1
|
Mak KM, Shekhar AC. Soybean polyenylphosphatidylcholine (PPC) is beneficial in liver and extrahepatic tissue injury: An update in experimental research. Anat Rec (Hoboken) 2024; 307:2162-2186. [PMID: 37814787 DOI: 10.1002/ar.25333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/11/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Polyenylphosphatidylcholine (PPC) is a purified polyunsaturated phosphatidylcholine extract of soybeans. This article updates PPC's beneficial effects on various forms of liver cell injury and other tissues in experimental research. PPC downregulates hepatocyte CYP2E1 expression and associated hepatotoxicity, as well as attenuates oxidative stress, apoptosis, lipoprotein oxidation and steatosis in alcoholic and nonalcoholic liver injury. PPC inhibits pro-inflammatory cytokine production, while stimulating anti-inflammatory cytokine secretion in ethanol or lipopolysaccharide-stimulated Kupffer cells/macrophages. It promotes M2-type macrophage polarization and metabolic reprogramming of glucose and lipid metabolism. PPC mitigates steatosis in NAFLD through inhibiting polarization of pro-inflammatory M1-type Kupffer cells, alleviating metabolic inflammation, remodeling hepatic lipid metabolism, correcting imbalances between lipogenesis and lipolysis and enhancing lipoprotein secretion from hepatocytes. PPC is antifibrotic by preventing progression of alcoholic hepatic fibrosis in baboons and also prevents CCl4-induced fibrosis in rats. PPC supplementation replenishes the phosphatidylcholine content of damaged cell membranes, resulting in increased membrane fluidity and functioning. Phosphatidylcholine repletion prevents increased membrane curvature of the endoplasmic reticulum and Golgi and decreases sterol regulatory element binding protein-1-mediated lipogenesis, reducing steatosis. PPC remodels gut microbiota and affects hepatic lipid metabolism via the gut-hepatic-axis and also alleviates brain inflammatory responses and cognitive impairment via the gut-brain-axis. Additionally, PPC protects extrahepatic tissues from injury caused by various toxic compounds by reducing oxidative stress, inflammation, and membrane damage. It also stimulates liver regeneration, enhances sensitivity of cancer cells to radiotherapy/chemotherapy, and inhibits experimental hepatocarcinogenesis. PPC's beneficial effects justify it as a supportive treatment of liver disease.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aditya C Shekhar
- Department of Medical Education and Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
2
|
Abstract
Chronic liver inflammation leads to fibrosis and cirrhosis, which is the 12th leading cause of death in the United States. Hepatocyte steatosis is a component of metabolic syndrome and insulin resistance. Hepatic steatosis may be benign or progress to hepatocyte injury and the initiation of inflammation, which activates immune cells. While Kupffer cells are the resident macrophage in the liver, inflammatory cells such as infiltrating macrophages, T lymphocytes, neutrophils, and DCs all contribute to liver inflammation. The inflammatory cells activate hepatic stellate cells, which are the major source of myofibroblasts in the liver. Here we review the initiation of inflammation in the liver, the liver inflammatory cells, and their crosstalk with myofibroblasts.
Collapse
|
3
|
Kim DH, Lee EM, Do SH, Jeong DH, Jeong KS. Changes of the Cytoplasmic Proteome in Response to Alcoholic Hepatotoxicity in Rats. Int J Mol Sci 2015; 16:18664-82. [PMID: 26266409 PMCID: PMC4581265 DOI: 10.3390/ijms160818664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Proteomic analyses have already been used in a number of hepatological studies and provide important information. However, few reports have focused on changes in the cytoplasmic proteome. The present study therefore aimed to evaluate changes in cytoplasmic proteome of rats in response to alcoholic hepatotoxicity. Rats were fed a Liber-DeCarli liquid diet containing ethanol for four weeks. Cytoplasmic proteins except mitochondrial proteins from the livers of these animals were investigated using two-dimensional gel electrophoresis and mass spectrometry. Alcohol induced a decrease in body weight gain and an increase in alanine transaminase (ALT), cholesterol, and phospholipid levels. Histopathological observations revealed hepatic damage characterized by necrosis and fatty change in alcohol-treated group at week 2, which continues until week 4. Our proteomic analysis revealed that 25 proteins were differentially expressed in the ethanol-fed group. Of these, 12 cytoplasmic proteins are being reported for the first time. Taken together, our results provide further insights into the disease mechanism and therapeutic information of alcoholic liver disease.
Collapse
Affiliation(s)
- Dong Hwan Kim
- College of Interdisciplinary & Creative Studies, Konyang University, Nonsan 320-711, Korea.
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
| | - Eun-Mi Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 702-701, Korea.
| | - Sun-Hee Do
- College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea.
| | - Da-Hee Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
| | - Kyu-Shik Jeong
- College of Veterinary Medicine, Kyungpook National University, Daegu 702-701, Korea.
- Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu 702-701, Korea.
| |
Collapse
|
4
|
Protective effect of phosphatidylcholine on restoration of ethanol-injured hepatocytes related with caveolin-1. J Membr Biol 2013; 247:73-80. [PMID: 24292666 DOI: 10.1007/s00232-013-9613-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 11/08/2013] [Indexed: 01/01/2023]
Abstract
The absorption of phospholipid may improve the fluidity of membrane and enzyme activities. Phospholipids also play a role in promoting Caveolae formation and membrane synthesis. Caveolin-1 has a significant effect on signaling pathways involved in regulating cell proliferation and stress responsiveness. Thus, we can speculate that Caveolin-1 could affect the sense of environmental stress. We use Chang liver cell line to investigate the ability of Caveolin-1 to modulate the cellular response to ethanol injury. Caveolin-1 downregulate cells (Cav-1(-/-)) were established by stable transfecting with psiRNA-CAV1 plasmids, which were more sensitive to toxic effects of ethanol than the untransfected parental cells (WT). Releasing of ALT and electric conductivity were changed significantly in Cav-1(-/-) cells compared with WT. Caveolin-1 gene silencing could obviously down-regulate the activities of protein kinase C-α (PKC-α) and phospho-p42/44 MAP kinase, indicating cell proliferation and self-repairing abilities were inhibited. However, the levels of Caveolin-1 and PKC-α were increased by phosphatidylcholine administration. The results indicated that the inhibition of lipid peroxidation by phosphatidylcholine could lead to the prevention of membrane disruption, which closely correlated with the level of Caveolin-1. Since the protective effects of phosphatidylcholine against ethanol-induced lipid peroxidation might be regulated by phospholipid-PKC-α signaling pathway, related with Caveolin-1, the potential effects of phosphatidylcholine on membranes need to be verified.
Collapse
|
5
|
Dey A. Cytochrome P450 2E1: its clinical aspects and a brief perspective on the current research scenario. Subcell Biochem 2013; 67:1-104. [PMID: 23400917 DOI: 10.1007/978-94-007-5881-0_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Research on Cytochrome P450 2E1 (CYP2E1), a key enzyme in alcohol metabolism has been very well documented in literature. Besides the involvement of CYP2E1 in alcohol metabolism as illustrated through the studies discussed in the chapter, recent studies have thrown light on several other aspects of CYP2E1 i.e. its extrahepatic expression, its involvement in several diseases and pathophysiological conditions; and CYP2E1 mediated carcinogenesis and modulation of drug efficacy. Studies involving these interesting facets of CYP2E1 have been discussed in the chapter focusing on the recent observations or ongoing studies illustrating the crucial role of CYP2E1 in disease development and drug metabolism.
Collapse
Affiliation(s)
- Aparajita Dey
- AU-KBC Research Centre, Anna University, MIT Campus, Chromepet, Chennai, Tamil Nadu, 600044, India,
| |
Collapse
|
6
|
Martikainen LE, Rahnasto-Rilla M, Neshybova S, Lahtela-Kakkonen M, Raunio H, Juvonen RO. Interactions of inhibitor molecules with the human CYP2E1 enzyme active site. Eur J Pharm Sci 2012; 47:996-1005. [PMID: 23069620 DOI: 10.1016/j.ejps.2012.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/07/2012] [Accepted: 09/25/2012] [Indexed: 11/27/2022]
Abstract
CYP2E1 is an important enzyme oxidizing ethanol as well as several drugs and other xenobiotics in the human liver. We determined the inhibition potency of structurally diverse compounds against human CYP2E1, and analyzed their interactions with the enzyme active site by molecular docking and 3D-QSAR approaches. The IC(50) values for the tested compounds varied from 1.4 μM for γ-undecanolactone to over 46 mM for glycerol. This data set was used to create a comparative molecular field analysis (CoMFA) model. The most important interactions for binding of inhibitors were identified by docking and key features for inhibitors were characterized via the COMFA model. Since the active site of CYP2E1 is flexible, long chain lactones and alkyl alcohols fitted best into the larger open form while the other compounds fitted better in the smaller closed form of the active site. Electrostatic interactions near the Thr(303) residue proved to be important for inhibition of the enzyme activity. Thus, docking analysis and the predictive CoMFA model proved to be efficient tools for revealing interactions between inhibiting compounds and CYP2E1. These approaches can be used to analyze CYP2E1-mediated metabolism and drug interactions in the development of new chemical entities.
Collapse
|
7
|
Nava F, Premi S, Manzato E, Lucchini A. Comparing Treatments of Alcoholism on Craving and Biochemical Measures of Alcohol Consumptions. J Psychoactive Drugs 2011; 38:211-7. [PMID: 17165363 DOI: 10.1080/02791072.2006.10399846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
An open randomized study was conducted to compare different treatments of alcoholism on ethanol intake, craving, and on biochemical measures of alcohol consumptions. Eighty-six alcoholics were abstinent for a mean of two weeks prior to random assignment to g-hydroxybutyrate (GHB, 50 mg/kg of body weight t.i.d), naltrexone (NTX, 50 mg/day) or disulfiram (DSF, 200 mg/ day) treatment for 12 months. All treatments were equally effective in reducing alcohol intake and in maintaining abstinence. In all patients, the treatments were able to reduce both craving and the altered biological markers of alcohol abuse. The maximum effects were observed in GHB-treated patients. The results of the present study suggest that GHB might act both as anticraving and cellular protector agent.
Collapse
Affiliation(s)
- Felice Nava
- Department of Addiction Medicine, Drug Abuse Unit (Ser.T.), Hospital of Castelfranco Veneto, Via Ospedale, 18, 31033 Castelfranco Veneto-Treviso, Italy.
| | | | | | | |
Collapse
|
8
|
Gundermann KJ, Kuenker A, Kuntz E, Droździk M. Activity of essential phospholipids (EPL) from soybean in liver diseases. Pharmacol Rep 2011; 63:643-59. [PMID: 21857075 DOI: 10.1016/s1734-1140(11)70576-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 12/28/2010] [Indexed: 02/07/2023]
Abstract
Essential phospholipids (EPL) contain a highly purified extract of polyenylphosphatidylcholine (PPC) molecules from soybean. The main active ingredient is 1,2-dilinoleoylphosphatidylcholine (DLPC), which differentiates it from other phospholipids, lecithins, or extracts from other sources. Although EPLis widely used in liver diseases of various origins, its mode of action and pharmacological and clinical evidence of its efficacy have not yet been concisely reviewed. This paper critically summarizes experimental and clinical results. With regard to in-vitro and animal tests, EPL influenced membrane-dependent cellular functions and showed anti-oxidant, anti-inflammatory, anti-fibrotic, apoptosis-modulating, regenerative, membrane-repairing and -protective, cell-signaling and receptor-influencing, as well as lipid-regulating effects in intoxication models with chemicals or drugs. Clinical studies, primarily from European and Asian countries, have shown improvement in subjective symptoms; clinical, biochemical and imaging findings; and histology in liver indications such as fatty liver of different origin, drug hepatotoxicity, and adjuvant in chronic viral hepatitis and hepatic coma. The available studies characterize EPL as evidence-based medicine, although further long-term controlled clinical trials are required to precisely determine its benefit for alleviating symptoms, improving well-being, inducing histological changes and slowing the progression of liver disease. EPL-related relevant side effects were not observed.
Collapse
Affiliation(s)
- Karl-Josef Gundermann
- Institute of Pharmacology, Pomeranian Medical Academy, Powstańców Wielkopolskich 72, PL 70-111 Szczecin, Poland.
| | | | | | | |
Collapse
|
9
|
Zhang L, Jia X, Peng X, Ou Q, Zhang Z, Qiu C, Yao Y, Shen F, Yang H, Ma F, Wang J, Yuan Z. Development and validation of a liquid chromatography-mass spectrometry metabonomic platform in human plasma of liver failure caused by hepatitis B virus. Acta Biochim Biophys Sin (Shanghai) 2010; 42:688-98. [PMID: 20810534 DOI: 10.1093/abbs/gmq078] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This paper presents an liquid chromatography (LC)/mass spectrometry (MS)-based metabonomic platform that combined the discovery of differential metabolites through principal component analysis (PCA) with the verification by selective multiple reaction monitoring (MRM). These methods were applied to analyze plasma samples from liver disease patients and healthy donors. LC-MS raw data (about 1000 compounds), from the plasma of liver failure patients (n = 26) and healthy controls (n = 16), were analyzed through the PCA method and a pattern recognition profile that had significant difference between liver failure patients and healthy controls (P < 0.05) was established. The profile was verified in 165 clinical subjects. The specificity and sensitivity of this model in predicting liver failure were 94.3 and 100.0%, respectively. The differential ions with m/z of 414.5, 432.0, 520.5, and 775.0 were verified to be consistent with the results from PCA by MRM mode in 40 clinical samples, and were proved not to be caused by the medicines taken by patients through rat model experiments. The compound with m/z of 520.5 was identified to be 1-Linoleoylglycerophosphocholine or 1-Linoleoylphosphatidylcholine through exact mass measurements performed using Ion Trap-Time-of-Flight MS and METLIN Metabolite Database search. In all, it was the first time to integrate metabonomic study and MRM relative quantification of differential peaks in a large number of clinical samples. Thereafter, a rat model was used to exclude drug effects on the abundance of differential ion peaks. 1-Linoleoylglycerophosphocholine or 1-Linoleoylphosphatidylcholine, a potential biomarker, was identified. The LC/MS-based metabonomic platform could be a powerful tool for the metabonomic screening of plasma biomarkers.
Collapse
Affiliation(s)
- Lijun Zhang
- Shanghai Public Health Clinical Center Affiliated to Fudan University, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wagner EJ, Brown CS, Mather JR, Scholcoff C, Krugner-Higby L, Heath TD. Evaluation of phospholipid and liposomal S-adenosyl methionine for the treatment of liver injury in a murine model. J Pharm Sci 2009; 99:1800-9. [PMID: 19780135 DOI: 10.1002/jps.21950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have used a murine model of Acetaminophen induced hepatoxicity to determine if S-adenosyl methionine 1,4 butanedisulfonate (SD4) in liposomes can prevent liver injury when administered immediately prior to acetaminophen, as judged by serum aspartate aminotransferase and alanine aminotransferase levels, and histological evidence of liver necrosis. No protection was observed when mice received 1 g/kg unencapsulated SD4. Partial protection was observed with 5 or 0.5 mg/kg SD4 in unextruded distearoylphosphatidylglycerol (DSPG) liposomes. Protection comparable to that seen in mice receiving encapsulated SD4 is achieved when mice received lipid alone in equivalent amounts, suggesting that the contribution of encapsulated SD4 to the efficacy of the liposomes may be minimal. Unextruded distearoylphosphatidylcholine (DSPC) liposomes show only slight effects even at 50 mg/kg SD4. This is likely caused by the size of unextruded DSPC lipsomes, because extruded DSPC liposomes, whose size is smaller, are of comparable efficacy to unextruded DSPG liposomes.
Collapse
Affiliation(s)
- Eric J Wagner
- School of Pharmacy and Veterinary Medicine, University of Wisconsin Madison, 777 Highland Avenue, Madison, Wisconsin, USA
| | | | | | | | | | | |
Collapse
|
11
|
Lieber CS, Leo MA, Cao Q, Mak KM, Ren C, Ponomarenko A, Wang X, Decarli LM. The Combination of S-adenosylmethionine and Dilinoleoylphosphatidylcholine Attenuates Non-alcoholic Steatohepatitis Produced in Rats by a High-Fat Diet. Nutr Res 2007; 27:565-573. [PMID: 18769506 DOI: 10.1016/j.nutres.2007.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In the pathogenesis of non-alcoholic steatohepatitis (NASH), oxidative stress resulting from free radicals generated by cytochrome P4502E1 (CYP2E1) plays a major role suggesting the importance of antioxidants. The objective of this study was to assess in a high-fat diet (HF) rat model the effects of the combination of s-adenosylmethionine (SAMe) plus dilinoleoylphosphatidylcholine (DLPC) in the treatment of NASH. To test the hypothesis that these two antioxidants are beneficial in NASH, male Sprague-Dawley rats were fed five different diets for six weeks: control, HF diet and HF plus SAMe and DLPC or their combination. As expected, the HF diet significantly increased hepatic triacylglycerols and CYP2E1 levels. However, only the combination diet opposed this effect, consistent with different actions of the two antioxidants. Next, 24 additional rats divided in two groups were fed the HF or the HF+SAMe+DLPC diets for 3 weeks. Dietary intake was similar, but liver triacylglycerols dropped from 76.1+/-6.8 to 49.4+/-3.5 mg/g (p=0.002) and hepatic CYP2E1 mRNA decreased after treatment (p=0.01) with a trend for less CYP2E1 protein. This was accompanied by a 41% reduction of hepatic 4-hydroxynonenal (4-HNE) (p=0.008), reflecting control of oxidative stress. Furthermore, the hepatic inflammatory cytokine tumor necrosis factor-alpha (TNF-alpha) mRNA and TNF-alpha protein decreased (p=0.05 and p=0.01 respectively) with attenuation of alpha1(I) procollagen mRNA and type I collagen levels (p=0.01 and p=0.02, respectively). We concluded that the combination SAMe+DLPC might be beneficial in NASH by reducing oxidative stress and associated liver injury.
Collapse
Affiliation(s)
- Charles S Lieber
- Alcohol Research and Treatment Center, Section of Liver Disease and Nutrition, James J. Peters, VA Medical Center and Mount Sinai School of Medicine, Bronx, NY
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lieber CS, Cao Q, DeCarli LM, Leo MA, Mak KM, Ponomarenko A, Ren C, Wang X. Role of medium-chain triglycerides in the alcohol-mediated cytochrome P450 2E1 induction of mitochondria. Alcohol Clin Exp Res 2007; 31:1660-8. [PMID: 17681033 DOI: 10.1111/j.1530-0277.2007.00475.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Chronic alcohol consumption is known to induce cytochrome P450 2E1 (CYP2E1) leading to lipid peroxidation, mitochondrial dysfunction and hepatotoxicity. We showed that replacement of dietary long-chain triglycerides (LCT) by medium-chain triglycerides (MCT) could be protective. We now wondered whether the induction of mitochondrial CYP2E1 plays a role and whether liver injury could be avoided through mitochondrial intervention. METHODS Rats were fed 4 different isocaloric liquid diets. The control group received our standard dextrin-maltose diet with intake limited to the average consumption of the 3 alcohol groups fed ad libitum the alcohol containing Lieber-DeCarli liquid diet. The fat was either 32% of calories as LCT (alcohol), or 16% as LCT + 16% as MCT (alcohol-MCT 16%), or 32% as MCT only (alcohol-MCT 32%). RESULTS After 21 days, compared to the controls, the alcohol and both alcohol-MCT groups had a significant increase in mitochondrial CYP2E1 (p < 0.05 for both). As shown before, the same was found for the microsomal CYP2E1. When MCT replaced all the fat, like in the alcohol-MCT 32% group, CYP2E1 was significantly reduced by 40% in mitochondria (p < 0.05) and 30% in microsomes (p < 0.01). In mitochondria, 4-hydroxynonenal (4-HNE), a parameter of oxidative stress, paralleled CYP2E1. Compared to controls, alcohol and alcohol-MCT 16% significantly raised mitochondrial 4-HNE (p < 0.001), whereas the alcohol-MCT 32% diet brought it down to control levels (p < 0.001). Mitochondrial reduced glutathione (GSH) was also significantly lowered by alcohol consumption (p < 0.05), and it increased to almost normal levels with alcohol-MCT 32% (p = 0.006). These changes in the mitochondria reflected the reduction observed in total liver in which alcohol-MCT 32% decreased the alcohol-induced steatosis with a diminution of triglycerides (p < 0.001) and of the pro-inflammatory cytokine tumor necrosis factor-alpha (p < 0.001). CONCLUSION Mitochondria participate in the induction of CYP2E1 by alcohol and contribute to lipid peroxidation and GSH depletion. Thus, lipid composition of the diet is an important determinant for the beneficial effect of MCT, with a diet containing a mixture of LCT/MCT being ineffective.
Collapse
|
13
|
Abstract
Chronic ethanol consumption results in the proliferation of the membranes of the smooth endoplasmic reticulum. Although these microsomal changes can be interpreted as adaptive alterations secondary to induction of the membranes after chronic ethanol ingestion, some injurious consequences may ensue. Accelerated ethanol metabolism results in enhanced production of acetaldehyde and exacerbation of its various toxic manifestations including enhanced lipid peroxidation. The latter may also be promoted more directly through enhanced free radical formation by the induced microsomes and cytochrome P4502E1 (CYP2E1). Ethanol-inducible CYP2E1 is of interest because of its ability to metabolize and activate many toxicologically important substrates including ethanol, CCl(4), acetaminophen, and N-nitrosodimethylamine, to more toxic products. Major interest in CYP2E1 reflects the ability of this enzyme to oxidize ethanol, to generate reactive products from ethanol oxidation (e.g. acetaldehyde and 1-hydroxyethyl radical), to activate various agents including CCl(4) and acetaminophen into reactive products, and to generate reactive oxygen species. There is considerable interest in the role of ethanol-induced oxidative stress and generation of reactive oxygen species in the mechanisms by which ethanol becomes hepatotoxic. To understand the basic effects and actions of CYP2E1, an approach has been established to utilize the cell lines that constitutively express human CYP2E1. This review article briefly describes a role of microsomal enzymes in the development of alcoholic liver injury as well as the usefulness of this cell line to further clarify the mechanisms of CYP2E1-related hepatotoxicity.
Collapse
Affiliation(s)
- Masahiro Konishi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | |
Collapse
|
14
|
Cao Q, Mak KM, Lieber CS. DLPC and SAMe combined prevent leptin-stimulated TIMP-1 production in LX-2 human hepatic stellate cells by inhibiting HO-mediated signal transduction. Liver Int 2006; 26:221-31. [PMID: 16448461 DOI: 10.1111/j.1478-3231.2005.01204.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND/AIMS Both dilinoleoylphosphatidylcholine (DLPC) and S-adenosylmethionine (SAMe) have antioxidant properties and antifibrogenic actions. Because H2O2 mediates signal transduction-stimulating liver fibrogenesis, we investigated whether DLPC and SAMe attenuate the production of tissue inhibitor of metalloproteinase (TIMP)-1 by inhibiting H2O2 formation. METHODS LX-2 human hepatic stellate cells were treated with leptin with or without DLPC, SAMe or various inhibitors. RESULTS Leptin-stimulated TIMP-1 mRNA and its protein were diminished by DLPC or SAMe alone, and the response was fully prevented by the combination of DLPC and SAMe. H2O2 was increased while glutathione was decreased; these changes were prevented by AG490, suggesting a Janus kinases (JAK)-mediated process. Up-regulation of leptin receptor and activation of JAK1 and 2 were not affected by DLPC+SAMe, whereas phosphorylation of ERK1/2 and p38 was blocked by DLPC+SAMe or catalase, suggesting an H2O2-dependent mechanism. These treatments also suppressed leptin-stimulated TIMP-1 promoter activity and decreased TIMP-1 mRNA stability, contributing to TIMP-1 mRNA down-regulation. PD098059, an ERK1/2 inhibitor, suppressed TIMP-1 promoter activity, whereas SB203580, a p38 inhibitor, decreased TIMP-1 message stability; both resulted in a partial reduction of TIMP-1 mRNA. CONCLUSION As decreased TIMP-1 production may enhance collagen deposition, the combined administration of DLPC+SAMe should be considered for the prevention of H2O2-mediated signaling and the resulting fibrosis.
Collapse
Affiliation(s)
- Qi Cao
- Alcohol Research and Treatment Center, Bronx Veterans Affairs Medical Center and Mount Sinai School of Medicine, Bronx, NY 10468, USA
| | | | | |
Collapse
|
15
|
Seitz HK, Salaspuro M, Savolainen M, Haber P, Ishii H, Teschke R, Moshage H, Lieber CS. From alcohol toxicity to treatment. Alcohol Clin Exp Res 2006; 29:1341-50. [PMID: 16088998 DOI: 10.1111/j.1530-0277.2005.tb03472.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This article presents the proceedings of a symposium held at the meeting of the International Society for Biomedical Research on Alcoholism in Mannheim, Germany, in October 2004. This symposium was dedicated to Charles S. Lieber in recognition of his contribution in alcohol research over the last 50 years. It was divided into two parts, namely effects of alcohol on the gastrointestinal tract and effects of alcohol on the liver. Major emphasis was given to recent discoveries elucidating mechanisms of alcohol-associated carcinogenesis. M. Salaspuro (Finland) discussed the role of acetaldehyde in the saliva and in the large intestine with respect to its role in the pathogenesis of alcohol-associated cancer, and H. K. Seitz (Germany) presented new data identifying individuals homozygous for the ADH1C&1 allele as high on risk for alcohol-associated upper aerodigestive tract cancer. M. Savolainen (Finland) discussed the role phosphatidylethanol as a bioactive lipid that can mediate beneficial and harmful effects of alcohol drinking. In the second part of the symposium, alcoholic liver disease was discussed. P. Haber (Australia) presented new data on hepatic transcriptome in alcoholic liver disease with the identification of new genes possibly involved in alcohol-initiated fibrogenesis of the liver, and H. Moshage (The Netherlands) described survival mechanisms of the cholestatic hepatocytes with implications for therapy in cholestatic liver disease. The role of the hepatic microsomal ethanol oxidizing system in the metabolism of alcohol in alcoholic liver disease was summarized by R. Teschke (Germany). H. Ishii (Japan) discussed the current status and treatment of alcoholic hepatitis in Japan. Finally, in a state-of-the-art lecture, Charles S. Lieber (USA) discussed the development of the understanding of the pathophysiology of alcoholic liver disease in the last 50 years. He emphasized the role of pathophysiology as an important prerequisite for better treatment strategies.
Collapse
Affiliation(s)
- Helmut K Seitz
- Department of Medicine, Salem Medical Center and Laboratory of Alcohol Research, Liver Disease and Nutrition, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Caro AA, Cederbaum AI. Inhibition of CYP2E1 catalytic activity in vitro by S-adenosyl-L-methionine. Biochem Pharmacol 2005; 69:1081-93. [PMID: 15763544 DOI: 10.1016/j.bcp.2005.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
The objective of this work was to evaluate the possible in vitro interactions of S-adenosyl-l-methionine (SAM) and its metabolites S-(5'-Adenosyl)-l-homocysteine (SAH), 5'-Deoxy-5'-(methylthio)adenosine (MTA) and methionine with cytochrome P450 enzymes, in particular CYP2E1. SAM (but not SAH, MTA or methionine) produced a type II binding spectrum with liver microsomal cytochrome P450 from rats treated with acetone or isoniazid to induce CYP2E1. Binding was less effective for control microsomes. SAM did not alter the carbon monoxide binding spectrum of P450, nor denature P450 to P420, nor inhibit the activity of NADPH-P450 reductase. However, SAM inhibited the catalytic activity of CYP2E1 with typical substrates such as p-nitrophenol, ethanol, and dimethylnitrosamine, with an IC(50) around 1.5-5mM. SAM was a non-competitive inhibitor of CYP2E1 catalytic activity and its inhibitory actions could not be mimicked by methionine, SAH or MTA. However, SAM did not inhibit the oxidation of ethanol to alpha-hydroxyethyl radical, an assay for hydroxyl radical generation. In microsomes engineered to express individual human P450s, SAM produced a type II binding spectrum with CYP2E1-, but not with CYP3A4-expressing microsomes, and SAM was a weaker inhibitor against the metabolism of a specific CYP3A4 substrate than a specific CYP2E1 substrate. SAM also inhibited CYP2E1 catalytic activity in intact HepG2 cells engineered to express CYP2E1. These results suggest that SAM interacts with cytochrome P450s, especially CYP2E1, and inhibits the catalytic activity of CYP2E1 in a reversible and non competitive manner. However, SAM is a weak inhibitor of CYP2E1. Since the K(i) for SAM inhibition of CYP2E1 activity is relatively high, inhibition of CYP2E1 activity is not likely to play a major role in the ability of SAM to protect against the hepatotoxicity produced by toxins requiring metabolic activation by CYP2E1 such as acetaminophen, ethanol, carbon tetrachloride, thioacetamide and carcinogens.
Collapse
Affiliation(s)
- Andres A Caro
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | |
Collapse
|
17
|
Lieber CS. The discovery of the microsomal ethanol oxidizing system and its physiologic and pathologic role. Drug Metab Rev 2005; 36:511-29. [PMID: 15554233 DOI: 10.1081/dmr-200033441] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidation of ethanol via alcohol dehydrogenase (ADH) explains various metabolic effects of ethanol but does not account for the tolerance. This fact, as well as the discovery of the proliferation of the smooth endoplasmic reticulum (SER) after chronic alcohol consumption, suggested the existence of an additional pathway which was then described by Lieber and DeCarli, namely the microsomal ethanol oxidizing system (MEOS), involving cytochrome P450. The existence of this system was initially challenged but the effect of ethanol on liver microsomes was confirmed by Remmer and his group. After chronic ethanol consumption, the activity of the MEOS increases, with an associated rise in cytochrome P450, especially CYP2E1, most conclusively shown in alcohol dehydrogenase negative deer mice. There is also cross-induction of the metabolism of other drugs, resulting in drug tolerance. Furthermore, the conversion of hepatotoxic agents to toxic metabolites increases, which explains the enhanced susceptibility of alcoholics to the adverse effects of various xenobiotics, including industrial solvents. CYP2E1 also activates some commonly used drugs (such as acetaminophen) to their toxic metabolites, and promotes carcinogenesis. In addition, catabolism of retinol is accelerated resulting in its depletion. Contrasting with the stimulating effects of chronic consumption, acute ethanol intake inhibits the metabolism of other drugs. Moreover, metabolism by CYP2E1 results in a significant release of free radicals which, in turn, diminishes reduced glutathione (GSH) and other defense systems against oxidative stress which plays a major pathogenic role in alcoholic liver disease. CYP1A2 and CYP3A4, two other perivenular P450s, also sustain the metabolism of ethanol, thereby contributing to MEOS activity and possibly liver injury. CYP2E1 has also a physiologic role which comprises gluconeogenesis from ketones, oxidation of fatty acids, and detoxification of xenobiotics other than ethanol. Excess of these physiological substrates (such as seen in obesity and diabetes) also leads to CYP2E1 induction and nonalcoholic fatty liver disease (NAFLD), which includes nonalcoholic fatty liver and nonalcoholic steatohepatitis (NASH), with pathological lesions similar to those observed in alcoholic steatohepatitis. Increases of CYP2E1 and its mRNA prevail in the perivenular zone, the area of maximal liver damage. CYP2E1 up-regulation was also demonstrated in obese patients as well as in rat models of obesity and NASH. Furthermore, NASH is increasingly recognized as a precursor to more severe liver disease, sometimes evolving into "cryptogenic" cirrhosis. The prevalence of NAFLD averages 20% and that of NASH 2% to 3% in the general population, making these conditions the most common liver diseases in the United States. Considering the pathogenic role that up-regulation of CYP2E1 also plays in alcoholic liver disease (vide supra), it is apparent that a major therapeutic challenge is now to find a way to control this toxic process. CYP2E1 inhibitors oppose alcohol-induced liver damage, but heretofore available compounds are too toxic for clinical use. Recently, however, polyenylphosphatidylcholine (PPC), an innocuous mixture of polyunsaturated phosphatidylcholines extracted from soybeans (and its active component dilinoleoylphosphatidylcholine), were discovered to decrease CYP2E1 activity. PPC also opposes hepatic oxidative stress and fibrosis. It is now being tested clinically.
Collapse
Affiliation(s)
- Charles S Lieber
- Mount Sinai School of Medicine, Section of Liver Disease and Nutrition and Alcohol Research Center, Bronx Veterans Affairs Medical Center, USA
| |
Collapse
|
18
|
Abstract
Most tissues of the body contain enzymes capable of ethanol oxidation or nonoxidative metabolism, but significant activity occurs only in the liver and, to a lesser extent, in the stomach. Hence, medical consequences are predominant in these organs. In the liver, ethanol oxidation generates an excess of reducing equivalents, primarily as NADH, causing hepatotoxicity. An additional system, containing cytochromes P-450 inducible by chronic alcohol feeding, was demonstrated in liver microsomes and found to be a major cause of hepatotoxicity.
Collapse
Affiliation(s)
- Charles S Lieber
- Bronx VA Medical Center (151-2), 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
19
|
Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of progression to inflammation and fibrosis. Alcohol 2004; 34:9-19. [PMID: 15670660 DOI: 10.1016/j.alcohol.2004.07.008] [Citation(s) in RCA: 437] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 07/16/2004] [Accepted: 07/20/2004] [Indexed: 02/06/2023]
Abstract
Liver disease in the alcoholic is due not only to malnutrition but also to ethanol's hepatotoxicity linked to its metabolism by means of the alcohol dehydrogenase and cytochrome P450 2E1 (CYP2E1) pathways and the resulting production of toxic acetaldehyde. In addition, alcohol dehydrogenase-mediated ethanol metabolism generates the reduced form of nicotinamide adenine dinucleotide (NADH), which promotes steatosis by stimulating the synthesis of fatty acids and opposing their oxidation. Steatosis is also promoted by excess dietary lipids and can be attenuated by their replacement with medium-chain triglycerides. Through reduction of pyruvate, elevated NADH also increases lactate, which stimulates collagen synthesis in myofibroblasts. Furthermore, CYP2E1 activity is inducible by its substrates, not only ethanol but also fatty acids. Their excess and metabolism by means of this pathway generate release of free radicals, which cause oxidative stress, with peroxidation of lipids and membrane damage, including altered enzyme activities. Products of lipid peroxidation such as 4-hydroxynonenal stimulate collagen generation and fibrosis, which are further increased through diminished feedback inhibition of collagen synthesis because acetaldehyde forms adducts with the carboxyl-terminal propeptide of procollagen in hepatic stellate cells. Acetaldehyde is also toxic to the mitochondria, and it aggravates their oxidative stress by binding to reduced glutathione and promoting its leakage. Oxidative stress and associated cellular injury promote inflammation, which is aggravated by increased production of the proinflammatory cytokine tumor necrosis factor-alpha in the Kupffer cells. These are activated by induction of their CYP2E1 as well as by endotoxin. The endotoxin-stimulated tumor necrosis factor-alpha release is decreased by dilinoleoylphosphatidylcholine, the active phosphatidylcholine (PC) species of polyenylphosphatidylcholine (PPC). Moreover, defense mechanisms provided by peroxisome proliferator-activated receptor alpha and omega fatty acid oxidation are readily overwhelmed, particularly in female rats and also in women who have low hepatic induction of fatty acid-binding protein (L-FABPc). Accordingly, the intracellular concentration of free fatty acids may become high enough to injure membranes, thereby contributing to necrosis, inflammation, and progression to fibrosis and cirrhosis. Eventually, hepatic S-adenosylmethionine and PCs become depleted in the alcoholic, with impairment of their multiple cellular functions, which can be restored by PC replenishment. Thus, prevention and therapy opposing the development of steatosis and its progression to more severe injury can be achieved by a multifactorial approach: control of alcohol consumption, avoidance of obesity and of excess dietary long-chain fatty acids, or their replacement with medium-chain fatty acids, and replenishment of S-adenosylmethionine and PCs by using PPC. Progress in the understanding of the pathogenesis of alcoholic fatty liver and its progression to inflammation and fibrosis has resulted in prospects for their better prevention and treatment.
Collapse
|
20
|
Center SA. Metabolic, antioxidant, nutraceutical, probiotic, and herbal therapies relating to the management of hepatobiliary disorders. Vet Clin North Am Small Anim Pract 2004; 34:67-172, vi. [PMID: 15032126 DOI: 10.1016/j.cvsm.2003.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nutraceuticals, conditionally essential nutrients, and botanical extracts have been proposed as useful in the management of liver disease. The most studied of these are addressed in terms of proposed mechanisms of action, benefits, hazards, and safe dosing recommendations allowed by current information. While this is an area of soft science, it is important to keep an open and tolerant mind, considering that many major treatment discoveries were in fact serendipitous accidents.
Collapse
Affiliation(s)
- Sharon A Center
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
21
|
Lieber CS. New concepts of the pathogenesis of alcoholic liver disease lead to novel treatments. Curr Gastroenterol Rep 2004; 6:60-5. [PMID: 14720455 DOI: 10.1007/s11894-004-0027-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activation of methionine to S-adenosylmethionine is depressed in alcoholics. Its repletion opposes alcoholic liver cirrhosis in baboons, decreases mortality in cirrhotic patients, and opposes oxidative stress resulting from cytochrome P4502E1 (CYP2E1) induction by alcohol, ketones, and fatty acids. Their excess causes alcoholic and nonalcoholic steatohepatitis. CYP2E1 is also induced in Kupffer cells, promoting their activation and release of inflammatory cytokines, including tumor necrosis factor (TNF)-alpha. The TNF-alpha inhibitor pentoxifylline decreased mortality from alcoholic hepatitis. Polyenylphosphatidylcholine (PPC), an antioxidant phosphatidylcholine mixture extracted from soybeans, 50% of which consists of the highly bioavailable dilinoleoylphosphatidylcholine, restores phospholipids of the damaged membranes and reactivates their enzymes, including phosphatidylethanolamine methyltransferase, needed for phospholipid regeneration. In baboons, PPC prevented cirrhosis by stimulating collagenase and by opposing lipid peroxidation, which produces the fibrogenic hydroxynonenal. PPC was beneficial in patients with alcoholic hepatitis, and it opposed fibrosis in heavy drinkers and decreased aminotransferases in patients with hepatitis C. The antioxidant silymarin also successfully opposed alcoholic cirrhosis in baboons and in some but not all clinical trials; this effect also pertains to a-tocopherol. The anti-inflammatory corticosteroids and colchicine yielded mixed results. Finally, replacing long-chain with medium-chain triglycerides opposed the fatty liver experimentally and clinically.
Collapse
Affiliation(s)
- Charles S Lieber
- Section of Liver Disease and Nutrition, Bronx VA Medical Center and Mt. Sinai School of Medicine, (151-2), 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| |
Collapse
|
22
|
Mak KM, Wen K, Ren C, Lieber CS. Dilinoleoylphosphatidylcholine Reproduces the Antiapoptotic Actions of Polyenylphosphatidylcholine Against Ethanol-Induced Hepatocyte Apoptosis. Alcohol Clin Exp Res 2003. [DOI: 10.1111/j.1530-0277.2003.tb04426.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Hirose Y, Naito Z, Kato S, Onda M, Sugisaki Y. Immunohistochemical study of CYP2E1 in hepatocellular carcinoma carcinogenesis: examination with newly prepared anti-human CYP2E1 antibody. J NIPPON MED SCH 2002; 69:243-51. [PMID: 12068315 DOI: 10.1272/jnms.69.243] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1) is known as a heme-containing enzyme that produces abundant free radicals, and its involvement in carcinogenesis has been suggested in several organs in vivo. In this study, to clarify the involvement of CYP2E1 in liver cancer and its carcinogenesis process, we investigated the expression of CYP2E1 in 42 surgically resected or biopsied specimens of hepatocellular carcinomas (HCC) and 26 cases with other liver lesions immunohistochemically using a newly prepared anti-human CYP2E1 antibody. When intracellular CYP2E1 expression was investigated in three different regions of HCC specimens, the expression in hepatocytes of the peri-tumor region was the highest (p<0.001) compared with those in the tumor and non-peri-tumor regions. Histologically, the expression of CYP2E1 in tumor cells tended to decrease as the cells were less differentiated (p<0.0001) and was the lowest in poorly differentiated HCC (p<0.01). CYP2E1 expression was highest in the pseudo-glandular type and low in the thick trabecular and solid types of HCC (p<0.0001). In mature regenerative nodules of liver cirrhosis, adenomatous hyperplasia (AH) and atypical adenomatous hyperplasia (AAH) to early-HCC, CYP2E1 expression was notably high as compared with other legions. CYP2E1 has a strong free radical-producing ability, and the cell injury and DNA damages by the free radicals are considered to be involved in carcinogenesis. Therefore, our results suggest that the different expression of CYP2E1 in hepatocytes may play important roles in the multistep carcinogenic process and the histogenesis of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yoichiro Hirose
- Second Department of Pathology, Nippon Medical School, Japan
| | | | | | | | | |
Collapse
|
24
|
Doran E, Whittington FW, Wood JD, McGivan JD. Cytochrome P450IIE1 (CYP2E1) is induced by skatole and this induction is blocked by androstenone in isolated pig hepatocytes. Chem Biol Interact 2002; 140:81-92. [PMID: 12044562 DOI: 10.1016/s0009-2797(02)00015-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Skatole, a derivative of tryptophan, is produced in the hind-gut of pigs and is metabolised via hepatic cytochrome P4502E1 (CYP2E1). Excessive accumulation of skatole together with androstenone, a metabolite of testosterone, in adipose tissue in some pigs is a major cause of 'boar taint' and is associated with defective expression of CYP2E1. This phenomenon is not understood because factors regulating CYP2E1 expression in pig liver have not yet been characterised. Therefore effects of skatole and androstenone on CYP2E1 expression were studied using isolated pig hepatocytes as a model system. Skatole induced CYP2E1 protein expression to the same degree as did acetone, a known CYP2E1 inducer. Induction by skatole was maximum between 20 and 28 h and a half-maximum effect was obtained at a skatole concentration of 0.2 mM. Induction of CYP2E1 by skatole was protein-synthesis dependent. Androstenone antagonised the effect of skatole on CYP2E1 expression but did not affect the CYP2E1 protein level when added alone. These results suggest that defective expression of CYP2E1 in some pigs is due to excessive concentrations of androstenone which prevent CYP2E1 induction by its substrate skatole. As a result, skatole metabolism is reduced and skatole is accumulated in adipose tissue.
Collapse
Affiliation(s)
- Elena Doran
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, UK
| | | | | | | |
Collapse
|
25
|
Abstract
For the development of new drugs, evaluation of drug-drug interactions with already known compounds, as well as for better understanding of metabolism pathways of various toxicants and pollutants, we studied the drug metabolism mediated by cytochromes P450. The experimental approach is based on animal drug-metabolising systems. From the ethical as well as rational reasons, the selection of an appropriate system is crucial. Here, it is necessary to decide on the basis of expected CYP system involved. For CYP1A-mediated pathways, all the commonly used experimental models are appropriate except probably the dog. On the contrary, the dog seems to be suitable for modelling of processes depending on the CYP2D. With CYP2C, which is possibly the most large and complicated subfamily, the systems based on monkey (Maccacus rhesus) may be a good representative. The CYP3A seems to be well modelled by pig or minipig CYP3A29. Detailed studies on activities with individual isolated CYP forms are needed to understand in full all aspects of inter-species differences and variations.
Collapse
Affiliation(s)
- R Zuber
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Palacky University at Olomouc, Hnevotínská 3, 775 15 Olomouc, Czech Republic.
| | | | | |
Collapse
|
26
|
Navder KP, Lieber CS. Dilinoleoylphosphatidylcholine is responsible for the beneficial effects of polyenylphosphatidylcholine on ethanol-induced mitochondrial injury in rats. Biochem Biophys Res Commun 2002; 291:1109-12. [PMID: 11866479 DOI: 10.1006/bbrc.2002.6557] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chronic ethanol consumption depletes phosphatidylcholines (PC) in membranes and hepatic mitochondria are an early target of this toxicity. Our previous studies showed that soybean-derived polyenylphosphatidylcholine (PPC), attenuated mitochondrial liver injury. Since dilinoleoylphosphatidylcholine (DLPC) is the major component of PPC, we assessed whether it is responsible for the protection of PPC. Forty-two male rats were fed the following liquid diets for 8 weeks: Control; Control with DLPC (1.5 g/1000 Calories (Cal); Alcohol (36% of Cal); Alcohol with DLPC (1.5 g/1000 Cal) and Alcohol with PPC (3 g/1000 Cal). As expected, ethanol feeding diminished the capacity of hepatic mitochondria to oxidize glutamate and palmitoyl-1-carnitine, and also decreased the activity of mitochondrial cytochrome oxidase. These effects were equally prevented by either PPC or DLPC. In conclusion, DLPC fully reproduced PPC's protective action and may be effective in the prevention or delay of more severe liver damage.
Collapse
Affiliation(s)
- Khursheed P Navder
- Alcohol Research and Treatment Center, Bronx Veterans Affairs Medical Center and Mount Sinai School of Medicine, New York, New York 10468, USA
| | | |
Collapse
|