1
|
Adiponectin Deregulation in Systemic Autoimmune Rheumatic Diseases. Int J Mol Sci 2021; 22:ijms22084095. [PMID: 33920997 PMCID: PMC8071452 DOI: 10.3390/ijms22084095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Deregulation of adiponectin is found in systemic autoimmune rheumatic diseases (SARDs). Its expression is downregulated by various inflammatory mediators, but paradoxically, elevated serum levels are present in SARDs with high inflammatory components, such as rheumatoid arthritis and systemic lupus erythematosus. Circulating adiponectin is positively associated with radiographic progression in rheumatoid arthritis as well as with cardiovascular risks and lupus nephritis in systemic lupus erythematosus. However, in SARDs with less prominent inflammation, such as systemic sclerosis, adiponectin levels are low and correlate negatively with disease activity. Regulators of adiponectin gene expression (PPAR-γ, Id3, ATF3, and SIRT1) and inflammatory cytokines (interleukin 6 and tumor necrosis factor α) are differentially expressed in SARDs and could therefore influence total adiponectin levels. In addition, anti-inflammatory therapy could also have an impact, as tocilizumab treatment is associated with increased serum adiponectin. However, anti-tumor necrosis factor α treatment does not seem to affect its levels. Our review provides an overview of studies on adiponectin levels in the bloodstream and other biological samples from SARD patients and presents some possible explanations why adiponectin is deregulated in the context of therapy and gene regulation.
Collapse
|
2
|
Mattiotti A, Prakash S, Barnett P, van den Hoff MJB. Follistatin-like 1 in development and human diseases. Cell Mol Life Sci 2018; 75:2339-2354. [PMID: 29594389 PMCID: PMC5986856 DOI: 10.1007/s00018-018-2805-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/27/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
Follistatin-like 1 (FSTL1) is a secreted glycoprotein displaying expression changes during development and disease, among which cardiovascular disease, cancer, and arthritis. The cardioprotective role of FSTL1 has been intensively studied over the last years, though its mechanism of action remains elusive. FSTL1 is involved in multiple signaling pathways and biological processes, including vascularization and regulation of the immune response, a feature that complicates its study. Binding to the DIP2A, TLR4 and BMP receptors have been shown, but other molecular partners probably exist. During cancer progression and rheumatoid arthritis, controversial data have been reported with respect to the proliferative, apoptotic, migratory, and inflammatory effects of FSTL1. This controversy might reside in the extensive post-transcriptional regulation of FSTL1. The FSTL1 primary transcript also encodes for a microRNA (miR-198) in primates and multiple microRNA-binding sites are present in the 3'UTR. The switch between expression of the FSTL1 protein and miR-198 is an important regulator of tumour metastasis and wound healing. The glycosylation state of FSTL1 is a determinant of biological activity, in cardiomyocytes the glycosylated form promoting proliferation and the non-glycosylated working anti-apoptotic. Moreover, the glycosylation state shows differences between species and tissues which might underlie the differences observed in in vitro studies. Finally, regulation at the level of protein secretion has been described.
Collapse
Affiliation(s)
- Andrea Mattiotti
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Stuti Prakash
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Phil Barnett
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Contribution of Inhibitor of DNA Binding/Differentiation-3 and Endocrine Disrupting Chemicals to Pathophysiological Aspects of Chronic Disease. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6307109. [PMID: 28785583 PMCID: PMC5530454 DOI: 10.1155/2017/6307109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/15/2017] [Accepted: 05/29/2017] [Indexed: 12/12/2022]
Abstract
The overwhelming increase in the global incidence of obesity and its associated complications such as insulin resistance, atherosclerosis, pulmonary disease, and degenerative disorders including dementia constitutes a serious public health problem. The Inhibitor of DNA Binding/Differentiation-3 (ID3), a member of the ID family of transcriptional regulators, has been shown to play a role in adipogenesis and therefore ID3 may influence obesity and metabolic health in response to environmental factors. This review will highlight the current understanding of how ID3 may contribute to complex chronic diseases via metabolic perturbations. Based on the increasing number of reports that suggest chronic exposure to and accumulation of endocrine disrupting chemicals (EDCs) within the human body are associated with metabolic disorders, we will also consider the impact of these chemicals on ID3. Improved understanding of the ID3 pathways by which exposure to EDCs can potentiate complex chronic diseases in populations with metabolic disorders (obesity, metabolic syndrome, and glucose intolerance) will likely provide useful knowledge in the prevention and control of complex chronic diseases associated with exposure to environmental pollutants.
Collapse
|
4
|
Inhibition of CDK9 as a therapeutic strategy for inflammatory arthritis. Sci Rep 2016; 6:31441. [PMID: 27511630 PMCID: PMC4980610 DOI: 10.1038/srep31441] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022] Open
Abstract
Rheumatoid arthritis is characterised by synovial inflammation and proliferation of fibroblast-like synoviocytes. The induction of apoptosis has long been proposed as a target for proliferative autoimmune diseases, and has further been shown to act as a successful treatment of experimental models of arthritis, such as collagen-induced arthritis. Here we examined the effects of specific oral small-molecule inhibitors of the transcription regulating cyclin-dependent kinase 9 on the development and progression of collagen-induced arthritis. DBA/1 mice were immunised with bovine collagen type II and treated orally with specific CDK9 inhibitors. The effects of CDK9 inhibition on RNA levels and protein expression, apoptosis induction, caspase activation and lymphocyte phenotype were further analysed. Mice showed a significant delay in disease onset and a reduction in disease severity following treatment with CDK9 inhibitors. Inhibiting CDK9 activity in peripheral blood mononuclear cells resulted in the loss of Mcl-1 expression at both the protein and RNA levels, along with a subsequent increase in apoptosis. CDK9 specific inhibitors may be a potential alternative treatment not only of cancer, but also for autoimmune- and inflammatory diseases. Taken together, these results show that transient inhibition of CDK9 induces apoptosis in leukocyte subsets and modulates the immune response.
Collapse
|
5
|
Liu F, Du J, Liu J, Wen B. Identification of key target genes and pathways in laryngeal carcinoma. Oncol Lett 2016; 12:1279-1286. [PMID: 27446427 PMCID: PMC4950495 DOI: 10.3892/ol.2016.4750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/08/2016] [Indexed: 02/05/2023] Open
Abstract
The purpose of the present study was to screen the key genes associated with laryngeal carcinoma and to investigate the molecular mechanism of laryngeal carcinoma progression. The gene expression profile of GSE10935 [Gene Expression Omnibus (GEO) accession number], including 12 specimens from laryngeal papillomas and 12 specimens from normal laryngeal epithelia controls, was downloaded from the GEO database. Differentially expressed genes (DEGs) were screened in laryngeal papillomas compared with normal controls using Limma package in R language, followed by Gene Ontology (GO) enrichment analysis and pathway enrichment analysis. Furthermore, the protein-protein interaction (PPI) network of DEGs was constructed using Cytoscape software and modules were analyzed using MCODE plugin from the PPI network. Furthermore, significant biological pathway regions (sub-pathway) were identified by using iSubpathwayMiner analysis. A total of 67 DEGs were identified, including 27 up-regulated genes and 40 down-regulated genes and they were involved in different GO terms and pathways. PPI network analysis revealed that Ras association (RalGDS/AF-6) domain family member 1 (RASSF1) was a hub protein. The sub-pathway analysis identified 9 significantly enriched sub-pathways, including glycolysis/gluconeogenesis and nitrogen metabolism. Genes such as phosphoglycerate kinase 1 (PGK1), carbonic anhydrase II (CA2), and carbonic anhydrase XII (CA12) whose node degrees were >10 were identified in the disease risk sub-pathway. Genes in the sub-pathway, such as RASSF1, PGK1, CA2 and CA12 were presumed to serve critical roles in laryngeal carcinoma. The present study identified DEGs and their sub-pathways in the disease, which may serve as potential targets for treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Feng Liu
- Department of Otorhinolaryngology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jintao Du
- Department of Otorhinolaryngology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jun Liu
- Department of Otorhinolaryngology, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Bei Wen
- Department of Otorhinolaryngology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| |
Collapse
|
6
|
Edhayan G, Ohara RA, Stinson WA, Amin MA, Isozaki T, Ha CM, Haines GK, Morgan R, Campbell PL, Arbab AS, Friday SC, Fox DA, Ruth JH. Inflammatory properties of inhibitor of DNA binding 1 secreted by synovial fibroblasts in rheumatoid arthritis. Arthritis Res Ther 2016; 18:87. [PMID: 27071670 PMCID: PMC4830090 DOI: 10.1186/s13075-016-0984-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/29/2016] [Indexed: 01/08/2023] Open
Abstract
Background Inhibitor of DNA binding 1 (Id1) is a nuclear protein containing a basic helix-loop-helix (bHLH) domain that regulates cell growth by selective binding and prevention of gene transcription. Sources of Id1 production in rheumatoid arthritis synovial tissue (RA ST) and its range of functional effects in RA remain to be clarified. Methods We analyzed Id1 produced from synovial fibroblasts and endothelial cells (ECs) with histology and real-time polymerase chain reaction (RT-PCR). Fibroblast supernatants subjected to differential centrifugation to isolate and purify exosomes were measured for Id1 by enzyme-linked immunosorbent assay (ELISA). Western blotting of Id1-stimulated ECs was performed to determine the kinetics of intracellular protein phosphorylation. EC intracellular signaling pathways induced by Id1 were subsequently targeted with silencing RNA (siRNA) for angiogenesis inhibition. Results By PCR and histologic analysis, we found that the primary source of Id1 in STs is from activated fibroblasts that correlate with inflammatory scores in human RA ST and in joints from K/BxN serum-induced mice. Normal (NL) and RA synovial fibroblasts increase Id1 production with stimulation by transforming growth factor beta (TGF-β). Most of the Id1 released by RA synovial fibroblasts is contained within exosomes. Endothelial progenitor cells (EPCs) and human dermal microvascular ECs (HMVECs) activate the Jnk signaling pathway in response to Id1, and Jnk siRNA reverses Id1-induced HMVEC vessel formation in Matrigel plugs in vivo. Conclusions Id1 is a pleotropic molecule affecting angiogenesis, vasculogenesis, and fibrosis. Our data shows that Id1 is not only an important nuclear protein, but also can be released from fibroblasts via exosomes. The ability of extracellular Id1 to activate signaling pathways expands the role of Id1 in the orchestration of tissue inflammation.
Collapse
Affiliation(s)
- Gautam Edhayan
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Ray A Ohara
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - W Alex Stinson
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - M Asif Amin
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Takeo Isozaki
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Christine M Ha
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | | | - Rachel Morgan
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Phillip L Campbell
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Ali S Arbab
- Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Sean C Friday
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - David A Fox
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA
| | - Jeffrey H Ruth
- Division of Rheumatology, Department of Internal Medicine and Clinical Autoimmunity Center of Excellence, University of Michigan Medical School, 109 Zina Pitcher Drive, 4023 BSRB, Ann Arbor, MI, 48109-2200, USA.
| |
Collapse
|
7
|
Tsou PS, Rabquer BJ, Ohara RA, Stinson WA, Campbell PL, Amin MA, Balogh B, Zakhem G, Renauer PA, Lozier A, Arasu E, Haines GK, Kahaleh B, Schiopu E, Khanna D, Koch AE. Scleroderma dermal microvascular endothelial cells exhibit defective response to pro-angiogenic chemokines. Rheumatology (Oxford) 2015; 55:745-54. [PMID: 26705326 DOI: 10.1093/rheumatology/kev399] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Angiogenesis plays a critical role in SSc (scleroderma). The aim of this study was to examine the expression of growth-regulated protein-γ (Gro-γ/CXCL3), granulocyte chemotactic protein 2 (GCP-2/CXCL6) and their receptor CXCR2 in endothelial cells (ECs) isolated from SSc skin and determine whether these cells mount an angiogenic response towards pro-angiogenic chemokines. The downstream signalling pathways as well as the pro-angiogenic transcription factor inhibitor of DNA-binding protein 1 (Id-1) were also examined. METHODS Skin biopsies were obtained from patients with dcSSc. ECs were isolated via magnetic positive selection. Angiogenesis was measured by EC chemotaxis assay. RESULTS Gro-γ/CXCL3 and GCP-2/CXCL6 were minimally expressed in both skin types but elevated in SSc serum. Pro-angiogenic chemokine mRNA was greater in SSc ECs than in normal ECs. SSc ECs did not migrate to vascular endothelial growth factor (VEGF), Gro-γ/CXCL3, GCP-2/CXCL6 or CXCL16. The signalling pathways stimulated by these chemokines were also dysregulated. Id-1 mRNA in SSc ECs was lower compared with normal ECs, and overexpression of Id-1 in SSc ECs increased their ability to migrate towards VEGF and CXCL16. CONCLUSION Our results show that SSc ECs are unable to respond to pro-angiogenic chemokines despite their increased expression in serum and ECs. This might be due to the differences in the signalling pathways activated by these chemokines in normal vs SSc ECs. In addition, the lower expression of Id-1 also decreases the angiogenic response. The inability of pro-angiogenic chemokines to promote EC migration provides an additional mechanism for the impaired angiogenesis that characterizes SSc.
Collapse
Affiliation(s)
- Pei-Suen Tsou
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program,
| | - Bradley J Rabquer
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Biology Department, Albion College, Albion, MI
| | - Ray A Ohara
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - William A Stinson
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Phillip L Campbell
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - M Asif Amin
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Beatrix Balogh
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - George Zakhem
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Paul A Renauer
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Ann Lozier
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | - Eshwar Arasu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor
| | | | - Bashar Kahaleh
- Department of Medicine, University of Toledo Medical Center, Toledo, OH and
| | - Elena Schiopu
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program
| | - Dinesh Khanna
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program
| | - Alisa E Koch
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, VA Medical Service, Ann Arbor, MI, USA
| |
Collapse
|
8
|
Inhibitor of DNA binding 1 as a secreted angiogenic transcription factor in rheumatoid arthritis. Arthritis Res Ther 2014; 16:R68. [PMID: 24620998 PMCID: PMC4060463 DOI: 10.1186/ar4507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 03/04/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction Rheumatoid arthritis (RA) is characterized by enhanced blood vessel development in joint synovium. This involves the recruitment of endothelial progenitor cells (EPCs), allowing for de novo vessel formation and pro-inflammatory cell infiltration. Inhibitor of DNA Binding 1 (Id1) is a transcription factor characteristic of EPCs that influences cell maturation. Method Enzyme-linked immunosorbant assay (ELISA) and polymerase chain reaction (PCR) were used to examine Id1 levels in synovial fluid (SF) and endothelial cells (ECs), respectively. Immunohistology was used to determine the expression of Id1 in synovial tissue (ST). Human dermal microvascular EC (HMVEC) migration and tube forming assays were used to determine if recombinant human Id1 (rhuId1) and/or RA SF immunodepleted Id1 showed angiogenic activity. We also utilized the RA ST severe combined immunodeficient (SCID) mouse chimera to examine if Id1 recruits EPCs to RA synovium. Results ST samples immunostained for Id1 showed heightened expression in RA compared to osteoarthritis (OA) and normal (NL) ST. By immunofluorescence staining, we found significantly more Id1 in RA compared to OA and NL vasculature, showing that Id1 expressing cells, and therefore EPCs, are most active in vascular remodeling in the RA synovium. We also detected significantly more Id1 in RA compared to OA and other arthritis SFs by ELISA, which correlates highly with Chemokine (C-X-C motif) ligand 16 (CXCL16) levels. In vitro chemotaxis assays showed that Id1 is highly chemotactic for HMVECs and can be attenuated by inhibition of Nuclear Factor κB and phosphoinositide 3-kinase. Using in vitro Matrigel assays, we found that HMVECs form tubes in response to rhuId1 and that Id1 immunodepleted from RA SF profoundly decreases tube formation in Matrigel in vitro. PCR showed that Id1 mRNA could be up-regulated in EPCs compared to HMVECs in response to CXCL16. Finally, using the K/BxN serum induced arthritis model, we found that EC CXCR6 correlated with Id1 expression by immunohistochemistry. Conclusions We conclude that Id1 correlates highly with CXCL16 expression, EPC recruitment, and blood vessel formation in the RA joint, and that Id1 is potently angiogenic and can be up-regulated in EPCs by CXCL16.
Collapse
|
9
|
Collares CVA, Evangelista AF, Xavier DJ, Takahashi P, Almeida R, Macedo C, Manoel-Caetano F, Foss MC, Foss-Freitas MC, Rassi DM, Sakamoto-Hojo ET, Passos GA, Donadi EA. Transcriptome meta-analysis of peripheral lymphomononuclear cells indicates that gestational diabetes is closer to type 1 diabetes than to type 2 diabetes mellitus. Mol Biol Rep 2013; 40:5351-8. [DOI: 10.1007/s11033-013-2635-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 04/30/2013] [Indexed: 01/10/2023]
|
10
|
Seifert O, Matussek A, Sjögren F, Geffers R, Anderson CD. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions. JOURNAL OF INFLAMMATION-LONDON 2012; 9:43. [PMID: 23140489 PMCID: PMC3526405 DOI: 10.1186/1476-9255-9-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 11/06/2012] [Indexed: 12/31/2022]
Abstract
Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1) were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or other inflammatory conditions.
Collapse
Affiliation(s)
- Oliver Seifert
- Division of Dermatology, Ryhov Hospital, S-55185, Jönköping, Sweden.
| | | | | | | | | |
Collapse
|
11
|
Ronpirin C, Tencomnao T. Dithranol downregulates expression of Id1 mRNA in human keratinocytes in vitro. GENETICS AND MOLECULAR RESEARCH 2012; 11:3290-7. [DOI: 10.4238/2012.september.12.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Ronpirin C, Achariyakul M, Tencomnao T, Wongpiyabovorn J, Chaicumpa W. Up-regulation of Id1 in peripheral blood of psoriatic patients. GENETICS AND MOLECULAR RESEARCH 2010; 9:2239-47. [PMID: 21086260 DOI: 10.4238/vol9-4gmr963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although the precise causes of psoriasis are unclear, it is widely accepted that psoriasis is a disorder in which factors in the immune system, enzymes, and other biochemical substances that regulate skin cell division are impaired, leading to rapid proliferation of keratinocytes and incomplete keratinization. Expression of the helix-loop-helix transcription factor Id1 (inhibitor of differentiation/DNA binding), functioning as an inhibitor of differentiation, is known to increase in psoriatic skin. However, the molecular involvement of this particular biomarker in the psoriatic immune system remains to be elucidated. We measured Id1 mRNA expression in peripheral blood mononuclear cells (PBMCs) of psoriatic patients and healthy controls using semi-quantitative reverse transcriptase-PCR. The normalized level of Id1 transcripts in psoriatic patients was about 2-fold higher than that in controls (P < 0.05). When we examined the proliferation rate of PBMCs, the stimulation index obtained from the phytohemagglutinin stimulation assay was not significantly different in psoriatic patients. In patients with psoriasis, there was no correlation between the stimulation index and the psoriasis area severity index. We suggest that Id1 has a role in causing psoriatic immune cell symptoms.
Collapse
Affiliation(s)
- C Ronpirin
- Department of Preclinical Science, Thammasat University, Pathumthani, Thailand.
| | | | | | | | | |
Collapse
|
13
|
Iseki Y, Imoto A, Okazaki T, Harigae H, Takahashi S. Identification of annexin 1 as a PU.1 target gene in leukemia cells. Leuk Res 2009; 33:1658-63. [PMID: 19428102 DOI: 10.1016/j.leukres.2009.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/12/2009] [Accepted: 04/07/2009] [Indexed: 11/25/2022]
Abstract
To identify PU.1 downstream target genes, we first established PU.1-knockdown K562 (K562PU.1KD) cells expressing reduced levels of PU.1 by stably transfected PU.1 siRNAs. From microarray analysis, we found that several genes including annexin 1 were markedly induced in K562PU.1KD cells. Annexin 1 is a calcium- and phospholipid-binding protein and increased expression leads to the constitutive activation of extracellular signal-regulated kinase (ERK). Consistent with this, we observed constitutive activation of ERK in K562PU.1KD cells. Furthermore, we revealed the mRNA expression of annexin 1 was negatively correlated with PU.1 mRNA expression in 43 primary AML specimens (R=-0.31, p<0.042).
Collapse
Affiliation(s)
- Yuko Iseki
- Division of Molecular Hematology, Kitasato University Graduate School of Medical Sciences, 1-15-1 Kitasato, Sagamihara City, Kanagawa 228-8555, Japan
| | | | | | | | | |
Collapse
|
14
|
Li RW, Freeman C, Yu D, Hindmarsh EJ, Tymms KE, Parish CR, Smith PN. Dramatic regulation of heparanase activity and angiogenesis gene expression in synovium from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2008; 58:1590-600. [PMID: 18512775 DOI: 10.1002/art.23489] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Although heparanase is recognized as a proangiogenic factor, the involvement of heparanase in rheumatoid arthritis (RA) is unclear. In this study, we assessed heparanase activity in synovial fluid (SF) and synovial tissue (ST) from patients with RA or osteoarthritis (OA), and analyzed the expression of angiogenic pathway-focused genes in ST from RA and OA patients. METHODS SF and ST were obtained from the knees of patients with either RA or OA and from asymptomatic donors with no documented history of degenerative or inflammatory joint diseases. Heparanase activity was determined by an enzymatic assay using a radiolabeled substrate, and the presence of heparanase in ST was demonstrated by Western blotting. The expression of angiogenesis genes, including heparanase, in ST was analyzed by real-time quantitative polymerase chain reaction. RESULTS Heparanase activity was dramatically higher (>100-fold) in SF and ST from RA patients than in SF and ST from OA patients and asymptomatic donors. Active heparanase enzyme was detected and heparanase messenger RNA was up-regulated in ST from RA patients. We also found that angiogenesis gene expression was significantly regulated in RA synovium, and was correlated with heparanase activity. CONCLUSION These findings are novel and contribute to our understanding of joint destruction in RA, suggesting that heparanase may be a reliable prognostic factor for RA progression and an attractive target for the treatment of RA.
Collapse
Affiliation(s)
- Rachel W Li
- Australian National University, and Canberra Hospital, Canberra, ACT, Australia.
| | | | | | | | | | | | | |
Collapse
|
15
|
Okabe T, Ohmori Y, Tanigami A, Hishigaki H, Suzuki Y, Sugano S, Kawaguchi A, Nakaya H, Wakitani S. Detection of gene expression in synovium of patients with osteoarthritis using a random sequencing method. Acta Orthop 2007; 78:687-92. [PMID: 17966030 DOI: 10.1080/17453670710014400] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The etiology of osteoarthritis (OA) is multifactorial and current research attributes it to a complex network of biochemical factors. We attempted to identify important molecules in OA joint destruction. PATIENTS AND METHODS Synovium was collected from 2 women with hip OA. Total RNA was extracted from the combined synovium. Messenger RNAs (mRNAs) were randomly sequenced for identification with the oligo-capping method. mRNA expression of 9 genes that were found to be frequently expressed was compared in synovium from 7 OA patients and 2 control patients with no signs of arthritis. RESULTS We sequenced 7,339 mRNAs in total and identified 4,247 different kinds, which were ranked in order of frequency. Fibronectin was the protein most frequently expressed (230/7,339), followed by matrix metalloproteinases (MMPs) 1 and 3. The 9 genes selected were those encoding fibronectin 1, MMP1, MMP3, tissue inhibitor of metalloproteinase 3, apolipoprotein L-I (APOL1), syndecan binding protein, insulin-like growth factor binding protein 5, heat shock protein 90, and a disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS5). We investigated expression of these 9 genes in synovium from the 7 individual patients with OA. All 9 genes were expressed in OA and control synovium. Expression of MMP1 mRNA was weak in OA samples, however, while expression of ADAMTS5 and APOL1 mRNAs was weak in the controls and some of the OA samples. INTERPRETATION ADAMTS5 and APOL1 may have important roles in the mechanism of OA.
Collapse
Affiliation(s)
- Takahiro Okabe
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Santangelo KS, Johnson AL, Ruppert AS, Bertone AL. Effects of hyaluronan treatment on lipopolysaccharide-challenged fibroblast-like synovial cells. Arthritis Res Ther 2007; 9:R1. [PMID: 17214881 PMCID: PMC1860057 DOI: 10.1186/ar2104] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 12/19/2006] [Accepted: 01/10/2007] [Indexed: 01/22/2023] Open
Abstract
Numerous investigations have reported the efficacy of exogenous hyaluronan (HA) in modulating acute and chronic inflammation. The current study was performed to determine the in vitro effects of lower and higher molecular weight HA on lipopolysaccharide (LPS)-challenged fibroblast-like synovial cells. Normal synovial fibroblasts were cultured in triplicate to one of four groups: group 1, unchallenged; group 2, LPS-challenged (20 ng/ml); group 3, LPS-challenged following preteatment and sustained treatment with lower molecular weight HA; and group 4, LPS-challenged following pretreatment and sustained treatment with higher molecular weight HA. The response to LPS challenge and the influence of HA were compared among the four groups using cellular morphology scoring, cell number, cell viability, prostaglandin E2 (PGE2) production, IL-6 production, matrix metalloproteinase 3 (MMP3) production, and gene expression microarray analysis. As expected, our results demonstrated that LPS challenge induced a loss of characteristic fibroblast-like synovial cell culture morphology (P < 0.05), decreased the cell number (P < 0.05), increased PGE2 production 1,000-fold (P < 0.05), increased IL-6 production 15-fold (P < 0.05), increased MMP3 production threefold (P < 0.05), and generated a profile of gene expression changes typical of LPS (P < 0.005). Importantly, LPS exposure at this concentration did not alter the cell viability. Higher molecular weight HA decreased the morphologic change (P < 0.05) associated with LPS exposure. Both lower and higher molecular weight HA significantly altered a similar set of 21 probe sets (P < 0.005), which represented decreased expression of inflammatory genes (PGE2, IL-6) and catabolic genes (MMP3) and represented increased expression of anti-inflammatory and anabolic genes. The molecular weight of the HA product did not affect the cell number, the cell viability or the PGE2, IL-6, or MMP3 production. Taken together, the anti-inflammatory and anticatabolic gene expression profiles of fibroblast-like synovial cells treated with HA and subsequently challenged with LPS support the pharmacologic benefits of treatment with HA regardless of molecular weight. The higher molecular weight HA product provided a cellular protective effect not seen with the lower molecular weight HA product.
Collapse
Affiliation(s)
- Kelly S Santangelo
- Department of Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus OH 43210, USA
| | - Amanda L Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus OH 43210, USA
| | - Amy S Ruppert
- Center for Biostatistics, The Ohio State University, 320 West 10th Avenue, Columbus OH 43210, USA
| | - Alicia L Bertone
- Department of Clinical Sciences, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus OH 43210, USA
| |
Collapse
|
17
|
Hashimoto A, Tarner IH, Bohle RM, Gaumann A, Manetti M, Distler O, Steinmeyer J, Ulfgren AK, Schulz A, Gay S, Müller-Ladner U, Neumann E. Analysis of vascular gene expression in arthritic synovium by laser-mediated microdissection. ACTA ACUST UNITED AC 2007; 56:1094-105. [PMID: 17393418 DOI: 10.1002/art.22450] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE In rheumatoid arthritis (RA), formation of new blood vessels is necessary to meet the nutritional and oxygen requirements of actively proliferating synovial tissue. The aim of this study was to analyze the specific synovial vascular expression profiles of several angiogenesis-related genes as well as CD82 in RA compared with osteoarthritis (OA), using laser-mediated microdissection (LMM). METHODS LMM and subsequent real-time polymerase chain reaction were used in combination with immunohistochemical analysis for area-specific analysis of messenger RNA (mRNA) and protein expression of vascular endothelial growth factor (VEGF), VEGF receptor 1 (VEGFR-1), VEGFR-2, hypoxia-inducible factor 1alpha (HIF-1alpha), HIF-2alpha, platelet-derived growth factor receptor alpha (PDGFRalpha), PDGFRbeta, inhibitor of DNA binding/differentiation 2 (Id2), and CD82 in RA and OA synovial microvasculature and synovial lining. RESULTS Expression of Id2 mRNA was significantly lower in RA synovial vessels compared with OA synovial vessels (P=0.0011), whereas expression of VEGFR-1 was significantly higher in RA (P=0.0433). No differences were observed for the other parameters. At the protein level, no statistically significant differences were observed for any parameter, although Id2 levels were 2.5-fold lower in RA (P=0.0952). However, the number of synovial blood vessels and the number of VEGFR-2-expressing blood vessels were significantly higher in RA compared with OA. CONCLUSION Our results underscore the importance of area-specific gene expression analysis in studying the pathogenesis of RA and support LMM as a robust tool for this purpose. Of note, our results indicate that previously described differences between RA and OA in the expression of angiogenic molecules are attributable to higher total numbers of synovial and vascular cells expressing these molecules in RA rather than higher expression levels in the individual cells.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Arthritis, Rheumatoid
- Basic Helix-Loop-Helix Transcription Factors
- Female
- Gene Expression
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Inhibitor of Differentiation Protein 2/genetics
- Inhibitor of Differentiation Protein 2/metabolism
- Kangai-1 Protein/genetics
- Kangai-1 Protein/metabolism
- Male
- Microdissection
- Middle Aged
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Osteoarthritis
- RNA, Messenger/metabolism
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Synovial Membrane/blood supply
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/metabolism
Collapse
Affiliation(s)
- Atsushi Hashimoto
- Department of Medicine and Rheumatology, Justus-Liebig-University of Giessen, Giessen, and University Hospital Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu YJ, Shen H, Xiao P, Xiong DH, Li LH, Recker RR, Deng HW. Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J Bone Miner Res 2006; 21:1511-35. [PMID: 16995806 PMCID: PMC1829484 DOI: 10.1359/jbmr.051002] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarizes comprehensively the most important and representative molecular genetics studies of gene identification for osteoporosis published up to the end of December 2004. It is intended to constitute a sequential update of our previously published review covering the available data up to the end of 2002. Evidence from candidate gene association studies and genome-wide linkage studies in humans, as well as quantitative trait locus mapping animal models are reviewed separately. Studies of transgenic and knockout mice models relevant to osteoporosis are summarized. An important extension of this update is incorporation of functional genomic studies (including DNA microarrays and proteomics) on osteogenesis and osteoporosis, in light of the rapid advances and the promising prospects of the field. Comments are made on the most notable findings and representative studies for their potential influence and implications on our present understanding of genetics of osteoporosis. The format adopted by this review should be ideal for accommodating future new advances and studies.
Collapse
Affiliation(s)
- Yong-Jun Liu
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hui Shen
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Peng Xiao
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Dong-Hai Xiong
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Li-Hua Li
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Robert R Recker
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
| | - Hong-Wen Deng
- Osteoporosis Research Center, Creighton University Medical Center, Omaha, Nebraska, USA
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education and Institute of Molecular Genetics, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, China
- Laboratory of Molecular and Statistical Genetics, College of Life Sciences Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
19
|
Pache G, Schäfer C, Wiesemann S, Springer E, Liebau M, Reinhardt HC, August C, Pavenstädt H, Bek MJ. Upregulation of Id-1 via BMP-2 receptors induces reactive oxygen species in podocytes. Am J Physiol Renal Physiol 2006; 291:F654-62. [PMID: 16622178 DOI: 10.1152/ajprenal.00214.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are secreted signaling molecules, which play a major role in kidney development and disease. Here, we show the existence of mRNA for BMP-2 and for the BMP receptors BMPR1A, BMPR1B, BMPRII, ACVR1A, ACVR2, and ACVR2B in differentiated mouse podocytes and the protein expression of BMPR1A in human glomerular podocytes. BMP-2 dose dependently increases the free cytosolic Ca(2+) concentration in podocytes proving the existence of a functional receptor in these cells. Recent data indicate that in a myoblastic cell line and in a breast cancer cell line, BMP-2 increases the expression of Id-1, a negative regulator of basic helix-loop-helix transcription factors, but the role of BMP-2 stimulated Id-1 expression in the kidney has not been further characterized. Here, we show that BMP-2 increases the expression of Id-1 in differentiated podocytes. To investigate a role of Id-1 for podocyte function, overexpression of Id-1 was induced in differentiated mouse podocytes. Id-1-overexpressing podocytes show an increased NADPH-dependent production of reactive oxygen species (ROS). This effect can be evoked by BMP-2 and can be antagonized by anti-Id-1 antisense oligonucleotides. The data indicate that BMP-2 may, via an increased expression of Id-1 and an increased generation of ROS, contribute to important cellular functions in podocytes. ROS supposedly play a major role in cell adhesion, cell injury, ion transport, fibrogenesis, angiogenesis and are involved in the pathogenesis of membranous nephropathy.
Collapse
Affiliation(s)
- Gregor Pache
- Department of Medicine, Division of Nephrology and General Medicine, University Clinic of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kersten C, Sivertsen EA, Hystad ME, Forfang L, Smeland EB, Myklebust JH. BMP-6 inhibits growth of mature human B cells; induction of Smad phosphorylation and upregulation of Id1. BMC Immunol 2005; 6:9. [PMID: 15877825 PMCID: PMC1134658 DOI: 10.1186/1471-2172-6-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 05/09/2005] [Indexed: 01/13/2023] Open
Abstract
Background Bone morphogenetic proteins (BMPs) belong to the TGF-β superfamily and are secreted proteins with pleiotropic roles in many different cell types. A potential role of BMP-6 in the immune system has been implied by various studies of malignant and rheumatoid diseases. In the present study, we explored the role of BMP-6 in normal human peripheral blood B cells. Results The B cells were found to express BMP type I and type II receptors and BMP-6 rapidly induced phosphorylation of Smad1/5/8. Furthermore, Smad-phosphorylation was followed by upregulation of Id1 mRNA and Id1 protein, whereas Id2 and Id3 expression was not affected. Furthermore, we found that BMP-6 had an antiproliferative effect both in naïve (CD19+CD27-) and memory B cells (CD19+CD27+) stimulated with anti-IgM alone or the combined action of anti-IgM and CD40L. Additionally, BMP-6 induced cell death in activated memory B cells. Importantly, the antiproliferative effect of BMP-6 in B-cells was completely neutralized by the natural antagonist, noggin. Furthermore, B cells were demonstrated to upregulate BMP-6 mRNA upon stimulation with anti-IgM. Conclusion In mature human B cells, BMP-6 inhibited cell growth, and rapidly induced phosphorylation of Smad1/5/8 followed by an upregulation of Id1.
Collapse
MESH Headings
- Antibodies, Anti-Idiotypic/pharmacology
- B-Lymphocytes/cytology
- B-Lymphocytes/drug effects
- Bone Morphogenetic Protein 6
- Bone Morphogenetic Protein Receptors, Type I/biosynthesis
- Bone Morphogenetic Protein Receptors, Type I/genetics
- Bone Morphogenetic Protein Receptors, Type II/biosynthesis
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Proteins/pharmacology
- Bone Morphogenetic Proteins/physiology
- Burkitt Lymphoma/pathology
- CD40 Ligand/pharmacology
- Cell Division/drug effects
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cells, Cultured/drug effects
- Cells, Cultured/metabolism
- Humans
- Immunologic Memory
- Inhibitor of Differentiation Protein 1/biosynthesis
- Inhibitor of Differentiation Protein 1/genetics
- Phosphorylation/drug effects
- Protein Processing, Post-Translational/drug effects
- Signal Transduction/drug effects
- Smad1 Protein/metabolism
- Smad5 Protein/metabolism
- Smad8 Protein/metabolism
- Up-Regulation/drug effects
Collapse
Affiliation(s)
- Christian Kersten
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Einar A Sivertsen
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Marit E Hystad
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Lise Forfang
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Erlend B Smeland
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
- Faculty Division The Norwegian Radium Hospital, University of Oslo, Norway
| | - June H Myklebust
- Department of Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| |
Collapse
|
21
|
Sakurai D, Tsuchiya N, Yamaguchi A, Okaji Y, Tsuno NH, Kobata T, Takahashi K, Tokunaga K. Crucial role of inhibitor of DNA binding/differentiation in the vascular endothelial growth factor-induced activation and angiogenic processes of human endothelial cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:5801-9. [PMID: 15494533 DOI: 10.4049/jimmunol.173.9.5801] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Angiogenesis plays a pivotal role in the aggressive proliferation of synovial cells in rheumatoid arthritis. We have previously reported the overexpression of inhibitor of DNA binding/differentiation (Id) in the endothelial cells within the synovial tissues of rheumatoid arthritis. In this study, we investigated the role of Id in inflammation and angiogenesis in an in vitro model using HUVECs. Vascular endothelial growth factor (VEGF) and TGFbeta induced the expression of Id1 and Id3 in HUVECs. Forced expression of Id induced proliferative activity in HUVECs accompanied by down-regulation of p16INK4a. Overexpression of Id enhanced expression of ICAM-1 and E-selectin, and induced angiogenic processes such as transmigration, matrix metalloproteinase-2 and -9 expression, and tube formation. In contrast, knockdown of Id1 and Id3 with RNA interference abolished proliferation, activation, and angiogenic processes of HUVECs induced by VEGF. These results indicated that Id plays a crucial role in VEGF-induced signals of endothelial cells by causing activation and potentiation of angiogenic processes. Based on these findings, it was proposed that inhibition of expression and/or function of Id1 and Id3 may potentially be of therapeutic value for conditions associated with pathological angiogenesis.
Collapse
Affiliation(s)
- Daisuke Sakurai
- Department of Human Genetics, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Id proteins are important parts of signaling pathways involved in development, cell cycle and tumorigenesis. They were first shown to act as dominant negative antagonists of the basic helix-loop-helix family of transcription factors, which positively regulate differentiation in many cell lineages. The Id proteins do this by associating with the ubiquitous E proteins and preventing them from binding DNA or other transcription factors. Id proteins also associate with Ets transcription factors and the Rb family of tumor suppressor proteins, and are downstream targets of transforming growth factor beta and bone morphogenic protein signaling. Thus, the Id proteins have become important molecules for understanding basic biological processes as well as targets for potential therapeutic intervention in human disease.
Collapse
Affiliation(s)
- Marianna B Ruzinova
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue Box 241, New York, NY 10021, USA
| | | |
Collapse
|
23
|
Ling MT, Wang X, Ouyang XS, Lee TKW, Fan TY, Xu K, Tsao SW, Wong YC. Activation of MAPK signaling pathway is essential for Id-1 induced serum independent prostate cancer cell growth. Oncogene 2002; 21:8498-505. [PMID: 12466969 DOI: 10.1038/sj.onc.1206007] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2002] [Revised: 08/15/2002] [Accepted: 09/03/2002] [Indexed: 11/09/2022]
Abstract
The helix-loop-helix protein Id-1 has been suggested to play a positive role in cell proliferation and tumorigenesis of many types of human cancers. However, little is known about the molecular mechanism involved in the function of Id-1. In this study, using four stable Id-1 transfectant clones, we investigated the involvement of MAPK signaling pathway in the Id-1 induced serum independent prostate cancer cell growth. Our results demonstrated that both transient and stable ectopic Id-1 expression in prostate cancer LNCaP cells led to activation of the Raf/MEK1/2 signaling pathway. In addition, inhibition of MEK1/2 phosphorylation by one of its inhibitors, PD098059, resulted in the decreased cell cycle S phase fraction and cell growth rate, suggesting that activation of MAPK signaling pathway is essential for Id-1 induced prostate cancer cell proliferation. Furthermore, treatment with antisense oligonucleotide complementary to Id-1 mRNA in PC-3 and DU145 cells resulted in a decreased Id-1 expression which was accompanied by decreased Egr-1 protein. Our results suggest for the first time that the function of Id-1 is associated with MAPK signaling pathway activation and indicate a possible novel mechanism in which Id-1 regulates prostate cancer cell growth and tumorigenesis.
Collapse
Affiliation(s)
- Ming-Tat Ling
- Cancer Biology Laboratory, Department of Anatomy, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Tsuchiya N, Ohashi J, Tokunaga K. Variations in immune response genes and their associations with multifactorial immune disorders. Immunol Rev 2002; 190:169-81. [PMID: 12493014 DOI: 10.1034/j.1600-065x.2002.19013.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
There are three genetic methods often used for detecting genes contributing to susceptibility or resistance to multifactorial diseases: nonparametric linkage analysis, case-control association analysis, and transmission disequilibrium test. In this review, we present the theoretical basis that the case-control association study has the highest power of detecting disease genes if there is no population stratification between patients and controls. Taking advantage of the high power, we have carried out extensive case-control association analyses of candidate genes for the search of susceptibility genes to rheumatic diseases in the Japanese as well as in some other populations. Several new associations have been disclosed, including those of TNFR2, FCGR2B, and CD19 gene polymorphisms with systemic lupus erythematosus, in addition to some unexpected findings such as the common occurrence of NKG2-C null allele in the healthy population. Genome-wide association studies using single nucleotide polymorphisms (SNPs) or microsatellite polymorphisms have become realistic, and development of new high-throughput and cost-effective SNP typing technologies is urgently needed. At the same time, our observations may indicate that the 'classical' candidate gene approach will remain a strong alternative, even in the age of 'post genome-sequence'.
Collapse
MESH Headings
- Antigens, CD/genetics
- Antigens, CD19/genetics
- Arthritis, Rheumatoid/genetics
- Arthritis, Rheumatoid/immunology
- Female
- Genes, MHC Class II
- Genetic Variation
- HLA-DR Antigens/genetics
- HLA-DRB1 Chains
- Humans
- Immune System Diseases/genetics
- Immune System Diseases/immunology
- Lupus Erythematosus, Systemic/genetics
- Lupus Erythematosus, Systemic/immunology
- Male
- Models, Immunological
- Polymorphism, Genetic
- Polymorphism, Single Nucleotide
- Receptors, IgG/genetics
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Naoyuki Tsuchiya
- Department of Human Genetics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
25
|
Sugiyama T, Ishii S, Yamamoto JI, Irie R, Saito K, Otuki T, Wakamatsu A, Suzuki Y, Hio Y, Ota T, Nishikawa T, Sugano S, Masuho Y, Isogai T. cDNA macroarray analysis of gene expression in synoviocytes stimulated with TNFalpha. FEBS Lett 2002; 517:121-8. [PMID: 12062421 DOI: 10.1016/s0014-5793(02)02588-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Gene expression of synoviocytes stimulated with tumor necrosis factor-alpha (TNFalpha) was studied by macroarray analysis to elucidate the cellular response and identify new biological functions of known and unknown genes. 10035 cDNA clones were used to make cDNA macroarrays of representative genes. Synoviocytes expressed large amounts of fibronectin and collagen mRNA. Statistical analysis of the macroarray data revealed 26 genes, including six new genes, which underwent significant alteration of gene expression in response to TNFalpha stimulation. These findings suggest that the synoviocyte response to TNFalpha stimulation forms the basis of development of various aspects of the pathophysiology of rheumatoid arthritis.
Collapse
Affiliation(s)
- Tomoyasu Sugiyama
- Helix Research Institute, Inc., 1532-3 Yana, Kisarazu-shi, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|