1
|
Xia Y, Pan W, Ke X, Skibbe K, Walker A, Hoffmann D, Lu Y, Yang X, Feng X, Tong Q, Timm J, Yang D. Differential escape of HCV from CD8 + T cell selection pressure between China and Germany depends on the presenting HLA class I molecule. J Viral Hepat 2019; 26:73-82. [PMID: 30260541 PMCID: PMC7379502 DOI: 10.1111/jvh.13011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 09/07/2018] [Indexed: 12/16/2022]
Abstract
Adaptation of hepatitis C virus (HCV) to CD8+ T cell selection pressure is well described; however, it is unclear if HCV differentially adapts in different populations. Here, we studied HLA class I-associated viral sequence polymorphisms in HCV 1b isolates in a Chinese population and compared viral substitution patterns between Chinese and German populations. We identified three HLA class I-restricted epitopes in HCV NS3 with statistical support for selection pressure and found evidence for differential escape pathways between isolates from China and Germany depending on the HLA class I molecule. The substitution patterns particularly differed in the epitope VTLTHPITK1635-1643 , which was presented by HLA-A*03 as well as HLA-A*11, two alleles with highly different frequencies in the two populations. In Germany, a substitution in position seven of the epitope was the most frequent substitution in the presence of HLA-A*03, functionally associated with immune escape and nearly absent in Chinese isolates. In contrast, the most frequent substitution in China was located at position two of the epitope and became the predominant consensus residue. Moreover, substitutions in position one of the epitope were significantly enriched in HLA-A*11-positive individuals in China and associated with different patterns of CD8+ T cell reactivity. Our study confirms the differential escape pathways selected by HCV that depended on different HLA class I alleles in Chinese and German populations, indicating that HCV differentially adapts to distinct HLA class I alleles in these populations. This result has important implications for vaccine design against highly variable and globally distributed pathogens, which may require matching antigen sequences to geographic regions for T cell-based vaccine strategies.
Collapse
Affiliation(s)
- Youchen Xia
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of Gastroenterology and HepatologyShanghai General HospitalShanghai Jiao Tong University School of Medicine (originally named “Shanghai First People's Hospital”)ShanghaiChina
| | - Wen Pan
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Ke
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina,Department of EmergencyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kathrin Skibbe
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Andreas Walker
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Daniel Hoffmann
- Bioinformatics and Computational BiophysicsFaculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| | - Yinping Lu
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuecheng Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xuemei Feng
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qiaoxia Tong
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jörg Timm
- Institute of VirologyUniversity Hospital DüsseldorfHeinrich‐Heine‐UniversityDüsseldorfGermany
| | - Dongliang Yang
- Department of Infectious DiseasesUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Abdelwahab SF. Cellular immune response to hepatitis-C-virus in subjects without viremia or seroconversion: is it important? Infect Agent Cancer 2016; 11:23. [PMID: 27186234 PMCID: PMC4867533 DOI: 10.1186/s13027-016-0070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/30/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C Virus (HCV) causes chronic infection and represents a global health burden. To date, there is no licensed vaccine for HCV. The high viral replication rate and the existence of several HCV genotypes and quasispecies hamper the development of an effective universal vaccine. In this regard, the current HCV vaccine candidates show genotype-specific protection or narrow cross reactivity against other genotypes. Importantly, HCV spontaneous clearance occurs in 15-50 % of infected subjects, indicating that natural resistance to chronic infection exists. This phenomenon was demonstrated among humans and chimpanzees and continues to motivate researchers attempting to develop an effective HCV vaccine. However, what constitutes a protective immune response or correlate of protection against HCV infection is still vague. Additionally, the mechanisms behind successful HCV clearance suggest the coordination of several arms of the immune system, with cell-mediated immunity (CMI) playing a crucial role in this process. By contrast, although neutralizing antibodies have been identified, they are isolate-specific and poorly correlate with viral clearance. Antigen-specific CD4 T cells, instead, correlate with transient decline in HCV viremia and long-lasting control of the infection. Unfortunately, HCV has been very successful in evading host immune mechanisms, leading to complications such as liver fibrosis, cirrhosis and hepatocellular carcinoma. Interestingly, CMI to HCV antigens were shown among exposed individuals without viremia or seroconversion, suggesting the clearance of prior HCV infection(s). These individuals include family members living with HCV-infected subjects, healthcare workers, IV drug users, and sexual contacts. The correlates of protection could be closely monitored among these individuals. This review provides a summary of HCV-specific immune responses in general and of CMI in particular in these cohorts. The importance of these CMI responses are discussed.
Collapse
Affiliation(s)
- Sayed F. Abdelwahab
- Departement of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511 Egypt
- Department of Microbiology, College of Pharmacy, Taif University, Taif, 21974 Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Yusim K, Richardson R, Tao N, Dalwani A, Agrawal A, Szinger J, Funkhouser R, Korber B, Kuiken C. Los alamos hepatitis C immunology database. ACTA ACUST UNITED AC 2015; 4:217-25. [PMID: 16309340 DOI: 10.2165/00822942-200504040-00002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Los Alamos Hepatitis C Virus (HCV) Sequence Database (http://hcv.lanl.gov or http://hcv-db.org) was officially launched in September 2003. The sister HCV Immunology Database was made public in September 2004. The HCV Immunology Database is based on the Human Immunodeficiency Virus (HIV) Immunology Database. The HCV Immunology Database contains a curated inventory of immunological epitopes in HCV and their interaction with the immune system, with associated retrieval and analysis tools. This article describes in detail the types of data and services that the new database offers, the tools provided and the database framework. The data and some of the HCV database tools are available for download for non-commercial use.
Collapse
Affiliation(s)
- Karina Yusim
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Tagliamonte M, Petrizzo A, Napolitano M, Luciano A, Arra C, Maiolino P, Izzo F, Tornesello ML, Aurisicchio L, Ciliberto G, Buonaguro FM, Buonaguro L. Novel metronomic chemotherapy and cancer vaccine combinatorial strategy for hepatocellular carcinoma in a mouse model. Cancer Immunol Immunother 2015; 64:1305-14. [PMID: 25944003 PMCID: PMC11028459 DOI: 10.1007/s00262-015-1698-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/13/2015] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and represents the third and the fifth leading cause of cancer-related death worldwide in men and women, respectively. Hepatitis B virus (HBV) and hepatitis C virus (HCV) chronic infections account for pathogenesis of more than 80 % of primary HCC. HCC prognosis greatly varies according to stage at beginning of treatment, but the overall 5-year survival rate is approximately 5-6 %. Given the limited number of effective therapeutic strategies available, immunotherapies and therapeutic cancer vaccines may help in improving the clinical outcome for HCC patients. However, the few clinical trials conducted to date have shown contrasting results, indicating the need for improvements. In the present study, a novel combinatorial strategy, based on metronomic chemotherapy plus vaccine, is evaluated in a mouse model. The chemotherapy is a multi-drug cocktail including taxanes and alkylating agents, which is administered in a metronomic-like fashion. The vaccine is a multi-peptide cocktail including HCV as well as universal tumor antigen TERT epitopes. The combinatorial strategy designed and evaluated in the present study induces an enhanced specific T cell response, when compared to vaccine alone, which correlates to a reduced Treg frequency. Such results are highly promising and may pave way to relevant improvements in immunotherapeutic strategies for HCC and beyond.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Annacarmen Petrizzo
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Maria Napolitano
- Laboratory of Clinical Immunology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Antonio Luciano
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Claudio Arra
- Animal Facility, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Francesco Izzo
- Hepato-Biliary Surgery Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Maria Lina Tornesello
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | | | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Franco M. Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| | - Luigi Buonaguro
- Laboratory of Molecular Biology and Viral Oncology, Istituto Nazionale per lo Studio e la Cura dei Tumori, “Fondazione Pascale” - IRCCS, Naples, Italy
| |
Collapse
|
5
|
Abdel-Hady KM, Gutierrez AH, Terry F, Desrosiers J, De Groot AS, Azzazy HME. Identification and retrospective validation of T-cell epitopes in the hepatitis C virus genotype 4 proteome: an accelerated approach toward epitope-driven vaccine development. Hum Vaccin Immunother 2015; 10:2366-77. [PMID: 25424944 DOI: 10.4161/hv.29177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
With over 150 million people chronically infected worldwide and millions more infected annually, hepatitis C continues to pose a burden on the global healthcare system. The standard therapy of hepatitis C remains expensive, with severe associated side effects and inconsistent cure rates. Vaccine development against the hepatitis C virus has been hampered by practical and biological challenges posed by viral evasion mechanisms. Despite these challenges, HCV vaccine research has presented a number of candidate vaccines that progressed to phase II trials. However, those efforts focused mainly on HCV genotypes 1 and 2 as vaccine targets and barely enough attention was given to genotype 4, the variant most prevalent in the Middle East and central Africa. We describe herein the in silico identification of highly conserved and immunogenic T-cell epitopes from the HCV genotype 4 proteome, using the iVAX immunoinformatics toolkit, as targets for an epitope-driven vaccine. We also describe a fast and inexpensive approach for results validation using the empirical data on the Immune Epitope Database (IEDB) as a reference. Our analysis identified 90 HLA class I epitopes of which 20 were found to be novel and 19 more had their binding predictions retrospectively validated; empirical data for the remaining 51 epitopes was insufficient to validate their binding predictions. Our analysis also identified 14 HLA class II epitopes, of which 8 had most of their binding predictions validated. Further investigation is required regarding the efficacy of the identified epitopes as vaccine targets in populations where HCV genotype 4 is most prevalent.
Collapse
Affiliation(s)
- Karim M Abdel-Hady
- a Department of Chemistry; School of Sciences and Engineering; The American University in Cairo; New Cairo, Egypt
| | | | | | | | | | | |
Collapse
|
6
|
Holz L, Rehermann B. T cell responses in hepatitis C virus infection: historical overview and goals for future research. Antiviral Res 2014; 114:96-105. [PMID: 25433310 DOI: 10.1016/j.antiviral.2014.11.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/16/2014] [Accepted: 11/18/2014] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV)-specific T cells are key factors in the outcome of acute HCV infection and in protective immunity. This review recapitulates the steps that immunologists have taken in the past 25years to dissect the role of T cell responses in HCV infection. It describes technical as well as disease-specific challenges that were caused by the inapparent onset of acute HCV infection, the difficulty to identify subjects who spontaneously clear HCV infection, the low frequency of HCV-specific T cells in the blood of chronically infected patients, and the lack of small animal models with intact immune systems to study virus-host interaction. The review provides a historical perspective on techniques and key findings, and identifies areas for future research.
Collapse
Affiliation(s)
- Lauren Holz
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA
| | - Barbara Rehermann
- Immunology Section, Liver Diseases Branch, NIDDK, National Institutes of Health, DHHS, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Nivarthi UK, Gras S, Kjer-Nielsen L, Berry R, Lucet IS, Miles JJ, Tracy SL, Purcell AW, Bowden DS, Hellard M, Rossjohn J, McCluskey J, Bharadwaj M. An extensive antigenic footprint underpins immunodominant TCR adaptability against a hypervariable viral determinant. THE JOURNAL OF IMMUNOLOGY 2014; 193:5402-13. [PMID: 25355921 DOI: 10.4049/jimmunol.1401357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mutations in T cell epitopes are implicated in hepatitis C virus (HCV) persistence and can impinge on vaccine development. We recently demonstrated a narrow bias in the human TCR repertoire targeted at an immunodominant, but highly mutable, HLA-B*0801-restricted epitope ((1395)HSKKKCDEL(1403) [HSK]). To investigate if the narrow TCR repertoire facilitates CTL escape, structural and biophysical studies were undertaken, alongside comprehensive functional analysis of T cells targeted at the natural variants of HLA-B*0801-HSK in different HCV genotypes and quasispecies. Interestingly, within the TCR-HLA-B*0801-HSK complex, the TCR contacts all available surface-exposed residues of the HSK determinant. This broad epitope coverage facilitates cross-genotypic reactivity and recognition of common mutations reported in HCV quasispecies, albeit to a varying degree. Certain mutations did abrogate T cell reactivity; however, natural variants comprising these mutations are reportedly rare and transient in nature, presumably due to fitness costs. Overall, despite a narrow bias, the TCR accommodated frequent mutations by acting like a blanket over the hypervariable epitope, thereby providing effective viral immunity. Our findings simultaneously advance the understanding of anti-HCV immunity and indicate the potential for cross-genotype HCV vaccines.
Collapse
Affiliation(s)
- Usha K Nivarthi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Lars Kjer-Nielsen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia
| | - Richard Berry
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Isabelle S Lucet
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - John J Miles
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom; Queensland Institute of Medical Research Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia; School of Medicine, University of Queensland, Brisbane, Queensland 4006, Australia
| | - Samantha L Tracy
- Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3000, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - David S Bowden
- Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Parkville, Victoria 3000, Australia
| | - Margaret Hellard
- Centre for Population Health, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria 3800, Australia; and Centre for Research Excellence into Injecting Drug Use, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia; Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff CF14 4XN, United Kingdom;
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia;
| | - Mandvi Bharadwaj
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3000, Australia;
| |
Collapse
|
8
|
Llanes MS, Palacios NS, Piccione M, Ruiz MG, Layana C. [Molecular aspects of the antiviral response against hepatitis C virus implicated in vaccines development]. Enferm Infecc Microbiol Clin 2014; 33:273-80. [PMID: 24529681 DOI: 10.1016/j.eimc.2013.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/29/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
Hepatitis C is a contagious liver disease caused by hepacivirus of the Flaviviridae family. It has a RNA genome, a unique highly variable molecule. It encodes ten proteins which are necessary to infect cells and multiply. Replication occurs only in hepatocytes. Because of its wide genomic variability and the absence of symptoms, it is difficult to make an early diagnosis and successful treatment. In this review we analyze the molecular mechanism by which the virus infects the hepatocytes and causes the disease. We focused the analysis on different therapies, with the possibility of improving treatment with the use of new specific vaccines. We highlight the use of new therapies based on nucleic acids, mainly DNA vectors. In the near future, once this treatment is adequately evaluated in clinical trials, and the costs are calculated, it could be a very beneficial alternative to conventional methods.
Collapse
Affiliation(s)
- María Soledad Llanes
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Soledad Palacios
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Magalí Piccione
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - María Guillermina Ruiz
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina
| | - Carla Layana
- Departamento de Ciencias Básicas y Experimentales, Universidad Nacional del Noroeste de Buenos Aires, Buenos Aires, Argentina; Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| |
Collapse
|
9
|
Xue J, Zhu H, Chen Z. Therapeutic vaccines against hepatitis C virus. INFECTION GENETICS AND EVOLUTION 2014; 22:120-9. [PMID: 24462908 DOI: 10.1016/j.meegid.2014.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) is a blood-borne pathogen which has chronically infected about 130-210 million people worldwide. Current standard-of-care (SoC) therapy is an inadequate and expensive treatment with more side effects. Two direct-acting antiviral agents (DAAs) (telaprevir and boceprevir) in combination with SoC therapy have been used in patients infected with HCV genotype 1. Although these drugs result in a shortening of therapy, they also have additional side effects and are expensive. In their stead, several second-generation DAAs are being investigated. What important is that all-oral, interferon (IFN)- and ribavirin-free regimens for the treatment of HCV-infected patients are now being investigated, and will be applied in the next year. Preventive measures against HCV, including vaccine development, are also now in progress. However, no therapeutic vaccine against HCV has been produced to date. An effective vaccine should induce robust and broadly cross-reactive CD4(+), CD8(+)T-cell and neutralising antibody (NAb) responses. Current data indicate that vaccines can usually not completely prevent HCV infection but rather prevent the progression of HCV infection to chronic and persistent infection, which may be a realistic goal. This review discusses the important roles of NAbs and CD8(+)T-cells in the development of therapeutic vaccines, and summarizes some important epitopes of HCV recognized by CD8(+)T-cells and some prospective therapeutic vaccine approaches.
Collapse
Affiliation(s)
- Jihua Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Haihong Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
10
|
Glances in Immunology of HIV and HCV Infection. Adv Virol 2012; 2012:434036. [PMID: 22754568 PMCID: PMC3375159 DOI: 10.1155/2012/434036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/12/2012] [Indexed: 12/16/2022] Open
Abstract
Since the identification of HIV and HCV much progress has been made in the understanding of their life cycle and interaction with the host immune system. Despite these viruses markedly differ in their virological properties and in their pathogenesis, they share many common features in their immune escape and survival strategy. Both viruses have developed sophisticated ways to subvert and antagonize host innate and adaptive immune responses. In the last years, much effort has been done in the study of the AIDS pathogenesis and in the development of efficient treatment strategies, and a fatal infection has been transformed in a potentially chronic pathology. Much of this knowledge is now being transferred in the HCV research field, especially in the development of new drugs, although a big difference still remains between the outcome of the two infections, being HCV eradicable after treatment, whereas HIV eradication remains at present unachievable due to the establishment of reservoirs. In this review, we present current knowledge on innate and adaptive immune recognition and activation during HIV and HCV mono-infections and evasion strategies. We also discuss the genetic associations between components of the immune system, the course of infection, and the outcome of the therapies.
Collapse
|
11
|
Petrovic D, Dempsey E, Doherty DG, Kelleher D, Long A. Hepatitis C virus--T-cell responses and viral escape mutations. Eur J Immunol 2011; 42:17-26. [PMID: 22125159 DOI: 10.1002/eji.201141593] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 07/15/2011] [Accepted: 10/05/2011] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus and the number of HCV-infected individuals worldwide is estimated to be approximately 170 million. Most HCV infections persist, with up to 80% of all cases leading to chronic hepatitis associated with liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV-host interactions have a crucial role in viral survival, persistence, pathogenicity of infection, and disease progression. Maintenance of a vigorous, sustained cellular immune response recognizing multiple epitopes is essential for viral clearance. To escape immune surveillance, HCV alters its epitopes so that they are no-longer recognized by T cells and neutralizing antibodies, in addition to interfering with host cell cellular components and signaling pathways. The generation of escape variants is one of the most potent immune evasion strategies utilized by HCV. A large body of evidence suggests that single or multiple mutations within HLA-restricted epitopes contribute to viral immune escape and establishment of viral persistence. Further elucidation of the molecular mechanisms underlying immune escape will aid in the design of novel vaccines and therapeutics for the disease.
Collapse
Affiliation(s)
- Danijela Petrovic
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | |
Collapse
|
12
|
Pasetto A, Frelin L, Brass A, Yasmeen A, Koh S, Lohmann V, Bartenschlager R, Magalhaes I, Maeurer M, Sällberg M, Chen M. Generation of T-cell receptors targeting a genetically stable and immunodominant cytotoxic T-lymphocyte epitope within hepatitis C virus non-structural protein 3. J Gen Virol 2011; 93:247-258. [PMID: 22071510 PMCID: PMC3352347 DOI: 10.1099/vir.0.037903-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of severe liver disease, and one major contributing factor is thought to involve a dysfunction of virus-specific T-cells. T-cell receptor (TCR) gene therapy with HCV-specific TCRs would increase the number of effector T-cells to promote virus clearance. We therefore took advantage of HLA-A2 transgenic mice to generate multiple TCR candidates against HCV using DNA vaccination followed by generation of stable T-cell–BW (T-BW) tumour hybrid cells. Using this approach, large numbers of non-structural protein 3 (NS3)-specific functional T-BW hybrids can be generated efficiently. These predominantly target the genetically stable HCV genotype 1 NS31073–1081 CTL epitope, frequently associated with clearance of HCV in humans. These T-BW hybrid clones recognized the NS31073 peptide with a high avidity. The hybridoma effectively recognized virus variants and targeted cells with low HLA-A2 expression, which has not been reported previously. Importantly, high-avidity murine TCRs effectively redirected human non-HCV-specific T-lymphocytes to recognize human hepatoma cells with HCV RNA replication driven by a subgenomic HCV replicon. Taken together, TCR candidates with a range of functional avidities, which can be used to study immune recognition of HCV-positive targets, have been generated. This has implications for TCR-related immunotherapy against HCV.
Collapse
Affiliation(s)
- Anna Pasetto
- Department of Laboratory Medicine, Stockholm, Sweden.,Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Frelin
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anette Brass
- Department of Laboratory Medicine, Stockholm, Sweden
| | - Anila Yasmeen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sarene Koh
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Laboratory Medicine, Stockholm, Sweden
| | - Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Germany
| | - Isabelle Magalhaes
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | - Markus Maeurer
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet and Swedish Institute for Infectious Disease Control, Stockholm, Sweden
| | | | - Margaret Chen
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Flynn JK, Dore GJ, Hellard M, Yeung B, Rawlinson WD, White PA, Kaldor JM, Lloyd AR, Ffrench RA. Early IL-10 predominant responses are associated with progression to chronic hepatitis C virus infection in injecting drug users. J Viral Hepat 2011; 18:549-61. [PMID: 20626625 PMCID: PMC4277610 DOI: 10.1111/j.1365-2893.2010.01335.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The critical events in clearance or persistence of hepatitis C virus (HCV) infection are unknown but likely to be determined early in acute infection. Type 1 and type 2 cytokine production was assessed by HCV peptide ELISpot and multiplex in vitro cytokine production assays in longitudinally collected samples from 20 untreated participants enrolled in the Australian Trial in Acute Hepatitis C (ATAHC); a prospective cohort of acute HCV infection (77% injecting drug users, IDU). Significantly higher interleukin-10 (IL-10) production (P = 0.048), in the relative absence of interferon-gamma (IFN-γ) and IL-2 production, was present early in HCV infection in those who progressed to chronic infection. In contrast, viral clearance was associated with a greater magnitude and broader specificity of IFN-γ (magnitude P < 0.001, breadth P = 0.004) and IL-2 responses, in the relative absence of IL-10. Early IL-10 production was correlated with higher HCV RNA level at baseline (P = 0.046) and week 12 (P = 0.018), while IFN-γ and IL-2 production was inversely correlated with HCV RNA level at baseline (IFN-γ P = 0.020, IL-2 P = 0.050) and week 48 (IFN-γ P = 0.045, IL-2 P = 0.026). Intracellular staining (ICS) indicated the HCV-specific IFN-γ response was primarily from CD8(+) T cells and NK cells, whereas IL-10 production was predominantly from monocytes, with a subset of IL-10 producing CD8(+) T cells present only in those who progressed to chronic infection. IL-10, an immunoregulatory cytokine, appears to play a key role in progression to chronic HCV infection.
Collapse
Affiliation(s)
| | - Gregory J Dore
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, Australia
| | - Margaret Hellard
- Centre for Population Health, Burnet Institute, Melbourne, Australia
| | - Barbara Yeung
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, Australia
| | - William D Rawlinson
- Virology Division, Southern Eastern Area Laboratory Services, Prince of Wales Hospital, Sydney, Australia
| | - Peter A White
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - John M Kaldor
- National Centre in HIV Epidemiology and Clinical Research, University of New South Wales, Sydney, Australia
| | - Andrew R Lloyd
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
14
|
Möller JF, Möller B, Wiedenmann B, Berg T, Schott E. CD154, a marker of antigen-specific stimulation of CD4 T cells, is associated with response to treatment in patients with chronic HCV infection. J Viral Hepat 2011; 18:e341-9. [PMID: 21692946 DOI: 10.1111/j.1365-2893.2010.01430.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CD4 T-cell function is crucial for the eradication of HCV, and insufficient function is observed in chronic carriers. The monitoring of T-cell responses is complicated by the scarcity of antigen-specific T cells and the relative inefficiency of virus-specific T cells to produce effector cytokines. CD154 is a marker of activation expressed on T cells induced through their T-cell receptor. We analysed CD4 T-cell responses in 72 patients with chronic or resolved HCV infection (23 treatment naïve, 49 treatment experienced, including 16 who had achieved a sustained response). In an additional prospective protocol, 20 of the chronically infected patients were analysed before and after 8-12 weeks of combination therapy with peg-interferon-α and ribavirin. T-cell responses were measured by detecting the expression of CD154 and Th1 cytokines after stimulation with recombinant HCV proteins and were correlated with pretreatment status and outcome of therapy. Broader T-cell responses were observed in treatment naïve than in experienced patients, while the outcome of a preceding therapy regimen did not influence T-cell responses. In the prospective cohort, an on-treatment increase in CD154+ cytokine- T-cell activity was associated with response to treatment, while a decrease was observed in nonresponders. Stronger antigen-independent activity of CD154+ cytokine+ T cells was observed in responders than in nonresponders. Our data indicate that CD154 as a marker of activation of CD4 T cells is a suitable tool for the analysis of T-cell responses in patients with HCV infection.
Collapse
Affiliation(s)
- J F Möller
- Medizinische Klinik m.S. Hepatologie und Gastroenterologie, Charité Universitätsmedizin Berlin, CVK, Berlin Hepatologische Schwerpunktpraxis, Berlin, Germany
| | | | | | | | | |
Collapse
|
15
|
Antunes DA, Rigo MM, Silva JP, Cibulski SP, Sinigaglia M, Chies JA, Vieira GF. Structural in silico analysis of cross-genotype-reactivity among naturally occurring HCV NS3-1073-variants in the context of HLA-A*02:01 allele. Mol Immunol 2011; 48:1461-7. [DOI: 10.1016/j.molimm.2011.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/15/2011] [Accepted: 03/28/2011] [Indexed: 12/17/2022]
|
16
|
Zhang X, Dou J, Germann MW. Characterization of the cellular immune response in hepatitis C virus infection. Med Res Rev 2010; 29:843-66. [PMID: 19378287 DOI: 10.1002/med.20157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus (HCV), a hepatotropic RNA virus, is a major causative agent of chronic hepatitis, liver cirrhosis, and hepatocellular carcinomas. The host immune responses, especially cellular immune responses, play an important role in viral clearance, liver injury, and persistent HCV infection. A thorough characterization of the HCV cellular immune responses is important for understanding the interplays between host immune system and viral components, as well as for developing effective therapeutic and prophylactic HCV vaccines. Recent advances that provide better understanding the cell immune responses in HCV infection are summarized in this article.
Collapse
Affiliation(s)
- Xinjian Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | | |
Collapse
|
17
|
Yusim K, Fischer W, Yoon H, Thurmond J, Fenimore PW, Lauer G, Korber B, Kuiken C. Genotype 1 and global hepatitis C T-cell vaccines designed to optimize coverage of genetic diversity. J Gen Virol 2010; 91:1194-206. [PMID: 20053820 DOI: 10.1099/vir.0.017491-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Immunological control of hepatitis C virus (HCV) is possible and is probably mediated by host T-cell responses, but the genetic diversity of the virus poses a major challenge to vaccine development. We considered monovalent and polyvalent candidates for an HCV vaccine, including natural, consensus and synthetic 'mosaic' sequence cocktails. Mosaic vaccine reagents were designed using a computational approach first applied to and demonstrated experimentally for human immunodeficiency virus type 1 (HIV-Delta). Mosaic proteins resemble natural proteins, but are assembled from fragments of natural sequences via a genetic algorithm and optimized to maximize the coverage of potential T-cell epitopes (all 9-mers) found in natural sequences and to minimize the inclusion of rare 9-mers to avoid vaccine-specific responses. Genotype 1-specific and global vaccine cocktails were evaluated. Among vaccine candidates considered, polyvalent mosaic sequences provided the best coverage of both known and potential epitopes and had the fewest rare epitopes. A global vaccine based on conserved proteins across genotypes may be feasible, as a five-antigen mosaic cocktail provided 90, 77 and 70% coverage of the Core, NS3 and NS4 proteins, respectively; protein coverage diminished with increased protein variability, dropping to 38% for NS2. For the genotype 1-specific vaccine, the H77 prototype vaccine sequence matched only 50% of the potential epitopes in the population, whilst a polyprotein three-antigen mosaic cocktail increased potential epitope coverage to 83%. More than 75% coverage of all HCV proteins was achieved with a three-antigen mosaic cocktail, suggesting that genotype-specific vaccines could also include the more variable proteins.
Collapse
Affiliation(s)
- Karina Yusim
- Los Alamos National Laboratory, Theory Division, Los Alamos, NM 87545, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Krishnadas DK, Li W, Kumar R, Tyrrell DL, Agrawal B. HCV-core and NS3 antigens play disparate role in inducing regulatory or effector T cells in vivo: Implications for viral persistence or clearance. Vaccine 2009; 28:2104-14. [PMID: 20045096 DOI: 10.1016/j.vaccine.2009.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 12/11/2009] [Accepted: 12/15/2009] [Indexed: 12/17/2022]
Abstract
A distinguishing feature of HCV is its ability to persist in majority of the infected people. We investigated the role of HCV-core and NS3 in inducing effector T cells to mediate antiviral immunity. Our studies revealed that immunization with recombinant adenoviral vector containing HCV-core or NS3 leads to differential development of regulatory vs. effector T cells in mice, resulting in distinct outcomes of virus infection. For the first time, our studies directly demonstrate that HCV-core enhances both CD4(+) and CD8(+) T(regs) which possibly contribute to persistent infection, whereas HCV NS3 induces both CD4(+) and CD8(+) effector T cells to allow viral clearance.
Collapse
Affiliation(s)
- Deepa K Krishnadas
- Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
19
|
O'Beirne J, Mitchell J, Farzaneh F, Harrison PM. Inhibition of major histocompatibility complex Class I antigen presentation by hepatitis C virus core protein in myeloid dendritic cells. Virology 2009; 389:1-7. [PMID: 19409594 DOI: 10.1016/j.virol.2009.03.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/02/2009] [Accepted: 03/26/2009] [Indexed: 12/16/2022]
Abstract
Hepatitis C virus core (HCVcore) protein was expressed in myeloid dendritic cells (DC) from C57/B6 mice (H-2K(b)) by electroporation of HCVcore mRNA to investigate its effect on the ability of DC to prime CD8+ T cells displaying a T cell receptor specific for OVA(257-264) peptide (SIINFEKL)/H-2K(b) complex. Expression of full length HCVcore(191), which is directed to the endoplasmic reticulum (ER) membrane by a C-terminal signal sequence, but not a truncated variant HCVcore(152), which has a wider subcellular localization including the nucleus, significantly reduced surface levels of the H-2K(b)/SIINFEKL complex and impaired the ability of DC to prime naïve CD8+ T cells when they had to process endogenous antigen but not when MHC class I molecules were loaded directly with SIINFEKL peptide. Exploitation of the MHC class I antigen-processing pathway by HCVcore(191) impairs the ability of DC to stimulate CD8+ T cells and may contribute to the persistence of HCV infection.
Collapse
Affiliation(s)
- James O'Beirne
- Department of Liver Studies and Transplantation, Kings College London, Denmark Hill Campus, London SE59PJ, UK
| | | | | | | |
Collapse
|
20
|
van den Berg CHSB, Ruys TA, Nanlohy NM, Geerlings SE, van der Meer JT, Mulder JW, Lange JA, van Baarle D. Comprehensive longitudinal analysis of hepatitis C virus (HCV)-specific T cell responses during acute HCV infection in the presence of existing HIV-1 infection. J Viral Hepat 2009; 16:239-48. [PMID: 19222746 DOI: 10.1111/j.1365-2893.2009.01076.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of this study was to study the development of HCV-specific T cell immunity during acute HCV infection in the presence of an existing HIV-1 infection in four HIV-1 infected men having sex with men. A comprehensive analysis of HCV-specific T cell responses was performed at two time points during acute HCV infection using a T cell expansion assay with overlapping peptide pools spanning the entire HCV genome Three patients with (near) normal CD4+ T cell counts (range 400-970 x 10(6)/L) either resolved (n=1) or temporary suppressed HCV RNA. In contrast, one patient with low CD4+ T cell counts (330 x 10(6)/L), had sustained high HCV RNA levels. All four patients had low HCV-specific CD8+ T cell responses, and similar magnitudes of CD4+ T cell responses. Interestingly, individuals with resolved infection or temporary suppression of HCV-RNA had HCV-specific CD4+ T cell responses predominantly against nonstructural (NS) proteins. While the individual with high HCV RNA plasma concentrations had CD4+ T cell responses predominantly directed against Core. Our data show that an acute HCV infection in an HIV-1 infected person can be suppressed in the presence of HCV-specific CD4+ T cell response targeting non-structural proteins. However further research is needed in a larger group of patients to evaluate the role of HIV-1 on HCV-specific T cell responses in relation to outcome of acute HCV infection.
Collapse
Affiliation(s)
- C H S B van den Berg
- Department of Experimental Virology, Center for Infection and Immunity (CINIMA), Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Diepolder HM. New insights into the immunopathogenesis of chronic hepatitis C. Antiviral Res 2009; 82:103-9. [PMID: 19428600 DOI: 10.1016/j.antiviral.2009.02.203] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/23/2009] [Accepted: 02/27/2009] [Indexed: 12/26/2022]
Abstract
Despite the high propensity of hepatitis C virus to establish chronic viral persistence, immune-mediated viral clearance occurs in some patients, fostering hopes that therapeutic induction of specific antiviral immune responses might be able to contribute to viral clearance in chronically infected patients. Indeed, recent clinical trials of therapeutic vaccination have provided clear proof of concept that specific immunotherapy can reduce the viral load in some patients. Further improvement of these strategies will depend on a detailed analysis of the immunopathogenesis of chronic hepatitis C. Recent advances in our understanding of the mechanisms of down-regulation of virus-specific immune responses during chronic infection, including the role of regulatory T cells and inhibitory molecules such as programmed death receptor 1, may open up new avenues for second-generation immunotherapeutic interventions.
Collapse
|
22
|
Krishnadas DK, Li W, Kumar R, Tyrrell LJ, Agrawal B. In vitro activation and differentiation of naïve CD4+ and CD8+ T cells into HCV Core- and NS3-specific armed effector cells: A new role for CD4+ T cells. Cell Immunol 2009; 259:141-9. [DOI: 10.1016/j.cellimm.2009.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 12/26/2022]
|
23
|
Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. World J Gastroenterol 2008. [PMID: 18666317 DOI: 10.3748/wjg.v14.i27.4300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the commonest primary malignant cancer of the liver in the world. Given that the burden of chronic liver disease is expected to rise owing to increasing rates of alcoholism, hepatitis B and C prevalence and obesity-related fatty liver disease, it is expected that the incidence of HCC will also increase in the foreseeable future. This article summarizes the international epidemiology, the risk factors and the pathogenesis of HCC, including the roles of viral hepatitis, toxins, such as alcohol and aflatoxin, and insulin resistance.
Collapse
Affiliation(s)
- Asmaa-Ibrahim Gomaa
- Department of Hepatology and Gastroenterology, Imperial College London, St Mary's Hospital Campus, Praed Street, London W2 1NY, United Kingdom
| | | | | | | | | |
Collapse
|
24
|
Wolfl M, Rutebemberwa A, Mosbruger T, Mao Q, Li H, Netski D, Ray SC, Pardoll D, Sidney J, Sette A, Allen T, Kuntzen T, Kavanagh DG, Kuball J, Greenberg PD, Cox AL. Hepatitis C virus immune escape via exploitation of a hole in the T cell repertoire. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:6435-46. [PMID: 18941234 PMCID: PMC2742502 DOI: 10.4049/jimmunol.181.9.6435] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatitis C virus (HCV) infection frequently persists despite eliciting substantial virus-specific immune responses. Thus, HCV infection provides a setting in which to investigate mechanisms of immune escape that allow for viral persistence. Viral amino acid substitutions resulting in decreased MHC binding or impaired Ag processing of T cell epitopes reduce Ag density on the cell surface, permitting evasion of T cell responses in chronic viral infection. Substitutions in viral epitopes that alter TCR contact residues frequently result in escape, but via unclear mechanisms because such substitutions do not reduce surface presentation of peptide-MHC complexes and would be expected to prime T cells with new specificities. We demonstrate that a known in vivo HCV mutation involving a TCR contact residue significantly diminishes T cell recognition and, in contrast to the original sequence, fails to effectively prime naive T cells. This mutant epitope thus escapes de novo immune recognition because there are few highly specific cognate TCR among the primary human T cell repertoire. This example is the first on viral immune escape via exploitation of a "hole" in the T cell repertoire, and may represent an important general mechanism of viral persistence.
Collapse
Affiliation(s)
- Matthias Wolfl
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Alleluiah Rutebemberwa
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Timothy Mosbruger
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Qing Mao
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China 400038
| | - Hongmei Li
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Dale Netski
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Stuart C. Ray
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - Drew Pardoll
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| | - John Sidney
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Alessandro Sette
- Department of La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive San Diego, California 92121
| | - Todd Allen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Thomas Kuntzen
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Daniel G. Kavanagh
- Department of Partners AIDS Research Center, 13th Street, Bldg 149, Charlestown, Massachusetts 02129
| | - Jurgen Kuball
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Philip D. Greenberg
- Department of Fred Hutchinson Cancer Research Center 1100 Fairview Ave North D3-100 Seattle, Washington 98109
| | - Andrea L. Cox
- Department of Medicine, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
- Department of Oncology, Johns Hopkins Medical Institutions, 1503 E. Jefferson St. Baltimore, Maryland 21231
| |
Collapse
|
25
|
Nanda S, Havert MB, Calderón GM, Thomson M, Jacobson C, Kastner D, Liang TJ. Hepatic transcriptome analysis of hepatitis C virus infection in chimpanzees defines unique gene expression patterns associated with viral clearance. PLoS One 2008; 3:e3442. [PMID: 18927617 PMCID: PMC2562457 DOI: 10.1371/journal.pone.0003442] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Accepted: 09/22/2008] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus infection leads to a high rate of chronicity. Mechanisms of viral clearance and persistence are still poorly understood. In this study, hepatic gene expression analysis was performed to identify any molecular signature associated with the outcome of hepatitis C virus (HCV) infection in chimpanzees. Acutely HCV-infected chimpanzees with self-limited infection or progression to chronicity were studied. Interferon stimulated genes were induced irrespective of the outcome of infection. Early induction of a set of genes associated with cell proliferation and immune activation was associated with subsequent viral clearance. Specifically, two of the genes: interleukin binding factor 3 (ILF3) and cytotoxic granule-associated RNA binding protein (TIA1), associated with robust T-cell response, were highly induced early in chimpanzees with self-limited infection. Up-regulation of genes associated with CD8+ T cell response was evident only during the clearance phase of the acute self-limited infection. The induction of these genes may represent an initial response of cellular injury and proliferation that successfully translates to a “danger signal” leading to induction of adaptive immunity to control viral infection. This primary difference in hepatic gene expression between self-limited and chronic infections supports the concept that successful activation of HCV-specific T-cell response is critical in clearance of acute HCV infection.
Collapse
Affiliation(s)
- Santosh Nanda
- Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- CBER, FDA, Bethesda, Maryland, United States of America
| | - Michael B. Havert
- Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- CBER, FDA, Bethesda, Maryland, United States of America
| | - Gloria M. Calderón
- Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
| | - Michael Thomson
- Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- Virology Department, GlaxoSmithKline, Research Triangle Park, North Carolina, United States of America
| | - Christian Jacobson
- Genetics and Genomics Branch, NIAMS, NIH, Bethesda, Maryland, United States of America
- Departments of Biology and Mechanical & Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Daniel Kastner
- Genetics and Genomics Branch, NIAMS, NIH, Bethesda, Maryland, United States of America
| | - T. Jake Liang
- Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Stamataki Z, Grove J, Balfe P, McKeating JA. Hepatitis C virus entry and neutralization. Clin Liver Dis 2008; 12:693-712, x. [PMID: 18625435 DOI: 10.1016/j.cld.2008.03.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The processes of hepatitis C virus (HCV) entry and antibody-mediated neutralization are intimately linked. The high frequency of neutralizing antibodies (nAbs) that inhibit E2-CD81 interaction(s) suggests that this is a major target for the humoral immune response. The observation that HCV can transmit to naive cells by means of CD81-dependent and -independent routes in vitro awaits further investigation to assess the significance in vivo but may offer new strategies for HCV to escape nAbs. The identification of claudins in the entry process highlights the importance of cell polarity in defining routes of HCV entry and release, with recent experiments suggesting a polarized route of viral entry into cells in vitro. In this review, the authors summarize the current understanding of the mechanism(s) defining HCV entry and the role of nAbs in controlling HCV replication.
Collapse
Affiliation(s)
- Zania Stamataki
- Division of Immunity and Infection, Institute for Biomedical Research, University of Birmingham, Edgbaston, UK
| | | | | | | |
Collapse
|
27
|
Gomaa AI, Khan SA, Toledano MB, Waked I, Taylor-Robinson SD. Hepatocellular carcinoma: Epidemiology, risk factors and pathogenesis. World J Gastroenterol 2008; 14:4300-8. [PMID: 18666317 PMCID: PMC2731180 DOI: 10.3748/wjg.14.4300] [Citation(s) in RCA: 483] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the commonest primary malignant cancer of the liver in the world. Given that the burden of chronic liver disease is expected to rise owing to increasing rates of alcoholism, hepatitis B and C prevalence and obesity-related fatty liver disease, it is expected that the incidence of HCC will also increase in the foreseeable future. This article summarizes the international epidemiology, the risk factors and the pathogenesis of HCC, including the roles of viral hepatitis, toxins, such as alcohol and aflatoxin, and insulin resistance.
Collapse
|
28
|
Morandi F, Raffaghello L, Bianchi G, Meloni F, Salis A, Millo E, Ferrone S, Barnaba V, Pistoia V. Immunogenicity of human mesenchymal stem cells in HLA-class I-restricted T-cell responses against viral or tumor-associated antigens. Stem Cells 2008; 26:1275-87. [PMID: 18292209 DOI: 10.1634/stemcells.2007-0878] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human mesenchymal stem cells (MSC) are immunosuppressive and poorly immunogenic but may act as antigen-presenting cells (APC) for CD4(+) T-cell responses; here we have investigated their ability to serve as APC for in vitro CD8(+) T-cell responses. MSC pulsed with peptides from viral antigens evoked interferon (IFN)-gamma and Granzyme B secretion in specific cytotoxic T lymphocytes (CTL) and were lysed, although with low efficiency. MSC transfected with tumor mRNA or infected with a viral vector carrying the Hepatitis C virus NS3Ag gene induced cytokine release but were not killed by specific CTL, even following pretreatment with IFN-gamma. To investigate the mechanisms involved in MSC resistance to CTL-mediated lysis, we analyzed expression of human leukocyte antigen (HLA) class I-related antigen-processing machinery (APM) components and of immunosuppressive HLA-G molecules in MSC. The LMP7, LMP10, and ERp57 components were not expressed and the MB-1 and zeta molecules were downregulated in MSC either unmanipulated or pretreated with IFN-gamma. Surface HLA-G was constitutively expressed on MSC but was not involved in their protection from CTL-mediated lysis. MSC supernatants containing soluble HLA-G (sHLA-G) inhibited CTL-mediated lysis, whereas those lacking sHLA-G did not. The role of sHLA-G in such inhibition was unambiguously demonstrated by partial restoration of lysis following sHLA-G depletion from MSC supernatants. In conclusion, human MSC can process and present HLA class I-restricted viral or tumor antigens to specific CTL with a limited efficiency, likely because of some defects in APM components. However, they are protected from CTL-mediated lysis through a mechanism that is partly sHLA-G-dependent.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, G. Gaslini Children's Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Schott E, Witt H, Neumann K, Bergk A, Halangk J, Weich V, Müller T, Puhl G, Wiedenmann B, Berg T. Association of TLR7 single nucleotide polymorphisms with chronic HCV-infection and response to interferon-a-based therapy. J Viral Hepat 2008; 15:71-8. [PMID: 18088248 DOI: 10.1111/j.1365-2893.2007.00898.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An efficient immune response against hepatitis C virus (HCV) is necessary to clear infection. As HCV is a single-stranded RNA virus, a role for TLR7 in the immune response against HCV is possible, and early clinical studies have demonstrated an antiviral effect of TLR7 stimulation. We tested the hypothesis that genetic variations of TLR7 are associated with chronic HCV-infection and outcome of therapy. The prevalence of three TLR7 variations was analysed in 978 patients with chronic HCV-infection, 898 patients with chronic liver disease of other aetiologies, and in 203 healthy controls. The prevalence of TLR7 variations was correlated with the response to interferon-alpha-based treatment in 544 patients with chronic HCV-infection. We analysed TLR7 polymorphisms by melting curve analysis and reconstructed haplotypes. The c.32A>T variation was over-represented in female patients with chronic HCV-infection compared to patients with other chronic liver diseases and to healthy controls (P < 0.05). In contrast, c.2403 G>A was less prevalent in male patients with chronic HCV-infection (P < 0.05). No association was observed for the third variant, c.1-120T>G. Haplotype analysis confirmed the differential distribution of TLR7 variants between the groups. Within the group of female patients with chronic HCV-infection, c.32T was predictive of an unfavourable outcome of interferon-alpha therapy (P < 0.05). This study reports the association of TLR7 variants with chronic HCV-infection and with the response to interferon-alpha therapy in patients with chronic HCV-infection. Our results suggest that variations of TLR7 impair the immune response to HCV and imply a gender-specific effect of this X-chromosomal variation.
Collapse
Affiliation(s)
- E Schott
- Department of Hepatology and Gastroenterology, CVK, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhou Y, Lukes Y, Anderson J, Fileta B, Reinhardt B, Sjogren M. Hepatitis C virus E2 envelope protein induces dendritic cell maturation. J Viral Hepat 2007; 14:849-58. [PMID: 18070288 DOI: 10.1111/j.1365-2893.2007.00879.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Maturation is a critical process for dendritic cells (DC) to gain or enhance their functions in antigen presentation and T-cell activation. In this study, we investigated the effect of hepatitis C virus (HCV) envelope protein E2 on DC maturation and related functions. We show that binding of E2 protein to DC leads to a change from immature to mature phenotype as detected by an increased expression of cell surface molecules including CD83, CD80, CD86, CD11c and MHC class II. The E2-matured DC showed higher capacity to stimulate T-cell proliferation and interferon-gamma production and displayed higher levels of interleukin-12 production when compared with immature DC. The induction of DC maturation by E2 is both time- and dose-dependent and can be inhibited by anti-E2 antibodies. In addition, DC matured by E2 showed decreased uptake of bovine serum albumin and latex beads, indicating their decreased activities of endocytosis and phagocytosis upon maturation. Taken together, our results demonstrated that E2 protein is able to induce dendritic cell maturation and suggested that E2 protein may play an important role in regulation of immune responses during HCV infection.
Collapse
Affiliation(s)
- Y Zhou
- Department of Clinical Investigation, Walter Reed Army Medical Center, Washington, DC 20307, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Dreux M, Cosset FL. The scavenger receptor BI and its ligand, HDL: partners in crime against HCV neutralizing antibodies. J Viral Hepat 2007; 14 Suppl 1:68-76. [PMID: 17958646 DOI: 10.1111/j.1365-2893.2007.00919.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Better knowledge of the viral and host factors that determine HCV clearance vs. persistence at the acute stage of infection is needed in order to improve antiviral therapy and develop efficient vaccines. Spontaneous HCV clearance is associated with a strong, early and broad cellular immune response. Yet, several observations suggest that antibody-mediated neutralisation occurs during HCV infection in vivo and that polyclonal antibodies to HCV can be protective. The recent development of HCV infection assays has confirmed that sera from HCV-infected patients neutralise infection in vitro. Recent studies have demonstrated that Nt-antibodies, of narrow specificity, are induced during the early phase of infection and could play a role in controlling viral infection or clearance. Yet, high-titre, broadly cross-reacting Nt-antibodies are readily detected in chronically infected patients, suggesting that their effectiveness is limited in patients who do not resolve the disease. The factors that mitigate the impact of the Nt-antibody response need to be clarified. Here we review some essential features of the Nt-antibody responses to HCV. We then discuss an original mechanism that HCV may use in vivo to attenuate Nt-antibodies, which involves the hyper-variable region-1 of the HCV-E2 glycoprotein, high-density lipoprotein (HDL) and the physiologic activity of the scavenger receptor BI, a receptor shared by both HCV and HDL.
Collapse
Affiliation(s)
- M Dreux
- Université de Lyon, (UCB-Lyon1), IFR128, Lyon; INSERM, U758, Lyon, France
| | | |
Collapse
|
32
|
Hepatitis C virus envelope glycoprotein immunization of rodents elicits cross-reactive neutralizing antibodies. Vaccine 2007; 25:7773-84. [PMID: 17919789 DOI: 10.1016/j.vaccine.2007.08.053] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 08/14/2007] [Accepted: 08/26/2007] [Indexed: 01/01/2023]
Abstract
Neutralizing antibody responses elicited during infection generally confer protection from infection. Hepatitis C virus (HCV) encodes two glycoproteins E1 and E2 that are essential for virus entry and are the major target for neutralizing antibodies. To assess whether both glycoproteins are required for the generation of a neutralizing antibody response, rodents were immunized with a series of glycoproteins comprising full length and truncated versions. Guinea pigs immunized with HCV-1 genotype 1a E1E2p7, E1E2 or E2 generated high titer anti-glycoprotein antibody responses that neutralized the infectivity of HCVpp and HCVcc expressing gps of the same genotype as the immunizing antigen. Less potent neutralization of viruses bearing the genotype 2 strain J6 gps was observed. In contrast, immunized mice demonstrated reduced anti-gp antibody responses, consistent with their minimal neutralizing activity. Immunization with E2 alone was sufficient to induce a high titer response that neutralized HCV pseudoparticles (HCVpp) bearing diverse glycoproteins and cell culture grown HCV (HCVcc). The neutralization titer was reduced 3-fold by the presence of lipoproteins in human sera. Cross-competition of the guinea pig anti-E1E2 immune sera with a panel of epitope mapped anti-E2 monoclonal antibodies for binding E2 identified a series of epitopes within the N-terminal domain that may be immunogenic in the immunized rodents. These data demonstrate that recombinant E2 and E1E2 can induce polyclonal antibody responses with cross-reactive neutralizing activity, supporting the future development of prophylactic and therapeutic vaccines.
Collapse
|
33
|
Suruki RY, Mueller N, Hayashi K, Harn D, DeGruttola V, Raker CA, Tsubouchi H, Stuver SO. Host immune status and incidence of hepatocellular carcinoma among subjects infected with hepatitis C virus: a nested case-control study in Japan. Cancer Epidemiol Biomarkers Prev 2007; 15:2521-5. [PMID: 17164379 DOI: 10.1158/1055-9965.epi-06-0485] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A nested case-control study was conducted to examine the association between host immune status, as characterized by serum immune marker levels, and the development of hepatocellular carcinoma (HCC) up to 8 years later in persons with chronic hepatitis C virus (HCV) infection. Cases (n = 39) and matched controls (n = 117) were selected from participants of the Town C HCV Study in Japan between 1996 and 2004 and matched on age at first available sample (+/-1 year), gender, and length of follow-up. Separate analyses were done for each of three serum immune markers: soluble tumor necrosis factor-receptor II (sTNF-R2) and soluble intercellular adhesion molecule-1 (sICAM-1), as indicators of type 1, cell-mediated immune response, and soluble CD30 (sCD30), as an indicator of type 2, humoral immune response. The median concentrations of sTNF-R2, sICAM-1, and sCD30 among controls were 3,170 pg/mL, 305 ng/mL, and 3.0 units/mL, respectively, and were higher among cases (3,870 pg/mL, 372 ng/mL, and 3.3 units/mL, respectively). The risk of developing HCC among subjects with immune marker concentrations above the median levels of the controls was >2-fold greater than among subjects with lower concentrations for all three markers [sTNF-R2: odds ratio (OR), 6.9; 95% confidence interval (95% CI), 2.4-20.5; sICAM-1: OR, 2.0; 95% CI, 0.9-4.1; and sCD30: OR, 2.1; 95% CI, 1.0-4.7]. Simultaneous adjustment for all three markers revealed only sTNF-R2 to be associated with HCC risk (OR, 6.4; 95% CI, 2.0-20.6). Adjustment for alcohol consumption and HCV serotype did not materially alter these associations. Results from this prospective, community-based study suggest that a dysregulation in both type 1-related and type 2-related host immunity contributes to the development of HCV-associated HCC.
Collapse
Affiliation(s)
- Robert Y Suruki
- Department of Epidemiology, Harvard School of Public Health, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Schott E, Witt H, Hinrichsen H, Neumann K, Weich V, Bergk A, Halangk J, Müller T, Tinjala S, Puhl G, Neuhaus P, Wiedenmann B, Berg T. Gender-dependent association of CTLA4 polymorphisms with resolution of hepatitis C virus infection. J Hepatol 2007; 46:372-80. [PMID: 17150279 DOI: 10.1016/j.jhep.2006.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/03/2006] [Accepted: 09/05/2006] [Indexed: 01/14/2023]
Abstract
BACKGROUND/AIMS A vigorous T-cell response is essential for the resolution of HCV infection. It is modified by co-stimulatory molecules that attenuate T-lymphocyte responses by binding to CTLA4. We investigated whether CTLA4 single nucleotide polymorphisms are associated with the resolution of infection or with the course of disease. METHODS We enrolled 127 individuals with self-limited and 947 patients with chronic HCV infection, of whom 560 were treated with interferon-alpha-based therapies, and 200 healthy controls. We analyzed CTLA4 polymorphisms -318C>T and +49A>G by melting curve analysis and reconstructed haplotypes. RESULTS CTLA4 haplotypes were distributed differently between men but not women with self-limited and chronic infection (p=0.043) but were not predictive of the stage of fibrosis in chronic carriers. Haplotypes were distributed differently between male but not female end-of-treatment responders and non-responders (p=0.025). The influence of CTLA4 haplotypes was more pronounced in "hard-to-treat" situations, i.e., treatment with interferon-alpha monotherapy or infection with HCV genotypes 1/4. Logistic regression analysis confirmed gender-specific risk factors for a virological non-response. CONCLUSIONS CTLA4 polymorphisms are associated with the resolution of HCV infection. This study underlines the role of an efficient T-cell response in the clearance of HCV and sheds light on a gender-dependent difference of immune regulation.
Collapse
Affiliation(s)
- Eckart Schott
- Department of Hepatology and Gastroenterology, CVK, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lloyd AR, Jagger E, Post JJ, Crooks LA, Rawlinson WD, Hahn YS, Ffrench RA. Host and viral factors in the immunopathogenesis of primary hepatitis C virus infection. Immunol Cell Biol 2006; 85:24-32. [PMID: 17130897 DOI: 10.1038/sj.icb.7100010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Individuals infected with hepatitis C virus (HCV) have two possible outcomes of infection, clearance or persistent infection. The focus of this review is the host mechanisms that facilitate clearance. The interaction between HCV viral components and the immune system ultimately determines the balance between the virus and host. Strong evidence points to the aspects of cellular immune response as the key determinants of outcome. The recent discovery of viral evasion strategies targeting innate immunity suggests that the interferon-alpha/beta induction pathways are also critical. A growing body of evidence has implicated polymorphisms in both innate and adaptive immune response genes as determinants of viral clearance in individuals infected with HCV.
Collapse
Affiliation(s)
- Andrew R Lloyd
- Centre for Infection and Inflammation Research, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Elliot LN, Lloyd AR, Ziegler JB, Ffrench RA. Protective immunity against hepatitis C virus infection. Immunol Cell Biol 2006; 84:239-49. [PMID: 16509830 DOI: 10.1111/j.1440-1711.2006.01427.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
There is increasing evidence that a small percentage of individuals exposed to the hepatitis C virus have the capacity to generate a strong cellular immune response against the virus and avoid persistent infection, and perhaps do so repeatedly after re-exposure. This article reviews the evidence that the responses identified in this unique group of individuals represent the protective immunity that will need to be elicited by hepatitis C virus vaccines.
Collapse
Affiliation(s)
- Lisa N Elliot
- School of Women's and Children's Health, The University of New South Wales, Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
37
|
Leroux-Roels G. Development of prophylactic and therapeutic vaccines against hepatitis C virus. Expert Rev Vaccines 2006; 4:351-71. [PMID: 16026249 DOI: 10.1586/14760584.4.3.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The hepatitis C virus was discovered 15 years ago as the agent responsible for most cases of transfusion-associated hepatitis non-A, non-B. At present, 180 million people worldwide are estimated to be infected with the virus, producing severe and progressive liver disease in millions and representing the most common reason for liver transplantation in adults. Although the spread of the virus can be halted by the application of primary prevention strategies, such as routine testing of blood donations, inactivation of blood products and systematic use of disposable needles and syringes, the development of a prophylactic vaccine could facilitate the control of this infection and protect those at high risk of being infected with hepatitis C virus. As the present therapy of chronic hepatitis C virus infections, consisting of a combined administration of pegylated interferon-alpha and ribavirin, is only successful in 50% of patients infected with genotype 1, and is costly and associated with serious side effects, there is an urgent need for better tolerated and more effective treatment modalities, and a therapeutic vaccine may be the solution. This review first provides an overview of the present knowledge regarding the interaction between the virus and immune system of the infected host, with special attention given to the possible mechanisms responsible for chronic evolution of the infection. The numerous candidate vaccines that have been developed in the past 10 years are discussed, including the studies in which their immunogenicity has been examined in rodents and chimpanzees. Finally, the only studies of therapeutic vaccines performed in humans to date are considered.
Collapse
Affiliation(s)
- Geert Leroux-Roels
- Centre for Vaccinology, Ghent University and Hospital, De Pintelaan 185, B-900 Ghent, Belgium.
| |
Collapse
|
38
|
Abstract
Hepatitis C Virus (HCV) induces a chronic infection in 50%-80% of infected individuals, which can lead to cirrhosis and hepatocellular carcinoma. The inefficiency of the immune system in eliminating the virus is not well understood as humoral and cellular immune responses are induced. While a persistent infection is generally associated with a weak CD4+ and CD8+ T cell response during the acute phase, there is no good explanation as to why this response is strong enough in 20% of acutely infected people such that they spontaneously resolve the infection. However, the immune system partially controls the viral infection but due to a long-lasting inflammatory milieu, hepatic damage occurs. During the chronic phase of the infection, HCV does not seem to be cytopathic. This aspect is still controversial as the virus was linked to the development of cholestatic syndrome or acute lobular hepatitis after liver transplant in HCV infected patients. The development of new experimental systems such as HCV pseudoparticles, genomic replicon and transfected cell lines have improved our vision of the virus cycle as well as the understanding of the mechanism of persistence. However, a convincing explanation for the chronicity of the infection in the presence of a functional immune response is still missing and is an important area of research to understand HCV immune pathogenesis. Future research should dissect mechanisms that lead to quantitatively or qualitatively inadequate immune responses, the role of the high variability of the virus, the relevance of host's genetic factors and mechanisms of immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Christel Gremion
- Clinic for Rheumatology and Clinical Immunology/Allergology, University of Bern, CH-3010 Bern, Switzerland
| | | |
Collapse
|
39
|
Affiliation(s)
- Mario U Mondelli
- Dipartimento di Malattie Infettive, I.R.C.C.S. Policlinico San Matteo and University of Pavia, Italy.
| | | | | |
Collapse
|
40
|
Kobayashi K, Ishii M, Shiina M, Ueno Y, Kondo Y, Kanno A, Miyazaki Y, Yamamoto T, Kobayashi T, Niitsuma H, Kikumoto Y, Takizawa H, Shimosegawa T. Interferon-gamma is produced by CD8 T cells in response to HLA-A24-restricted hepatitis C virus epitopes after sustained virus loss. Clin Exp Immunol 2005; 141:81-8. [PMID: 15958073 PMCID: PMC1809409 DOI: 10.1111/j.1365-2249.2005.02018.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2005] [Indexed: 11/29/2022] Open
Abstract
Differences in cytotoxic T lymphocyte activity in hepatitis C virus infection may account for the outcome of interferon monotherapy. To investigate this hypothesis, we analysed the response of peripheral CD8(+) T cells that recognized epitopes presented by HLA-A*2402. We synthesized HLA/beta2-microglobulin/peptide complexes using two epitopes. Production of interferon-gamma by CD8(+) T cells in response to plastic-bound monomeric HLA/peptide complex was observed frequently in sustained virus responders (SVR) (n = 13) against all the peptides, NS31296-1304 (the percentage of responding patients, 61.5%) and core 129-137 (53.8%), while no interferon-gamma production was observed in non-responders (NR) (n = 13) for any of the peptides. Tetramer-staining showed the presence of CD8(+) T cells specific for all the peptides except NS31296-1304 in two SVR at the end of interferon monotherapy, although hardly any such cells were found in four NR. Specific killing was observed against peptides NS31296-1304 (3/4) and core 129-137 (1/4) in sustained responders but none in non-responders. These results suggest that the responses of cytotoxic T lymphocytes (CTLs) were induced during interferon therapy in these patients and that interferon-gamma production by CD8(+) T lymphocytes against HCV NS31296-1304 and core 129-137 are well maintained in patients with SVR compared with those with NR. These findings emphasize the importance of the CD8(+) T cell response in controlling HCV infection.
Collapse
Affiliation(s)
- K Kobayashi
- Tohoku University School of Health Sciences and Comprehensive Research and Education Center for Planning of Drug Development and Clinical Evaluation, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lavillette D, Morice Y, Germanidis G, Donot P, Soulier A, Pagkalos E, Sakellariou G, Intrator L, Bartosch B, Pawlotsky JM, Cosset FL. Human serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate with viral replication kinetics at the acute phase of hepatitis C virus infection. J Virol 2005; 79:6023-34. [PMID: 15857988 PMCID: PMC1091689 DOI: 10.1128/jvi.79.10.6023-6034.2005] [Citation(s) in RCA: 209] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The factors leading to spontaneous clearance of hepatitis C virus (HCV) or to viral persistence are elusive. Understanding virus-host interactions that enable acute HCV clearance is key to the development of more effective therapeutic and prophylactic strategies. Here, using a sensitive neutralization assay based on infectious HCV pseudoparticles (HCVpp), we have studied the kinetics of humoral responses in a cohort of acute-phase patients infected during a single nosocomial outbreak in a hemodialysis center. The 17 patients were monitored for the spontaneous outcome of HCV infection for 6 months before a treatment decision was made. Blood samples were taken frequently (15 +/- 4 per patient). Phylogenetic analysis of the predominant virus(es) revealed infection by only one of two genotype 1b strains. While all patients seroconverted, their sera induced two opposing effects in HCVpp infection assays: inhibition and facilitation. Furthermore, the ability of sera to facilitate or inhibit infection correlated with the presence of either infecting HCV strain and divided the patients into two groups. In group 1, the progressive emergence of a relatively strong neutralizing response correlated with a fluctuating decrease in high initial viremia, leading to control of viral replication. Patients in group 2 failed to reduce viremia within the acute phase, and no neutralizing responses were detected despite seroconversion. Strikingly, sera of group 2, as well as naive sera, facilitated infection by HCVpp displaying HCV glycoproteins from different genotypes and strains, including those retrieved from patients. These results provide new insights into the mechanisms of viral persistence and immune control of viremia.
Collapse
|
42
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004; 114:250-9. [PMID: 15254592 PMCID: PMC449747 DOI: 10.1172/jci20985] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Accepted: 05/18/2004] [Indexed: 12/11/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Seifert U, Liermann H, Racanelli V, Halenius A, Wiese M, Wedemeyer H, Ruppert T, Rispeter K, Henklein P, Sijts A, Hengel H, Kloetzel PM, Rehermann B. Hepatitis C virus mutation affects proteasomal epitope processing. J Clin Invest 2004. [PMID: 15254592 DOI: 10.1172/jci200420985] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The high incidence of hepatitis C virus (HCV) persistence raises the question of how HCV interferes with host immune responses. Studying a single-source HCV outbreak, we identified an HCV mutation that impaired correct carboxyterminal cleavage of an immunodominant HLA-A2-restricted CD8 cell epitope that is frequently recognized by recovered patients. The mutation, a conservative HCV nonstructural protein 3 (NS3) tyrosine to phenylalanine substitution, was absent in 54 clones of the infectious source, but present in 15/21 (71%) HLA-A2-positive and in 11/24 (46%) HLA-A2-negative patients with chronic hepatitis C. In order to analyze whether the mutation affected the processing of the HLA-A2-restricted CD8 cell epitope, mutant and wild-type NS3 polypeptides were digested in vitro with 20S constitutive proteasomes and with immunoproteasomes. The presence of the mutation resulted in impaired carboxyterminal cleavage of the epitope. In order to analyze whether impaired epitope processing affected T cell priming in vivo, HLA-A2-transgenic mice were infected with vaccinia viruses encoding either wild-type or mutant HCV NS3. The mutant induced fewer epitope-specific, IFN-gamma;-producing and fewer tetramer(+) cells than the wild type. These data demonstrate how a conservative mutation in the flanking region of an HCV epitope impairs the induction of epitope-specific CD8(+) T cells and reveal a mechanism that may contribute to viral sequence evolution in infected patients.
Collapse
Affiliation(s)
- Ulrike Seifert
- Institute of Biochemistry, Charité, Humboldt University, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Hepatitis C virus is an RNA virus that usually establishes persistent infection in its host. As an important cause of cirrhosis and hepatocellular carcinoma worldwide, hepatitis C is a growing public health concern. Despite recent advances in therapy, most people infected with the virus can expect lifelong infection. In the minority of those exposed and who spontaneously clear virus, a robust hepatitis C virus-specific T cell response of T helper 1 type correlates with resolution. The longevity of this response in the recovered state and the potential for hepatitis C virus-specific T cells to protect against future infection are critical parameters for vaccine design. RECENT FINDINGS The literature of the past year dissected components of protective immunity to hepatitis C and emphasized the importance of the CD4 helper response in both the expansion and maintenance of hepatitis C virus-specific CD8(+) T cells. Other important studies examined how the virus interacts with immune cells to subvert both innate and adaptive immune responses in acute and chronic infection. SUMMARY Defining the essential components of protective immunity against a highly mutable virus like hepatitis C underpins successful vaccine design. By understanding viral and host factors which influence hepatitis C virus-specific T cell maintenance and function, we are better equipped to devise immunomodulatory therapies and vaccines which induce robust and lasting immunity.
Collapse
Affiliation(s)
- Jama M Darling
- Department of Veterans Affairs Medical Center and University of California at San Francisco, San Francisco, California 94121, USA
| | | |
Collapse
|
45
|
Carlos MP, Yamamura Y, Vu Q, Conzen K, Anderson DE, Torres JV. Humoral immunity to immunodominant epitopes of Hepatitis C virus in individuals infected with genotypes 1a or 1b. Clin Immunol 2004; 111:22-7. [PMID: 15093548 DOI: 10.1016/j.clim.2003.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 11/17/2003] [Indexed: 02/07/2023]
Abstract
Cellular immunity against multiple Hepatitis C virus (HCV) proteins is observed in patients acutely infected with HCV most of whom later resolve infection. We wished to assess humoral immunity in patients infected with HCV 1a or 1b genotypes in relation to viral load using plasma samples from HCV-infected individuals and a panel of peptides representing immunodominant epitopes of HCV structural and nonstructural proteins. Plasma from HCV 1a- and 1b-infected patients, respectively, were divided into two groups: patients with low viral load (<==100,000 RNA copies/ml) and patients with high viral load (>/=10,000,000 RNA copies/ml). The antigens were peptides representing epitopes from immunodominant regions of HCV core, E2, NS3, and NS4 proteins, as well as the hypervariable (HVR) epitopes in E2 from genotypes 1a and 1b. Individuals infected with HCV 1a evoked a stronger immune response to many immunodominant epitopes of HCV relative to individuals infected with HCV 1b. Moreover, among individuals infected with HCV 1a, those with low viral loads mounted significantly greater responses against these epitopes than did individuals with high viral loads. Our observations demonstrate that quantitatively different antibody responses are elicited against HCV depending on the genotype of infecting virus, and suggest that humoral immunity directed against multiple immunodominant epitopes in HCV 1a-infected individuals may help lower viral load in vivo.
Collapse
Affiliation(s)
- Maria P Carlos
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
46
|
Sester M, Sester U, Clauer P, Heine G, Mack U, Moll T, Sybrecht GW, Lalvani A, Köhler H. Tuberculin skin testing underestimates a high prevalence of latent tuberculosis infection in hemodialysis patients. Kidney Int 2004; 65:1826-34. [PMID: 15086923 DOI: 10.1111/j.1523-1755.2004.00586.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Identification of latent Mycobacterium tuberculosis infection in hemodialysis patients is hampered by reduced sensitivity of the established tuberculin skin test. We investigated whether in vitro quantitation of purified protein derivative (PPD)-specific T cells using a rapid 6-hour assay may represent an alternative approach for detecting latent infection. METHODS One hundred and twenty-seven hemodialysis patients and 218 control patients (blood donors, health care workers, and control patients) were analyzed. Specific T cells toward PPD and early secretory antigenic target-6 (ESAT-6), a protein expressed in Mycobacterium tuberculosis but absent from M. bovis bacillus Calmette-Guerin (BCG) vaccine strains, were flow cytometrically quantified from whole blood, and results were compared with skin testing. RESULTS Compared to blood donors, a high proportion of both health care workers (48.6%) and hemodialysis patients (53.5%) had PPD-specific Th1-type CD4 T-cell reactivity with similar median frequencies of PPD-specific T cells (0.17%; 0.06-3.75% vs. 0.26%; 0.06-4.12%, respectively). In contrast, skin test reactivity was significantly reduced in hemodialysis patients. Whereas 85.7% of control patients with PPD reactivity in vitro were skin test-positive, the respective percentage among hemodialysis patients was 51.4% (P= 0.007). Among individuals with PPD reactivity in vitro, approximately 50% had T cells specific for ESAT-6. CONCLUSION Unlike the skin test, measurement of PPD reactivity by in vitro quantitation of PPD-specific T cells was unaffected by uremia-associated immunosuppression. This whole-blood assay may thus be a valuable alternative to skin testing, and detection of ESAT-6-specific T cells could moreover allow distinction of latent M. tuberculosis infection from BCG-induced reactivity to PPD. The assay is well suited for clinical use and may facilitate targeting of preventative therapy in high-risk individuals.
Collapse
Affiliation(s)
- Martina Sester
- Medical Department IV, University of the Saarland, Homburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Simon BE, Cornell KA, Clark TR, Chou S, Rosen HR, Barry RA. DNA vaccination protects mice against challenge with Listeria monocytogenes expressing the hepatitis C virus NS3 protein. Infect Immun 2003; 71:6372-80. [PMID: 14573658 PMCID: PMC219586 DOI: 10.1128/iai.71.11.6372-6380.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The goal of this study was to develop a new surrogate challenge model for use in evaluating protective cell-mediated immune responses against hepatitis C virus (HCV) antigens. The use of recombinant Listeria monocytogenes organisms which express HCV antigens provides novel tools with which to assay such in vivo protection, as expression of immunity against this hepatotropic bacterial pathogen is dependent on antigen-specific CD8(+) T lymphocytes. A plasmid DNA vaccine encoding a ubiquitin-NS3 fusion protein was generated, and its efficacy was confirmed by in vivo induction of NS3-specific, gamma interferon-secreting T cells following vaccination of BALB/c mice. These immunized mice also exhibited specific in vivo protection against subsequent challenge with a recombinant L. monocytogenes strain (TC-LNS3) expressing the NS3 protein. Notably, sublethal infection of naive mice with strain TC-LNS3 induced similar NS3-specific T-cell responses. These findings suggest that recombinant strains of L. monocytogenes expressing HCV antigens should prove useful for evaluating, or even inducing, protective immune responses against HCV antigens.
Collapse
Affiliation(s)
- Benjamin E Simon
- Department of Veterans Affairs Medical Center, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
48
|
Morishima C, Musey L, Elizaga M, Gaba K, Allison M, Carithers RL, Gretch DR, McElrath MJ. Hepatitis C virus-specific cytolytic T cell responses after antiviral therapy. Clin Immunol 2003; 108:211-20. [PMID: 14499244 DOI: 10.1016/s1521-6616(03)00142-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antigen-specific T cells are likely to provide a critical defense against hepatitis C virus (HCV) infection. However, their detection in blood is uncommon except in persons who undergo spontaneous recovery after acute HCV infection. We postulated that virological responses after antiviral interferon-alpha therapy may be associated with enhanced cytolytic T cell immunity. Peripheral blood memory CTL responses were quantified using short term limiting dilution culture, with cytolytic function detected by standard chromium release assay. In this cross-sectional study, 5 of 11 interferon-alpha or interferon-alpha plus ribavirin-treated subjects exhibited cytolytic T cell responses after therapy completion; 4 of these 5 subjects were HCV RNA negative at the time of assay. In contrast, only 1 of 9 untreated chronically viremic subjects had detectable HCV-specific cytolytic T cell responses. Although the requisite factors necessary to achieve sustained virologic response after therapy remain largely undefined, the findings presented here suggest that antiviral therapy-induced virological clearance may be associated with the induction, expansion, and/or recirculation of HCV antigen-specific cytolytic T cells, and may play a role in the maintenance of a nonviremic state.
Collapse
Affiliation(s)
- Chihiro Morishima
- University of Washington, School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Hepatitis C virus (HCV) is an emerging virus of medical importance. A majority of HCV infections become chronic and lead to chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV usually induces robust immune responses, but it frequently escapes the immune defense to establish persistent infection. The fact that HCV exists as an evolving quasispecies plays an important role in the selection of escape mutants. Furthermore, several viral proteins interfere with cellular functions, in particular, those involved in the immune response of the host. Several HCV proteins also modulate cell signalling through interaction with different effectors involved in cell proliferation and apoptosis, or in the interferon-signalling pathway. In addition, HCV infects immune cells such as B and T cells, and thus affects their normal functions. These various strategies used by HCV to counter the immune response of the host are reviewed here. A better understanding of these mechanisms would help design new therapeutic targets.
Collapse
Affiliation(s)
- Nicole Pavio
- Department of Molecular Microbiology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA
| | | |
Collapse
|
50
|
Gigliotti AR, Fioredda F, Giacchino R. Hepatitis B and C infection in children undergoing chemotherapy or bone marrow transplantation. J Pediatr Hematol Oncol 2003; 25:184-92. [PMID: 12621235 DOI: 10.1097/00043426-200303000-00002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite preventive measures, patients who have cancer or who undergo bone marrow transplantation remain at higher risk of viral infection since they often receive multiple blood products. This category of patients also includes subjects from countries that are highly endemic for hepatitis B virus and hepatitis C virus infection and who travel to developed countries for specialized treatment. This review discusses the current opinions concerning the diagnostic, clinical, and therapeutic aspects of hepatitis B and C virus infection in different groups of patients: children with chronic infection before chemotherapy, children infected during chemotherapy or bone marrow transplantation, and patients with chronic infection after the end of treatment.
Collapse
Affiliation(s)
- Anna Rita Gigliotti
- Infectiuous Disease Unit, Giannina Gaslini Children's Hospital, Genoa, Italy
| | | | | |
Collapse
|