1
|
Chan HW, Kuo DY, Shueng PW, Chuang HY. Visualizing the Tumor Microenvironment: Molecular Imaging Probes Target Extracellular Matrix, Vascular Networks, and Immunosuppressive Cells. Pharmaceuticals (Basel) 2024; 17:1663. [PMID: 39770505 PMCID: PMC11676442 DOI: 10.3390/ph17121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
The tumor microenvironment (TME) is a critical factor in cancer progression, driving tumor growth, immune evasion, therapeutic resistance, and metastasis. Understanding the dynamic interactions within the TME is essential for advancing cancer management. Molecular imaging provides a non-invasive, real-time, and longitudinal approach to studying the TME, with techniques such as positron emission tomography (PET), magnetic resonance imaging (MRI), and fluorescence imaging offering complementary strengths, including high sensitivity, spatial resolution, and intraoperative precision. Recent advances in imaging probe development have enhanced the ability to target and monitor specific components of the TME, facilitating early cancer diagnosis, therapeutic monitoring, and deeper insights into tumor biology. By integrating these innovations, molecular imaging offers transformative potential for precision oncology, improving diagnostic accuracy and treatment outcomes through a comprehensive assessment of TME dynamics.
Collapse
Affiliation(s)
- Hui-Wen Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| | - Deng-Yu Kuo
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
| | - Pei-Wei Shueng
- Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan
| | - Hui-Yen Chuang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Li-Nong St., Beitou Dist., Taipei City 112, Taiwan;
| |
Collapse
|
2
|
Liu J, Bai Y, Liu X, Zhou B, Sun P, Wang Y, Ju S, Zhou C, Wang C, Yao W, Yang H, Jiang X, Yang L, Wang D, Zheng C. Enhanced efficacy of combined VEGFR peptide-drug conjugate and anti-PD-1 antibody in treating hepatocellular carcinoma. Sci Rep 2024; 14:21728. [PMID: 39289512 PMCID: PMC11408695 DOI: 10.1038/s41598-024-72907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
This study aimed to design a VEGFR-targeting peptide-drug conjugate with the ability to decrease tumor burden and suppress tumor angiogenesis, and to further evaluate the therapeutic effect of anti-PD-1 antibody in HCC therapy. A VEGFR-targeting peptide VEGF125 - 136 (QR) was conjugated with a lytic peptide (KLU) to form a peptide-drug conjugate QR-KLU. And the efficacy of QR-KLU in combination with anti-PD-1 antibody for HCC therapy in vivo and in vitro were evaluated. QR-KLU inhibited the proliferation and migration of mouse HCC cell line (Hepa1-6) cells under normoxic and hypoxic conditions in a dose-dependent manner. In the subcutaneous Hepa1-6 tumor model, QR-KLU combined with the anti-PD-1 antibody substantially inhibited tumor growth, promoted tumor necrosis, and prolonged the survival time of tumor-bearing mice. QR-KLU substantially inhibited hypoxia-induced expression of VEGF, promoted tumor vascular normalization, and increased cluster of differentiation 8+ (CD8+) T cell infiltration in the tumor. In addition, QR-KLU and anti-PD-1 antibody demonstrated a strong synergistic effect in promoting the activation of intratumoral CD8+ T cells, reducing the expression of immune-inhibitory factors, and increasing the expression of immune-stimulatory factors. This study proposed a novel approach for enhancing the efficacy of anti-PD-1 antibody using a VEGFR-targeting peptide-drug conjugate in HCC therapy.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Binqian Zhou
- Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Peng Sun
- MSC Clinical & Technical Solutions, Philips Healthcare, Wuhan, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wei Yao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Huihui Yang
- Wuhan Institute of Shipbuilding Technology, Hubei, 435003, China
| | - Xin Jiang
- Hospital of Honghe State affiliated to Kunming Medical University, Kunming, China
| | - Lian Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
3
|
Namjoo M, Ghafouri H, Assareh E, Aref AR, Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S, Asghari SM. A VEGFB-Based Peptidomimetic Inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK Signaling and Elicits Apoptotic, Antiangiogenic, and Antitumor Activities. Pharmaceuticals (Basel) 2023; 16:906. [PMID: 37375853 DOI: 10.3390/ph16060906] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3, respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In 4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade. The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1 and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that binding regions shared by VEGF family members may be important in developing novel pan-VEGFR inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Mohadeseh Namjoo
- Department of Biology, University Campus II, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Elham Assareh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Hamrahi Mohsen
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran P.O. Box 1841, Iran
| | - Sylvain Broussy
- CiTCoM, UMR CNRS 8038, U1268 INSERM, UFR de Pharmacie, Faculté de Santé, Université Paris Cité, 75006 Paris, France
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| |
Collapse
|
4
|
Wang D, Liu J, Li T, Wang Y, Liu X, Bai Y, Wang C, Ju S, Huang S, Yang C, Zhou C, Zhang Y, Xiong B. A VEGFR targeting peptide-drug conjugate (PDC) suppresses tumor angiogenesis in a TACE model for hepatocellular carcinoma therapy. Cell Death Dis 2022; 8:411. [PMID: 36202781 PMCID: PMC9537177 DOI: 10.1038/s41420-022-01198-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022]
Abstract
Transcatheter arterial chemoembolization (TACE) has become the preferred therapy for unresectable advanced hepatocellular carcinoma (HCC). However, the embolization of tumor-feeding arteries by TACE always leads to hypoxia-related tumor angiogenesis, which limited the therapeutic effect for HCC. In this paper, we used a VEGFR targeting peptide VEGF125 − 136 (QKRKRKKSRYKS) to conjugate with a lytic peptide (KLUKLUKKLUKLUK) to form a peptide-drug conjugate (PDC). We used cell affinity assay to detect the peptide binding ability to VEGFR highly expressed cell lines, and CCK8, cell apoptosis to confirm the cellular toxicity for different cell lines. Meanwhile, we created a VX2 tumor-bearing rabbit model to assess the in vivo anti-tumor effect of the peptide conjugate in combination with TAE. HE staining was used to verify the in vivo safety of the peptide conjugate. IHC was used to assess the anti-angiogenesis and cell toxicity of the peptide conjugate in tumor tissues. The peptide conjugate could not only target VEGFR in cell surface and inhibit VEGFR function, but also have potent anti-cancer effect. We luckily found the peptide conjugate showed potent cytotoxicity for liver cancer cell Huh7 (IC50 7.3 ± 0.74 μM) and endothelial cell HUVEC (IC50 10.7 ± 0.292 μM) and induced cell apoptosis of these two cell lines. We also found the peptide conjugate inhibited cell migration of HUVEC through wound healing assay. Besides, these peptides also showed better in vivo anti-tumor effect than traditional drug DOX through TACE in VX2 rabbit tumor model, and efficiently inhibit angiogenesis in tumor tissues with good safety. In conclusion, our work may provide an alternative option for clinical HCC therapy via TACE combination. Schematic presentation of the design of VEGFR targeting peptide conjugate (QR-KLU) and the antineoplastic efficacy of peptide QR-KLU in vitro and in vivo. ![]()
Collapse
Affiliation(s)
- Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Tongqiang Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chaoyang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Songjiang Huang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chongtu Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Chen Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China.
| | - Bin Xiong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China. .,Department of Interventional Radiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| |
Collapse
|
5
|
Martin L, Bouvet P, Chounlamountri N, Watrin C, Besançon R, Pinatel D, Meyronet D, Honnorat J, Buisson A, Salin PA, Meissirel C. VEGF counteracts amyloid-β-induced synaptic dysfunction. Cell Rep 2021; 35:109121. [PMID: 33979625 DOI: 10.1016/j.celrep.2021.109121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/04/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
The vascular endothelial growth factor (VEGF) pathway regulates key processes in synapse function, which are disrupted in early stages of Alzheimer's disease (AD) by toxic-soluble amyloid-beta oligomers (Aβo). Here, we show that VEGF accumulates in and around Aβ plaques in postmortem brains of patients with AD and in APP/PS1 mice, an AD mouse model. We uncover specific binding domains involved in direct interaction between Aβo and VEGF and reveal that this interaction jeopardizes VEGFR2 activation in neurons. Notably, we demonstrate that VEGF gain of function rescues basal synaptic transmission, long-term potentiation (LTP), and dendritic spine alterations, and blocks long-term depression (LTD) facilitation triggered by Aβo. We further decipher underlying mechanisms and find that VEGF inhibits the caspase-3-calcineurin pathway responsible for postsynaptic glutamate receptor loss due to Aβo. These findings provide evidence for alterations of the VEGF pathway in AD models and suggest that restoring VEGF action on neurons may rescue synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Laurent Martin
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Pauline Bouvet
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Naura Chounlamountri
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Chantal Watrin
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Roger Besançon
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Delphine Pinatel
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - David Meyronet
- Université Claude Bernard Lyon 1, 69000 Lyon, France; Cancer Research Center of Lyon, Cancer Cell Plasticity, INSERM U1052, CNRS UMR5286, 69000 Lyon, France; Centre de Pathologie et de Neuropathologie Est, Hospices Civils de Lyon 69000 Lyon, France
| | - Jérôme Honnorat
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France
| | - Alain Buisson
- GIN, INSERM U1216, Université Grenoble Alpes, 38000 Grenoble, France
| | - Paul-Antoine Salin
- Université Claude Bernard Lyon 1, 69000 Lyon, France; Lyon Neuroscience Research Center, Forgetting processes and cortical dynamics, INSERM U1028, CNRS UMR5292, 69675 Bron, France
| | - Claire Meissirel
- Institut NeuroMyoGène (INMG), Synaptopathies and Autoantibodies, Institut National de la Santé et de la Recherche Médicale (INSERM), U1217, Centre National de la Recherche Scientifique (CNRS) UMR5310, 69000 Lyon, France; Université Claude Bernard Lyon 1, 69000 Lyon, France.
| |
Collapse
|
6
|
Hu K, Shang J, Xie L, Hanyu M, Zhang Y, Yang Z, Xu H, Wang L, Zhang MR. PET Imaging of VEGFR with a Novel 64Cu-Labeled Peptide. ACS OMEGA 2020; 5:8508-8514. [PMID: 32337411 PMCID: PMC7178340 DOI: 10.1021/acsomega.9b03953] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 05/11/2023]
Abstract
Vascular endothelial growth factor receptors (VEGFRs) are well recognized as significant biomarkers of tumor angiogenesis. Herein, we have developed a first-of-its-kind peptide-based VEGFR positron emission tomography (PET) tracer. The novel [64Cu]VEGF125-136 peptide possessed satisfactory radio-characteristics and showed good specificity for the visualization of VEGFR in various mouse models, in which the tumor-specific radioactivity uptake was highly correlated to the VEGFR expression level. Moreover, the tracer showed high tumor uptake (ca. 5.89 %ID/g at 20 min postinjection in B16F10 mice) and excellent pharmacokinetics, achieving the maximum imaging quality within 1 h after injection. These features convey [64Cu]VEGF125-136 as a promising, clinically translatable PET tracer for the imaging of tumor angiogenesis.
Collapse
Affiliation(s)
- Kuan Hu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Jingjie Shang
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Lin Xie
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Hanyu
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yiding Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Zhimin Yang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Hao Xu
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Lu Wang
- Center
of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine
and PET/CT-MRI Center, The First Affiliated
Hospital of Jinan University, Guangzhou 510630, China
| | - Ming-Rong Zhang
- Department
of Advanced Nuclear Medicine Sciences, National
Institute of Radiological Sciences, National Institutes for Quantum
and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
7
|
Jia H, Thelwell C, Dilger P, Bird C, Daniels S, Wadhwa M. Endothelial cell functions impaired by interferon in vitro: Insights into the molecular mechanism of thrombotic microangiopathy associated with interferon therapy. Thromb Res 2018; 163:105-116. [PMID: 29407621 DOI: 10.1016/j.thromres.2018.01.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/22/2017] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Interferon (IFN)-α and IFN-β approved for treatment of chronic hepatitis C viral infection and multiple sclerosis respectively have been linked to thrombotic microangiopathy (TMA) affecting renal function. Since the molecular mechanisms underlying this severe complication remain largely unclear, we aimed to investigate whether IFN affects directly in vitro endothelial cell functions associated with angiogenesis and blood haemostasis, as well as endothelial cell-derived vasodilators of nitric oxide (NO) and prostacyclin. METHODS Proliferation and survival of human umbilical vein endothelial cells (HUVECs) were measured by BrdU incorporation and alamarBlue assays. Angiogenesis was evaluated in co-cultures of HUVECs and human dermal fibroblasts. Fibrinolysis molecules were measured with ELISA. NO and prostacyclin were measured using a fluorescent NO-specific probe and a competitive enzyme immunoassay, respectively. RESULTS HUVEC proliferation was dose-dependently inhibited by IFN-β1a and IFN-β1b, but not by IFN-α2a and IFN-α2b. Consistently, IFN-β1a and IFN-β1b also reduced survival of HUVECs, but this again was not observed with IFN-α. However, both IFN subtypes inhibited VEGF-induced development of capillary-like structures, but the effect of IFN-α was less potent than IFN-β. In addition, both IFN subtypes upregulated interferon inducible protein 10 production from treated co-cultures while suppressing angiogenesis. Furthermore, intracellular NO generation was reduced by IFN-α2a and IFN-β1a, whereas prostacyclin release from HUVECs was not affected by IFN. Importantly, both IFN-β1a- and IFN-β1b-treated HUVECs showed a marked reduction in urokinase-type plasminogen activator release and a much greater secretion of plasminogen activator inhibitor-1 than tissue-type plasminogen activator compared with untreated cells, suggesting decreased fibrinolytic activity. IFN-α, however was less effective in modulating the fibrinolysis system. CONCLUSIONS We demonstrate the detrimental effects of IFN on endothelial cell functions mediated with angiogenesis and fibrinolysis, which could potentially cause the loss of physiological endothelium thromboresistance and facilitate the development of vascular complications in a clinical setting. Mechanistically, our findings have implications for understanding how IFN therapy can foster the development of TMA.
Collapse
Affiliation(s)
- Haiyan Jia
- Section of Cytokines and Growth Factors, Division of Biotherapeutics, National Institute for Biological Standards and Control, United Kingdom.
| | - Craig Thelwell
- Section of Haemostasis, Division of Biotherapeutics, National Institute for Biological Standards and Control, United Kingdom
| | - Paula Dilger
- Section of Cytokines and Growth Factors, Division of Biotherapeutics, National Institute for Biological Standards and Control, United Kingdom
| | - Chris Bird
- Section of Cytokines and Growth Factors, Division of Biotherapeutics, National Institute for Biological Standards and Control, United Kingdom
| | - Sarah Daniels
- Section of Haemostasis, Division of Biotherapeutics, National Institute for Biological Standards and Control, United Kingdom
| | - Meenu Wadhwa
- Section of Cytokines and Growth Factors, Division of Biotherapeutics, National Institute for Biological Standards and Control, United Kingdom
| |
Collapse
|
8
|
Zhang X, Feng S, Liu J, Li Q, Zheng L, Xie L, Li H, Huang D. Novel small peptides derived from VEGF 125-136: potential drugs for radioactive diagnosis and therapy in A549 tumor-bearing nude mice. Sci Rep 2017; 7:4278. [PMID: 28655913 PMCID: PMC5487319 DOI: 10.1038/s41598-017-04513-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022] Open
Abstract
Vascular endothelial growth factor receptor (VEGFR) is a critical factor in tumor angiogenesis and has been considered a potential target for receptor-mediated radionuclide imaging and therapy. In this study, we identified two peptides (QKRKRKKSRKKH and RKRKRKKSRYIVLS) derived from VEGF125-136 that displayed high binding affinities to VEGFR and strong inhibition of A549 cell growth. 99mTc- and 188Re-labeled peptides displayed high labeling efficiency and favorable stability in saline and human plasma. At the cellular level, the radiolabeled peptides could bind with A549 cells and be internalized via the VEGFR-1-mediated pathway. 99mTc/188Re-labeled peptide was significantly accumulated at xenograft tumors, as observed with single-photon emission computed tomography (SPECT) planar imaging. Moreover, 188Re-labeled peptides significantly inhibited tumor growth, prolonged the survival time of the tumor-bearing nude mice and resulted in much more necrotic regions and apoptotic cells in the A549 xenograft tumors. These results demonstrated that these two peptides as candidate drugs for radionuclide imaging and tumor therapy.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Shibin Feng
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Jie Liu
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Qianwei Li
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Lei Zheng
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Laiping Xie
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Hongmin Li
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
| | - Dingde Huang
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
9
|
Grabowska K, Puszko AK, Lipiński PF, Laskowska AK, Wileńska B, Witkowska E, Misicka A. Design, synthesis and in vitro biological evaluation of a small cyclic peptide as inhibitor of vascular endothelial growth factor binding to neuropilin-1. Bioorg Med Chem Lett 2016; 26:2843-2846. [DOI: 10.1016/j.bmcl.2016.04.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/13/2023]
|
10
|
The cellular response to vascular endothelial growth factors requires co-ordinated signal transduction, trafficking and proteolysis. Biosci Rep 2015; 35:BSR20150171. [PMID: 26285805 PMCID: PMC4613718 DOI: 10.1042/bsr20150171] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/18/2015] [Indexed: 01/18/2023] Open
Abstract
VEGFs (vascular endothelial growth factors) are a family of conserved disulfide-linked soluble secretory glycoproteins found in higher eukaryotes. VEGFs mediate a wide range of responses in different tissues including metabolic homoeostasis, cell proliferation, migration and tubulogenesis. Such responses are initiated by VEGF binding to soluble and membrane-bound VEGFRs (VEGF receptor tyrosine kinases) and co-receptors. VEGF and receptor splice isoform diversity further enhances complexity of membrane protein assembly and function in signal transduction pathways that control multiple cellular responses. Different signal transduction pathways are simultaneously activated by VEGFR-VEGF complexes with membrane trafficking along the endosome-lysosome network further modulating signal output from multiple enzymatic events associated with such pathways. Balancing VEGFR-VEGF signal transduction with trafficking and proteolysis is essential in controlling the intensity and duration of different intracellular signalling events. Dysfunction in VEGF-regulated signal transduction is important in chronic disease states including cancer, atherosclerosis and blindness. This family of growth factors and receptors is an important model system for understanding human disease pathology and developing new therapeutics for treating such ailments.
Collapse
|
11
|
Feng S, Zou L, Ni Q, Zhang X, Li Q, Zheng L, Xie L, Li H, Huang D. Modulation, bioinformatic screening, and assessment of small molecular peptides targeting the vascular endothelial growth factor receptor. Cell Biochem Biophys 2015; 70:1913-21. [PMID: 25069724 PMCID: PMC4224745 DOI: 10.1007/s12013-014-0151-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vascular endothelial growth factor (VEGF) and VEGF receptor (VEGFR) are important factors in tumor growth and metastasis. Molecular probes or drugs designed to target VEGF/VEGFR interactions are crucial in tumor molecular imaging and targeted therapy. Bioinformatic methods enable molecular design based on the structure of bio-macromolecules and their interactions. This study was aimed to identify tumor-targeting small-molecule peptides with high affinity for VEGFR using bioinformatics screening. The VEGFR extracellular immunoglobulin-like modules Ig1–Ig3 were used as the target to systematically alter the primary peptide sequence of VEGF125–136. Molecular docking and surface functional group interaction methods were combined in an in silico screen for polypeptides, which in theory, would have higher affinities for VEGFR. In vitro receptor competition binding assays were used to assess the affinity of the putative VEGFR-binding polypeptides. Rhodamine-conjugated peptides were used to label and visualize peptide-binding sites on A549 cells. Using bioinformatic screening, we identified 20 polypeptides with potentially higher affinity for VEGFR. The polypeptides were capable of inhibiting the binding of 125I-VEGF to VEGFR in a dose-dependent manner. The IC50 values of QKRKRKKSRKKH and RKRKRKKSRYIVLS (80 and 185 nmol/L, respectively) were significantly lower than that of VEGF125–136 (464 nmol/L); thus, the affinity of these peptides for VEGFR was 6- and 2.5-fold higher, respectively, than that of VEGF125–136. Rhodamine labeling of A549 cells revealed peptide binding mainly on the plasma membrane and in the cytoplasm. Bioinformatic approaches hold promise for the development of molecular imaging probes. Using this approach, we designed two peptides that showed higher affinity toward VEGFR. These polypeptides may be used as molecular probes or drugs targeting VEGFR, which can be utilized in molecular imaging and targeted therapy of certain tumors.
Collapse
Affiliation(s)
- Shibin Feng
- Department of Nuclear Medicine, Southwest Hospital, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Q, Lao X, Huang J, Zhu Z, Pang L, Tang Y, Song Q, Huang J, Deng J, Deng N, Yang Q, Sengupta AM, Xiong L. Soluble production and function of vascular endothelial growth factor/basic fibroblast growth factor complex peptide. Biotechnol Prog 2015; 31:194-203. [PMID: 25271020 DOI: 10.1002/btpr.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 08/26/2014] [Indexed: 12/31/2022]
Abstract
Vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) are important proangiogenic factors in tumor procession. The autocrine and paracrine bFGF and the VEGF in tumor tissue can promote tumor angiogenesis, tumor growth, and metastasis. A VEGF/bFGF Complex Peptide (VBP3) was designed on the basis of epitope peptides from both VEGF and bFGF to elicit in vivo production of anti-bFGF and anti-VEGF antibodies. In this study, we reported on the production of recombinant VBP3 using high cell density fermentation. Fed-batch fermentation for recombinant VBP3 production was conducted, and the production procedure was optimized in a 10-L fermentor. The fraction of soluble VBP3 protein obtained reached 78% of total recombinant protein output under fed-batch fermentation. Purified recombinant VBP3 could inhibit tumor cell proliferation in vitro and stimulate C57BL/6 mice to produce high titer anti-VEGF and anti-bFGF antibodies in vivo. A melanoma-grafted mouse model and an immunohistochemistry assay showed that tumor growth and tumor angiogenesis were significantly inhibited in VBP3-vaccinated mice. These results demonstrated that soluble recombinant VBP3 could be produced by large-scale fermentation, and the product, with good immunogenicity, elicited production of high-titer anti-bFGF and anti-VEGF antibodies, which could be used as a therapeutic tumor vaccine to inhibit tumor angiogenesis and tumor growth.
Collapse
Affiliation(s)
- Qing Zhang
- The State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang HY, Fan BL, Wu XS, Mu LM, Wang WF, Zhu WL. Overexpression of the chimeric plasmin-resistant VEGF165/VEGF183 (132-158) protein in murine breast cancer induces distinct vascular patterning adjacent to tumors and retarded tumor growth. Mol Med Rep 2014; 11:1483-9. [PMID: 25373557 DOI: 10.3892/mmr.2014.2866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
A chimeric plasmin‑resistant vascular endothelial growth factor (VEGF)165/VEGF183 (132-158) protein, named as VEGF183 (according to the nomenclature of VEGF), designed by a previous study, was demonstrated to have an enhanced affinity for the extracellular matrix (ECM) amongst other bioactivities. However, it is now accepted that mutant VEGFs frequently demonstrate different angiogenic activities and produce different vascular patterning from the parental molecule. The present study hypothesized that VEGF183, due to its enhanced binding affinity to the ECM, would exhibit a different angiogenic activity and produce a different vascular patterning compared to those of VEGF165. Murine breast cancer EMT‑6 cells were manipulated to stably overexpress VEGF165 or VEGF183. These cells were then inoculated intradermally into BALB/c mice in order to monitor the formation of vascular patterning in skin proximal to tumors. In vivo angiogenesis experiments revealed that overexpression of VEGF183 in murine breast cancer cells resulted in irregular, disorganized and dense vascular patterning as well as induced a significant inhibition of tumor growth compared with that of VEGF165. In addition, allograft tumor immunochemical assays of VEGF183‑overexpressing tumors demonstrated significantly lower vascular densities than those of VEGF165‑overexpressing tumors; however, VEGF183 tumors had a significantly enlarged vascular caliber. Conversely, cell wound healing experiments revealed that VEGF183‑overexpressing EMT‑6 cells had significantly decreased migration rates compared with those of VEGF165‑overexpressing EMT‑6 cells. In conclusion, the results of the present study supported the hypothesis that the altered ECM affinity of VEGF induced structural alterations to vasculature. In addition, these results provided a novel insight into VEGF design and indirect evidence for the function of exon 8 in VEGF. [Corrected]
Collapse
Affiliation(s)
- Hui-Yong Zhang
- College of Life Science and Biotechnology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Bing-Lin Fan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xin-Sheng Wu
- Department of Vasculocardiology, Xinxiang 371 Central Hospital, Xinxiang, Henan 453003, P.R. China
| | - Ling-Min Mu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wen-Feng Wang
- College of Life Science and Biotechnology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Wu-Ling Zhu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
14
|
Vempati P, Popel AS, Mac Gabhann F. Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine Growth Factor Rev 2013; 25:1-19. [PMID: 24332926 DOI: 10.1016/j.cytogfr.2013.11.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 12/15/2022]
Abstract
The regulation of vascular endothelial growth factor A (VEGF) is critical to neovascularization in numerous tissues under physiological and pathological conditions. VEGF has multiple isoforms, created by alternative splicing or proteolytic cleavage, and characterized by different receptor-binding and matrix-binding properties. These isoforms are known to give rise to a spectrum of angiogenesis patterns marked by differences in branching, which has functional implications for tissues. In this review, we detail the extensive extracellular regulation of VEGF and the ability of VEGF to dictate the vascular phenotype. We explore the role of VEGF-releasing proteases and soluble carrier molecules on VEGF activity. While proteases such as MMP9 can 'release' matrix-bound VEGF and promote angiogenesis, for example as a key step in carcinogenesis, proteases can also suppress VEGF's angiogenic effects. We explore what dictates pro- or anti-angiogenic behavior. We also seek to understand the phenomenon of VEGF gradient formation. Strong VEGF gradients are thought to be due to decreased rates of diffusion from reversible matrix binding, however theoretical studies show that this scenario cannot give rise to lasting VEGF gradients in vivo. We propose that gradients are formed through degradation of sequestered VEGF. Finally, we review how different aspects of the VEGF signal, such as its concentration, gradient, matrix-binding, and NRP1-binding can differentially affect angiogenesis. We explore how this allows VEGF to regulate the formation of vascular networks across a spectrum of high to low branching densities, and from normal to pathological angiogenesis. A better understanding of the control of angiogenesis is necessary to improve upon limitations of current angiogenic therapies.
Collapse
Affiliation(s)
- Prakash Vempati
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
15
|
Li H, Yang X, Shi W, Ma Z, Feng G, Wang Q, Shen L, Xie C. Protective effects of nimodipine on cerebrovascular function in chronic alcoholic encephalopathy. Int J Mol Med 2013; 33:201-8. [PMID: 24173596 DOI: 10.3892/ijmm.2013.1540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/17/2013] [Indexed: 11/05/2022] Open
Abstract
In the present study, we used chronic gavage administration of alcohol with gradual increases in alcohol concentration and volume to generate a rat model of chronic alcohol intoxication. We measured the changes in biological, behavioral, pathological and vascular injury-related molecular biological markers, and explored the effects of nimodipine intervention on alcohol intoxication. We found that chronic alcohol consumption induced a variety of behavioral abnormalities, accompanied by severe pathological changes in cerebral arterioles, prefrontal cortex and cerebellar tissue, as well as an upregulation of vascular endothelial growth factor (VEGF), leptin receptor (ob-R) and endothelin-1 (ET-1). Treatment with mimodipine for 15 days significantly improved behavioral abnormalities, alleviated the pathological changes in blood vessels and brain tissues, increased VEGF expression, decreased ob-R expression, reduced plasma ET-1 leakage and protected vascular and neuronal functions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Jinan Fourth People's Hospital, Jinan, Shandong, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
García-Aranda MI, González-López S, Santiveri CM, Gagey-Eilstein N, Reille-Seroussi M, Martín-Martínez M, Inguimbert N, Vidal M, García-López MT, Jiménez MA, González-Muñiz R, Pérez de Vega MJ. Helical peptides from VEGF and Vammin hotspots for modulating the VEGF–VEGFR interaction. Org Biomol Chem 2013; 11:1896-905. [DOI: 10.1039/c3ob27312a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Gautier B, Miteva MA, Goncalves V, Huguenot F, Coric P, Bouaziz S, Seijo B, Gaucher JF, Broutin I, Garbay C, Lesnard A, Rault S, Inguimbert N, Villoutreix BO, Vidal M. Targeting the proangiogenic VEGF-VEGFR protein-protein interface with drug-like compounds by in silico and in vitro screening. ACTA ACUST UNITED AC 2012; 18:1631-9. [PMID: 22195565 DOI: 10.1016/j.chembiol.2011.10.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/16/2011] [Accepted: 10/24/2011] [Indexed: 12/29/2022]
Abstract
Protein-protein interactions play a central role in medicine, and their modulation with small organic compounds remains an enormous challenge. Because it has been noted that the macromolecular complexes modulated to date have a relatively pronounced binding cavity at the interface, we decided to perform screening experiments over the vascular endothelial growth factor receptor (VEGFR), a validated target for antiangiogenic treatments with a very flat interface. We focused the study on the VEGFR-1 D2 domain, and 20 active compounds were identified. These small compounds contained a (3-carboxy-2-ureido)thiophen unit and had IC(50) values in the low micromolar range. The most potent compound inhibited the VEGF-induced VEGFR-1 transduction pathways. Our findings suggest that our best hit may be a promising scaffold to probe this macromolecular complex and for the development of treatments of VEGFR-1-dependent diseases.
Collapse
Affiliation(s)
- Benoit Gautier
- Université Paris Descartes, CNRS UMR 8601, UFR biomédicale, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chan TR, Stahl PJ, Yu SM. Matrix-Bound VEGF Mimetic Peptides: Design and Endothelial Cell Activation in Collagen Scaffolds. ADVANCED FUNCTIONAL MATERIALS 2011; 21:4252-4262. [PMID: 26312060 PMCID: PMC4547390 DOI: 10.1002/adfm.201101163] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Long term survival and success of artificial tissue constructs depend greatly on vascularization. Endothelial cell (EC) differentiation and vasculature formation are dependent on spatio-temporal cues in the extracellular matrix that dynamically interact with cells, a process difficult to reproduce in artificial systems. Here we present a novel bifunctional peptide that mimics matrix-bound vascular endothelial growth factor (VEGF) and can be used to encode spatially controlled angiogenic signals in collagen scaffolds. The peptide is comprised of a collagen mimetic domain that was previously reported to bind to type I collagen by a unique hybridization mechanism, and a VEGF mimetic domain with pro-angiogenic activity. Circular dichroism and collagen binding studies confirm the triple helical structure and the collagen binding affinity of the collagen mimetic domain, and EC culture studies demonstrate the peptide's ability to induce endothelial cell morphogenesis and network formation as a matrix-bound factor in 2D and 3D collagen scaffolds. We also show spatial modification of collagen substrates with this peptide that allows localized EC activation and network formation. These results demonstrate that the peptide can be used to present spatially directed angiogenic cues in collagen scaffolds, which may be useful for engineering organized microvasculature.
Collapse
Affiliation(s)
- Tania R. Chan
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 (USA)
| | - Patrick J. Stahl
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 (USA)
| | - S. Michael Yu
- Department of Materials Science and Engineering, Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 (USA)
| |
Collapse
|
19
|
Wang S, Liu P, Song L, Lu L, Zhang W, Wu Y. Adeno-associated virus (AAV) based gene therapy for eye diseases. Cell Tissue Bank 2011; 12:105-10. [DOI: 10.1007/s10561-011-9243-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/04/2011] [Indexed: 12/27/2022]
|
20
|
Qin ZX, Li QW, Liu GY, Luo CX, Xie GF, Zheng L, Huang DD. Imaging targeted at tumor with 188Re-labeled VEGF189 exon 6-encoded peptide and effects of the transfecting truncated KDR gene in tumor-bearing nude mice. Nucl Med Biol 2009; 36:535-43. [DOI: 10.1016/j.nucmedbio.2009.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 01/17/2009] [Accepted: 02/06/2009] [Indexed: 11/28/2022]
|
21
|
Udugamasooriya DG, Ritchie C, Brekken RA, Kodadek T. A peptoid antagonist of VEGF receptor 2 recognizes a 'hotspot' in the extracellular domain distinct from the hormone-binding site. Bioorg Med Chem 2008; 16:6338-43. [PMID: 18501615 PMCID: PMC2460570 DOI: 10.1016/j.bmc.2008.05.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 05/01/2008] [Accepted: 05/05/2008] [Indexed: 01/16/2023]
Abstract
Antagonists of VEGF-mediated angiogenesis are of great interest clinically for the treatment of solid tumors and certain forms of macular degeneration. We recently described a novel peptoid antagonist of VEGF Receptor 2 (VEGFR2) that binds to the extracellular domain of the receptor and inhibits VEGF-mediated autophosphorylation and subsequent downstream signaling. Given the structural similarities between peptides and peptoids, an obvious model for the mode of action of the peptoid is that it competes with VEGF for binding to VEGFR2. However, we present evidence here that this is not the case and that VEGF and the peptoid antagonist recognize non-overlapping surfaces located within the first three immunoglobulin-like subdomains of the receptor. These data argue that the peptoid inhibits receptor-mediated autophosphorylation by a novel allosteric mechanism that may prevent the receptor from acquiring the conformation necessary to propagate downstream signals.
Collapse
Affiliation(s)
- D. Gomika Udugamasooriya
- Departments of Internal Medicine and Molecular Biology, Division of Translational Research, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| | - Caroline Ritchie
- Departments of Internal Medicine and Molecular Biology, Division of Translational Research, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| | - Rolf A. Brekken
- Departments of Surgery and pharmacology, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| | - Thomas Kodadek
- Departments of Internal Medicine and Molecular Biology, Division of Translational Research, Hamon Center for Therapeutic Oncology Research University of Texas Southwestern Medical Center Dallas, TX 75390-9185
| |
Collapse
|
22
|
Catalytically inactive phospholipase A2 homologue binds to vascular endothelial growth factor receptor-2 via a C-terminal loop region. Biochem J 2008; 411:515-22. [DOI: 10.1042/bj20080078] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
VEGF (vascular endothelial growth factor) regulates neovascularization through binding to its receptor KDR (kinase insert domain-containing receptor; VEGF receptor-2). We recently identified a catalytically inactive PLA2 (phospholipase A2) homologue (KDR-bp) in the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus) as a third KDR-binding protein, in addition to VEGF165 and tissue inhibitor of metalloproteinase-3. KDR-bp binds to the extracellular domain of KDR with a Kd of 10−8 M, resulting in specific blockade of endothelial cell growth induced by VEGF165. Inactive PLA2 homologues are widely distributed in the venoms of Viperidae snakes and are known to act as myotoxins. In the present study, we demonstrated that KDR-binding ability is a common characteristic for inactive PLA2 homologues in snake venom, but not for active PLA2s such as neurotoxic and platelet aggregation-modulating PLA2s. To understand better the KDR and KDR-bp interaction, we resolved the binding region of KDR-bp using eight synthetic peptides designed based on the structure of KDR-bp. A synthetic peptide based on the structure of the C-terminal loop region of KDR-bp showed high affinity for KDR, but other peptides did not, suggesting that the C-terminal loop region of KDR-bp is involved in the interaction with KDR. The results of the present study provide insight into the binding of inactive PLA2 homologues to KDR, and may also assist in the design of novel anti-KDR molecules for anti-angiogenic therapy.
Collapse
|
23
|
Liu D, Evans I, Britton G, Zachary I. The zinc-finger transcription factor, early growth response 3, mediates VEGF-induced angiogenesis. Oncogene 2007; 27:2989-98. [PMID: 18059339 DOI: 10.1038/sj.onc.1210959] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early growth response 3 (Egr3) is a member of a zinc-finger transcription factor subfamily, which we previously found to be strongly upregulated by vascular endothelial growth factor (VEGF)-A in an oligonucleotide microarray screen of endothelial cells. Here, we show that Egr3 is the predominant Egr family member upregulated by VEGF in endothelial cells at 45 min, and that VEGF induced a rapid increase in Egr-dependent transcriptional activation mediated via its major signalling receptor, VEGFR2/KDR, and the protein kinase C (PKC) pathway. VEGF-induced Egr3 gene expression was also mediated in part via a PKC-dependent activation of protein kinase D. Inhibition of Egr3 gene expression by RNA interference was effective in inhibiting basal and VEGF-induced Egr3 gene expression, and it also inhibited VEGF-mediated endothelial cell proliferation, migration and tubulogenesis. These findings indicate that Egr3 has an essential downstream role in VEGF-mediated endothelial functions leading to angiogenesis and may have particular relevance for adult angiogenic processes involved in vascular repair and neovascular disease.
Collapse
Affiliation(s)
- D Liu
- BHF Laboratories, Department of Medicine, University College London, London, UK
| | | | | | | |
Collapse
|
24
|
Abstract
Angiogenesis refers to the process of remodeling the vascular tissue characterized by the branching out of a new blood vessel from a pre-existing vessel. Angiogenesis is particularly active during embryogenesis, while during adult life it is quiescent and limited to particular physiologic phenomena. Recently, the study of molecular mechanisms of angiogenesis has stirred renewed interest due to the recognition of the role played by angiogenesis in several pathologies of significant medical impact, such as cancer and cardiovascular disease, and due to the pharmacologic interest rising from the possibility of modulating these phenomena. Antibodies, peptides and small molecules targeting active endothelial cells represent an innovative tool in therapeutic and diagnostic fields. In this study, we reviewed the literature of peptide and peptidomimetics in angiogenesis and their potential applications. Two specific protein systems, namely the vascular endothelial growth factor and its receptor and integrins, will be discussed in detail.
Collapse
Affiliation(s)
- Luca Domenico D'Andrea
- Institute of Biostructure and Bioimaging, CNR and Department of Biological Sciences, CIRPEB, University of Napoli Federico II, via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | |
Collapse
|
25
|
Deng WT, Yan Z, Dinculescu A, Pang J, Teusner JT, Cortez NG, Berns KI, Hauswirth WW. Adeno-associated virus-mediated expression of vascular endothelial growth factor peptides inhibits retinal neovascularization in a mouse model of oxygen-induced retinopathy. Hum Gene Ther 2006; 16:1247-54. [PMID: 16259558 DOI: 10.1089/hum.2005.16.1247] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) has been demonstrated to be a key stimulator of retinal neovascularization (NV), the most common cause of severe and progressive vision loss. In this study, we used a mouse model of oxygen-induced retinopathy (OIR) to explore the potential of gene expression and secretion of short VEGF peptides as a treatment. Peptide-encoding fragments of exons 6 and 7 of the VEGF gene were cloned into a recombinant adeno-associated virus (rAAV) vector. Expression of each peptide in vector-injected eyes was confirmed by reverse transcription-polymerase chain reaction and Western blot analysis. Intravitreal injection of each rAAV vector inhibited retinal NV by 71-83% (p < 0.001) compared with contralateral control eyes in the OIR mouse. Injection and expression of these peptides did not seem to affect the normal appearance of the retina. The results demonstrated that exon 6- and 7-derived VEGF peptides effectively inhibited oxygen-induced retinal NV. Therefore, these VEGF peptides have potential in the treatment of angiogenesis-associated retinal diseases in humans.
Collapse
Affiliation(s)
- Wen-Tao Deng
- Department of Ophthalmology and Powell Gene Therapy Center, University of Florida, College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lv W, Zhang C, Guo H, Liu W, Hao YX. Suppression of HCT116 cell proliferation by silencing vascular endothelial growth factor gene with RNA interference. Shijie Huaren Xiaohua Zazhi 2005; 13:2870-2873. [DOI: 10.11569/wcjd.v13.i24.2870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To observe whether the vascular endothelial growth factor (VEGF) short hairpin RNA (shRNA) expressed by recombinant plasmid Pavu6+27-VEGF siRNA in cells can effectively inhibit the proliferation of human colon carcinoma cell line HCT116.
METHODS: The constructed recombinant plasmid with the expression of shRNA was transfected into the human colon carcinoma cell line HCT116, and the empty plasmid (Pavu6+27) was transfected into the same cell line as controls. After screened with G418, flow cytometry was used to detect the distribution of the HCT116 cell cycles. The inhibitory rate of the cell growth was detected by MTT assay.
RESULTS: The recombinant Pavu6+27-VEGF siRNA effectively inhibited the proliferation of the cell line HCT116, and the inhibitory rates were significantly increased as compared with those in the controls at 24, 48, and 72 h (15.32%±2.02%, 28.54%±3.29%, 40.32%±3.56% vs 5.64%±1.42%, 8.65%±2.30%, 15.32%±3.52%, P < 0.05). The ratio of cells at G0/G1 stage was markedly increased (74.37%±4.54% vs 71.13%±5.14%), while the ratio of cell at S stage was significantly decreased (11.90%±3.44% vs 14.97%±4.33%, P < 0.05 ) in the recombinant plasmid transfected cells as compared with that in the controls. The empty plasmid had no such effect on the same cell line.
CONCLUSION: The shRNA expressed by the recombinant plasmid Pavu6+27-VEGF siRNA in cells can effectively inhibit the proliferation of the cell line HCT116.
Collapse
|
27
|
Dinculescu A, Glushakova L, Min SH, Hauswirth WW. Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 2005; 16:649-63. [PMID: 15960597 DOI: 10.1089/hum.2005.16.649] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have become powerful gene delivery tools for the treatment of retinal degeneration in a variety of animal models that mimic corresponding human diseases. AAV vectors possess a number of features that render them ideally suited for retinal gene therapy, including a lack of pathogenicity, minimal immunogenicity, and the ability to transduce postmitotic cells in a stable and efficient manner. In the sheltered environment of the retina, AAV vectors are able to maintain high levels of transgene expression in the retinal pigmented epithelium (RPE), photoreceptors, or ganglion cells for long periods of time after a single treatment. Each cell type can be specifically targeted by choosing the appropriate combination of AAV serotype, promoter, and intraocular injection site. The focus of this review is on examples of AAV-mediated gene therapy in those animal models of inherited retinal degeneration caused by mutations directly affecting the interacting unit formed by photoreceptors and the RPE. In each case discussed, expression of the therapeutic gene resulted in significant recovery of retinal structure and/or visual function. Because of the key role of the vasculature in maintaining a healthy retina, a summary of AAV gene therapy applications in animal models of retinal neovascular diseases is also included.
Collapse
Affiliation(s)
- Astra Dinculescu
- Department of Ophthalmology, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
28
|
Deng WT, Yan Z, Dinculescu A, Pang J, Teusner JT, Cortez NG, Berns KI, Hauswirth WW. Adeno-Associated Virus-Mediated Expression of Vascular Endothelial Growth Factor Peptides Inhibits Retinal Neovascularization in a Mouse Model of Oxygen-Induced Retinopathy. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
D'Andrea LD, Iaccarino G, Fattorusso R, Sorriento D, Carannante C, Capasso D, Trimarco B, Pedone C. Targeting angiogenesis: structural characterization and biological properties of a de novo engineered VEGF mimicking peptide. Proc Natl Acad Sci U S A 2005; 102:14215-20. [PMID: 16186493 PMCID: PMC1242306 DOI: 10.1073/pnas.0505047102] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Modulating angiogenesis is an attractive goal because many pathological conditions depend on the growth of new vessels. Angiogenesis is mainly regulated by the VEGF, a mitogen specific for endothelial cells. In the last years, many efforts have been pursued to modulate the angiogenic response targeting VEGF and its receptors. Based on the x-ray structure of VEGF bound to the receptor, we designed a peptide, QK, reproducing a region of the VEGF binding interface: the helix region 17-25. NMR conformation analysis of QK revealed that it adopts a helical conformation in water, whereas the peptide corresponding to the alpha-helix region of VEGF, VEGF15, is unstructured. Biological assays in vitro and on bovine aorta endothelial cells suggested that QK binds to the VEGF receptors and competes with VEGF. VEGF15 did not bind to the receptors indicating that the helical structure is necessary for the biological activity. Furthermore, QK induced endothelial cells proliferation, activated cell signaling dependent on VEGF, and increased the VEGF biological response. QK promoted capillary formation and organization in an in vitro assay on matrigel. These results suggested that the helix region 17-25 of VEGF is involved in VEGF receptor activation. The peptide designed to resemble this region shares numerous biological properties of VEGF, thus suggesting that this region is of potential interest for biomedical applications, and molecules mimicking it could be attractive for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Luca Domenico D'Andrea
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, 80134 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Jia H, Bagherzadeh A, Bicknell R, Duchen MR, Liu D, Zachary I. Vascular endothelial growth factor (VEGF)-D and VEGF-A differentially regulate KDR-mediated signaling and biological function in vascular endothelial cells. J Biol Chem 2004; 279:36148-57. [PMID: 15215251 DOI: 10.1074/jbc.m401538200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial growth factor (VEGF)-D binds to VEGF receptors (VEGFR) VEGFR2/KDR and VEGFR3/Flt4, but the signaling mechanisms mediating its biological activities in endothelial cells are poorly understood. Here we investigated the mechanism of action of VEGF-D, and we compared the signaling pathways and biological responses induced by VEGF-D and VEGF-A in endothelial cells. VEGF-D induced KDR and phospholipase C-gamma tyrosine phosphorylation more slowly and less effectively than VEGF-A at early times but had a more sustained effect and was as effective as VEGF-A after 60 min. VEGF-D activated extracellular signal-regulated protein kinases 1 and 2 with similar efficacy but slower kinetics compared with VEGF-A, and this effect was blocked by inhibitors of protein kinase C and mitogen-activated protein kinase kinase. In contrast to VEGF-A, VEGF-D weakly stimulated prostacyclin production and gene expression, had little effect on cell proliferation, and stimulated a smaller and more transient increase in intracellular [Ca(2+)]. VEGF-D induced strong but more transient phosphatidylinositol 3-kinase (PI3K)-mediated Akt activation and increased PI3K-dependent endothelial nitric-oxide synthase phosphorylation and cell survival more weakly. VEGF-D stimulated chemotaxis via a PI3K/Akt- and endothelial nitric-oxide synthase-dependent pathway, enhanced protein kinase C- and PI3K-dependent endothelial tubulogenesis, and stimulated angiogenesis in a mouse sponge implant model less effectively than VEGF-A. VEGF-D-induced signaling and biological effects were blocked by the KDR inhibitor SU5614. The finding that differential KDR activation by VEGF-A and VEGF-D has distinct consequences for endothelial signaling and function has important implications for understanding how multiple ligands for the same VEGF receptors can generate ligand-specific biological responses.
Collapse
Affiliation(s)
- Haiyan Jia
- Department of Medicine, The Rayne Institute, University College London, 5 University Street, London WC1E 6JJ, UK
| | | | | | | | | | | |
Collapse
|
31
|
Hoffman JA, Giraudo E, Singh M, Zhang L, Inoue M, Porkka K, Hanahan D, Ruoslahti E. Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma. Cancer Cell 2003; 4:383-91. [PMID: 14667505 DOI: 10.1016/s1535-6108(03)00273-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phage display was used to identify homing peptides for blood vessels in a mouse model of HPV16-induced epidermal carcinogenesis. One peptide, CSRPRRSEC, recognized the neovasculature in dysplastic skin but not in carcinomas. Two other peptides, with the sequences CGKRK and CDTRL, preferentially homed to neovasculature in tumors and, to a lesser extent, premalignant dysplasias. The peptides did not home to vessels in normal skin, other normal organs, or the stages in pancreatic islet carcinogenesis in another mouse model. The CGKRK peptide may recognize heparan sulfates in tumor vessels. The dysplasia-homing peptide is identical to a loop in kallikrein-9 and may bind a kallikrein inhibitor or substrate. Thus, characteristics of the angiogenic vasculature distinguish premalignant and malignant stages of skin tumorigenesis.
Collapse
Affiliation(s)
- Jason A Hoffman
- Cancer Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
This review is an attempt to illustrate the diversity of peptides reported for a potential or an established use in cancer therapy. With 612 references, this work aims at covering the patents and publications up to year 2000 with many inroads in years 2001-2002. The peptides are classed according to four categories of effective (or plausible) biological mechanisms of action: receptor-interacting compounds; inhibitors of protein-protein interaction; enzymes inhibitors; nucleic acid-interacting compounds. The fifth group is made of the peptides for which no mechanism of action has been found yet. Incidentally this work provides an overview of many of the modern targets of anticancer research.
Collapse
Affiliation(s)
- Y L Janin
- UMR 176 CNRS-Intitut Curie, Paris, France.
| |
Collapse
|
33
|
Bainbridge JWB, Jia H, Bagherzadeh A, Selwood D, Ali RR, Zachary I. A peptide encoded by exon 6 of VEGF (EG3306) inhibits VEGF-induced angiogenesis in vitro and ischaemic retinal neovascularisation in vivo. Biochem Biophys Res Commun 2003; 302:793-9. [PMID: 12646239 DOI: 10.1016/s0006-291x(03)00222-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
VEGF is an important mediator of pathological angiogenesis in the eye and is a target for the development of novel anti-angiogenic molecules. In a previous study we identified 12-amino acid peptides derived from exon 6 of VEGF that inhibited VEGF binding to its receptors in HUVECs, endothelial cell functions, and in vitro angiogenesis. Screening of a series of truncated peptides corresponding to the inhibitory region of exon 6 identified a seven amino acid residue peptide, RKRKKSR, as the minimum exon 6-encoded sequence which retains the ability to inhibit VEGF receptor binding and angiogenesis in vitro. The effect of the seven-residue peptide was examined in a mouse model of ischaemic retinal neovascularisation. Administration of the peptide caused a 50% inhibition of retinal neovascularisation and was as effective in inhibiting ischaemic angiogenesis as soluble Flt-1 adenovirus. These results demonstrate that a seven amino acid VEGF exon 6-derived peptide is an effective inhibitor of ocular neovascularisation in vivo, and may have applications in the treatment of pathophysiological ocular neovascularisation in human disease.
Collapse
|
34
|
Soker S, Miao HQ, Nomi M, Takashima S, Klagsbrun M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuropilin-1 that enhance VEGF165-receptor binding. J Cell Biochem 2002; 85:357-68. [PMID: 11948691 DOI: 10.1002/jcb.10140] [Citation(s) in RCA: 340] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Co-expression of NRP1 and (VEGFR-2) KDR on the surface of endothelial cells (EC) enhances VEGF165 binding to KDR and EC chemotaxis in response to VEGF165. Overexpression of NRP1 by prostate tumor cells in vivo results in increased tumor angiogenesis and growth. We investigated the molecular mechanisms underlying NRP1-mediated angiogenesis by analyzing the association of NRP1 and KDR. An intracellular complex containing NRP1 and KDR was immunoprecipitated from EC by anti-NRP1 antibodies only in the presence of VEGF165. In contrast, VEGF121, which does not bind to NRP1, did not support complex formation. Complexes containing VEGF165, NRP1, and KDR were also formed in an intercellular fashion by co-culture of EC expressing KDR only, with cells expressing NRP1 only, for example, breast carcinoma cells. VEGF165 also mediated the binding of a soluble NRP1 dimer to cells expressing KDR only, confirming the formation of such complexes. Furthermore, the formation of complexes containing KDR and NRP1 markedly increased 125I-VEGF165 binding to KDR. Our results suggest that formation of a ternary complex of VEGF165, KDR, and NRP1 potentiates VEGF165 binding to KDR. These complexes are formed on the surface of EC and in a juxtacrine manner via association of tumor cell NRP1 and EC KDR.
Collapse
Affiliation(s)
- Shay Soker
- Department of Urology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
35
|
Jia H, Lohr M, Jezequel S, Davis D, Shaikh S, Selwood D, Zachary I. Cysteine-rich and basic domain HIV-1 Tat peptides inhibit angiogenesis and induce endothelial cell apoptosis. Biochem Biophys Res Commun 2001; 283:469-79. [PMID: 11327725 DOI: 10.1006/bbrc.2001.4790] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous findings suggest that both the Tat polypeptide encoded by HIV-1 and Tat-derived peptides can induce angiogenesis via activation of the KDR receptor for Vascular Endothelial Growth Factor (VEGF). We identified 20 amino acids and 12 amino acid peptides corresponding to the cysteine-rich and basic domains of HIV-1 Tat which inhibited (125)I-VEGF(165) binding to KDR and neuropilin-1 (NP-1) receptors in endothelial cells. Cysteine-rich and basic Tat peptides inhibited VEGF-induced ERK activation and mitogenesis in endothelial cells, and inhibited angiogenesis in vitro at concentrations similar to those which inhibited VEGF receptor binding. These peptides also inhibited proliferation, angiogenesis, and ERK activation induced by basic fibroblast growth factor with similar potency and efficacy. Surprisingly, we found that both cysteine-rich and basic domain Tat peptides strikingly induced apoptosis in endothelial cells, independent of their effects on VEGF and bFGF. Furthermore, we found no evidence for direct biological effects of recombinant Tat on VEGF receptor binding, ERK activation, endothelial cell survival, or mitogenesis. These findings demonstrate novel properties of Tat-derived peptides and indicate that their major effect in endothelial cells is apoptosis independent of specific inhibition of VEGF receptor activation.
Collapse
MESH Headings
- Amino Acid Sequence
- Apoptosis/drug effects
- Cells, Cultured
- Cysteine/chemistry
- Endothelial Growth Factors/metabolism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Activation/drug effects
- Fibroblast Growth Factor 2/pharmacology
- Gene Products, tat/chemistry
- Gene Products, tat/genetics
- Gene Products, tat/pharmacology
- Humans
- Lymphokines/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Neovascularization, Physiologic/drug effects
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/toxicity
- Protein Structure, Tertiary
- Receptor Protein-Tyrosine Kinases/drug effects
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptors, Growth Factor/drug effects
- Receptors, Growth Factor/metabolism
- Receptors, Vascular Endothelial Growth Factor
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/pharmacology
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- H Jia
- Department of Medicine, Ark Therapeutics Limited, London, WC1E 6JJ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|