1
|
Li J, Janin A, Patoughi M, Gaudreault N, Kis L, Moha Ou Maati H, Bossé Y, Steinberg C. Circulating Autoantibodies Targeting TREK-1 in Patients With Short-Coupled Ventricular Fibrillation. Circulation 2024; 150:1944-1954. [PMID: 39315453 DOI: 10.1161/circulationaha.124.070284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Short-coupled ventricular fibrillation (SCVF) is increasingly being recognized as a distinct primary electrical disorder and cause of otherwise unexplained cardiac arrest. However, the pathophysiology of SCVF remains largely elusive. Despite extensive genetic screening, there is no convincing evidence of a robust monogenic disease gene, thus raising the speculations for alternative pathogeneses. The role of autoimmune mechanisms in SCVF has not been investigated so far. The objective of this study was to screen for circulating autoantibodies in patients with SCVF and assess their role in arrhythmogenesis. METHODS This is a prospective, single-center, case-control study enrolling cardiac arrest survivors diagnosed with SCVF or idiopathic ventricular fibrillation (IVF) between 2019 and 2023 at the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval Inherited Arrhythmia Clinic in Canada. Plasma samples were screened for autoantibodies targeting cardiac ion channels using peptide microarray technology. Identified target autoantibodies were then purified from pooled plasma samples for subsequent cellular electrophysiological studies. RESULTS Fourteen patients with SCVF (n=4 [29% of patients] female patients; median age, 45 years [interquartile range: 36, 59]; n=14 [100% of patients] non-Hispanic White) and 19 patients with idiopathic ventricular fibrillation (n=8 [42%] female patients; median age, 49 years [38, 57]; n=19 [100%] non-Hispanic White) were enrolled in the study and compared with 38 (n=20 [53%] female subjects; median age, 45 years [29, 66]; n=36 [95%] non-Hispanic White) sex-, age- and ethnicity-matched healthy controls. During the study period, 11 (79%) SCVF probands experienced ventricular fibrillation recurrence after a median of 4.3 months (interquartile range, 0.3-20.7). Autoantibodies targeting cardiac TREK-1 (TWIK [tandem of pore-domains in a weakly inward rectifying potassium channel]-related potassium channel 1 were identified in 7 (50%) patients with SCVF (P=0.049). Patch clamp experiments demonstrated channel-activating properties of anti-TREK-1 autoantibodies that are antagonized by quinidine in both HEK293 cells and human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS Patients with SCVF harbor circulating autoantibodies against the cardiac TREK-1 channel. Anti-TREK-1 autoantibodies not only present the first reported biomarker for SCVF, but our functional studies also suggest a direct implication in the arrhythmogenesis of SCVF.
Collapse
Affiliation(s)
- Jin Li
- Department of Physiology, University of Bern, Switzerland (J.L.)
| | - Alexandre Janin
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
- Université Claude Bernard Lyon 1, Université de Lyon, France (A.J.)
| | - Mona Patoughi
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
| | - Nathalie Gaudreault
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
| | - Lenke Kis
- Università della Svizzera Italiana, Lugano, Switzerland (L.K.)
| | - Hamid Moha Ou Maati
- Institut des Neurosciences de Montpellier, INSERM U1298, CHU Hôpital Saint Eloi, Université de Montpellier, France (H.M.O.M.)
| | - Yohan Bossé
- Department of Molecular Medicine (A.J., M.P., N.G., Y.B.), Institut Universitaire de Cardiologie et Pneumologie de Québec
- Department of Molecular Medicine (Y.B.)
- Laval University, Quebec City, Canada (Y.B.)
| | - Christian Steinberg
- Department of Medicine (C.S.), Institut Universitaire de Cardiologie et Pneumologie de Québec
| |
Collapse
|
2
|
Du C, Chen L, Liu G, Yuan F, Zhang Z, Rong M, Mo G, Liu C. Tick-Derived Peptide Blocks Potassium Channel TREK-1. Int J Mol Sci 2024; 25:8377. [PMID: 39125945 PMCID: PMC11312834 DOI: 10.3390/ijms25158377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Ticks transmit a variety of pathogens, including rickettsia and viruses, when they feed on blood, afflicting humans and other animals. Bioactive components acting on inflammation, coagulation, and the immune system were reported to facilitate ticks' ability to suck blood and transmit tick-borne diseases. In this study, a novel peptide, IstTx, from an Ixodes scapularis cDNA library was analyzed. The peptide IstTx, obtained by recombinant expression and purification, selectively inhibited a potassium channel, TREK-1, in a dose-dependent manner, with an IC50 of 23.46 ± 0.22 μM. The peptide IstTx exhibited different characteristics from fluoxetine, and the possible interaction of the peptide IstTx binding to the channel was explored by molecular docking. Notably, extracellular acidification raised its inhibitory efficacy on the TREK-1 channel. Our results found that the tick-derived peptide IstTx blocked the TREK-1 channel and provided a novel tool acting on the potassium channel.
Collapse
Affiliation(s)
- Canwei Du
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Linyan Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohao Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Fuchu Yuan
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
| | - Zheyang Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingqiang Rong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410006, China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, No. 387-201 Heming Street, Chengdu 610212, China
| | - Guoxiang Mo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
3
|
Francis-Oliveira J, Higa GSV, Viana FJC, Cruvinel E, Carlos-Lima E, da Silva Borges F, Zampieri TT, Rebello FP, Ulrich H, De Pasquale R. TREK-1 inhibition promotes synaptic plasticity in the prelimbic cortex. Exp Neurol 2024; 373:114652. [PMID: 38103709 DOI: 10.1016/j.expneurol.2023.114652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Synaptic plasticity is one of the putative mechanisms involved in the maturation of the prefrontal cortex (PFC) during postnatal development. Early life stress (ELS) affects the shaping of cortical circuitries through impairment of synaptic plasticity supporting the onset of mood disorders. Growing evidence suggests that dysfunctional postnatal maturation of the prelimbic division (PL) of the PFC might be related to the emergence of depression. The potassium channel TREK-1 has attracted particular interest among many factors that modulate plasticity, concerning synaptic modifications that could underlie mood disorders. Studies have found that ablation of TREK-1 increases the resilience to depression, while rats exposed to ELS exhibit higher TREK-1 levels in the PL. TREK-1 is regulated by multiple intracellular transduction pathways including the ones activated by metabotropic receptors. In the hippocampal neurons, TREK-1 interacts with the serotonergic system, one of the main factors involved in the action of antidepressants. To investigate possible mechanisms related to the antidepressant role of TREK-1, we used brain slice electrophysiology to evaluate the effects of TREK-1 pharmacological blockade on synaptic plasticity at PL circuitry. We extended this investigation to animals subjected to ELS. Our findings suggest that in non-stressed animals, TREK-1 activity is required for the reduction of synaptic responses mediated by the 5HT1A receptor activation. Furthermore, we demonstrate that TREK-1 blockade promotes activity-dependent long-term depression (LTD) when acting in synergy with 5HT1A receptor stimulation. On the other hand, in ELS animals, TREK-1 blockade reduces synaptic transmission and facilitates LTD expression. These results indicate that TREK-1 inhibition stimulates synaptic plasticity in the PL and this effect is more pronounced in animals subjected to ELS during postnatal development.
Collapse
Affiliation(s)
- José Francis-Oliveira
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Guilherme Shigueto Vilar Higa
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil; Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil; Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, SP 09210-580, Brazil
| | - Felipe José Costa Viana
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Emily Cruvinel
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Estevão Carlos-Lima
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernando da Silva Borges
- Department of Physiology & Pharmacology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Thais Tessari Zampieri
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Fernanda Pereira Rebello
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química (USP), Butantã, SP 05508-900, Brazil
| | - Roberto De Pasquale
- Laboratório de Neurofisiologia, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, Butantã, SP 05508-000, Brazil.
| |
Collapse
|
4
|
Immanuel CN, Teng B, Dong BE, Gordon EM, Luellen C, Lopez B, Harding J, Cormier SA, Fitzpatrick EA, Schwingshackl A, Waters CM. Two-pore potassium channel TREK-1 (K2P2.1) regulates NLRP3 inflammasome activity in macrophages. Am J Physiol Lung Cell Mol Physiol 2024; 326:L367-L376. [PMID: 38252657 PMCID: PMC11281793 DOI: 10.1152/ajplung.00313.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1β, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1β secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.
Collapse
Grants
- HL131526 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Le Bonheur Children's Hospital
- 20TPA35490010 American Heart Association (AHA)
- R01 HL131526 NHLBI NIH HHS
- HL151419 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- IA-678511 American Lung Association (ALA)
- R01 HL146821 NHLBI NIH HHS
- HL146821 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL123540 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL151419 NHLBI NIH HHS
- R01 HL123540 NHLBI NIH HHS
- HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
Collapse
Affiliation(s)
- Camille N Immanuel
- Division of Pediatric Critical Care, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany E Dong
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Elizabeth M Gordon
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Charlean Luellen
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, California, United States
| | - Jeffrey Harding
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Stephania A Cormier
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California, Los Angeles, California, United States
| | - Christopher M Waters
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
5
|
Hori A, Fukazawa A, Katanosaka K, Mizuno M, Hotta N. Mechanosensitive channels in the mechanical component of the exercise pressor reflex. Auton Neurosci 2023; 250:103128. [PMID: 37925831 DOI: 10.1016/j.autneu.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The cardiovascular response is appropriately regulated during exercise to meet the metabolic demands of the active muscles. The exercise pressor reflex is a neural feedback mechanism through thin-fiber muscle afferents activated by mechanical and metabolic stimuli in the active skeletal muscles. The mechanical component of this reflex is referred to as skeletal muscle mechanoreflex. Its initial step requires mechanotransduction mediated by mechanosensors, which convert mechanical stimuli into biological signals. Recently, various mechanosensors have been identified, and their contributions to muscle mechanoreflex have been actively investigated. Nevertheless, the mechanosensitive channels responsible for this muscular reflex remain largely unknown. This review discusses progress in our understanding of muscle mechanoreflex under healthy conditions, focusing on mechanosensitive channels.
Collapse
Affiliation(s)
- Amane Hori
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Ayumi Fukazawa
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Kimiaki Katanosaka
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Masaki Mizuno
- Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
6
|
Kim SS, Park J, Kim E, Hwang EM, Park JY. β-COP Suppresses the Surface Expression of the TREK2. Cells 2023; 12:1500. [PMID: 37296621 PMCID: PMC10252889 DOI: 10.3390/cells12111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
K2P channels, also known as two-pore domain K+ channels, play a crucial role in maintaining the cell membrane potential and contributing to potassium homeostasis due to their leaky nature. The TREK, or tandem of pore domains in a weak inward rectifying K+ channel (TWIK)-related K+ channel, subfamily within the K2P family consists of mechanical channels regulated by various stimuli and binding proteins. Although TREK1 and TREK2 within the TREK subfamily share many similarities, β-COP, which was previously known to bind to TREK1, exhibits a distinct binding pattern to other members of the TREK subfamily, including TREK2 and the TRAAK (TWIK-related acid-arachidonic activated K+ channel). In contrast to TREK1, β-COP binds to the C-terminus of TREK2 and reduces its cell surface expression but does not bind to TRAAK. Furthermore, β-COP cannot bind to TREK2 mutants with deletions or point mutations in the C-terminus and does not affect the surface expression of these TREK2 mutants. These results emphasize the unique role of β-COP in regulating the surface expression of the TREK family.
Collapse
Affiliation(s)
- Seong-Seop Kim
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea; (S.-S.K.); (J.P.)
| | - Jimin Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea; (S.-S.K.); (J.P.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Republic of Korea
| | - Eunju Kim
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea;
| | - Eun Mi Hwang
- Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea;
| | - Jae-Yong Park
- School of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul 02841, Republic of Korea; (S.-S.K.); (J.P.)
- BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul 02841, Republic of Korea
- ASTRION, Inc., Seoul 02842, Republic of Korea
| |
Collapse
|
7
|
Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing Xenopus laevis Tadpoles. J Neurosci 2023; 43:1387-1404. [PMID: 36693757 PMCID: PMC9987577 DOI: 10.1523/jneurosci.0520-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/27/2022] [Accepted: 12/02/2022] [Indexed: 01/26/2023] Open
Abstract
Developing spinal circuits generate patterned motor outputs while many neurons with high membrane resistances are still maturing. In the spinal cord of hatchling frog tadpoles of unknown sex, we found that the firing reliability in swimming of inhibitory interneurons with commissural and ipsilateral ascending axons was negatively correlated with their cellular membrane resistance. Further analyses showed that neurons with higher resistances had outward rectifying properties, low firing thresholds, and little delay in firing evoked by current injections. Input synaptic currents these neurons received during swimming, either compound, unitary current amplitudes, or unitary synaptic current numbers, were scaled with their membrane resistances, but their own synaptic outputs were correlated with membrane resistances of their postsynaptic partners. Analyses of neuronal dendritic and axonal lengths and their activities in swimming and cellular input resistances did not reveal a clear correlation pattern. Incorporating these electrical and synaptic properties into a computer swimming model produced robust swimming rhythms, whereas randomizing input synaptic strengths led to the breakdown of swimming rhythms, coupled with less synchronized spiking in the inhibitory interneurons. We conclude that the recruitment of these developing interneurons in swimming can be predicted by cellular input resistances, but the order is opposite to the motor-strength-based recruitment scheme depicted by Henneman's size principle. This form of recruitment/integration order in development before the emergence of refined motor control is progressive potentially with neuronal acquisition of mature electrical and synaptic properties, among which the scaling of input synaptic strengths with cellular input resistance plays a critical role.SIGNIFICANCE STATEMENT The mechanisms on how interneurons are recruited to participate in circuit function in developing neuronal systems are rarely investigated. In 2-d-old frog tadpole spinal cord, we found the recruitment of inhibitory interneurons in swimming is inversely correlated with cellular input resistances, opposite to the motor-strength-based recruitment order depicted by Henneman's size principle. Further analyses showed the amplitude of synaptic inputs that neurons received during swimming was inversely correlated with cellular input resistances. Randomizing/reversing the relation between input synaptic strengths and membrane resistances in modeling broke down swimming rhythms. Therefore, the recruitment or integration of these interneurons is conditional on the acquisition of several electrical and synaptic properties including the scaling of input synaptic strengths with cellular input resistances.
Collapse
|
8
|
Riel EB, Jürs BC, Cordeiro S, Musinszki M, Schewe M, Baukrowitz T. The versatile regulation of K2P channels by polyanionic lipids of the phosphoinositide and fatty acid metabolism. J Gen Physiol 2022; 154:212926. [PMID: 34928298 PMCID: PMC8693234 DOI: 10.1085/jgp.202112989] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022] Open
Abstract
Work over the past three decades has greatly advanced our understanding of the regulation of Kir K+ channels by polyanionic lipids of the phosphoinositide (e.g., PIP2) and fatty acid metabolism (e.g., oleoyl-CoA). However, comparatively little is known regarding the regulation of the K2P channel family by phosphoinositides and by long-chain fatty acid–CoA esters, such as oleoyl-CoA. We screened 12 mammalian K2P channels and report effects of polyanionic lipids on all tested channels. We observed activation of members of the TREK, TALK, and THIK subfamilies, with the strongest activation by PIP2 for TRAAK and the strongest activation by oleoyl-CoA for TALK-2. By contrast, we observed inhibition for members of the TASK and TRESK subfamilies. Our results reveal that TASK-2 channels have both activatory and inhibitory PIP2 sites with different affinities. Finally, we provided evidence that PIP2 inhibition of TASK-1 and TASK-3 channels is mediated by closure of the recently identified lower X-gate as critical mutations within the gate (i.e., L244A, R245A) prevent PIP2-induced inhibition. Our findings establish that K+ channels of the K2P family are highly sensitive to polyanionic lipids, extending our knowledge of the mechanisms of lipid regulation and implicating the metabolism of these lipids as possible effector pathways to regulate K2P channel activity.
Collapse
Affiliation(s)
- Elena B Riel
- Institute of Physiology, Kiel University, Kiel, Germany
| | - Björn C Jürs
- Institute of Physiology, Kiel University, Kiel, Germany.,Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | | | | | - Marcus Schewe
- Institute of Physiology, Kiel University, Kiel, Germany
| | | |
Collapse
|
9
|
Activity of TREK-2-like Channels in the Pyramidal Neurons of Rat Medial Prefrontal Cortex Depends on Cytoplasmic Calcium. BIOLOGY 2021; 10:biology10111119. [PMID: 34827112 PMCID: PMC8614805 DOI: 10.3390/biology10111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022]
Abstract
Simple Summary The pyramidal neurons of rat prefrontal cortex express potassium channels identified as a non-canonical splice variant of the TREK-2 channel. The main function of TREK channels is to regulate the resting membrane potential. We showed that cytoplasmic Ca2+ upregulates the activity of TREK-2-like channels. Previous studies have indicated that the activation of TREK-2 channels is mediated by PI(4,5)P2, a polyanionic lipid in the inner leaflet of the plasma membrane. While TREK channels are believed to not be regulated by calcium, our work shows otherwise. We propose a model in which calcium ions enable the formation of PI(4,5)P2 nanoclusters, which stabilize active conformation of the channel. Abstract TREK-2-like channels in the pyramidal neurons of rat prefrontal cortex are characterized by a wide range of spontaneous activity—from very low to very high—independent of the membrane potential and the stimuli that are known to activate TREK-2 channels, such as temperature or membrane stretching. The aim of this study was to discover what factors are involved in high levels of TREK-2-like channel activity in these cells. Our research focused on the PI(4,5)P2-dependent mechanism of channel activity. Single-channel patch clamp recordings were performed on freshly dissociated pyramidal neurons of rat prefrontal cortexes in both the cell-attached and inside-out configurations. To evaluate the role of endogenous stimulants, the activity of the channels was recorded in the presence of a PI(4,5)P2 analogue (PI(4,5)P2DiC8) and Ca2+. Our research revealed that calcium ions are an important factor affecting TREK-2-like channel activity and kinetics. The observation that calcium participates in the activation of TREK-2-like channels is a new finding. We showed that PI(4,5)P2-dependent TREK-2 activity occurs when the conditions for PI(4,5)P2/Ca2+ nanocluster formation are met. We present a possible model explaining the mechanism of calcium action.
Collapse
|
10
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
11
|
Kraft M, Büscher A, Wiedmann F, L’hoste Y, Haefeli WE, Frey N, Katus HA, Schmidt C. Current Drug Treatment Strategies for Atrial Fibrillation and TASK-1 Inhibition as an Emerging Novel Therapy Option. Front Pharmacol 2021; 12:638445. [PMID: 33897427 PMCID: PMC8058608 DOI: 10.3389/fphar.2021.638445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia with a prevalence of up to 4% and an upwards trend due to demographic changes. It is associated with an increase in mortality and stroke incidences. While stroke risk can be significantly reduced through anticoagulant therapy, adequate treatment of other AF related symptoms remains an unmet medical need in many cases. Two main treatment strategies are available: rate control that modulates ventricular heart rate and prevents tachymyopathy as well as rhythm control that aims to restore and sustain sinus rhythm. Rate control can be achieved through drugs or ablation of the atrioventricular node, rendering the patient pacemaker-dependent. For rhythm control electrical cardioversion and pharmacological cardioversion can be used. While electrical cardioversion requires fasting and sedation of the patient, antiarrhythmic drugs have other limitations. Most antiarrhythmic drugs carry a risk for pro-arrhythmic effects and are contraindicated in patients with structural heart diseases. Furthermore, catheter ablation of pulmonary veins can be performed with its risk of intraprocedural complications and varying success. In recent years TASK-1 has been introduced as a new target for AF therapy. Upregulation of TASK-1 in AF patients contributes to prolongation of the action potential duration. In a porcine model of AF, TASK-1 inhibition by gene therapy or pharmacological compounds induced cardioversion to sinus rhythm. The DOxapram Conversion TO Sinus rhythm (DOCTOS)-Trial will reveal whether doxapram, a potent TASK-1 inhibitor, can be used for acute cardioversion of persistent and paroxysmal AF in patients, potentially leading to a new treatment option for AF.
Collapse
Affiliation(s)
- Manuel Kraft
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Antonius Büscher
- Clinic for Cardiology II: Electrophysiology, University Hospital Münster, Münster, Germany
| | - Felix Wiedmann
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Yannick L’hoste
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Hugo A. Katus
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany
- HCR, Heidelberg Center for Heart Rhythm Disorders, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
12
|
Pineda RH, Hypolite J, Lee S, Carrasco A, Iguchi N, Meacham RB, Malykhina AP. Altered detrusor contractility and voiding patterns in mice lacking the mechanosensitive TREK-1 channel. BMC Urol 2019; 19:40. [PMID: 31113422 PMCID: PMC6528348 DOI: 10.1186/s12894-019-0475-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 05/13/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previously published results from our laboratory identified a mechano-gated two-pore domain potassium channel, TREK-1, as a main mechanosensor in the smooth muscle of the human urinary bladder. One of the limitations of in vitro experiments on isolated human detrusor included inability to evaluate in vivo effects of TREK-1 on voiding function, as the channel is also expressed in the nervous system, and may modulate micturition via neural pathways. Therefore, in the present study, we aimed to assess the role of TREK-1 channel in bladder function and voiding patterns in vivo by using TREK-1 knockout (KO) mice. METHODS Adult C57BL/6 J wild-type (WT, N = 32) and TREK-1 KO (N = 33) mice were used in this study. The overall phenotype and bladder function were evaluated by gene and protein expression of TREK-1 channel, in vitro contractile experiments using detrusor strips in response to stretch and pharmacological stimuli, and cystometry in unanesthetized animals. RESULTS TREK-1 KO animals had an elevated basal muscle tone and enhanced spontaneous activity in the detrusor without detectable changes in bladder morphology/histology. Stretch applied to isolated detrusor strips increased the amplitude of spontaneous contractions by 109% in the TREK-1 KO group in contrast to a 61% increase in WT mice (p ≤ 0.05 to respective baseline for each group). The detrusor strips from TREK-1 KO mice also generated more contractile force in response to electric field stimulation and high potassium concentration in comparison to WT group (p ≤ 0.05 for both tests). However, cystometric recordings from TREK-1 KO mice revealed a significant increase in the duration of the intermicturition interval, enhanced bladder capacity and increased number of non-voiding contractions in comparison to WT mice. CONCLUSIONS Our results provide evidence that global down-regulation of TREK-1 channels has dual effects on detrusor contractility and micturition patterns in vivo. The observed differences are likely due to expression of TREK-1 channel not only in detrusor myocytes but also in afferent and efferent neural pathways involved in regulation of micturition which may underly the "mixed" voiding phenotype in TREK-1 KO mice.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Joseph Hypolite
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Sanghee Lee
- Department of Urology, University of California San Diego, 3855 Health Science Drive, Room 4345, Bay 4LL, La Jolla, CA, 92093, USA
| | - Alonso Carrasco
- Children's Mercy Hospital, 2401 Gillham Rd, Kansas City, MO, 64108, USA
| | - Nao Iguchi
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA
| | - Randall B Meacham
- Division of Urology, Department of Surgery, University of Colorado Denver, Academic Office One Bldg., Rm 5602, 12631 East 17th Ave., M/S C319, Aurora, CO, 80045, USA
| | - Anna P Malykhina
- Division of Urology, Department of Surgery, University of Colorado Denver,Anschutz Medical Campus, 12700 E 19th Ave, M/S C317, Aurora, CO, 80045, USA.
| |
Collapse
|
13
|
Djillani A, Mazella J, Heurteaux C, Borsotto M. Role of TREK-1 in Health and Disease, Focus on the Central Nervous System. Front Pharmacol 2019; 10:379. [PMID: 31031627 PMCID: PMC6470294 DOI: 10.3389/fphar.2019.00379] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/26/2019] [Indexed: 01/22/2023] Open
Abstract
TREK-1 is the most studied background K2P channel. Its main role is to control cell excitability and maintain the membrane potential below the threshold of depolarization. TREK-1 is multi-regulated by a variety of physical and chemical stimuli which makes it a very promising and challenging target in the treatment of several pathologies. It is mainly expressed in the brain but also in heart, smooth muscle cells, endocrine pancreas, and prostate. In the nervous system, TREK-1 is involved in many physiological and pathological processes such as depression, neuroprotection, pain, and anesthesia. These properties explain why many laboratories and pharmaceutical companies have been focusing their research on screening and developing highly efficient modulators of TREK-1 channels. In this review, we summarize the different roles of TREK-1 that have been investigated so far in attempt to characterize pharmacological tools and new molecules to modulate cellular functions controlled by TREK-1.
Collapse
Affiliation(s)
- Alaeddine Djillani
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Jean Mazella
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Catherine Heurteaux
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| | - Marc Borsotto
- Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
14
|
Pope L, Arrigoni C, Lou H, Bryant C, Gallardo-Godoy A, Renslo AR, Minor DL. Protein and Chemical Determinants of BL-1249 Action and Selectivity for K 2P Channels. ACS Chem Neurosci 2018; 9:3153-3165. [PMID: 30089357 PMCID: PMC6302903 DOI: 10.1021/acschemneuro.8b00337] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
K2P potassium channels generate leak currents that stabilize the resting membrane potential of excitable cells. Various K2P channels are implicated in pain, ischemia, depression, migraine, and anesthetic responses, making this family an attractive target for small molecule modulator development efforts. BL-1249, a compound from the fenamate class of nonsteroidal anti-inflammatory drugs is known to activate K2P2.1(TREK-1), the founding member of the thermo- and mechanosensitive TREK subfamily; however, its mechanism of action and effects on other K2P channels are not well-defined. Here, we demonstrate that BL-1249 extracellular application activates all TREK subfamily members but has no effect on other K2P subfamilies. Patch clamp experiments demonstrate that, similar to the diverse range of other chemical and physical TREK subfamily gating cues, BL-1249 stimulates the selectivity filter "C-type" gate that controls K2P function. BL-1249 displays selectivity among the TREK subfamily, activating K2P2.1(TREK-1) and K2P10.1(TREK-2) ∼10-fold more potently than K2P4.1(TRAAK). Investigation of mutants and K2P2.1(TREK-1)/K2P4.1(TRAAK) chimeras highlight the key roles of the C-terminal tail in BL-1249 action and identify the M2/M3 transmembrane helix interface as a key site of BL-1249 selectivity. Synthesis and characterization of a set of BL-1249 analogs demonstrates that both the tetrazole and opposing tetralin moieties are critical for function, whereas the conformational mobility between the two ring systems impacts selectivity. Together, our findings underscore the landscape of modes by which small molecules can affect K2P channels and provide crucial information for the development of better and more selective K2P modulators of the TREK subfamily.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniel L. Minor
- Molecular Biophysics and Integrated Bio-imaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| |
Collapse
|
15
|
Yarishkin O, Phuong TTT, Bretz CA, Olsen KW, Baumann JM, Lakk M, Crandall A, Heurteaux C, Hartnett ME, Križaj D. TREK-1 channels regulate pressure sensitivity and calcium signaling in trabecular meshwork cells. J Gen Physiol 2018; 150:1660-1675. [PMID: 30446509 PMCID: PMC6279358 DOI: 10.1085/jgp.201812179] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/26/2018] [Indexed: 12/31/2022] Open
Abstract
The trabecular meshwork (TM) plays a fundamental role in intraocular pressure regulation, but its mechanotransduction pathway is poorly understood. Yarishkin et al. show that the mechanosensing channel TREK-1 regulates TM membrane potential, pressure sensitivity, calcium homeostasis, and impedance. Mechanotransduction by the trabecular meshwork (TM) is an essential component of intraocular pressure regulation in the vertebrate eye. This process is compromised in glaucoma but is poorly understood. In this study, we identify transient receptor potential vanilloid isoform 4 (TRPV4) and TWIK-related potassium channel-1 (TREK-1) as key molecular determinants of TM membrane potential, pressure sensitivity, calcium homeostasis, and transcellular permeability. We show that resting membrane potential in human TM cells is unaffected by “classical” inhibitors of voltage-activated, calcium-activated, and inwardly rectifying potassium channels but is depolarized by blockers of tandem-pore K+ channels. Using gene profiling, we reveal the presence of TREK-1, TASK-1, TWIK-2, and THIK transcripts in TM cells. Pressure stimuli, arachidonic acid, and TREK-1 activators hyperpolarize these cells, effects that are antagonized by quinine, amlodipine, spadin, and short-hairpin RNA–mediated knockdown of TREK-1 but not TASK-1. Activation and inhibition of TREK-1 modulates [Ca2+]TM and lowers the impedance of cell monolayers. Together, these results suggest that tensile homeostasis in the TM may be regulated by balanced, pressure-dependent activation of TRPV4 and TREK-1 mechanotransducers.
Collapse
Affiliation(s)
- Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Tam T T Phuong
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Colin A Bretz
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Kenneth W Olsen
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT.,Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT.,Bioengineering Graduate Program, University of Utah School of Medicine, Salt Lake City, UT
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Alan Crandall
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - Catherine Heurteaux
- Institute de Pharmacologie Moléculaire et Cellulaire, CNRS, Valbonne, France
| | - Mary E Hartnett
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT .,Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT.,Bioengineering Graduate Program, University of Utah School of Medicine, Salt Lake City, UT.,Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT
| |
Collapse
|
16
|
Moroni M, Servin-Vences MR, Fleischer R, Sánchez-Carranza O, Lewin GR. Voltage gating of mechanosensitive PIEZO channels. Nat Commun 2018; 9:1096. [PMID: 29545531 PMCID: PMC5854696 DOI: 10.1038/s41467-018-03502-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins whose presence is critical for normal physiology in multicellular organisms. Here we show that, in addition to mechanical stimuli, PIEZO channels are also powerfully modulated by voltage and can even switch to a purely voltage-gated mode. Mutations that cause human diseases, such as xerocytosis, profoundly shift voltage sensitivity of PIEZO1 channels toward the resting membrane potential and strongly promote voltage gating. Voltage modulation may be explained by the presence of an inactivation gate in the pore, the opening of which is promoted by outward permeation. Older invertebrate (fly) and vertebrate (fish) PIEZO proteins are also voltage sensitive, but voltage gating is a much more prominent feature of these older channels. We propose that the voltage sensitivity of PIEZO channels is a deep property co-opted to add a regulatory mechanism for PIEZO activation in widely different cellular contexts. PIEZO proteins form mechanosensitive ion channels. Here the authors present electrophysiological measurements that show that PIEZO channels are also modulated by voltage and can switch to a purely voltage gated mode, which is an evolutionary conserved property of this channel family.
Collapse
Affiliation(s)
- Mirko Moroni
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092, Berlin, Germany.
| | - M Rocio Servin-Vences
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092, Berlin, Germany
| | - Raluca Fleischer
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092, Berlin, Germany
| | - Oscar Sánchez-Carranza
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092, Berlin, Germany
| | - Gary R Lewin
- Department of Neuroscience, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Straße 10, D-13092, Berlin, Germany. .,Excellence Cluster Neurocure, Charité Universitätsmedizin, 10117, Berlin, Germany.
| |
Collapse
|
17
|
Kinetic properties and adrenergic control of TREK-2-like channels in rat medial prefrontal cortex (mPFC) pyramidal neurons. Brain Res 2017; 1665:95-104. [PMID: 28438532 DOI: 10.1016/j.brainres.2017.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/03/2017] [Accepted: 04/14/2017] [Indexed: 02/01/2023]
Abstract
TREK-2-like channels were identified on the basis of electrophysiological and pharmacological tests performed on freshly isolated and enzymatically/mechanically dispersed pyramidal neurons of the rat medial prefrontal cortex (mPFC). Single-channel currents were recorded in cell-attached configuration and the impact of adrenergic receptors (α1, α2, β) stimulation on spontaneously appearing TREK-2-like channel activity was tested. The obtained results indicate that noradrenaline decreases the mean open probability of TREK-2-like channel currents by activation of β1 but not of α1- and α2-adrenergic receptors. Mean open time and channel conductance were not affected. The system of intracellular signaling pathways depends on the activation of protein kinase A. We also show that adrenergic control of TREK-2-like channel currents by adrenergic receptors was similar in pyramidal neurons isolated from young, adolescent, and adult rats. Immunofluorescent confocal scans of mPFC slices confirmed the presence of the TREK-2 protein, which was abundant in layer V pyramidal neurons. The role of TREK-2-like channel control by adrenergic receptors is discussed.
Collapse
|
18
|
Vivier D, Soussia IB, Rodrigues N, Lolignier S, Devilliers M, Chatelain FC, Prival L, Chapuy E, Bourdier G, Bennis K, Lesage F, Eschalier A, Busserolles J, Ducki S. Development of the First Two-Pore Domain Potassium Channel TWIK-Related K+ Channel 1-Selective Agonist Possessing in Vivo Antinociceptive Activity. J Med Chem 2017; 60:1076-1088. [DOI: 10.1021/acs.jmedchem.6b01285] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Delphine Vivier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Ismail Ben Soussia
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Nuno Rodrigues
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Stéphane Lolignier
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Maïly Devilliers
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Franck C. Chatelain
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Laetitia Prival
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Eric Chapuy
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Geoffrey Bourdier
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Khalil Bennis
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| | - Florian Lesage
- Labex
ICST, Institut de Pharmacologie Moléculaire et Cellulaire, UMR CNRS 7275, Université Côte d’Azur, F-06560 Valbonne, France
| | - Alain Eschalier
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
- CHU Clermont-Ferrand, Service de Pharmacologie, F-63003 Clermont-Ferrand, France
| | - Jérôme Busserolles
- Université Clermont Auvergne, Inserm, Neuro-Dol, F-63000 Clermont-Ferrand, France
| | - Sylvie Ducki
- Université Clermont Auvergne, CNRS, SIGMA Clermont, ICCF, F-63000 Clermont-Ferrand, France
| |
Collapse
|
19
|
Schewe M, Nematian-Ardestani E, Sun H, Musinszki M, Cordeiro S, Bucci G, de Groot BL, Tucker SJ, Rapedius M, Baukrowitz T. A Non-canonical Voltage-Sensing Mechanism Controls Gating in K2P K(+) Channels. Cell 2016; 164:937-49. [PMID: 26919430 PMCID: PMC4771873 DOI: 10.1016/j.cell.2016.02.002] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/23/2015] [Accepted: 01/29/2016] [Indexed: 12/21/2022]
Abstract
Two-pore domain (K2P) K(+) channels are major regulators of excitability that endow cells with an outwardly rectifying background "leak" conductance. In some K2P channels, strong voltage-dependent activation has been observed, but the mechanism remains unresolved because they lack a canonical voltage-sensing domain. Here, we show voltage-dependent gating is common to most K2P channels and that this voltage sensitivity originates from the movement of three to four ions into the high electric field of an inactive selectivity filter. Overall, this ion-flux gating mechanism generates a one-way "check valve" within the filter because outward movement of K(+) induces filter opening, whereas inward movement promotes inactivation. Furthermore, many physiological stimuli switch off this flux gating mode to convert K2P channels into a leak conductance. These findings provide insight into the functional plasticity of a K(+)-selective filter and also refine our understanding of K2P channels and the mechanisms by which ion channels can sense voltage.
Collapse
Affiliation(s)
- Marcus Schewe
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | | | - Han Sun
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Marianne Musinszki
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Sönke Cordeiro
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Giovanna Bucci
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK; OXION Initiative, University of Oxford, Oxford OX1 3PU, UK
| | - Markus Rapedius
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany; Nanion Technologies GmbH, 80636 Munich, Germany
| | - Thomas Baukrowitz
- Institute of Physiology, Christian-Albrechts University, 24118 Kiel, Germany.
| |
Collapse
|
20
|
Renigunta V, Schlichthörl G, Daut J. Much more than a leak: structure and function of K₂p-channels. Pflugers Arch 2015; 467:867-94. [PMID: 25791628 DOI: 10.1007/s00424-015-1703-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 11/27/2022]
Abstract
Over the last decade, we have seen an enormous increase in the number of experimental studies on two-pore-domain potassium channels (K2P-channels). The collection of reviews and original articles compiled for this special issue of Pflügers Archiv aims to give an up-to-date summary of what is known about the physiology and pathophysiology of K2P-channels. This introductory overview briefly describes the structure of K2P-channels and their function in different organs. Its main aim is to provide some background information for the 19 reviews and original articles of this special issue of Pflügers Archiv. It is not intended to be a comprehensive review; instead, this introductory overview focuses on some unresolved questions and controversial issues, such as: Do K2P-channels display voltage-dependent gating? Do K2P-channels contribute to the generation of action potentials? What is the functional role of alternative translation initiation? Do K2P-channels have one or two or more gates? We come to the conclusion that we are just beginning to understand the extremely complex regulation of these fascinating channels, which are often inadequately described as 'leak channels'.
Collapse
Affiliation(s)
- Vijay Renigunta
- Institute of Physiology and Pathophysiology, Marburg University, 35037, Marburg, Germany
| | | | | |
Collapse
|
21
|
Veit F, Pak O, Brandes RP, Weissmann N. Hypoxia-dependent reactive oxygen species signaling in the pulmonary circulation: focus on ion channels. Antioxid Redox Signal 2015; 22:537-52. [PMID: 25545236 PMCID: PMC4322788 DOI: 10.1089/ars.2014.6234] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. RECENT ADVANCES Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. CRITICAL ISSUES AND FUTURE DIRECTIONS In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation.
Collapse
Affiliation(s)
- Florian Veit
- 1 Excellence Cluster Cardiopulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL) , Giessen, Germany
| | | | | | | |
Collapse
|
22
|
Involvement of potassium channels in the progression of cancer to a more malignant phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2477-92. [PMID: 25517985 DOI: 10.1016/j.bbamem.2014.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
23
|
Synthesis and structure–activity relationship study of substituted caffeate esters as antinociceptive agents modulating the TREK-1 channel. Eur J Med Chem 2014; 75:391-402. [DOI: 10.1016/j.ejmech.2014.01.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/13/2014] [Accepted: 01/19/2014] [Indexed: 11/19/2022]
|
24
|
TREK-King the Blood–Brain-Barrier. J Neuroimmune Pharmacol 2014; 9:293-301. [DOI: 10.1007/s11481-014-9530-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 02/09/2014] [Indexed: 10/25/2022]
|
25
|
González C, Baez-Nieto D, Valencia I, Oyarzún I, Rojas P, Naranjo D, Latorre R. K(+) channels: function-structural overview. Compr Physiol 2013; 2:2087-149. [PMID: 23723034 DOI: 10.1002/cphy.c110047] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.
Collapse
Affiliation(s)
- Carlos González
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | |
Collapse
|
26
|
An increased TREK-1-like potassium current in ventricular myocytes during rat cardiac hypertrophy. J Cardiovasc Pharmacol 2013; 61:302-10. [PMID: 23232841 DOI: 10.1097/fjc.0b013e318280c5a9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To elucidate the expression and identify the functional changes of 2 pore domain potassium channel TREK-1 during cardiac hypertrophy in rats, left ventricular hypertrophy was induced by subcutaneous injection with isoproterenol. Western blot was used to detect the expression of TREK-1 channel protein, and inside-out and whole-cell recordings were used to record TREK-1 currents. The results showed that TREK-1 protein expression in endocardium was slightly higher than that in epicardium in control left ventricles. However, it was obviously upregulated by 89.8% during hypertrophy, 2.3-fold higher than in epicardium. Mechanical stretch, intracellular acidification, and arachidonic acid could activate a TREK-1-like current in cardiomyocytes. The slope conductances of cardiac TREK-1 and CHO/TREK-1 channels were 123 ± 7 and 113 ± 17 pS, respectively. The TREK-1 inhibitor L-3-n-butylphthalide (10 μM) reduced the currents in CHO/TREK-1 cells, normal cardiomyocytes, and hypertrophic cardiomyocytes by 48.5%, 54.3%, and 55.5%, respectively. The percentage of L-3-n-butylphthalide-inhibited outward whole-cell current in hypertrophic cardiomyocytes (23.7%) was larger than that in normal cardiomyocytes (14.2%). The percentage of chloroform-activated outward whole-cell current in hypertrophic cardiomyocytes (58.3%) was also larger than normal control (40.2%). Our results demonstrated that in hypertrophic rats, TREK-1 protein expression in endocardium was specifically increased and the ratio of TREK-1 channel current in cardiac outward currents was also enhanced. TREK-1 might balance potassium ion flow during hypertrophy and might be a potential drug target for heart protection.
Collapse
|
27
|
Zhou C, Liu J, Chen XD. General anesthesia mediated by effects on ion channels. World J Crit Care Med 2012; 1:80-93. [PMID: 24701405 PMCID: PMC3953864 DOI: 10.5492/wjccm.v1.i3.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/24/2011] [Accepted: 05/25/2012] [Indexed: 02/06/2023] Open
Abstract
Although it has been more than 165 years since the first introduction of modern anesthesia to the clinic, there is surprisingly little understanding about the exact mechanisms by which general anesthetics induce unconsciousness. As a result, we do not know how general anesthetics produce anesthesia at different levels. The main handicap to understanding the mechanisms of general anesthesia is the diversity of chemically unrelated compounds including diethyl ether and halogenated hydrocarbons, gases nitrous oxide, ketamine, propofol, benzodiazepines and etomidate, as well as alcohols and barbiturates. Does this imply that general anesthesia is caused by many different mechanisms Until now, many receptors, molecular targets and neuronal transmission pathways have been shown to contribute to mechanisms of general anesthesia. Among these molecular targets, ion channels are the most likely candidates for general anesthesia, in particular γ-aminobutyric acid type A, potassium and sodium channels, as well as ion channels mediated by various neuronal transmitters like acetylcholine, amino acids amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid or N-methyl-D-aspartate. In addition, recent studies have demonstrated the involvement in general anesthesia of other ion channels with distinct gating properties such as hyperpolarization-activated, cyclic- nucleotide-gated channels. The main aim of the present review is to summarize some aspects of current knowledge of the effects of general anesthetics on various ion channels.
Collapse
Affiliation(s)
- Cheng Zhou
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jin Liu
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiang-Dong Chen
- Cheng Zhou, Jin Liu, Xiang-Dong Chen, Department of Anesthesiology, Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
28
|
Multiple modalities converge on a common gate to control K2P channel function. EMBO J 2011; 30:3594-606. [PMID: 21765396 PMCID: PMC3181481 DOI: 10.1038/emboj.2011.230] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/17/2011] [Indexed: 01/19/2023] Open
Abstract
K2P potassium channels play important roles in the regulation of neuronal excitability. K2P channels are gated chemical, thermal, and mechanical stimuli, and the present study identifies and characterizes a common molecular gate that responds to all different stimuli, both activating and inhibitory ones. Members of the K2P potassium channel family regulate neuronal excitability and are implicated in pain, anaesthetic responses, thermosensation, neuroprotection, and mood. Unlike other potassium channels, K2Ps are gated by remarkably diverse stimuli that include chemical, thermal, and mechanical modalities. It has remained unclear whether the various gating inputs act through separate or common channel elements. Here, we show that protons, heat, and pressure affect activity of the prototypical, polymodal K2P, K2P2.1 (KCNK2/TREK-1), at a common molecular gate that comprises elements of the pore-forming segments and the N-terminal end of the M4 transmembrane segment. We further demonstrate that the M4 gating element is conserved among K2Ps and is employed regardless of whether the gating stimuli are inhibitory or activating. Our results define a unique gating mechanism shared by K2P family members and suggest that their diverse sensory properties are achieved by coupling different molecular sensors to a conserved core gating apparatus.
Collapse
|
29
|
Zhao LN, Fu L, Gao QP, Xie RS, Cao JX. Regional differential expression of TREK-1 at left ventricle in myocardial infarction. Can J Cardiol 2011; 27:826-33. [PMID: 21683547 DOI: 10.1016/j.cjca.2011.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Altered membrane electrophysiology contributes to arrhythmias after myocardial infarction (MI). TREK-1 channel is essential in various physiological and pathological conditions through its regulation on resting membrane potential and voltage-dependent action potential duration. OBJECTIVES The aim of this study was to investigate changes in gene expression and electrophysiology of TREK-1 in the left ventricle in a MI model. METHODS Fifty-five rats were divided into 5 groups: sham-operated group, 6 hours, 24 hours, 3 days, and 7 days post MI group (n=11 per group). TREK-1 messenger RNA (mRNA) expression level in the infarct region (IR) and infarct border region (IBR) were quantified by real-time polymerase chain reaction (PCR), and TREK-1 current density at the IBR was recorded with whole-cell patch-clamp technique. RESULTS TREK-1 mRNA expression decreased significantly in both endocardial and epicardial cells in the infarct region after MI. Conversely, TREK-1 increased significantly in endocardial and epicardial cells from the IBR (P<0.01). Current density of TREK-1 at IBR increased significantly in both epicardial and endocardial cells after MI (P<0.01). CONCLUSIONS TREK-1 demonstrates specific changes in expression and electrophysiological function in left ventricle post MI. These results suggest that TREK-1 may participate in pathophysiologic alteration and electrical remodelling of left ventricular myocardium after MI, which may eventually lead to post-MI ventricular arrhythmias.
Collapse
Affiliation(s)
- Li-na Zhao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|
30
|
Lee AK, Smart JL, Rubinstein M, Low MJ, Tse A. Reciprocal regulation of TREK-1 channels by arachidonic acid and CRH in mouse corticotropes. Endocrinology 2011; 152:1901-10. [PMID: 21343252 PMCID: PMC3075932 DOI: 10.1210/en.2010-1066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arachidonic acid (AA) is generated in the anterior pituitary gland upon stimulation by the ACTH secretagogue, CRH. Using the patch clamp technique, we examined the action of AA on the excitability of single pituitary corticotropes obtained from a transgenic mouse strain that expresses the enhanced green fluorescent protein driven by the proopiomelanocortin promoter. CRH evoked depolarization, but AA caused hyperpolarization. Under voltage clamp condition, AA caused a rapid inhibition of the delayed rectifier K(+) current and then increased a background K(+) current. Inhibition of AA metabolism did not prevent the activation of the K(+) current by AA, suggesting a direct action of AA. The sensitivity of the AA-activated K(+) current to fluoxetine, chlorpromazine, extracellular acidification, diphenylbutylpiperidine antipsychotics, and the membrane permeable cAMP analog [8-(4-chlorophenylthio)-cAMP] suggest that the current is mediated via TWIK-related K(+) channel (TREK)-1 channels. Activation of the CRH receptors that are coupled to the adenylate cyclase pathway suppressed the activation of TREK-1 current by AA and reversed the AA-mediated hyperpolarization. Intracellular acidification (pH 7.0) increased the basal amplitude of TREK-1 current and resulted in hyperpolarizaton. CRH suppressed the basal TREK-1 current in cells with intracellular acidification and caused depolarization. Our finding indicates that TREK-1 channels are important in setting the resting potential in corticotropes. The opposing actions of CRH and AA on the excitability of corticotropes raise the possibility that AA may act as a negative feedback regulator to reduce the stimulatory action of CRH and thus prevent excessive ACTH release during chronic stress.
Collapse
Affiliation(s)
- Andy K Lee
- Department of Pharmacology, University of Alberta, 9-70 Medical Sciences Building, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
31
|
Novel neuroprotectant chiral 3-n-butylphthalide inhibits tandem-pore-domain potassium channel TREK-1. Acta Pharmacol Sin 2011; 32:182-7. [PMID: 21293470 DOI: 10.1038/aps.2010.210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To study the effects of 3-n-butylphthalide (NBP) on the TREK-1 channel expressed in Chinese hamster ovary (CHO) cells. METHODS Whole-cell patch-clamp recording was used to record TREK-1 channel currents. The effects of varying doses of l-NBP on TREK-1 currents were also observed. Current-clamp recordings were performed to measure the resting membrane potential in TREK-1-transfected CHO (TREK-1/CHO) and wild-type CHO (Wt/CHO) cells. RESULTS l-NBP (0.01-10 μmol/L) showed concentration-dependent inhibition on TREK-1 currents (IC(50)=0.06±0.03 μmol/L), with a maximum current reduction of 70% at a concentration of 10 μmol/L. l-NBP showed a more potent inhibition on TREK-1 current than d-NBP or dl-NBP. This effect was partially reversed upon washout and was not voltage-dependent. l-NBP 10 μmol/L elevated the membrane potential in TREK-1/CHO cells from -55.3 mV to -42.9 mV. However, it had no effect on the membrane potential of Wt/CHO cells. CONCLUSION 1-NBP potently inhibited TREK-1 current and elevated the membrane potential, which may contribute to its neuroprotective activity.
Collapse
|
32
|
Maksaev G, Milac A, Anishkin A, Guy HR, Sukharev S. Analyses of gating thermodynamics and effects of deletions in the mechanosensitive channel TREK-1: comparisons with structural models. Channels (Austin) 2011; 5:34-42. [PMID: 21057213 DOI: 10.4161/chan.5.1.13906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
TREK-1, a mechanosensitive K channel from the two-pore family (K(2)P), is involved in protective regulation of the resting potential in CNS neurons and other tissues. The structure of TREK-1 and the basis of its sensitivity to stretch and variety of lipid-soluble factors remain unknown. Using existing K channel structures as modeling templates, TREK-1 was envisioned as a two-fold symmetrical complex with the gate formed primarily by the centrally positioned TM2b helices of the second homologous repeat. Opening was modeled as a conical expansion of the barrel separating TM2b's accompanied by extension of TM2a helices with the cytoplasmic TM2a-TM1b connector. Seeking first experimental support to the models we have accomplished thermodynamic analysis of mouse TREK-1 gating and functional testing of several deletion mutants. The predicted increase of the channel in-plane area (ΔA) of ~5 nm(2) in models was supported by the experimental ΔA of ~4 nm(2) derived from the slope of open probability versus membrane tension in HEK-293T cells and their cytoskeleton-depleted blebs. In response to steps of suction, wild-type channel produced transient currents in cell-attached patches and mostly sustained currents upon patch excision. TREK-1 motifs not present in canonical K channels include divergent cytoplasmic N- and C-termini, and a characteristic 50-residue extracellular loop in the first homologous repeat. Deletion of the extracellular loop (Δ76-124) reduced the average current density in patches, increased spontaneous activity and generated a larger sub-population of high-conductance channels, while activation by tension augmented by arachidonic acid was fully retained. Further deletion of the C-terminal end (Δ76-124/Δ334-411) removed voltage dependency but otherwise produced no additional effect. In an attempt to generate a cysteine-free version of the channel, we mutated two remaining cysteines 159 and 219 in the transmembrane region. C219A did not compromise channel activity, whereas the C159A/S mutants were essentially inactive. Treatment with β-mercaptoethanol suggested that none of these cysteines form functionally-important disulfides.
Collapse
Affiliation(s)
- Grigory Maksaev
- Department of Biology, University of Maryland, College Park, USA
| | | | | | | | | |
Collapse
|
33
|
Milac A, Anishkin A, Fatakia SN, Chow CC, Sukharev S, Guy HR. Structural models of TREK channels and their gating mechanism. Channels (Austin) 2011; 5:23-33. [PMID: 21084863 DOI: 10.4161/chan.5.1.13905] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mechanosensitive TREK channels belong to the family of K2P channels, a family of widely distributed, well modulated channels that uniquely have two similar or identical subunits, each with two TM1-P-TM2 motifs. Our goal is to build viable structural models of TREK channels, as representatives of K2P channels family. The structures available to be used as templates belong to the 2TM channels superfamily. These have low sequence similarity and different structural features: four symmetrically arranged subunits, each having one TM1-P-TM2 motif. Our model building strategy used two subunits of the template (KcsA) to build one subunit of the target (TREK-1). Our models of the Closed channel were adjusted to differ substantially from those of the template, e.g., TM2 of the 2nd repeat is near the axis of the pore whereas TM2 of the 1st repeat is far from the axis. Segments linking the two repeats and immediately following the last TM segment were modeled ab initio as α-helices based on helical periodicities of hydrophobic and hydrophilic residues, highly conserved and poorly conserved residues, and statistically related positions from multiple sequence alignments. The models were further refined by two-fold symmetry-constrained MD simulations using a protocol we developed previously. We also built models of the Open state and suggest a possible tension-activated gating mechanism characterized by helical motion with two-fold symmetry. Our models are consistent with deletion/truncation mutagenesis and thermodynamic analysis of gating described in the accompanying paper.
Collapse
Affiliation(s)
- Adina Milac
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
34
|
Goonetilleke L, Quayle J. TREK-1 K(+) channels in the cardiovascular system: their significance and potential as a therapeutic target. Cardiovasc Ther 2010; 30:e23-9. [PMID: 20946320 DOI: 10.1111/j.1755-5922.2010.00227.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Potassium (K(+) ) channels are important in cardiovascular disease both as drug targets and as a cause of underlying pathology. Voltage-dependent K(+) (K(V) ) channels are inhibited by the class III antiarrhythmic agents. Certain vasodilators work by opening K(+) channels in vascular smooth muscle cells (VSMCs), and K(+) channel activation may also be a route to improving endothelial function. The two-pore domain K(+) (K(2P) ) channels form a group of 15 known channels with an expanding list of functions in the cardiovascular system. One of these K(2P) channels, TREK-1, is the focus of this review. TREK-1 channel activity is tightly regulated by intracellular and extracellular pH, membrane stretch, polyunsaturated fatty acids (PUFAs), temperature, and receptor-coupled second messenger systems. TREK-1 channels are also activated by volatile anesthetics and some neuroprotectant agents, and they are inhibited by selective serotonin reuptake inhibitors (SSRIs) as well as amide local anesthetics. Some of the clinical cardiovascular effects and side effects of these drugs may be through their actions on TREK-1 channels. It has recently been suggested that TREK-1 channels have a role in mechano-electrical coupling in the heart. They also seem important in the vascular responses to PUFAs, and this may underlie some of the beneficial cardiovascular effects of the essential dietary fatty acids. Development of selective TREK-1 openers and inhibitors may provide promising routes for intervention in cardiovascular diseases.
Collapse
Affiliation(s)
- Lakshman Goonetilleke
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | | |
Collapse
|
35
|
Abstract
In clinical obstetrics, magnesium sulfate (MgSO(4)) use is widespread, but effects on brain development are unknown. Many agents that depress neuronal excitability increase developmental neuroapoptosis. In this study, we used dissociated cultures of rodent hippocampus to examine the effects of Mg(++) on excitability and survival. Mg(++)-induced caspase-3-associated cell loss at clinically relevant concentrations. Whole-cell patch-clamp techniques measured Mg(++) effects on action potential threshold, action potential peak amplitude, spike number and changes in resting membrane potential. Mg(++) depolarized action potential threshold, presumably from surface charge screening effects on voltage-gated sodium channels. Mg(++) also decreased the number of action potentials in response to fixed current injection without affecting action potential peak amplitude. Surprisingly, Mg(++) also depolarized neuronal resting potential in a concentration-dependent manner with a +5.2 mV shift at 10 mM. Voltage ramps suggested that Mg(++) blocked a potassium conductance contributing to the resting potential. In spite of this depolarizing effect of Mg(++), the net inhibitory effect of Mg(++) nearly completely silenced neuronal network activity measured with multielectrode array recordings. We conclude that although Mg(++) has complex effects on cellular excitability, the overall inhibitory influence of Mg(++) decreases neuronal survival. Taken together with recent in vivo evidence, our results suggest that caution may be warranted in the use of Mg(++) in clinical obstetrics and neonatology.
Collapse
|
36
|
Abstract
Mechanosensitive ion channels are gated directly by physical stimuli and transduce these stimuli into electrical signals. Several criteria must apply for a channel to be considered mechanically gated. Mechanosensitive channels from bacterial systems have met these criteria, but few eukaryotic channels have been confirmed by the same standards. Recent work has suggested or confirmed that diverse types of channels, including TRP channels, K(2P) channels, MscS-like proteins, and DEG/ENaC channels, are mechanically gated. Several studies point to the importance of the plasma membrane for channel gating, but intracellular and/or extracellular structures may also be required.
Collapse
Affiliation(s)
- Jóhanna Arnadóttir
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| | | |
Collapse
|
37
|
Treptow W, Klein ML. The Membrane-Bound State of K2P Potassium Channels. J Am Chem Soc 2010; 132:8145-51. [DOI: 10.1021/ja102191s] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Werner Treptow
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brasil, and Institute for Computational Molecular Science, College of Science & Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - Michael L. Klein
- Laboratório de Biofísica, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brasil, and Institute for Computational Molecular Science, College of Science & Technology, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
38
|
Enyedi P, Czirják G. Molecular background of leak K+ currents: two-pore domain potassium channels. Physiol Rev 2010; 90:559-605. [PMID: 20393194 DOI: 10.1152/physrev.00029.2009] [Citation(s) in RCA: 655] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Two-pore domain K(+) (K(2P)) channels give rise to leak (also called background) K(+) currents. The well-known role of background K(+) currents is to stabilize the negative resting membrane potential and counterbalance depolarization. However, it has become apparent in the past decade (during the detailed examination of the cloned and corresponding native K(2P) channel types) that this primary hyperpolarizing action is not performed passively. The K(2P) channels are regulated by a wide variety of voltage-independent factors. Basic physicochemical parameters (e.g., pH, temperature, membrane stretch) and also several intracellular signaling pathways substantially and specifically modulate the different members of the six K(2P) channel subfamilies (TWIK, TREK, TASK, TALK, THIK, and TRESK). The deep implication in diverse physiological processes, the circumscribed expression pattern of the different channels, and the interesting pharmacological profile brought the K(2P) channel family into the spotlight. In this review, we focus on the physiological roles of K(2P) channels in the most extensively investigated cell types, with special emphasis on the molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Péter Enyedi
- Department of Physiology, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
39
|
Tang X, Schmidt TM, Perez-Leighton CE, Kofuji P. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience 2010; 166:397-407. [PMID: 20074622 DOI: 10.1016/j.neuroscience.2010.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Accepted: 01/05/2010] [Indexed: 12/31/2022]
Abstract
Satellite glial cells (SGCs) surround primary afferent neurons in sensory ganglia, and increasing evidence has implicated the K(+) channels of SGCs in affecting or regulating sensory ganglion excitability. The inwardly rectifying K(+) (Kir) channel Kir4.1 is highly expressed in several types of glial cells in the central nervous system (CNS) where it has been implicated in extracellular K(+) concentration buffering. Upon neuronal activity, the extracellular K(+) concentration increases, and if not corrected, causes neuronal depolarization and uncontrolled changes in neuronal excitability. Recently, it has been demonstrated that knockdown of Kir4.1 expression in trigeminal ganglia leads to neuronal hyperexcitability in this ganglia and heightened nociception. Thus, we investigated the contribution of Kir4.1 to the membrane K(+) conductance of SGCs in neonatal and adult mouse trigeminal and dorsal root ganglia. Whole cell patch clamp recordings were performed in conjunction with immunocytochemistry and quantitative transcript analysis in various mouse lines. We found that in wild-type mice, the inward K(+) conductance of SGCs is blocked almost completely with extracellular barium, cesium and desipramine, consistent with a conductance mediated by Kir channels. We then utilized mouse lines in which genetic ablation led to partial or complete loss of Kir4.1 expression to assess the role of this channel subunit in SGCs. The inward K(+) currents of SGCs in Kir4.1+/- mice were decreased by about half while these currents were almost completely absent in Kir4.1-/- mice. These findings in combination with previous reports support the notion that Kir4.1 is the principal Kir channel type in SGCs. Therefore Kir4.1 emerges as a key regulator of SGC function and possibly neuronal excitability in sensory ganglia.
Collapse
Affiliation(s)
- X Tang
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
40
|
Buckler KJ. Two-pore domain k(+) channels and their role in chemoreception. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:15-30. [PMID: 20204721 DOI: 10.1007/978-1-60761-500-2_2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of tandem P-domain K(+)- channels (K(2)P) generate background K(+)-currents similar to those found in enteroreceptors that sense a diverse range of physiological stimuli including blood pH, carbon dioxide, oxygen, potassium and glucose. This review presents an overview of the properties of both cloned K(2)P tandem-P-domain K-channels and the endogenous chemosensitive background K-currents found in central chemoreceptors, peripheral chemoreceptors, the adrenal gland and the hypothalamus. Although the identity of many of these endogenous channels has yet to be confirmed they show striking similarities to a number of K(2)P channels especially those of the TASK subgroup. Moreover these channels seem often (albeit not exclusively) to be involved in pH and nutrient/metabolic sensing.
Collapse
Affiliation(s)
- Keith J Buckler
- Department of Physiology Anatomy and Genetics, University of Oxford, Parks Road, Oxford, OX1 3PT, UK.
| |
Collapse
|
41
|
Segal-Hayoun Y, Cohen A, Zilberberg N. Molecular mechanisms underlying membrane-potential-mediated regulation of neuronal K2P2.1 channels. Mol Cell Neurosci 2009; 43:117-26. [PMID: 19837167 DOI: 10.1016/j.mcn.2009.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 09/17/2009] [Accepted: 10/05/2009] [Indexed: 10/20/2022] Open
Abstract
The activity of background K(2P) channels adjusts the resting membrane potential to enable plasticity of excitable cells. Here we have studied the regulation of neuronal K(2P)2.1 (KCNK2, TREK-1) channel activity by resting membrane potential. When heterologously expressed, K(2P)2.1 currents gradually increased at hyperpolarizing potentials and declined at depolarizing potentials, with a midpoint potential of -60 mV. As K(2P) channels are not equipped with an integral voltage sensor, we sought extrinsic cellular components that could convert changes in the membrane electrical field to cellular activity that would indirectly modify K(2P)2.1 currents. We propose that membrane depolarization activated the Gq protein-coupled receptor pathway, in the apparent absence of ligand, resulting in phosphatidylinositol-4,5-bisphosphate (PIP(2)) depletion through the action of phospholipase C. Our results suggest a novel mechanism in which an indirect pathway confers membrane potential regulation onto channels that are not intrinsically voltage sensitive to enhance regulation of neuronal excitability levels.
Collapse
Affiliation(s)
- Yifat Segal-Hayoun
- Department of Life Sciences and the Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
42
|
Kuzmenkin A, Liang H, Xu G, Pfannkuche K, Eichhorn H, Fatima A, Luo H, Saric T, Wernig M, Jaenisch R, Hescheler J. Functional characterization of cardiomyocytes derived from murine induced pluripotent stem cells in vitro. FASEB J 2009; 23:4168-80. [PMID: 19703934 DOI: 10.1096/fj.08-128546] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Several types of terminally differentiated somatic cells can be reprogrammed into a pluripotent state by ectopic expression of Klf4, Oct3/4, Sox2, and c-Myc. Such induced pluripotent stem (iPS) cells have great potential to serve as an autologous source of cells for tissue repair. In the process of developing iPS-cell-based therapies, the major goal is to determine whether differentiated cells derived from iPS cells, such as cardiomyocytes (CMs), have the same functional properties as their physiological in vivo counterparts. Therefore, we differentiated murine iPS cells to CMs in vitro and characterized them by RT-PCR, immunocytochemistry, and electrophysiology. As key markers of cardiac lineages, transcripts for Nkx2.5, alphaMHC, Mlc2v, and cTnT could be identified. Immunocytochemical stainings revealed the presence of organized sarcomeric actinin but the absence of mature atrial natriuretic factor. We examined characteristics and developmental changes of action potentials, as well as functional hormonal regulation and sensitivity to channel blockers. In addition, we determined expression patterns and functionality of cardiac-specific voltage-gated Na+, Ca2+, and K+ channels at early and late differentiation stages and compared them with CMs derived from murine embryonic stem cells (ESCs) as well as with fetal CMs. We conclude that iPS cells give rise to functional CMs in vitro, with established hormonal regulation pathways and functionally expressed cardiac ion channels; CMs generated from iPS cells have a ventricular phenotype; and cardiac development of iPS cells is delayed compared with maturation of native fetal CMs and of ESC-derived CMs. This difference may reflect the incomplete reprogramming of iPS cells and should be critically considered in further studies to clarify the suitability of the iPS model for regenerative medicine of heart disorders.
Collapse
Affiliation(s)
- Alexey Kuzmenkin
- Institute for Neurophysiology, Medical Center, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Nayak TK, Harinath S, Nama S, Somasundaram K, Sikdar SK. Inhibition of Human Two-Pore Domain K+ Channel TREK1 by Local Anesthetic Lidocaine: Negative Cooperativity and Half-of-Sites Saturation Kinetics. Mol Pharmacol 2009; 76:903-17. [DOI: 10.1124/mol.109.056838] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
44
|
Sankaranarayanan K, Varshney A, Mathew MK. N type rapid inactivation in human Kv1.4 channels: functional role of a putative C-terminal helix. Mol Membr Biol 2009; 22:389-400. [PMID: 16308273 DOI: 10.1080/09687860500190663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Voltage gated potassium channels are tetrameric membrane proteins, which have a central role in cellular excitability. Human Kv1.4 channels open on membrane depolarization and inactivate rapidly by a 'ball and chain' mechanism whose molecular determinants have been mapped to the cytoplasmic N terminus of the channel. Here we show that the other terminal end of the channel also plays a role in channel inactivation. Swapping the C-terminal residues of hKv1.4 with those from two non-inactivating channels (hKv1.1 and hKv1.2) affects the rates of inactivation, as well as the recovery of the channel from the inactivated state. Secondary structure predictions of the hKv1.4 sequence reveal a helical structure at its distal C-terminal. Complete removal or partial disruption of this helical region results in channels with remarkably slowed inactivation kinetics. The ionic selectivity and voltage-dependence of channel opening were similar to hKv1.4, indicative of an unperturbed channel pore. These results demonstrate that fast inactivation is modulated by structural elements in the C-terminus, suggesting that the process involves the concerted action of the N- and C-termini.
Collapse
|
45
|
Liu H, Enyeart JA, Enyeart JJ. ACTH inhibits bTREK-1 K+ channels through multiple cAMP-dependent signaling pathways. ACTA ACUST UNITED AC 2008; 132:279-94. [PMID: 18663135 PMCID: PMC2483331 DOI: 10.1085/jgp.200810003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Bovine adrenal zona fasciculata (AZF) cells express bTREK-1 K+ channels that set the resting membrane potential and function pivotally in the physiology of cortisol secretion. Inhibition of these K+ channels by adrenocorticotropic hormone (ACTH) or cAMP is coupled to depolarization and Ca2+ entry. The mechanism of ACTH and cAMP-mediated inhibition of bTREK-1 was explored in whole cell patch clamp recordings from AZF cells. Inhibition of bTREK-1 by ACTH and forskolin was not affected by the addition of both H-89 and PKI(6–22) amide to the pipette solution at concentrations that completely blocked activation of cAMP-dependent protein kinase (PKA) in these cells. The ACTH derivative, O-nitrophenyl, sulfenyl-adrenocorticotropin (NPS-ACTH), at concentrations that produced little or no activation of PKA, inhibited bTREK-1 by a Ca2+-independent mechanism. Northern blot analysis showed that bovine AZF cells robustly express mRNA for Epac2, a guanine nucleotide exchange protein activated by cAMP. The selective Epac activator, 8-pCPT-2′-O-Me-cAMP, applied intracellularly through the patch pipette, inhibited bTREK-1 (IC50 = 0.63 μM) at concentrations that did not activate PKA. Inhibition by this agent was unaffected by PKA inhibitors, including RpcAMPS, but was eliminated in the absence of hydrolyzable ATP. Culturing AZF cells in the presence of ACTH markedly reduced the expression of Epac2 mRNA. 8-pCPT-2′-O-Me-cAMP failed to inhibit bTREK-1 current in AZF cells that had been treated with ACTH for 3–4 d while inhibition by 8-br-cAMP was not affected. 8-pCPT-2′-O-Me-cAMP failed to inhibit bTREK-1 expressed in HEK293 cells, which express little or no Epac2. These findings demonstrate that, in addition to the well-described PKA-dependent TREK-1 inhibition, ACTH, NPS-ACTH, forskolin, and 8-pCPT-2′-O-Me-cAMP also inhibit these K+ channels by a PKA-independent signaling pathway. The convergent inhibition of bTREK-1 through parallel PKA- and Epac-dependent mechanisms may provide for failsafe membrane depolarization by ACTH.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Neuroscience, The Ohio State University College of Medicine and Public Health, Columbus, OH 43210, USA
| | | | | |
Collapse
|
46
|
Cohen A, Ben-Abu Y, Hen S, Zilberberg N. A Novel Mechanism for Human K2P2.1 Channel Gating. J Biol Chem 2008; 283:19448-55. [DOI: 10.1074/jbc.m801273200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
47
|
The mechano-gated K2P channel TREK-1. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 38:293-303. [DOI: 10.1007/s00249-008-0318-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 03/17/2008] [Accepted: 03/18/2008] [Indexed: 01/01/2023]
|
48
|
|
49
|
Yuill KH, Stansfeld PJ, Ashmole I, Sutcliffe MJ, Stanfield PR. The selectivity, voltage-dependence and acid sensitivity of the tandem pore potassium channel TASK-1: contributions of the pore domains. Pflugers Arch 2007; 455:333-48. [PMID: 17541788 PMCID: PMC2492388 DOI: 10.1007/s00424-007-0282-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
We have investigated the contribution to ionic selectivity of residues in the selectivity filter and pore helices of the P1 and P2 domains in the acid sensitive potassium channel TASK-1. We used site directed mutagenesis and electrophysiological studies, assisted by structural models built through computational methods. We have measured selectivity in channels expressed in Xenopus oocytes, using voltage clamp to measure shifts in reversal potential and current amplitudes when Rb+ or Na+ replaced extracellular K+. Both P1 and P2 contribute to selectivity, and most mutations, including mutation of residues in the triplets GYG and GFG in P1 and P2, made channels non-selective. We interpret the effects of these--and of other mutations--in terms of the way the pore is likely to be stabilised structurally. We show also that residues in the outer pore mouth contribute to selectivity in TASK-1. Mutations resulting in loss of selectivity (e.g. I94S, G95A) were associated with slowing of the response of channels to depolarisation. More important physiologically, pH sensitivity is also lost or altered by such mutations. Mutations that retained selectivity (e.g. I94L, I94V) also retained their response to acidification. It is likely that responses both to voltage and pH changes involve gating at the selectivity filter.
Collapse
Affiliation(s)
- KH Yuill
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - PJ Stansfeld
- Department of Cell Physiology and Pharmacology, University of Leicester, PO Box 138, Leicester, LE1 9HN, UK
| | - I Ashmole
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - MJ Sutcliffe
- Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - PR Stanfield
- Molecular Physiology Group, Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
50
|
Lotshaw DP. Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 2007; 47:209-56. [PMID: 17652773 DOI: 10.1007/s12013-007-0007-8] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/12/2022]
Abstract
The mammalian family of two-pore domain K+ (K2P) channel proteins are encoded by 15 KCNK genes and subdivided into six subfamilies on the basis of sequence similarities: TWIK, TREK, TASK, TALK, THIK, and TRESK. K2P channels are expressed in cells throughout the body and have been implicated in diverse cellular functions including maintenance of the resting potential and regulation of excitability, sensory transduction, ion transport, and cell volume regulation, as well as metabolic regulation and apoptosis. In recent years K2P channel isoforms have been identified as important targets of several widely employed drugs, including: general anesthetics, local anesthetics, neuroprotectants, and anti-depressants. An important goal of future studies will be to identify the basis of drug actions and channel isoform selectivity. This goal will be facilitated by characterization of native K2P channel isoforms, their pharmacological properties and tissue-specific expression patterns. To this end the present review examines the biophysical, pharmacological, and functional characteristics of cloned mammalian K2P channels and compares this information with the limited data available for native K2P channels in order to determine criteria which may be useful in identifying ionic currents mediated by native channel isoforms and investigating their pharmacological and functional characteristics.
Collapse
Affiliation(s)
- David P Lotshaw
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL 60115, USA.
| |
Collapse
|