhancement of chemotactic factor-induced Akt phosphorylation after IL-5 priming of human blood eosinophils. Administration of a peptide antagonist that targets the Src family member Lyn before cytokine (IL-5/IL-3) priming of blood eosinophils inhibited the synergistic increase of fMLP-induced activation of Ras, ERK1/2 and Akt, as well as the release of the proinflammatory factor leukotriene C(4). In this study, we also examined a human eosinophil-like cell line HL-60 clone-15 and observed that these cells exhibited significant surface expression of IL-3Rs and GM-CSFRs, as well as ERK1/2 phosphorylation in response to the addition of IL-5 family cytokines or the chemotactic factors fMLP, CCL5, and CCL11. Consistent with the surface profile of IL-5 family receptors, HL-60 clone-15 recapitulated the enhanced fMLP-induced ERK1/2 phosphorylation observed in primary blood eosinophils after priming with IL-3/GM-CSF, and small interfering RNA-mediated knockdown of Lyn expression completely abolished the synergistic effects of IL-3 priming on fMLP-induced ERK1/2 phosphorylation. Altogether, our data demonstrate a central role for Lyn in the mechanisms of IL-5 family priming and suggest that Lyn contributes to the upregulation of the Ras-ERK1/2 and PI3K-Akt cascades, as well as the increased leukotriene C(4) release observed in response to fMLP in "primed" eosinophils.
Collapse
Affiliation(s)
- Yiming Zhu
- Molecular and Cellular Pharmacology Program, University of Wisconsin, Madison, WI, 53706
| | - Paul J. Bertics
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706
| |
Collapse
|
10
|
Abstract
An intricate network of activation and inhibitory signals tightly regulates immune responses. To date, multiple activation receptors have been described. These include receptors that mediate cellular functions such as adhesion, chemotaxis, cytokine signalling, mediator release, survival and phagocytosis. In contrast to these activation pathways, an opposing and suppressive receptor system has evolved. These receptors can override the signals elicited by the activation pathways and are broadly termed inhibitory receptors. Inhibitory receptors share unique intracellular signalling motifs and have key roles in various cellular and pathological conditions. Therefore, such receptors are potential targets for future therapeutics. In this review, we will discuss the structure and function of inhibitory receptors. In particular, we will focus on the expression and function of inhibitory receptors on mast cells and eosinophils and illustrate strategies for their inhibition in the settings of allergic inflammation.
Collapse
Affiliation(s)
- D Shik
- Department of Microbiology and Human Immunology, The Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv, Tel-Aviv, Israel
| | | |
Collapse
|
11
|
Gorska MM, Alam R. The signaling mechanism of eosinophil activation. Expert Rev Clin Immunol 2010; 1:247-56. [PMID: 20476938 DOI: 10.1586/1744666x.1.2.247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Eosinophils play an important role in certain aspects of asthma pathogenesis. This review focuses on the mechanism of activation of eosinophils by the growth factor interleukin-5 and the CC chemokine receptor-3. Interleukin-5 activates members of the Janus and Src family of kinases. The latter kinases are largely responsible for the generation of initial signaling events. CC chemokine receptor-3, in contrast, signals through heterotrimeric G-proteins. Subsequently, various signaling pathways are activated, which converge on four major pathways - the mitogen-activated protein kinase pathway, the phosphoinositide-3 kinase pathway, the calcium signaling pathway and the Janus-signal transducer and activator of transcription signaling pathway. The biologic consequences of many of these signaling pathways are also discussed.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy & Immunology, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
12
|
Ueki S, Kihara J, Kato H, Ito W, Takeda M, Kobayashi Y, Kayaba H, Chihara J. Soluble vascular cell adhesion molecule-1 induces human eosinophil migration. Allergy 2009; 64:718-24. [PMID: 19210349 DOI: 10.1111/j.1398-9995.2008.01871.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Tissue eosinophilia is one of the hallmarks of allergic diseases and Th2-type immune responses including asthma. Adhesion molecules are known to play an important role in the accumulation of eosinophils in allergic inflammatory foci, and they contribute to eosinophil activation. Elevated levels of the soluble forms of adhesion molecules in the body fluid of asthmatic patients have been observed, although their pathophysiological significance remains to be fully elucidated. METHODS Peripheral blood eosinophils were purified, and the effect of soluble vascular cell adhesion molecule-1 (sVCAM-1) on eosinophil migration was investigated using in vitro systems. RESULTS We found that sVCAM-1 (1 to 10 mug/ml) induced eosinophil chemotaxis, rather than chemokinesis, in a concentration-dependent fashion. In addition, sVCAM-1 induced cell shape change and actin polymerization, which are necessary for cell movement. Manipulations with very late antigen (VLA)-4-neutralizing antibody and signal inhibitors indicated that the sVCAM-1-induced chemotaxis was mediated through ligand-dependent activation of tyrosine kinase Src, p38 mitogen-activated protein kinase (MAPK), and extracellular signal-regulated kinase (ERK) MAPK. Rapid phosphorylation of these signaling molecules was observed using a bead-based multiplex assay. CONCLUSION Our results raise the possibility of sVCAM-1 in the fluid phase as a significant contributor to the heightened eosinophilic inflammatory response.
Collapse
Affiliation(s)
- S Ueki
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Guiet R, Poincloux R, Castandet J, Marois L, Labrousse A, Le Cabec V, Maridonneau-Parini I. Hematopoietic cell kinase (Hck) isoforms and phagocyte duties – From signaling and actin reorganization to migration and phagocytosis. Eur J Cell Biol 2008; 87:527-42. [DOI: 10.1016/j.ejcb.2008.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/06/2008] [Accepted: 03/11/2008] [Indexed: 01/21/2023] Open
|
14
|
Zaman SN, Resek ME, Robbins SM. Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line. J Leukoc Biol 2008; 84:1082-91. [PMID: 18632989 DOI: 10.1189/jlb.1007698] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Chemokines play pivotal roles in regulating a wide variety of biological processes by modulating cell migration and recruitment. Deregulation of chemokine signaling can alter cell recruitment, contributing to the pathogenic states associated with autoimmune disease, inflammatory disorders, and sepsis. During chemotaxis, lipid rafts and their resident signaling molecules have been demonstrated to partition to different parts of the cell. Herein, we investigated the role of lipid raft resident Src-family kinases (SFK) in stromal cell-derived factor 1/CXCL12-mediated chemotaxis. We have shown that Lck-deficient J.CaM 1.6 cells are defective in CXCL12-mediated chemotaxis in contrast to their parental counterpart, Jurkat cells. Ectopic expression of the SFK hematopoietic cell kinase (Hck) in J.CaM 1.6 cells reconstituted CXCL12 responsiveness. The requirement of lipid raft association of SFK was assessed using both isoforms of Hck: the dually acylated p59(Hck) isoform that is targeted to lipid rafts and the monoacylated p61(Hck) isoform that is nonraft-associated. We have shown using several gain and loss of acylation alleles that dual acylation of Hck was required for CXCL12-mediated chemotaxis in J.CaM 1.6 cells. These results highlight the importance of the unique microenvironment provided by lipid rafts and their specific contribution in providing specificity to CXCL12 signaling.
Collapse
|
15
|
A dual activation and inhibition role for the paired immunoglobulin-like receptor B in eosinophils. Blood 2008; 111:5694-703. [PMID: 18316626 DOI: 10.1182/blood-2007-12-126748] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The accumulation of eosinophils in inflammatory foci is a hallmark characteristic of Th2 inflammation. Nevertheless, the expression of inhibitory receptors such as paired immunoglobulin-like receptor B (PIR-B) and their function regulating eosinophil accumulation have received limited attention. We now report that Pirb was up-regulated in an eosinophil-dependent manner in the lungs of allergen-challenged and interleukin (IL)-13-overexpressing mice. Eosinophils expressed high levels of PIR-B, and Pirb(-/-) mice displayed increased gastrointestinal eosinophils. Consistent with these findings, PIR-B negatively regulated eotaxin-dependent eosinophil chemotaxis in vivo and in vitro. Surprisingly, Pirb(-/-) eosinophils and neutrophils had decreased leukotriene B4 (LTB(4))-dependent chemotactic responses in vitro. Furthermore, eosinophil accumulation was decreased in a chitin-induced model, partially dependent on LTB(4). Mechanistic analysis using a miniphosphoproteomic approach revealed that PIR-B recruits activating kinases after LTB(4) but not eotaxin stimulation. Consequently, eotaxin-activated Pirb(-/-) eosinophils displayed markedly increased extracellular signal-related kinase 1 and 2 (ERK1/2) phosphorylation, whereas LTB(4)-activated eosinophils had reduced ERK1/2 phosphorylation. We provide multiple lines of evidence supporting a model in which PIR-B displays opposing but potent regulatory functions in granulocyte activation. These data change the conventional wisdom that inhibitory receptors are restricted to inhibitory signals; we therefore propose that a single receptor can have dual functionality in distinct cell types after unique cellular signals.
Collapse
|
16
|
Weston MC, Collins ME, Cunningham FM. Role of intracellular kinases in the regulation of equine eosinophil migration and actin polymerization. J Vet Pharmacol Ther 2008; 31:31-8. [PMID: 18177316 DOI: 10.1111/j.1365-2885.2007.00922.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inappropriately activated eosinophils can contribute to disease pathogenesis and intracellular signalling pathways that regulate functional responses may represent a therapeutic target. Little is known about intracellular signalling in equine eosinophils and this study examined the role of phospholipase C (PLC) and a range of protein kinases on responses to histamine and CCL11. Histamine (10(-4) M) or CCL11 (5.6 x 10(-9) M)-induced actin polymerization, migration and superoxide production by eosinophils from healthy horses were compared in the presence and absence of selective kinase inhibitors. Inhibition of phosphatidylinositol-3 kinase (PI3K) significantly reduced the response in each assay. In contrast, whilst inhibition of PLC decreased actin polymerization and superoxide production, an increase in migration was observed; the latter effect was also seen when protein kinase C (PKC) was inhibited. With the exception of histamine-induced migration, which was significantly reduced by blocking extracellular regulated kinase (ERK)1/2, activation of ERK1/2, p38 MAPK and tyrosine kinase did not appear to play an important role in the responses studied. These results suggest that equine eosinophil activation by histamine and CCL11 is mediated through PI3K. Whilst PLC activation is required for actin polymerization and superoxide production, migration may be negatively regulated by PLC and PKC. These kinases represent potential targets for modulating eosinophil activation by multiple stimuli.
Collapse
Affiliation(s)
- M C Weston
- Department of Veterinary Basic Sciences and Pathology and Infectious Diseases, The Royal Veterinary College, Hertfordshire, UK.
| | | | | |
Collapse
|
17
|
Fumagalli L, Zhang H, Baruzzi A, Lowell CA, Berton G. The Src family kinases Hck and Fgr regulate neutrophil responses to N-formyl-methionyl-leucyl-phenylalanine. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 178:3874-85. [PMID: 17339487 PMCID: PMC4683084 DOI: 10.4049/jimmunol.178.6.3874] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The chemotactic peptide formyl-methionyl-leucyl-phenilalanine (fMLP) triggers intracellular protein tyrosine phosphorylation leading to neutrophil activation. Deficiency of the Src family kinases Hck and Fgr have previously been found to regulate fMLP-induced degranulation. In this study, we further investigate fMLP signaling in hck-/-fgr-/- neutrophils and find that they fail to activate a respiratory burst and display reduced F-actin polymerization in response to fMLP. Additionally, albeit migration of both hck-/-fgr-/-mouse neutrophils and human neutrophils incubated with the Src family kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2) through 3-microm pore size Transwells was normal, deficiency, or inhibition, of Src kinases resulted in a failure of neutrophils to migrate through 1-microm pore size Transwells. Among MAPKs, phosphorylation of ERK1/2 was not different, phosphorylation of p38 was only partially affected, and phosphorylation of JNK was markedly decreased in fMLP-stimulated hck-/-fgr-/- neutrophils and in human neutrophils incubated with PP2. An increase in intracellular Ca(2+) concentration and phosphorylation of Akt/PKB occurred normally in fMLP-stimulated hck-/-fgr-/- neutrophils, indicating that activation of both phosphoinositide-specific phospholipase C and PI3K is independent of Hck and Fgr. In contrast, phosphorylation of the Rho/Rac guanine nucleotide exchange factor Vav1 and the Rac target p21-activated kinases were markedly reduced in both hck-/-fgr-/- neutrophils and human neutrophils incubated with a PP2. Consistent with these findings, PP2 inhibited Rac2 activation in human neutrophils. We suggest that Hck and Fgr act within a signaling pathway triggered by fMLP receptors that involves Vav1 and p21-activated kinases, leading to respiratory burst and F-actin polymerization.
Collapse
Affiliation(s)
- Laura Fumagalli
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | - Hong Zhang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Anna Baruzzi
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | - Clifford A. Lowell
- Department of Laboratory Medicine, University of California, San Francisco, CA 94143
| | - Giorgio Berton
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
18
|
Giagulli C, Ottoboni L, Caveggion E, Rossi B, Lowell C, Constantin G, Laudanna C, Berton G. The Src family kinases Hck and Fgr are dispensable for inside-out, chemoattractant-induced signaling regulating beta 2 integrin affinity and valency in neutrophils, but are required for beta 2 integrin-mediated outside-in signaling involved in sustained adhesion. THE JOURNAL OF IMMUNOLOGY 2006; 177:604-11. [PMID: 16785558 DOI: 10.4049/jimmunol.177.1.604] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neutrophil beta(2) integrins are activated by inside-out signaling regulating integrin affinity and valency; following ligand binding, beta(2) integrins trigger outside-in signals regulating cell functions. Addressing inside-out and outside-in signaling in hck(-/-)fgr(-/-) neutrophils, we found that Hck and Fgr do not regulate chemoattractant-induced activation of beta(2) integrin affinity. In fact, beta(2) integrin-mediated rapid adhesion, in static condition assays, and neutrophil adhesion to glass capillary tubes cocoated with ICAM-1, P-selectin, and a chemoattractant, under flow, were unaffected in hck(-/-)fgr(-/-) neutrophils. Additionally, examination of integrin affinity by soluble ICAM-1 binding assays and of beta(2) integrin clustering on the cell surface, showed that integrin activation did not require Hck and Fgr expression. However, after binding, hck(-/-)fgr(-/-) neutrophil spreading over beta(2) integrin ligands was reduced and they rapidly detached from the adhesive surface. Whether alterations in outside-in signaling affect sustained adhesion to the vascular endothelium in vivo was addressed by examining neutrophil adhesiveness to inflamed muscle venules. Intravital microscopy analysis allowed us to conclude that Hck and Fgr regulate neither the number of rolling cells nor rolling velocity in neutrophils. However, arrest of hck(-/-)fgr(-/-) neutrophils to >60 microm in diameter venules was reduced. Thus, Hck and Fgr play no role in chemoattractant-induced inside-out beta(2) integrin activation but regulate outside-in signaling-dependent sustained adhesion.
Collapse
Affiliation(s)
- Cinzia Giagulli
- Department of Pathology, Section of General Pathology, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang H, Meng F, Chu CL, Takai T, Lowell CA. The Src family kinases Hck and Fgr negatively regulate neutrophil and dendritic cell chemokine signaling via PIR-B. Immunity 2005; 22:235-46. [PMID: 15723811 DOI: 10.1016/j.immuni.2005.01.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Revised: 12/17/2004] [Accepted: 01/05/2005] [Indexed: 10/25/2022]
Abstract
In classical descriptions of leukocyte chemokine signaling, Src family kinases are thought to function in a positive fashion by coupling receptor associated Galpha subunits to downstream mitogen activated protein (MAP) kinase activation. However, neutrophils derived from hck-/-fgr-/- mice and dendritic cells (DCs) from fgr-/- animals manifested significantly higher intracellular signaling (Ca2+ flux, MAP kinase activation, actin polymerization) and functional responses (chemotaxis in vitro and migration in vivo) to a number of different chemokines. These kinases may mediate their effect through the inhibitory receptor PIR-B since neutrophils and DCs from pir-b-/- mice were also hyperresponsive to chemokine stimulation. In wild-type (wt) cells dephosphorylation of PIR-B was associated with maximal chemokine signaling, whereas in hck-/-fgr-/- cells PIR-B was unphosphorylated. These data support a model in which the Src family kinases Hck and Fgr function as negative regulators of myeloid cell chemokine signaling by maintaining the tonic phosphorylation of PIR-B.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Laboratory Medicine , University of California, San Francisco , San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
20
|
Wong CK, Ip WK, Lam CWK. Biochemical assessment of intracellular signal transduction pathways in eosinophils: implications for pharmacotherapy. Crit Rev Clin Lab Sci 2004; 41:79-113. [PMID: 15077724 DOI: 10.1080/10408360490427624] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Allergic asthma and allergic rhinitis are inflammatory diseases of the airway. Cytokines and chemokines produced by T helper (Th) type 2 cells (GM-CSF, IL-4, IL-5, IL-6, IL-9, IL-10 and IL-13), eotaxin, transforming growth factor-beta, and IL-11 orchestrate most pathophysiological processes of the late-phase allergic reaction, including the recruitment, activation, and delayed apoptosis of eosinophils, as well as eosinophilic degranulation to release eosinophilic cationic protein, major basic protein, and eosinophil-derived neurotoxin. These processes are regulated through an extensive network of interactive intracellular signal transduction pathways that have been intensively investigated recently. Our present review updates the cytokine and chemokine-mediated signal transduction mechanisms including the RAS-RAF-mitogen-activated protein kinases, Janus kinases (signal transducers and activators of transcription), phosphatidylinositol 3-kinase, nuclear factor-kappa B, activator protein-1, GATA, and cyclic AMP-dependent pathways, and describes the roles of different signaling pathways in the regulation of eosinophil differentiation, recruitment, degranulation, and expression of adhesion molecules. We shall also discuss different biochemical methods for the assessment of various intracellular signal transduction molecules, and various antagonists of receptors, modulators, and inhibitors of intracellular signaling molecules, many of which are potential therapeutic agents for treating allergic diseases.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong
| | | | | |
Collapse
|
21
|
Choi WS, Hiragun T, Lee JH, Kim YM, Kim HP, Chahdi A, Her E, Han JW, Beaven MA. Activation of RBL-2H3 mast cells is dependent on tyrosine phosphorylation of phospholipase D2 by Fyn and Fgr. Mol Cell Biol 2004; 24:6980-92. [PMID: 15282299 PMCID: PMC479740 DOI: 10.1128/mcb.24.16.6980-6992.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Both phospholipase D1 (PLD1) and PLD2 regulate degranulation when RBL-2H3 cells are stimulated via the immunoglobulin E receptor, Fc epsilon RI. However, the activation mechanism for PLD2 is unclear. As reported here, PLD2 but not PLD1 is phosphorylated through the Src kinases, Fyn and Fgr, and this phosphorylation appears to regulate PLD2 activation and degranulation. For example, only hemagglutinin-tagged PLD2 was tyrosine phosphorylated in antigen-stimulated cells that had been made to express HA-PLD1 and HA-PLD2. This phosphorylation was blocked by a Src kinase inhibitor or by small interfering RNAs directed against Fyn and Fgr and was enhanced by overexpression of Fyn and Fgr but not by other Src kinases. The phosphorylation and activity of PLD2 were further enhanced by the tyrosine phosphatase inhibitor, Na(3)VO(4). Mutation of PLD2 at tyrosines 11, 14, 165, or 470 partially impaired, and mutation of all tyrosines blocked, PLD2 phosphorylation and activation, although two of these mutations were detrimental to PLD2 function. PLD2 phosphorylation preceded degranulation, both events were equally sensitive to inhibition of Src kinase activity, and both were enhanced by coexpression of PLD2 and the Src kinases. The findings provide the first description of a mechanism for activation of PLD2 in a physiological setting and of a role for Fgr in Fc epsilon RI-mediated signaling.
Collapse
Affiliation(s)
- Wahn Soo Choi
- Laboratory of Molecular Immunology, National, Heart, Lung, and Blood Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wong WSF, Leong KP. Tyrosine kinase inhibitors: a new approach for asthma. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:53-69. [PMID: 15023350 DOI: 10.1016/j.bbapap.2003.11.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 11/12/2003] [Indexed: 01/21/2023]
Abstract
The pathogenesis of allergic asthma involves the interplay of inflammatory cells and airway-resident cells, and of their secreted mediators including cytokines, chemokines, growth factors and inflammatory mediators. Receptor tyrosine kinases are important for the pathogenesis of airway remodeling. Activation of epidermal growth factor (EGF) receptor kinase and platelet-derived growth factor (PDGF) receptor kinase leads to hyperplasia of airway smooth muscle cells, epithelial cells and goblet cells. Stimulation of non-receptor tyrosine kinases (e.g. Lyn, Lck, Syk, ZAP-70, Fyn, Btk, Itk) is the earliest detectable signaling response upon antigen-induced immunoreceptor activation in inflammatory cells. Cytokine receptor dimerization upon ligand stimulation induces activation of Janus tyrosine kinases (JAKs), leading to recruitment and phosphorylation of signal transducer and activator of transcription (STAT) for selective gene expression regulation. Activation of chemokine receptors can trigger JAK-STAT pathway, Lck, Fyn, Lyn, Fgr, and Syk/Zap-70 to induce chemotaxis of inflammatory cells. Inhibitors of tyrosine kinases have been shown in vitro to block growth factor-induced hyperplasia of airway-resident cells; antigen-induced inflammatory cell activation and cytokine synthesis; cytokine-mediated pro-inflammatory gene expression in inflammatory and airway cells; and chemokine-induced chemotaxis of inflammatory cells. Recently, anti-inflammatory effects of tyrosine kinase inhibitors (e.g. genistein, tyrphostin AG213, piceatannol, tyrphostin AG490, WHI-P97, WHI-P131, Syk antisense) in animal models of allergic asthma have been reported. Therefore, development of inhibitors of tyrosine kinases can be a very attractive strategy for the treatment of asthma.
Collapse
Affiliation(s)
- W S Fred Wong
- Department of Pharmacology, Faculty of Medicine, National University of Singapore, MD2 18 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
23
|
Caveggion E, Continolo S, Pixley FJ, Stanley ER, Bowtell DDL, Lowell CA, Berton G. Expression and tyrosine phosphorylation of Cbl regulates macrophage chemokinetic and chemotactic movement. J Cell Physiol 2003; 195:276-89. [PMID: 12652654 DOI: 10.1002/jcp.10236] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Primary macrophages isolated from hck(-/-)fgr(-/-) mice display altered morphology and F-actin cytoskeletal structures and reduced migration. The ability of phorbol myristyl acetate (PMA), a protein kinase C activator that has been reported to increase macrophage spreading and carcinoma cell motility, to rescue these hck(-/-)fgr(-/-) defects was tested. Although PMA-treated wild-type and hck(-/-)fgr(-/-) macrophages exhibited a similar flattened, spread phenotype, PMA did not rescue the hck(-/-)fgr(-/-) macrophage migration defect. Instead, both PMA-treated wild type and hck(-/-)fgr(-/-) macrophages were defective in spontaneous and chemotactic migration and tyrosine phosphorylation of the Cbl protooncoprotein was decreased in both. Moreover, c-cbl(-/-) macrophages displayed the same impairment of motility as hck(-/-)fgr(-/-) macrophages and a similar morphology with less polarization and more dorsal ruffling than wild-type macrophages. As Hck and Fgr expression and activity were not decreased in c-cbl(-/-) macrophages, these results suggest that Cbl is likely to be an important downstream mediator of the Src family kinase-regulated macrophage motility pathway.
Collapse
Affiliation(s)
- Elena Caveggion
- Department of Pathology, Section of General Pathology, University of Verona, Verona, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Zimmermann N, Hershey GK, Foster PS, Rothenberg ME. Chemokines in asthma: cooperative interaction between chemokines and IL-13. J Allergy Clin Immunol 2003; 111:227-42; quiz 243. [PMID: 12589338 DOI: 10.1067/mai.2003.139] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The asthmatic response is characterized by elevated production of IgE, cytokines, chemokines, mucus hypersecretion, air-way obstruction, eosinophilia, and enhanced airway hyperreactivity to spasmogens. Clinical and experimental investigations have demonstrated a strong correlation between the presence of CD4+ TH2 cells, eosinophils, and disease severity, suggesting an integral role for these cells in the pathophysiology of asthma. TH2 cells are thought to induce asthma through the secretion of an array of cytokines (IL-4, -5, -9 -1),-13, -25) that activate inflammatory and residential effector pathways both directly and indirectly. In particular, IL-4 and IL-13 are produced at elevated levels in the asthmatic lung and are thought to be central regulators of many of the hallmark features of the disease. The potency of IL-13 in promoting airway hyperreactivity and mucus hypersecretion and the ability of IL-13 blockade to abrogate several critical aspects of experimental asthma have led to the view that this is a critical cytokine in disease pathogenesis. Extensive studies have also demonstrated a central role for chemokines in orchestrating multiple aspects of the asthmatic response. Chemokines are potent leukocyte chemoattractants, cellular activating factors, and histamine-releasing factors, which makes them particularly important in the pathogenesis of allergic inflammation. In particular, the eotaxin subfamily of chemokines and their receptor CC chemokine receptor 3 have emerged as central regulators of the asthmatic response. Recent studies have provided an integrated mechanism by which to explain the coordinate interaction between IL-13 and chemokines in the pathogenesis of asthma. In this regard, chemokines and IL-13 are attractive new therapeutic targets for the treatment of allergic disease. This article focuses on recently emerging data pertaining to the importance of chemokines, especially eotaxins, in promoting IL-13-associated allergic lung responses, as well as the potential for pharmacologically targeting these pathways.
Collapse
Affiliation(s)
- Nives Zimmermann
- Divisions of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | | | | |
Collapse
|
25
|
Choi EN, Choi MK, Park CS, Chung IY. A parallel signal-transduction pathway for eotaxin- and interleukin-5-induced eosinophil shape change. Immunology 2003; 108:245-56. [PMID: 12562334 PMCID: PMC1782875 DOI: 10.1046/j.1365-2567.2003.01565.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-5 (IL-5) and eotaxin are the most important cytokines/chemokines responsible for regulating eosinophil locomotion and are known to play a co-operative role in the selective recruitment of eosinophils to inflamed tissues. Following exposure to chemoattractants, eosinophils undergo a series of events, including reorganization of actin filaments and subsequent rapid shape changes, culminating in chemotaxis. In this study we examined the signalling pathways for eosinophil shape change regulated by eotaxin and IL-5, primarily using a gated autofluorescence/forward-scatter assay. Eotaxin and IL-5 were able to elicit shape change with peaks at 10 and 60 min, respectively, and IL-5 triggered the shape change more efficiently than eotaxin. The pharmacological inhibitors of mitogen-activated protein kinase (MAP kinase) and p38 blocked both eotaxin- and IL-5-induced eosinophil shape change in a dose-dependent manner. In addition, depletion of intracellular Ca2+ and inhibition of protein kinase A (PKA) strongly reduced eosinophil shape change. In contrast, even when used at high concentrations, protein tyrosine kinase (PTK) inhibitors caused only a slight reduction in the ability to change shape. However, treatment with protein kinase C (PKC) inhibitors, such as GF109203X and staurosporine, resulted in a striking inhibition of eosinophil shape change by IL-5, but not eotaxin. Data from the inhibition of activation and chemotaxis of the extracellular signal-regulated kinases (ERK1/2) by the PKC inhibitors were also consistent with findings from the experiments on shape change. Collectively, two eosinophil-selective cytokines/chemokines probably regulate eosinophil shape change via a largely overlapping signalling pathway, with involvement of PKC restricted to the IL-5 signal alone.
Collapse
Affiliation(s)
- Eun Nam Choi
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
| | - Moon Kyung Choi
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
| | - Choon-Sik Park
- Division of Allergy and Respiratory Medicine, Soonchunhyang University HospitalBucheon, South Korea
| | - Il Yup Chung
- Department of Biochemistry and Molecular Biology, Hanyang UniversityAnsan, South Korea
- Department of Internal Medicine, Soonchunhyang University HospitalBucheon, South Korea
| |
Collapse
|
26
|
Zimmermann N, Rothenberg ME. Receptor internalization is required for eotaxin-induced responses in human eosinophils. J Allergy Clin Immunol 2003; 111:97-105. [PMID: 12532103 DOI: 10.1067/mai.2003.3] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND CC chemokine receptor 3 (CCR3) is a major chemokine receptor involved in regulating eosinophil trafficking, and therefore the elucidation of ligand-induced CCR3 events has important implications in understanding the biologic and pathologic properties of eosinophils. After ligand binding to CCR3, cellular signals include stimulatory (ie, calcium mobilization, actin polymerization, shape change, and chemotaxis) and inhibitory (ie, desensitization of the receptor) events. We have previously demonstrated that CCR3 undergoes rapid and prolonged ligand-induced internalization. OBJECTIVE Here we explore the role of internalization in downstream cellular processes, including shape change, actin polymerization, calcium mobilization, and desensitization. METHODS Peripheral blood-derived human eosinophils were pretreated with 2 mechanistically distinct inhibitors of internalization, sucrose and phenylarsine oxide, and functional responses were monitored. RESULTS We first demonstrate that ligand-induced internalization is required for chemokine-induced eosinophil shape change. To define which signaling components upstream of eosinophil shape change required internalization, we next studied the role of internalization in calcium mobilization and actin polymerization. Sucrose and phenylarsine oxide pretreatment inhibited actin polymerization, implicating receptor internalization in this early response. In contrast, calcium mobilization was not inhibited by blockade of internalization. Finally, we were interested in testing the role of internalization in receptor desensitization. We first demonstrated that preincubation with eotaxin induced a dose-dependent desensitization in eotaxin-induced eosinophil transepithelial migration. However, this phenomenon was not inhibited by blockade of internalization. CONCLUSION These results establish that CCR3 internalization is critically involved in select eosinophil functional responses (ie, cellular shape change and actin polymerization) but not desensitization and calcium mobilization.
Collapse
Affiliation(s)
- Nives Zimmermann
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
27
|
Cui CH, Adachi T, Oyamada H, Kamada Y, Kuwasaki T, Yamada Y, Saito N, Kayaba H, Chihara J. The role of mitogen-activated protein kinases in eotaxin-induced cytokine production from bronchial epithelial cells. Am J Respir Cell Mol Biol 2002; 27:329-35. [PMID: 12204895 DOI: 10.1165/rcmb.4762] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eotaxin is a critical chemokine eliciting migration of eosinophils and basophils in the pathogenesis of bronchial asthma. Recent studies have shown that the specific receptor for eotaxin, CCR3, is expressed in bronchial epithelial cells. Although mitogen-activated protein (MAP) kinases are involved in diverse cell functions of bronchial epithelial cells, their role in eotaxin signaling is unknown. In this study, we studied the activation and functional relevance of MAP kinases in bronchial epithelial cells stimulated with eotaxin. Eotaxin (1-100 nM) induced tyrosine/threonine phosphorylation and activation of extracellular regulated kinase (ERK) 1/2 and p38 in NCI-H(292) cells and normal human bronchial epithelial cells. The phosphorylation of these MAP kinases was detectable after 30 s, and peaked at 5 min. Eotaxin stimulated production of interleukin-8 and granulocyte macrophage colony-stimulating factor. Pretreatment of Compound X (a specific CCR3 antagonist), pertussis toxin, genistein, and wortmannin reduced the MAP kinase phosphorylation and cytokine production. The eotaxin-induced cytokine production was inhibited by specific inhibitors for MAP/ERK kinase (PD98059) and p38 MAP kinase (SB202190). These results suggest that both ERK1/2 and p38 MAP kinase activated by eotaxin have a critical role in the pathogenesis of asthma.
Collapse
Affiliation(s)
- Chang-Hao Cui
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Biswas SK, Sodhi A. Tyrosine phosphorylation-mediated signal transduction in MCP-1-induced macrophage activation: role for receptor dimerization, focal adhesion protein complex and JAK/STAT pathway. Int Immunopharmacol 2002; 2:1095-107. [PMID: 12349947 DOI: 10.1016/s1567-5769(02)00055-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monocyte chemoattractant protein-1 (MCP-1) plays a crucial role in the recruitment of monocytes/macrophages associated with several inflammatory diseases and malignancies. The early signal transduction mechanism of macrophage activation in response to in vitro MCP-1 treatment was investigated. The treatment of murine peritoneal macrophages with MCP-1 resulted in a significant enhancement in the tyrosine phosphorylation of cellular proteins, which peaked within 2.5-5 min of MCP-1 treatment. The MCP-1-induced tyrosine phosphorylation of cellular proteins involved the phosphorylation of non-receptor tyrosine kinases Lyn, JAK2, cytoskeletal binding protein paxillin and downstream transcription factors STAT3 and STAT5. Immunoflourescence microscopical studies on MCP-1-treated macrophages showed the cellular localization of the tyrosine-phosphorylated proteins and bundling of actin filaments at the focal adhesion points. MCP-1-induced association of focal adhesion proteins Lyn/phospho-paxillin with CCR2 was also observed by co-precipitation. Inhibitor studies with genistein on MCP-1-induced macrophage TNF and IL-1 production additionally supported the role of protein tyrosine phosphorylation in the process of macrophage activation with MCP-1. Present investigations suggest that the early events in the tyrosine kinase signal transduction pathway for macrophage activation in response to MCP-1 probably involve (1) CCR2 receptor dimerization, (2) enhanced tyrosine phosphorylation and assembly of focal adhesion complex, and (3) the activation of JAK/STAT pathway in the murine peritoneal macrophages.
Collapse
|
29
|
Inngjerdingen M, Torgersen KM, Maghazachi AA. Lck is required for stromal cell-derived factor 1 alpha (CXCL12)-induced lymphoid cell chemotaxis. Blood 2002; 99:4318-25. [PMID: 12036857 DOI: 10.1182/blood.v99.12.4318] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stromal cell-derived factor 1alpha (CXCL12) induces chemotaxis of lymphocytes through its receptor CXCR4. We examined the role of nonreceptor tyrosine kinases in CXCL12-induced chemotaxis of T cells and natural killer (NK) cells. Damnacanthal, a specific Lck inhibitor, but not the Syk inhibitor piceatannol, inhibited CXCL12-induced chemotaxis of both lymphocyte subsets. Similarly, damnacanthal was shown to inhibit CXCL12-induced chemotaxis of the Jurkat T-cell line. Stimulating T and NK cells with CXCL12 increased both the tyrosine phosphorylation and the kinase activity of Lck. A direct involvement of Lck in CXCL12-induced chemotaxis was demonstrated in the Lck-deficient Jurkat-derived cell line JCaM1.6. Although JCaM1.6 cells express CXCR4, no significant migration was detected after CXCL12 stimulation. Reconstitution with wild-type Lck restored both CXCL12-induced chemotaxis and Lck activation. Furthermore, cotransfection of wild-type Lck with C-terminal Src kinase (Csk) into JCaM1.6 failed to restore the chemotactic response induced by CXCL12. Finally, by targeting critical residues in the Src homology-2 (SH2) or SH3 domains of Lck, we observed that the SH3 domain is important for the function of Lck in CXCL12-mediated chemotaxis. Together, these results suggest a role for Lck in CXCL12-induced signaling pathways leading to lymphocyte chemotaxis.
Collapse
Affiliation(s)
- Marit Inngjerdingen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway.
| | | | | |
Collapse
|
30
|
Vicentini L, Mazzi P, Caveggion E, Continolo S, Fumagalli L, Lapinet-Vera JA, Lowell CA, Berton G. Fgr deficiency results in defective eosinophil recruitment to the lung during allergic airway inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:6446-54. [PMID: 12055264 DOI: 10.4049/jimmunol.168.12.6446] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Using a mouse model of allergic lung inflammation, we found that mice deficient of Fgr, a Src family tyrosine kinase highly expressed in myelomonocytic cells, fail to develop lung eosinophilia in response to repeated challenge with aerosolized OVA. Both tissue and airway eosinophilia were markedly reduced in fgr(-/-) mice, whereas mice with the sole deficiency of Hck, another Src family member, responded normally. Release of allergic mediators, such as histamine, IL-4, RANTES/CCL5, and eotaxin/CCL11, in the airways of OVA-treated animals was equal in wild-type and fgr(-/-) mice. However, lung eosinophilia in Fgr-deficient mice correlated with a defective accumulation of GM-CSF and IL-5 in the airways, whereas secretion of these cytokines by spleen cells in response to OVA was normal. Examination of mRNA expression in whole lung tissue allowed us to detect comparable expression of transcripts for eotaxin/CCL11, macrophage-inflammatory protein-1 alpha/CCL3, macrophage-inflammatory protein-1 beta/CCL4, monocyte chemoattractant protein-1/CCL2, TCA-3/CCL1, IL-4, IL-10, IL-2, IL-3, IL-9, IL-15, and IFN-gamma in OVA-sensitized wild-type and fgr(-/-) mice. In contrast, the increase in IL-5 and IL-13 mRNA expression was lower in fgr(-/-) compared with wild-type mice. These findings suggest that deficiency of Fgr results in a marked reduction of lung eosinophilia and the establishment of a positive feedback loop based on autocrine secretion of eosinophil-active cytokines. These results identify Fgr as a novel pharmacological target to control allergic inflammation.
Collapse
Affiliation(s)
- Lucia Vicentini
- Department of Pathology, Section of General Pathology, University of Verona, Italy
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Biswas SK, Sodhi A. In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. J Interferon Cytokine Res 2002; 22:527-38. [PMID: 12060491 DOI: 10.1089/10799900252982007] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The CC chemokine monocyte chemotactic protein-1 (MCP-1) is a major mediator of monocyte/macrophage infiltration at the inflammatory sides under both physiologic and pathologic conditions. We report the ability of MCP-1 to activate murine peritoneal macrophages in vitro for enhanced expression of CD11b, macrophage-mediated cytotoxicity, and production of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1). The macrophages treated with MCP-1 in vitro displayed significant cytolytic activity toward TNF-alpha-sensitive L929 cells in a dose-dependent manner. The macrophage-mediated L929 cytotoxicity was blocked in the presence of anti-TNF-alpha antibodies, suggesting the involvement of TNF-alpha. Production of TNF-alpha and IL-1 macrophages on MCP-1 treatment was maximum at 24 h of incubation with 100 ng/ml MCP-1. Enhanced TNF-alpha and IL-1beta mRNA expression was also demonstrated by RT-PCR, which revealed transcription of interferon gamma (IFN-gamma), IL-12, and related T cell-specific chemokine genes, KC and IP-10, in the MCP-1-treated macrophages. The pharmacologic inhibitors pertussis toxin (100 ng/ml), wortmannin (200 ng/ml), H-7 (10 microM), PD98059 (25 microM), and genistein (10 microg/ml) significantly inhibited TNF-alpha and IL-1 production in the MCP1-treated macrophages, suggesting the involvement of G-proteins, phosphoinositol-3-kinase (PI3K), protein kinase C, p42/44 MAPK, and tyrosine kinases in this process.
Collapse
Affiliation(s)
- Subhra K Biswas
- School of Biotechnology, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
32
|
Adachi T, Vita R, Sannohe S, Stafford S, Alam R, Kayaba H, Chihara J. The functional role of rho and rho-associated coiled-coil forming protein kinase in eotaxin signaling of eosinophils. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:4609-15. [PMID: 11591790 DOI: 10.4049/jimmunol.167.8.4609] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The CC chemokine eotaxin plays a pivotal role in local accumulation of eosinophils. Very little is known about the eotaxin signaling in eosinophils except the activation of the mitogen-activated protein (MAP) kinase family. The p21 G protein Rho and its substrate Rho-associated coiled-coil forming protein kinase (ROCK) regulate the formation of stress fibers and focal adhesions. In the present study, we studied the functional relevance of Rho and ROCK in eosinophils using the ROCK inhibitor (Y-27632) and exoenzyme C3, a specific Rho inhibitor. Eotaxin stimulates activation of Rho A and ROCK II in eosinophils. Exoenzyme C3 almost completely inhibited the ROCK activity, indicating that ROCK is downstream of Rho. We then examined the role of Rho and ROCK in eosinophil chemotaxis. The eotaxin-induced eosinophil chemotaxis was significantly inhibited by exoenzyme C3 or Y-27632. Because extracellular signal-regulated kinase (ERK)1/2 and p38 MAP kinases are activated by eotaxin and are critical for eosinophil chemotaxis, we investigated whether Rho and ROCK are upstream of these MAP kinases. C3 partially inhibited eotaxin-induced phosphorylation of ERK1/2 but not p38. In contrast, neither ERK1/2 nor p38 phosphorylation was abrogated by Y-27632. Both C3 and Y-27632 reduced reactive oxygen species production from eosinophils. We conclude that both Rho and ROCK are important for eosinophil chemotaxis and reactive oxygen species production. There is a dichotomy of downstream signaling pathways of Rho, namely, Rho-ROCK and Rho-ERK pathways. Taken together, eosinophil chemotaxis is regulated by multiple signaling pathways that involve at least ROCK, ERK, and p38 MAP kinase.
Collapse
Affiliation(s)
- T Adachi
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Lee JH, Kaminski N, Dolganov G, Grunig G, Koth L, Solomon C, Erle DJ, Sheppard D. Interleukin-13 induces dramatically different transcriptional programs in three human airway cell types. Am J Respir Cell Mol Biol 2001; 25:474-85. [PMID: 11694453 DOI: 10.1165/ajrcmb.25.4.4522] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Interleukin (IL)-13, a cytokine released by T lymphocytes during immediate hypersensitivity responses, is a central mediator of asthma. Because IL-13 induces phenotypic features of asthma in mice deficient in T and B lymphocytes, it is likely that this cytokine contributes to the development of asthma by acting directly on resident airway cells. To analyze the global effects of IL-13 on gene expression in airway cells that could contribute to the phenotypic features of asthma, we used Genechip HuGene FL arrays (Affymetrix, Santa Clara, CA) that contain probes for approximately 6,500 human genes. Despite activating a common signaling pathway, IL-13 induced dramatically different patterns of gene expression in primary cultures of airway epithelial cells, airway smooth muscle cells, and lung fibroblasts, with little overlap among cell types. The most prominent effects of IL-13 were on airway smooth muscle, but several genes induced in airway epithelial cells and fibroblasts are also candidates that may contribute to phenotypic features of asthma. These results suggest that the in vivo response to IL-13 in the airways likely results from a combination of distinct effects on each of several resident airway cell types.
Collapse
Affiliation(s)
- J H Lee
- Lung Biology Center, Cardiovascular Research Institute, University of California-San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Bandeira-Melo C, Herbst A, Weller PF. Eotaxins. Contributing to the diversity of eosinophil recruitment and activation. Am J Respir Cell Mol Biol 2001; 24:653-7. [PMID: 11415928 DOI: 10.1165/ajrcmb.24.6.f209] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- C Bandeira-Melo
- Department of Medicine, Harvard Thorndike Laboratories, Charles A. Dana Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
35
|
Stantchev TS, Broder CC. Human immunodeficiency virus type-1 and chemokines: beyond competition for common cellular receptors. Cytokine Growth Factor Rev 2001; 12:219-43. [PMID: 11325604 DOI: 10.1016/s1359-6101(00)00033-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The chemokines and their receptors have been receiving exceptional attention in recent years following the discoveries that some chemokines could specifically block human immunodeficiency virus type 1 (HIV-1) infection and that certain chemokine receptors were the long-sought coreceptors which, along with CD4, are required for the productive entry of HIV-1 and HIV-2 isolates. Several chemokine receptors or orphan chemokine receptor-like molecules can support the entry of various viral strains, but the clinical significance of the CXCR4 and CCR5 coreceptors appear to overshadow a critical role for any of the other coreceptors and all HIV-1 and HIV-2 strains best employ one or both of these coreceptors. Binding of the HIV-1 envelope glycoprotein gp120 subunit to CD4 and/or an appropriate chemokine receptor triggers conformational changes in the envelope glycoprotein oligomer that allow it to facilitate the fusion of the viral and host cell membranes. During these interactions, gp120 appears to be capable of inducing a variety of signaling events, all of which are still not defined in detail. In addition, the more recently observed dichotomous effects, of both inhibition and enhancement, that chemokines and their receptor signaling events elicit on the HIV-1 entry and replication processes has once again highlighted the intricate and complex balance of factors that govern the pathogenic process. Here, we will review and discuss these new observations summarizing the potential significance these processes may have in HIV-1 infection. Understanding the complexities and significance of the signaling processes that the chemokines and viral products induce may substantially enhance our understanding of HIV-1 pathogenesis, and perhaps facilitate the discovery of new ways for the prevention and treatment of HIV-1 disease.
Collapse
Affiliation(s)
- T S Stantchev
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| | | |
Collapse
|
36
|
Barlic J, Andrews JD, Kelvin AA, Bosinger SE, DeVries ME, Xu L, Dobransky T, Feldman RD, Ferguson SS, Kelvin DJ. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat Immunol 2000; 1:227-33. [PMID: 10973280 DOI: 10.1038/79767] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chemoattractant-stimulated granule release from neutrophils, basophils and eosinophils is critical for the innate immune response against infectious bacteria. Interleukin 8 (IL-8) activation of the chemokine receptor CXCRI was found to stimulate rapid formation of beta-arrestin complexes with Hck or c-Fgr. Formation of beta-arrestin-Hck complexes led to Hck activation and trafficking of the complexes to granule-rich regions. Granulocytes expressing a dominant-negative beta-arrestin-mutant did not release granules or activate tyrosine kinases after IL-8 stimulation. Thus, beta-arrestins regulate chemokine-induced granule exocytosis, indicating a broader role for beta-arrestins in the regulation of cellular functions than was previously suspected.
Collapse
Affiliation(s)
- J Barlic
- Laboratory of Molecular Immunology and Inflammation, John P. Robarts Research Institute, 1400 Western Road, London, Ontario, Canada, N6G 2V4
| | | | | | | | | | | | | | | | | | | |
Collapse
|