1
|
Althaher AR. An Overview of Hormone-Sensitive Lipase (HSL). ScientificWorldJournal 2022; 2022:1964684. [PMID: 36530555 PMCID: PMC9754850 DOI: 10.1155/2022/1964684] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 07/30/2023] Open
Abstract
Hormone-sensitive lipase (HSL) is a pivotal enzyme that mediates triglyceride hydrolysis to provide free fatty acids and glycerol in adipocytes in a hormonally controlled lipolysis process. Elevated plasma-free fatty acids were accompanied by insulin resistance, type-2 diabetes, and obesity. Inhibition of lipolysis through HSL inhibition may provide a mechanism to prevent the accumulation of free fatty acids and to improve the affectability of insulin and blood glucose handling in type II diabetes. The published studies that examine the structure, regulation, and function of HSL and major inhibitors were reviewed in this paper.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
2
|
Cloning and Molecular Characterization of HSL and Its Expression Pattern in HPG Axis and Testis during Different Stages in Bactrian Camel. Curr Issues Mol Biol 2022; 44:3779-3791. [PMID: 36005155 PMCID: PMC9406428 DOI: 10.3390/cimb44080259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/18/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is a key enzyme in animal fat metabolism and is involved in the rate-limiting step of catalyzing the decomposition of fat and cholesterol. It also plays an important regulatory role in maintaining seminiferous epithelial structure, androgen synthesis and primordial germ cell differentiation. We previously reported that HSL is involved the synthesis of steroids in Bactrian camels, although it is unclear what role it plays in testicular development. The present study was conducted to characterize the biological function and expression pattern of the HSL gene in the hypothalamic pituitary gonadal (HPG) axis and the development of testis in Bactrian camels. We analyzed cloning of the cDNA sequence of the HSL gene of Bactrian camels by RT-PCR, as well as the structural features of HSL proteins, using bioinformatics software, such as ProtParam, TMHMM, Signal P 4.1, SOPMA and MEGA 7.0. We used qRT-PCR, Western blotting and immunofluorescence staining to clarify the expression pattern of HSL in the HPG axis and testis of two-week-old (2W), two-year-old (2Y), four-year-old (4Y) and six-year-old (6Y) Bactrian camels. According to sequence analysis, the coding sequence (CDS) region of the HSL gene is 648 bp in length and encodes 204 amino acids. According to bioinformatics analysis, the nucleotide and amino acid sequence of Bactrian camel HSL are most similar to those of Camelus pacos and Camelusdromedarius, with the lowest sequence similarity with Mus musculus. In adult Bactrian camel HPG axis tissues, both HSL mRNA and protein expression were significantly higher in the testis than in other tissues (hypothalamus, pituitary and pineal tissues) (p < 0.05). The expression of mRNA in the testis increased with age and was the highest in six-year-old testis (p < 0.01). The protein expression levels of HSL in 2Y and 6Y testis were clearly higher than in 2W and 4Y testis tissues (p < 0.01). Immunofluorescence results indicate that the HSL protein was mainly localized in the germ cells, Sertoli cells and Leydig cells from Bactrian camel testis, and strong positive signals were detected in epididymal epithelial cells, basal cells, spermatocytes and smooth muscle cells, with partially expression in hypothalamic glial cells, pituitary suspensory cells and pineal cells. According to the results of gene ontology (GO) analysis enrichment, HSL indirectly regulates the anabolism of steroid hormones through interactions with various targets. Therefore, we conclude that the HSL gene may be associated with the development and reproduction of Bactrian camels in different stages of maturity, and these results will contribute to further understanding of the regulatory mechanisms of HSL in Bactrian camel reproduction.
Collapse
|
3
|
Organic mineral supplementation on differential protein profile of Osmanabadi bucks (Capra hircus). Reprod Biol 2021; 21:100533. [PMID: 34280724 DOI: 10.1016/j.repbio.2021.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 11/20/2022]
Abstract
The present study aimed to determine the differential protein profile of seminal plasma proteins of bucks supplemented with trace minerals. Forty bucks of uniform size and body weight were assigned as ten groups (n = 4). The control group (T1) was fed with the control diet (concentration mixture and roughages) whereas the remaining groups were supplemented the control diet with Zn20 mg (T2), Zn40 mg (T3), Zn60 mg (T4), Cu12.5 mg (T5), Cu25 mg (T6), Cu37.5 mg (T7), Zn20 mg + Cu12.5 mg (T8), Zn40 mg + Cu25 mg (T9), and Zn60 mg + Cu37.5 mg (T10) for eight months. Seminal plasma proteins from each group were subjected to two-dimensional electrophoresis and fifteen differential proteins were selected based on differential expression, subjected to identification using Nano-LC-MS/MS (LTQ-Qrbitrap-MS). The identified proteins were Triacylglycerol lipase, EGF like repeats and discoidin domains 3, Lipocalin, Iodothyronine deiodinase, Transcription factor AP2-delta, 60S ribosomal protein L13, IST1 factor associated with ESCRT-III, Lysozyme, Uncharacterized protein (BRI3-binding protein), Uncharacterized protein, Histone deacetylase 11, General transcription factor IIF subunit 2, Nudix hydrolase 6, Protein kinase cAMP-activated catalytic subunit beta and Elongin C. The organic Cu supplemented group is the better than the organic Zn and organic Zn + Cu supplemented groups.
Collapse
|
4
|
Recazens E, Mouisel E, Langin D. Hormone-sensitive lipase: sixty years later. Prog Lipid Res 2020; 82:101084. [PMID: 33387571 DOI: 10.1016/j.plipres.2020.101084] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 12/24/2020] [Indexed: 12/19/2022]
Abstract
Hormone-sensitive lipase (HSL) was initially characterized as the hormonally regulated neutral lipase activity responsible for the breakdown of triacylglycerols into fatty acids in adipose tissue. This review aims at providing up-to-date information on structural properties, regulation of expression, activity and function as well as therapeutic potential. The lipase is expressed as different isoforms produced from tissue-specific alternative promoters. All isoforms are composed of an N-terminal domain and a C-terminal catalytic domain within which a regulatory domain containing the phosphorylation sites is embedded. Some isoforms possess additional N-terminal regions. The catalytic domain shares similarities with bacteria, fungus and vascular plant proteins but not with other mammalian lipases. HSL singularity is provided by regulatory and N-terminal domains sharing no homology with other proteins. HSL has a broad substrate specificity compared to other neutral lipases. It hydrolyzes acylglycerols, cholesteryl and retinyl esters among other substrates. A novel role of HSL, independent of its enzymatic function, has recently been described in adipocytes. Clinical studies revealed dysregulations of HSL expression and activity in disorders, such as lipodystrophy, obesity, type 2 diabetes and cancer-associated cachexia. Development of specific inhibitors positions HSL as a pharmacological target for the treatment of metabolic complications.
Collapse
Affiliation(s)
- Emeline Recazens
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Etienne Mouisel
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases, Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, 31432 Toulouse, France; University of Toulouse, Paul Sabatier University, UMR1297, Toulouse, France; Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
5
|
Zheng X, Dang H, Lv W, Sun Z, Kuang Y, Cao D, Lu C, Sun X. Molecular characterization and expression patterns of two hormone-sensitive lipase genes in common carp Cyprinus carpio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:439-450. [PMID: 31786726 DOI: 10.1007/s10695-019-00738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The hormone-sensitive lipase (HSL) gene plays an important role in mammals' lipid metabolism. Therefore, its function in fish is capturing increasing attention. In this study, two distinct cDNAs, designated HSL1 and HSL2, are firstly identified from common carp Cyprinus carpio. The full-length cDNA of HSL1 and HSL2 consists of 3379 bp and 2732 bp, encoding polypeptide of 693 and 847 amino acids, respectively, and shares 60.6% amino acid identity. Phylogenetic analysis suggests that HSL1 and HSL2 are derived from paralogous genes, which might have arisen during a teleost-specific genome duplication event. The two HSL mRNAs are differentially expressed, both in terms of distribution among tissues and in terms of abundance during embryogenesis. Moreover, both HSL mRNAs are expressed in various tissues, the highest in abdominal fat. Meanwhile, the two HSLs are detected at all stages of embryonic development, suggesting that they could be functional and involved in embryogenesis. In addition, the results show that the mRNA expression level of HSL2 in the high group of intramuscular fat content is significantly higher than that in the low group (P < 0.01). The research provides basic data for developing a further understanding of the function of HSL as well as molecular regulation mechanism in fat metabolism of common carp.
Collapse
Affiliation(s)
- Xianhu Zheng
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China.
| | - Hongyang Dang
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China
- Key Laboratory of Freshwater Fishery Germplasm Resource, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, No.999, Huchenghuan Road, Nanhui New City, Shanghai, 201306, China
| | - Weihua Lv
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China
| | - Zhipeng Sun
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China
| | - Youyi Kuang
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China
| | - Dingchen Cao
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China
| | - Cuiyun Lu
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China
| | - Xiaowen Sun
- National Local Joint Engineering Laboratory for Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No.43 Songfa Street, Daoli District, Harbin, 150070, Heilongjiang Province, China
| |
Collapse
|
6
|
Sun J, Yang Z, Xiao P, Liu Y, Ji H, Du Z, Chen L. Two isoforms of hormone-sensitive lipase b are generated by alternative exons usage and transcriptional regulation by insulin in grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:539-547. [PMID: 27807710 DOI: 10.1007/s10695-016-0308-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/14/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate the gene structure of two hormone-sensitive lipase b (HSLb) isoforms and their transcriptional regulation by insulin in grass carp (Ctenopharyngodon idella). HSL is an important lipolytic enzyme responsible for the hydrolysis of triacylglycerols (TAGs). Two isoforms (HSLa and HSLb) have been cloned in fish, but information about their gene structure and function is very few. In this study, a novel grass carp HSLb isoform (HSLb2) were firstly isolated and characterized from grass carp, encoding peptides of 848 amino acid residues. HSLb2 comprises 13 coding exons and contains a different exon encoding six amino acids in the 5'-region compared to previous reported HSLb (HSLb1), revealing that alternative multiple exons usage (Exon b1 and Exon b2) results in a significant variation in the 5'-region of HSLb transcripts. Exon b2 is located close to the 3' end of exon b1. Both HSLb2 and HSLb1 mRNAs were expressed in a wide range of tissues, but the abundance of each HSLb messenger RNA (mRNA) showed the tissue-dependent expression patterns. Incubation of hepatocytes with insulin in vitro reduced the mRNA levels of HSLb2 rather than HSLb1, suggesting two HSLb forms may serve somewhat different roles in the regulation of lipogenesis by insulin. To our knowledge, for the first time, the present study provides evidence that HSLb1 and HSLb2 are differentially expressed among tissues and also differentially regulated by insulin in vitro, which provide the groundwork to elucidate the gene structure and physiological function of HSL in fish.
Collapse
Affiliation(s)
- Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhou Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - PeiZhen Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - ZhenYu Du
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| | - LiQiao Chen
- Laboratory of Aquaculture Nutrition and Environmental Health, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Sun J, Ji H, Li XX, Shi XC, Du ZY, Chen LQ. Lipolytic enzymes involving lipolysis in Teleost: Synteny, structure, tissue distribution, and expression in grass carp (Ctenopharyngodon idella). Comp Biochem Physiol B Biochem Mol Biol 2016; 198:110-8. [DOI: 10.1016/j.cbpb.2016.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
|
8
|
Chen QL, Luo Z, Song YF, Wu K, Huang C, Pan YX, Zhu QL. Hormone-sensitive lipase in yellow catfish Pelteobagrus fulvidraco: molecular characterization, mRNA tissue expression and transcriptional regulation by leptin in vivo and in vitro. Gen Comp Endocrinol 2014; 206:130-8. [PMID: 25016050 DOI: 10.1016/j.ygcen.2014.06.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/18/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
Abstract
Hormone-sensitive lipase (hsl) plays a pivotal role in regulation of lipolysis in mammals, but information is very scarce about its gene structure and function in fish. In this study, two distinct hsl cDNAs, designated hsl1 and hsl2, were firstly isolated and characterized from yellow catfish Pelteobagrus fulvidraco. The validated cDNAs encoding for hsl1 and hsl2 were 2739 and 2629bp in length, encoding peptides of 679 and 813 amino acid residues, respectively, and shared 57.7% amino acid identity. The phylogenetic analysis revealed that hsl1 and hsl2 derived from paralogous genes that might have arisen during a teleost-specific genome duplication event. Both hsl mRNAs were expressed in a wide range of tissues, but the abundance of each hsl mRNA showed the tissue- and developmental stage-dependent expression patterns. Intraperitoneal injection in vivo and incubation in vitro of recombinant human leptin (rb-hLEP) stimulated the mRNA expression of hsl2, but not hsl1, in the liver and hepatocytes of P. fulvidraco, respectively, suggesting that two hsl isoforms might serve different roles in lipid metabolism. To our knowledge, for the first time, the present study provides evidence that two hsl mRNAs are differentially expressed with and among tissues during different developmental stages and also differentially regulated by leptin both in vivo and in vitro, which serves to increase our understanding on hsl physiological function in fish.
Collapse
Affiliation(s)
- Qi-Liang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China.
| | - Yu-Feng Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Kun Wu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Chao Huang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Ya-Xiong Pan
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| | - Qing-Ling Zhu
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture of P.R.C., Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovative Centre of Hubei Province, Wuhan 430070, China
| |
Collapse
|
9
|
Wang SP, Wu JW, Bourdages H, Lefebvre JF, Casavant S, Leavitt BR, Labuda D, Trasler J, Smith CE, Hermo L, Mitchell GA. The catalytic function of hormone-sensitive lipase is essential for fertility in male mice. Endocrinology 2014; 155:3047-53. [PMID: 24797631 DOI: 10.1210/en.2014-1031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In male mice, deficiency of hormone sensitive lipase (HSL, Lipe gene, E.C.3.1.1.3) causes deficient spermatogenesis, azoospermia, and infertility. Postmeiotic germ cells express a specific HSL isoform that includes a 313 amino acid N-terminus encoded by a testis-specific exon (exon T1). The remainder of testicular HSL is identical to adipocyte HSL. The amino acid sequence of the testis-specific exon is poorly conserved, showing only a 46% amino acid identity with orthologous human and rat sequences, compared with 87% over the remainder of the HSL coding sequence, providing no evidence in favor of a vital functional role for the testis-specific N-terminus of HSL. However, exon T1 is important for Lipe transcription; in mouse testicular mRNA, we identified 3 major Lipe transcription start sites, finding numerous testicular transcription factor binding motifs upstream of the transcription start site. We directly explored two possible mechanisms for the infertility of HSL-deficient mice, using mice that expressed mutant HSL transgenes only in postmeiotic germ cells on a HSL-deficient background. One transgene expressed human HSL lacking enzyme activity but containing the testis-specific N-terminus (HSL-/-muttg mice). The other transgene expressed catalytically inactive HSL with the testis-specific N-terminal peptide (HSL-/-atg mice). HSL-/-muttg mice were infertile, with abnormal histology of the seminiferous epithelium and absence of spermatozoa in the epididymal lumen. In contrast, HSL-/-atg mice had normal fertility and normal testicular morphology. In conclusion, whereas the catalytic function of HSL is necessary for spermatogenesis in mice, the presence of the N-terminal testis-specific fragment is not essential.
Collapse
Affiliation(s)
- Shu Pei Wang
- Divisions of Medical Genetics (S.P.W., J.W.W., H.B., S.C., G.A.M.) and Hematology (J.F.L., D.L.), Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine and Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada, H3T 1C5; Valeant Cosméderme (H.B.), Laval, Québec, Canada, H7V 0A3; Centre for Molecular Medicine and Therapeutics (B.R.L.), Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V5Z 4H4; Department of Pediatrics (J.T.), Human Genetics and Pharmacology and Therapeutics, McGill University and Research Institute of the McGill University Health Centre at the Montreal Children's Hospital, Montréal, Québec, Canada, H3H 1P3; and Department of Anatomy and Cell Biology (C.E.S., L.H.), McGill University, Montréal, Québec, Canada, H3A 2B2
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nielsen TS, Jessen N, Jørgensen JOL, Møller N, Lund S. Dissecting adipose tissue lipolysis: molecular regulation and implications for metabolic disease. J Mol Endocrinol 2014; 52:R199-222. [PMID: 24577718 DOI: 10.1530/jme-13-0277] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lipolysis is the process by which triglycerides (TGs) are hydrolyzed to free fatty acids (FFAs) and glycerol. In adipocytes, this is achieved by sequential action of adipose TG lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase. The activity in the lipolytic pathway is tightly regulated by hormonal and nutritional factors. Under conditions of negative energy balance such as fasting and exercise, stimulation of lipolysis results in a profound increase in FFA release from adipose tissue (AT). This response is crucial in order to provide the organism with a sufficient supply of substrate for oxidative metabolism. However, failure to efficiently suppress lipolysis when FFA demands are low can have serious metabolic consequences and is believed to be a key mechanism in the development of type 2 diabetes in obesity. As the discovery of ATGL in 2004, substantial progress has been made in the delineation of the remarkable complexity of the regulatory network controlling adipocyte lipolysis. Notably, regulatory mechanisms have been identified on multiple levels of the lipolytic pathway, including gene transcription and translation, post-translational modifications, intracellular localization, protein-protein interactions, and protein stability/degradation. Here, we provide an overview of the recent advances in the field of AT lipolysis with particular focus on the molecular regulation of the two main lipases, ATGL and HSL, and the intracellular and extracellular signals affecting their activity.
Collapse
Affiliation(s)
- Thomas Svava Nielsen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Jessen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, DenmarkThe Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Jens Otto L Jørgensen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Niels Møller
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| | - Sten Lund
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchSection on Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b, 6.6.30, DK-2200 N Copenhagen, DenmarkDepartment of Endocrinology and Internal MedicineAarhus University Hospital, Nørrebrogade 44, Bldg. 3.0, 8000 Aarhus C, DenmarkDepartment of Molecular MedicineAarhus University Hospital, Brendstrupgårdsvej 100, 8200 Aarhus N, Denmark
| |
Collapse
|
11
|
Casado ME, Pastor O, Mariscal P, Canfrán-Duque A, Martínez-Botas J, Kraemer FB, Lasunción MA, Martín-Hidalgo A, Busto R. Hormone-sensitive lipase deficiency disturbs the fatty acid composition of mouse testis. Prostaglandins Leukot Essent Fatty Acids 2013; 88:227-33. [PMID: 23369366 DOI: 10.1016/j.plefa.2012.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/12/2012] [Accepted: 12/15/2012] [Indexed: 10/27/2022]
Abstract
Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of fatty acids from intracellular stores. In mice, HSL deficiency results in male sterility caused by a major defect in spermatogenesis. The testes contain high concentrations of PUFA and specific PUFA are essential for spermatogenesis. We investigated the fatty acid composition and the mRNA levels of key enzymes involved in fatty acid metabolism in testis of HSL-knockout mice. HSL deficiency altered fatty acid composition in the testis but not in plasma. The most important changes were decreases in the essential n-6 PUFA LNA and the n-3 PUFA ALA, and an increase in the corresponding synthesis intermediates C22:4n-6 and C22:5n-3 without changes in DPAn-6 or DHA acids. Mead acid, which has been associated with an essential fatty acid deficit leading to male infertility, was increased in the testis from HSL-knockout mice. Moreover, the expression of SCD-1, FADS1, and FADS2 was increased while expression of ELOVL2, an essential enzyme for the formation of very-long PUFA in testis, was decreased. Given the indispensability of these fatty acids for spermatogenesis, the changes in fatty acid metabolism observed in testes from HSL-knockout male mice may underlie the infertility of these animals.
Collapse
Affiliation(s)
- M E Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRyCIS), E-28034 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Manna PR, Cohen-Tannoudji J, Counis R, Garner CW, Huhtaniemi I, Kraemer FB, Stocco DM. Mechanisms of action of hormone-sensitive lipase in mouse Leydig cells: its role in the regulation of the steroidogenic acute regulatory protein. J Biol Chem 2013; 288:8505-8518. [PMID: 23362264 DOI: 10.1074/jbc.m112.417873] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of cholesteryl esters in steroidogenic tissues and, thus, facilitates cholesterol availability for steroidogenesis. The steroidogenic acute regulatory protein (StAR) controls the rate-limiting step in steroid biosynthesis. However, the modes of action of HSL in the regulation of StAR expression remain obscure. We demonstrate in MA-10 mouse Leydig cells that activation of the protein kinase A (PKA) pathway, by a cAMP analog Bt2cAMP, enhanced expression of HSL and its phosphorylation (P) at Ser-660 and Ser-563, but not at Ser-565, concomitant with increased HSL activity. Phosphorylation and activation of HSL coincided with increases in StAR, P-StAR (Ser-194), and progesterone levels. Inhibition of HSL activity by CAY10499 effectively suppressed Bt2cAMP-induced StAR expression and progesterone synthesis. Targeted silencing of endogenous HSL, with siRNAs, resulted in increased cholesteryl ester levels and decreased cholesterol content in MA-10 cells. Depletion of HSL affected lipoprotein-derived cellular cholesterol influx, diminished the supply of cholesterol to the mitochondria, and resulted in the repression of StAR and P-StAR levels. Cells overexpressing HSL increased the efficacy of liver X receptor (LXR) ligands on StAR expression and steroid synthesis, suggesting HSL-mediated steroidogenesis entails enhanced oxysterol production. Conversely, cells deficient in LXRs exhibited decreased HSL responsiveness. Furthermore, an increase in HSL was correlated with the LXR target genes, steroid receptor element-binding protein 1c and ATP binding cassette transporter A1, demonstrating HSL-dependent regulation of steroidogenesis predominantly involves LXR signaling. LXRs interact/cooperate with RXRs and result in the activation of StAR gene transcription. These findings provide novel insight and demonstrate the molecular events by which HSL acts to drive cAMP/PKA-mediated regulation of StAR expression and steroidogenesis in mouse Leydig cells.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Joëlle Cohen-Tannoudji
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Raymond Counis
- University Paris Diderot, Sorbonne Paris Cité, Physiologie de l'axe gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Paris, France
| | - Charles W Garner
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Ilpo Huhtaniemi
- Institute of Reproductive and Developmental Biology, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Fredric B Kraemer
- Department of Medicine, Veterans Affairs Palo Alto Heath Care System, Palo Alto, California 94304
| | - Douglas M Stocco
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas 79430.
| |
Collapse
|
13
|
Casado ME, Huerta L, Ortiz AI, Pérez-Crespo M, Gutiérrez-Adán A, Kraemer FB, Lasunción MÁ, Busto R, Martín-Hidalgo A. HSL-knockout mouse testis exhibits class B scavenger receptor upregulation and disrupted lipid raft microdomains. J Lipid Res 2012; 53:2586-97. [PMID: 22988039 DOI: 10.1194/jlr.m028076] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
There is a tight relationship between fertility and changes in cholesterol metabolism during spermatogenesis. In the testis, class B scavenger receptors (SR-B) SR-BI, SR-BII, and LIMP II mediate the selective uptake of cholesterol esters from HDL, which are hydrolyzed to unesterified cholesterol by hormone-sensitive lipase (HSL). HSL is critical because HSL knockout (KO) male mice are sterile. The aim of the present work was to determine the effects of the lack of HSL in testis on the expression of SR-B, lipid raft composition, and related cell signaling pathways. HSL-KO mouse testis presented altered spermatogenesis associated with decreased sperm counts, sperm motility, and infertility. In wild-type (WT) testis, HSL is expressed in elongated spermatids; SR-BI, in Leydig cells and spermatids; SR-BII, in spermatocytes and spermatids but not in Leydig cells; and LIMP II, in Sertoli and Leydig cells. HSL knockout male mice have increased expression of class B scavenger receptors, disrupted caveolin-1 localization in lipid raft plasma membrane microdomains, and activated phospho-ERK, phospho-AKT, and phospho-SRC in the testis, suggesting that class B scavenger receptors are involved in cholesterol ester uptake for steroidogenesis and spermatogenesis in the testis.
Collapse
Affiliation(s)
- María Emilia Casado
- Servicio de Bioquímica-Investigación, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011; 111:6359-86. [PMID: 21627334 PMCID: PMC3181269 DOI: 10.1021/cr100404w] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
15
|
Vatannejad A, Khodadadi I, Amiri I, Vaisi-Raygani A, Ghorbani M, Tavilani H. Genetic variation of hormone sensitive lipase and male infertility. Syst Biol Reprod Med 2011; 57:288-91. [PMID: 21919688 DOI: 10.3109/19396368.2011.608179] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Hormone sensitive lipase (HSL) is a triacylglycerol hydrolase and cholesterol esterase that is essential for male fertility. The aim of the study was to investigate the distribution of C-60G polymorphism of HSL gene and alleles in fertile and infertile males living in Hamadan, Iran. In addition, lipase activity was determined in these two groups. The HSL genotype was determined by PCR-RFLP and the lipase activity was detected by turbidometery in 164 fertile and 169 infertile males. A significant difference in HSL genotype distribution was observed between groups (χ2 = 8.1, df = 2, p = 0.017). Infertile males showed a higher percentage of CC as well as a lower percentage of CG and GG genotype compared with fertile individuals. The presence of CC to CG + GG genotype conferred a 2.4-fold risk for male infertility (odds ratio = 2.4 (1.3 - 4.5), p = 0.006). In addition, lipase activity was remarkably higher (p < 0.001) in fertile males (94 ± 66 U/L) compared to the infertile subjects (50.6 ± 49 U/L). This suggests that genetic variation of HSL may be a risk factor for male infertility.
Collapse
Affiliation(s)
- Akram Vatannejad
- Department of Biochemistry, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | | | | |
Collapse
|
16
|
McDonough PM, Ingermanson RS, Loy PA, Koon ED, Whittaker R, Laris CA, Hilton JM, Nicoll JB, Buehrer BM, Price JH. Quantification of hormone sensitive lipase phosphorylation and colocalization with lipid droplets in murine 3T3L1 and human subcutaneous adipocytes via automated digital microscopy and high-content analysis. Assay Drug Dev Technol 2011; 9:262-80. [PMID: 21186937 PMCID: PMC3102254 DOI: 10.1089/adt.2010.0302] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipolysis in adipocytes is associated with phosphorylation of hormone sensitive lipase (HSL) and translocation of HSL to lipid droplets. In this study, adipocytes were cultured in a high-throughput format (96-well dishes), exposed to lipolytic agents, and then fixed and labeled for nuclei, lipid droplets, and HSL (or HSL phosphorylated on serine 660 [pHSLser660]). The cells were imaged via automated digital fluorescence microscopy, and high-content analysis (HCA) methods were used to quantify HSL phosphorylation and the degree to which HSL (or pHSLser660) colocalizes with the lipid droplets. HSL:lipid droplet colocalization was quantified through use of Pearson's correlation, Mander's M1 Colocalization, and the Tanimoto coefficient. For murine 3T3L1 adipocytes, isoproterenol, Lys-γ3-melanocyte stimulating hormone, and forskolin elicited the appearance and colocalization of pHSLser660, whereas atrial natriuretic peptide (ANP) did not. For human subcutaneous adipocytes, isoproterenol, forskolin, and ANP activated HSL phosphorylation/colocalization, but Lys-γ3-melanocyte stimulating hormone had little or no effect. Since ANP activates guanosine 3',5'-cyclic monophosphate (cGMP)-dependent protein kinase, HSL serine 660 is likely a substrate for cGMP-dependent protein kinase in human adipocytes. For both adipocyte model systems, adipocytes with the greatest lipid content displayed the greatest lipolytic responses. The results for pHSLser660 were consistent with release of glycerol by the cells, a well-established assay of lipolysis, and the HCA methods yielded Z' values >0.50. The results illustrate several key differences between human and murine adipocytes and demonstrate advantages of utilizing HCA techniques to study lipolysis in cultured adipocytes.
Collapse
|
17
|
Krintel C, Klint C, Lindvall H, Mörgelin M, Holm C. Quarternary structure and enzymological properties of the different hormone-sensitive lipase (HSL) isoforms. PLoS One 2010; 5:e11193. [PMID: 20567594 PMCID: PMC2887374 DOI: 10.1371/journal.pone.0011193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/26/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Hormone-sensitive lipase (HSL) is a key enzyme in the mobilization of energy in the form of fatty acids from intracellular stores of neutral lipids. The enzyme has been shown to exist in different isoforms with different molecular masses (84 kDa, 89 kDa and 117 kDa) expressed in a tissue-dependent manner, where the predominant 84 kDa form in adipocytes is the most extensively studied. METHODOLOGY/PRINCIPAL FINDINGS In this study we employed negative stain electron microscopy (EM) to analyze the quarternary structure of the different HSL isoforms. The results show that all three isoforms adopt a head-to-head homodimeric organization, where each monomer contains two structural domains. We also used enzymatic assays to show that despite the variation in the size of the N-terminal domain all three isoforms exhibit similar enzymological properties with regard to psychrotolerance and protein kinase A (PKA)-mediated phosphorylation and activation. CONCLUSIONS/SIGNIFICANCE We present the first data on the quaternary structure and domain organization of the three HSL isoforms. We conclude that despite large differences in the size of the N-terminal, non-catalytic domain all three HSL isoforms exhibit the same three-dimensional architecture. Furthermore, the three HSL isoforms are very similar with regard to two unique enzymological characteristics of HSL, i.e., cold adaptation and PKA-mediated activation.
Collapse
Affiliation(s)
- Christian Krintel
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Division of Diabetes, Metabolism and Endocrinology, Department of Molecular Biophysics, Lund University, Lund, Sweden
| | - Cecilia Klint
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Håkan Lindvall
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Cecilia Holm
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
18
|
Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 2009; 48:275-97. [PMID: 19464318 DOI: 10.1016/j.plipres.2009.05.001] [Citation(s) in RCA: 518] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Revised: 05/04/2009] [Accepted: 05/08/2009] [Indexed: 01/04/2023]
Abstract
Triacylglycerol (TAG) stored in adipose tissue (AT) can be rapidly mobilized by the hydrolytic action of the three main lipases of the adipocyte. The non-esterified fatty acids (NEFA) released are used by other tissues during times of energy deprivation. Until recently hormone-sensitive lipase (HSL) was considered to be the key rate-limiting enzyme responsible for regulating TAG mobilization. A novel lipase named adipose triglyceride lipase/desnutrin (ATGL) has been identified as playing an important role in the control of fat cell lipolysis. Additionally perilipin and other proteins of the surface of the lipid droplets protecting or exposing the TAG core of the droplets to lipases are also potent regulators of lipolysis. Considerable progress has been made in understanding the mechanisms of activation of the various lipases. Lipolysis is under tight hormonal regulation. The best understood hormonal effects on AT lipolysis concern the opposing regulation by insulin and catecholamines. Heart-derived natriuretic peptides (i.e., stored in granules in the atrial and ventricle cardiomyocytes and exerting stimulating effects on diuresis and natriuresis) and numerous autocrine/paracrine factors originating from adipocytes and other cells of the stroma-vascular fraction may also participate in the regulation of lipolysis. Endocrine and autocrine/paracrine factors cooperate and lead to a fine regulation of lipolysis in adipocytes. Age, anatomical site, sex, genotype and species differences all play a part in the regulation of lipolysis. The manipulation of lipolysis has therapeutic potential in the metabolic disorders frequently associated with obesity and probably in several inborn errors of metabolism.
Collapse
|
19
|
Lobo MVT, Huerta L, Arenas MI, Busto R, Lasunción MA, Martín-Hidalgo A. Hormone-sensitive lipase expression and IHC localization in the rat ovary, oviduct, and uterus. J Histochem Cytochem 2008; 57:51-60. [PMID: 18824635 DOI: 10.1369/jhc.2008.951996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is a key regulator of cholesterol esters metabolism. The aim of this study was to determine HSL localization in rat female reproductive organs during the ovarian cycle by IHC methods. HSL was located in the ovarian epithelium. The granulosa cells and oocytes of primordial follicles were immunonegative. In mature follicles, HSL was found in oocytes and theca and granulosa cells. However, HSL expression in theca cells and oocytes decreased during follicular atresia. Luteal cells showed HSL staining in cytoplasm during proestrus and estrus, in the nucleus during metestrus, and in cytoplasm and the nucleus during diestrus. In the tubaric ampulla, HSL was located in the epithelial cells nuclei and in the cilia during proestrus and estrus but mainly in the nucleus during metestrus and diestrus. In the isthmus, cells showed HSL immunolabeling in the nucleus and cilia during proestrus, but only in the cilia during estrus, metestrus, and diestrus. In the uterus, HSL was found in the epithelial cells nuclei. HSL-immunoreactive bands at 84, 67, 54, and 43 kDa were found in rat female reproductive organs. HSL labeling in the nucleus of epithelial and germ cells suggests an as yet unknown function for this protein, probably related to oogenesis and cell proliferation.
Collapse
Affiliation(s)
- María V T Lobo
- Department of Cell Biology and Genetics, Alcalá de Henares University, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Hermo L, Chung S, Gregory M, Smith CE, Wang SP, El-Alfy M, Cyr DG, Mitchell GA, Trasler J. Alterations in the testis of hormone sensitive lipase-deficient mice is associated with decreased sperm counts, sperm motility, and fertility. Mol Reprod Dev 2008; 75:565-77. [PMID: 17886267 DOI: 10.1002/mrd.20800] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hormone-sensitive lipase (HSL, Lipe, E.C.3.1.1.3) functions as a triglyceride and cholesteryl esterase, supplying fatty acids, and cholesterol to cells. Gene-targeted HSL-deficient (HSL(-/-)) mice reveal abnormal spermatids and are infertile at 24 weeks after birth. The purpose of this study was to follow the evolution of spermatid abnormalities as HSL(-/-) mice age, characterize sperm motility in older HSL(-/-) mice, and determine if mice expressing a human testicular HSL transgene (HSL(-/-)ttg) produce normal motile sperm. In situ hybridization indicated that HSL is expressed exclusively in steps 5-16 spermatids, but not in Sertoli cells. In HSL(-/-) mice, abnormalities were evident in step 16 spermatids at 5 weeks after birth, with defects progressively increasing in spermatids with age. The defects included multinucleation of spermatids, abnormal shapes and a reduction of elongating spermatids. In older HSL(-/-) mice, sperm counts appeared reduced by 42%, but this value was lower because samples were compromised by the presence of small degenerating germ cells in addition to sperm, both of which appeared of similar size and density. Sperm motility was dramatically reduced with only 11% classified as motile in HSL(-/-) mice compared to 76-78% of sperm in wild-type and HSL(-/-)ttg mice. Sperm morphology, counts, and motility were normal in HSL(-/-)ttg mice, as was their fertility. Collectively, the data indicate that HSL deficiency results in abnormal spermatid development with defects arising at 5 weeks of age and progressively increasing at later ages. HSL(-/-) mice also show a dramatic reduction in sperm counts and motility and are infertile.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Martín-Hidalgo A, Huerta L, Alvarez N, Alegría G, Del Val Toledo M, Herrera E. Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J Lipid Res 2005; 46:658-68. [PMID: 15654127 DOI: 10.1194/jlr.m400370-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the presence of hormone-sensitive lipase (HSL) in mammary glands of virgin, pregnant (12, 20, and 21 days), and lactating (1 and 4 days postpartum) rats. Immunohistochemistry with antibody against rat HSL revealed positive HSL in the cytoplasm of both alveolar epithelial cells and adipocytes. In virgin rats, immunoreactive HSL was observed in mammary adipocytes, whereas diffuse staining was found in the epithelial cells. Positive staining for HSL was seen in the two types of cells in pregnant and lactating rats. However, as pregnancy advanced, the staining intensity of immunoreactive HSL increased in the epithelial cells parallel to their proliferation, attaining the maximum during lactation. An immunoreactive protein of 84 kDa and a HSL mRNA of 3.3. kb were found in the rat mammary gland as in white adipose tissue. Both HSL protein and activity were lower in mammary glands from 20 and 21 day pregnant rats than from those of virgin rats, although they returned to virgin values on days 1 and 4 of lactation. Mammary gland HSL activity correlated negatively to plasma insulin levels. Immunoreactive HSL and HSL activity were found in lactating rats' milk. The observed changes indicate an active role of HSL in mammary gland lipid metabolism.
Collapse
|
22
|
Wang SP, Chung S, Soni K, Bourdages H, Hermo L, Trasler J, Mitchell GA. Expression of human hormone-sensitive lipase (HSL) in postmeiotic germ cells confers normal fertility to HSL-deficient mice. Endocrinology 2004; 145:5688-93. [PMID: 15345679 DOI: 10.1210/en.2004-0919] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hormone-sensitive lipase (HSL, Lipe, E.C.3.1.1.3) is a multifunctional fatty acyl esterase that is essential for male fertility and spermatogenesis and that also plays important roles in the function of adipocytes, pancreatic beta-cells, and adrenal cortical cells. Gene-targeted HSL-deficient (HSL-/-) male mice are infertile, have a 2-fold reduction in testicular mass, a 2-fold elevation of the ratio of esterified to free cholesterol in testis, and unique morphological abnormalities in round and elongating spermatids. Postmeiotic germ cells in the testis express a specific HSL isoform. We created transgenic mice expressing a normal human testicular HSL cDNA from the mouse protamine-1 promoter, which mediates expression specifically in postmeiotic germ cells. Testicular cholesteryl esterase activity was undetectable in HSL-/- mice, but in HSL-/- males expressing the testicular transgene, activity was 2-fold greater than normal. HSL transgene mRNA became detectable in testes between 19 and 25 days of age, coinciding with the first wave of postmeiotic transcription in round spermatids. In contrast to nontransgenic HSL-/- mice, HSL-/- males expressing the testicular transgene were normal with respect to fertility, testicular mass, testicular esterified/free cholesterol ratio, and testicular histology. Their cauda epididymides contained abundant, normal-appearing spermatozoa. We conclude that human testicular HSL is functional in mouse testis and that the mechanism of infertility in HSL-deficient males is cell autonomous and resides in postmeiotic germ cells, because HSL expression in these cells is in itself sufficient to restore normal fertility.
Collapse
Affiliation(s)
- Shu Pei Wang
- Service of Medical Genetics, Hôpital Sainte-Justine, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
23
|
Vallet-Erdtmann V, Tavernier G, Contreras JA, Mairal A, Rieu C, Touzalin AM, Holm C, Jégou B, Langin D. The Testicular Form of Hormone-sensitive Lipase HSLtes Confers Rescue of Male Infertility in HSL-deficient Mice. J Biol Chem 2004; 279:42875-80. [PMID: 15292223 DOI: 10.1074/jbc.m403495200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Inactivation of the hormone-sensitive lipase gene (HSL) confers male sterility with a major defect in spermatogenesis. Several forms of HSL are expressed in testis. HSLtes mRNA and protein are found in early and elongated spermatids, respectively. The other forms are expressed in diploid germ cells and interstitial cells of the testis. To determine whether the absence of the testis-specific form of HSL, HSLtes, was responsible for the infertility in HSL-null mice, we generated transgenic mice expressing HSLtes under the control of its own promoter. The transgenic animals were crossed with HSL-null mice to produce mice deficient in HSL in nongonadal tissues but expressing HSLtes in haploid germ cells. Cholesteryl ester hydrolase activity was almost completely blunted in HSL-deficient testis. Mice with one allele of the transgene showed an increase in enzymatic activity and a small elevation in the production of spermatozoa. The few fertile hemizygous male mice produced litters of very small to small size. The presence of the two alleles led to a doubling in cholesteryl ester hydrolase activity, which represented 25% of the wild type values associated with a qualitatively normal spermatogenesis and a partial restoration of sperm reserves. The fertility of these mice was totally restored with normal litter sizes. In line with the importance of the esterase activity, HSLtes transgene expression reversed the cholesteryl ester accumulation observed in HSL-null mice. Therefore, expression of HSLtes and cognate cholesteryl ester hydrolase activity leads to a rescue of the infertility observed in HSL-deficient male mice.
Collapse
Affiliation(s)
- Virginie Vallet-Erdtmann
- Groupe d'Etude de la Reproduction chez l'Homme et les Mammifères-INSERM U625 (Teams 1 and 2), Campus de Beaulieu, Université de Rennes I, 35042 Rennes Cedex, Bretagne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Arenas MI, Lobo MVT, Caso E, Huerta L, Paniagua R, Martín-Hidalgo MA. Normal and pathological human testes express hormone-sensitive lipase and the lipid receptors CLA-1/SR-BI and CD36. Hum Pathol 2004; 35:34-42. [PMID: 14745722 DOI: 10.1016/j.humpath.2003.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Numerous studies have demonstrated the important role of cholesterol and cholesteryl esters in tumor cell proliferation and progression of cancer. However, few studies have focused on the role of lipid transporters and lipases in cancer development and progression. The present study examined the expression of hormone-sensitive lipase (HSL) and the scavenger receptors CLA-1/SR-BI and CD36 in normal human testis and in nontumor and tumor testicular disorders by immunohistochemistry and Western blotting analysis. In normal young testes, immunoreaction to CLA-1/SR-BI was found in the spermatid acrosomic vesicle and on the surface of Sertoli and Leydig cells. HSL was detected in spermatogonia, the Golgi region of spermatocytes, the nucleus of spermatids, and the cytoplasm of both Sertoli and Leydig cells. Elderly testes and testes with hypospermatogenesis showed a similar staining pattern to that of normal young testes except for CD36, which was expressed in Sertoli cells. Cryptorchid testes demonstrated intense labeling to HSL and weak labeling to SR-BI in Sertoli cells (nucleus and cytoplasm) and Leydig cells (cytoplasm). Seminiferous tubules with intratubular germ cell neoplasia exhibited intense immunolabeling to the 3 lipid receptors in the surface of neoplastic cells and to HSL in the nucleus. In seminoma and spermatocytic seminoma, neoplastic cells labeled to HSL but failed to stain with antilipid receptors; in the seminiferous tubules at the periphery of the tumour, Charcot-Böttcher crystalloids of Sertoli cells were strongly positive to CLA-1. Testes with mature teratoma showed a weak reaction to CD36 and SR-BI in some cells of enteric-type glands, and immature teratoma were exclusively immunolabeled with HSL. Western blotting analysis revealed that multiple bands were immunolabeled, with differences seen between normal and pathological testes. The results of this study indicate that the presence of lipid receptors (CLA-1/SR-BI) and hormone-sensitive lipase in Leydig cells suggests a role of these proteins in steroidogenesis. Also, these proteins seem to be involved in spermiogenesis, as their labeling in spermatids suggests. In nonmalignant and malignant pathologies, cholesterol metabolism is probably altered, and HSL labeling in neoplastic germ cell nuclei suggests a still-unknown function of this enzyme, probably related to cell cycle regulation.
Collapse
Affiliation(s)
- Maria I Arenas
- Department of Cell Biology and Genetics, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Lindvall H, Nevsten P, Ström K, Wallenberg R, Sundler F, Langin D, Winzell MS, Holm C. A Novel Hormone-sensitive Lipase Isoform Expressed in Pancreatic β-Cells. J Biol Chem 2004; 279:3828-36. [PMID: 14576146 DOI: 10.1074/jbc.m311365200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is a key enzyme in fatty acid mobilization in many cell types. Two isoforms of HSL are known to date, namely HSL(adi) (84 kDa in rat) and HSL(tes) (130 kDa in rat). These are encoded by the same gene, with exons 1-9 encoding the parts that are common to both and an additional 5'-exon encoding the additional amino acids in HSL(tes). HSL of various tissues, among these the islet of Langerhans, is larger than HSL(adi), but not as large as HSL(tes), indicating that there may be other 5'-coding exons. Here we describe the molecular basis for a novel 89-kDa HSL isoform that is expressed in beta-cells, adipocytes, adrenal glands, and ovaries in the rat and that is encoded by exons 1-9 and exon A, which is spliced to exon 1 and thereby introducing an upstream start codon. The additional 5'-base pairs encode a 43-amino acid peptide, which is highly positively charged. Conglomerates of HSL molecules are in close association with the secretory granules of the beta-cell, as determined by immunoelectron microscopy with antibodies targeting two separate regions of HSL. We have also determined that the human genomic sequence upstream of exon A has promoter activity in INS-1 cells as well as glucose sensing capability, mediating an increase in expression at high glucose concentration. The minimal promoter is present within 170 bp from the transcriptional start site and maximal glucose responsiveness is conferred by sequence within 850 bp from the transcriptional start site.
Collapse
MESH Headings
- Adipocytes/enzymology
- Adrenal Glands/enzymology
- Amino Acids/chemistry
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- Cloning, Molecular
- DNA, Complementary/metabolism
- Exons
- Female
- Genes, Reporter
- Genetic Vectors
- Genome, Human
- Glucose/metabolism
- Glucose/pharmacology
- Glutathione Transferase/metabolism
- Humans
- Islets of Langerhans/enzymology
- Islets of Langerhans/metabolism
- Islets of Langerhans/ultrastructure
- Luciferases/metabolism
- Male
- Mice
- Microscopy, Electron
- Microscopy, Immunoelectron
- Molecular Sequence Data
- Ovary/enzymology
- Peptides/chemistry
- Promoter Regions, Genetic
- Protein Isoforms
- RNA/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Nucleic Acid
- Sterol Esterase/chemistry
- Sterol Esterase/genetics
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- Håkan Lindvall
- Department of Cell and Molecular Biology, Lund University, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Despite their pathophysiological importance, the molecular mechanisms and enzymatic components of lipid mobilization from intracellular storage compartments are insufficiently understood. The aim of this review is to evaluate the role of hormone-sensitive lipase in this process. RECENT FINDINGS Hormone-sensitive lipase exhibits a broad specificity for lipid substrates such as triglycerides, diglycerides, cholesteryl esters, and retinyl esters and the enzyme is in a wide variety of tissues. The high enzyme activity in adipose tissue was considered rate-limiting in the degradation of stored triglycerides. This view of a single enzyme controlling the catabolism of stored fat was challenged by recent findings that in hormone-sensitive lipase deficient mice adipose tissue triglycerides were still hydrolyzed and that these animals were leaner than normal mice. These results indicated that in adipose tissue hormone-sensitive lipase cooperates with other yet unidentified lipases to control the mobilization of fatty acids from cellular depots and that this process is coordinately regulated with lipid synthesis. Induced mutant mouse lines that overexpress or lack hormone-sensitive lipase also provided evidence that hormone-sensitive lipase-mediated cholesteryl ester hydrolysis is involved in steroid-hormone production in adrenals and affects testis function. Finally, hormone-sensitive lipase deficiency in mice results in a lipoprotein profile characterized by low triglyceride and VLDL levels and increased HDL cholesterol concentrations. SUMMARY The 'anti-atherosclerotic' plasma lipoprotein profile and the fact that hormone-sensitive lipase deficient animals become lean identifies the inhibition of hormone-sensitive lipase as a potential target for the treatment of lipid disorders and obesity.
Collapse
Affiliation(s)
- Guenter Haemmerle
- Institute of Molecular Biology, Karl-Franzens University, Graz, Autria
| | | | | |
Collapse
|
27
|
Grober J, Lucas S, Sörhede-Winzell M, Zaghini I, Mairal A, Contreras JA, Besnard P, Holm C, Langin D. Hormone-sensitive lipase is a cholesterol esterase of the intestinal mucosa. J Biol Chem 2003; 278:6510-5. [PMID: 12482847 DOI: 10.1074/jbc.m208513200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The identity of the enzymes responsible for lipase and cholesterol esterase activities in the small intestinal mucosa is not known. Because hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters, we sought to determine whether HSL could be involved. HSL mRNA and protein were detected in all segments of the small intestine by Northern and Western blot analyses, respectively. Immunocytochemistry experiments revealed that HSL was expressed in the differentiated enterocytes of the villi and was absent in the undifferentiated cells of the crypt. Diacylglycerol lipase and cholesterol esterase activities were found in the different segments. Analysis of gut from HSL-null mice showed that diacylglycerol lipase activity was unchanged in the duodenum and reduced in jejunum. Neutral cholesterol esterase activity was totally abolished in duodenum, jejunum, and ileum of HSL-null mice. Analysis of HSL mRNA structure showed two types of transcripts expressed in equal amounts with alternative 5'-ends transcribed from two exons. This work demonstrates that HSL is expressed in the mucosa of the small intestine. The results also reveal that the enzyme participates in acylglycerol hydrolysis in jejunal enterocytes and cholesteryl ester hydrolysis throughout the small intestine.
Collapse
Affiliation(s)
- Jacques Grober
- Laboratoire de Physiologie de la Nutrition, Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation, FRE2328 CNRS/Université de Bourgogne 1, Dijon 21000, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lucas S, Tavernier G, Tiraby C, Mairal A, Langin D. Expression of human hormone-sensitive lipase in white adipose tissue of transgenic mice increases lipase activity but does not enhance in vitro lipolysis. J Lipid Res 2003; 44:154-63. [PMID: 12518034 DOI: 10.1194/jlr.m200250-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hormone-sensitive lipase (HSL) catalyzes the hydrolysis of acylglycerols and cholesteryl esters (CEs). The enzyme is highly expressed in adipose tissues (ATs), where it is thought to play an important role in fat mobilization. The purpose of the present work was to study the effect of a physiological increase of HSL expression in vivo. Transgenic mice were produced with a 21 kb human genomic fragment encompassing the exons encoding the adipocyte form of HSL. hHSL mRNA was expressed at 3-fold higher levels than murine HSL mRNA in white adipocytes. Transgene expression was also observed in brown adipose tissue (BAT) and skeletal muscle. The human protein was detected in ATs of transgenic (Tg) mice. The hydrolytic activities against triacylglycerol (TG), diacylglycerol (DG) analog, and CE were increased in transgenic mouse AT. However, cAMP-inducible adipocyte lipolysis was lower in transgenic animals. In the B6CBA genetic background, transgenic mice up to 14 weeks of age showed lower body weight and fat mass. The phenotype was not observed in older animals and in mice fed a high-fat diet (HFD). In the OF1 genetic background, there was no difference in fat mass of mice fed ad libitum. However, transgenic mice became leaner than their wild-type (WT) littermates after a 4 day calorie restriction. The data show that overexpression of HSL, despite increased lipase activity, does not lead to enhanced lipolysis.
Collapse
Affiliation(s)
- Stéphanie Lucas
- INSERM U317, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, Université Paul Sabatier, 31403 Toulouse Cedex 4, France
| | | | | | | | | |
Collapse
|
29
|
Kraemer FB, Shen WJ. Hormone-sensitive lipase: control of intracellular tri-(di-)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 2002; 43:1585-94. [PMID: 12364542 DOI: 10.1194/jlr.r200009-jlr200] [Citation(s) in RCA: 351] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormone-sensitive lipase (HSL) is an intracellular neutral lipase that is capable of hydrolyzing triacylglycerols, diacylglycerols, monoacylglycerols, and cholesteryl esters, as well as other lipid and water soluble substrates. HSL activity is regulated post-translationally by phosphorylation and also by pretranslational mechanisms. The enzyme is highly expressed in adipose tissue and steroidogenic tissues, with lower amounts expressed in cardiac and skeletal muscle, macrophages, and islets. Studies of the structure of HSL have identified several amino acids and regions of the molecule that are critical for enzymatic activity and regulation of HSL. This has led to important insights into its function, including the interaction of HSL with other intracellular proteins, such as adipocyte lipid binding protein. Accumulating evidence has defined important functions for HSL in normal physiology, affecting adipocyte lipolysis, steroidogenesis, spermatogenesis, and perhaps insulin secretion and insulin action; however, direct links between abnormal expression or genetic variations of HSL and human disorders, such as obesity, insulin resistance, type 2 diabetes, and hyperlipidemia, await further clarification. The published reports examining the regulation, and function of HSL in normal physiology and disease are reviewed in this paper.
Collapse
Affiliation(s)
- Fredric B Kraemer
- Division of Endocrinology, Department of Medicine, Stanford University, Stanford, CA, USA.
| | | |
Collapse
|