1
|
Herrera C, Veazey R, Lemke MM, Arnold K, Kim JH, Shattock RJ. Ex Vivo Evaluation of Mucosal Responses to Vaccination with ALVAC and AIDSVAX of Non-Human Primates. Vaccines (Basel) 2022; 10:187. [PMID: 35214645 PMCID: PMC8879115 DOI: 10.3390/vaccines10020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
Non-human primates (NHPs) remain the most relevant challenge model for the evaluation of HIV vaccine candidates; however, discrepancies with clinical trial results have emphasized the need to further refine the NHP model. Furthermore, classical evaluation of vaccine candidates is based on endpoints measured systemically. We assessed the mucosal responses elicited upon vaccination with ALVAC and AIDSVAX using ex vivo Rhesus macaque mucosal tissue explant models. Following booster immunization with ALVAC/AIDSVAX, anti-gp120 HIV-1CM244-specific IgG and IgA were detected in culture supernatant cervicovaginal and colorectal tissue explants, as well as systemically. Despite protection from ex vivo viral challenge, no neutralization was observed with tissue explant culture supernatants. Priming with ALVAC induced distinct cytokine profiles in cervical and rectal tissue. However, ALVAC/AIDSVAX boosts resulted in similar modulations in both mucosal tissues with a statistically significant decrease in cytokines linked to inflammatory responses and lymphocyte differentiation. With ALVAC/AIDSVAX boosts, significant correlations were observed between cytokine levels and specific IgA in cervical explants and specific IgG and IgA in rectal tissue. The cytokine secretome revealed differences between vaccination with ALVAC and ALVAC/AIDSVAX not previously observed in mucosal tissues and distinct from the systemic response, which could represent a biosignature of the vaccine combination.
Collapse
Affiliation(s)
- Carolina Herrera
- Department of Medicine, Imperial College London, London W2 1PG, UK;
| | - Ronald Veazey
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, GA 70433, USA;
| | - Melissa M. Lemke
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (M.M.L.); (K.A.)
| | - Kelly Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (M.M.L.); (K.A.)
| | - Jerome H. Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MA 20817, USA;
| | | |
Collapse
|
2
|
Maternal HIV-1 Env Vaccination for Systemic and Breast Milk Immunity To Prevent Oral SHIV Acquisition in Infant Macaques. mSphere 2018; 3:mSphere00505-17. [PMID: 29359183 PMCID: PMC5760748 DOI: 10.1128/msphere.00505-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/11/2017] [Indexed: 01/20/2023] Open
Abstract
Without novel strategies to prevent mother-to-child HIV-1 transmission, more than 5% of HIV-1-exposed infants will continue to acquire HIV-1, most through breastfeeding. This study of rhesus macaque dam-and-infant pairs is the first preclinical study to investigate the protective role of transplacentally transferred HIV-1 vaccine-elicited antibodies and HIV-1 vaccine-elicited breast milk antibody responses in infant oral virus acquisition. It revealed highly variable placental transfer of potentially protective antibodies and emphasized the importance of pregnancy immunization timing to reach peak antibody levels prior to delivery. While there was no discernible impact of maternal immunization on late infant oral virus acquisition, we observed a strong correlation between the percentage of activated CD4+ T cells in infant peripheral blood and a reduced number of challenges to infection. This finding highlights an important consideration for future studies evaluating alternative strategies to further reduce the vertical HIV-1 transmission risk. Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) contributes to an estimated 150,000 new infections annually. Maternal vaccination has proven safe and effective at mitigating the impact of other neonatal pathogens and is one avenue toward generating the potentially protective immune responses necessary to inhibit HIV-1 infection of infants through breastfeeding. In the present study, we tested the efficacy of a maternal vaccine regimen consisting of a modified vaccinia virus Ankara (MVA) 1086.C gp120 prime-combined intramuscular-intranasal gp120 boost administered during pregnancy and postpartum to confer passive protection on infant rhesus macaques against weekly oral exposure to subtype C simian-human immunodeficiency virus 1157ipd3N4 (SHIV1157ipd3N4) starting 6 weeks after birth. Despite eliciting a robust systemic envelope (Env)-specific IgG response, as well as durable milk IgA responses, the maternal vaccine did not have a discernible impact on infant oral SHIV acquisition. This study revealed considerable variation in vaccine-elicited IgG placental transfer and a swift decline of both Env-specific antibodies (Abs) and functional Ab responses in the infants prior to the first challenge, illustrating the importance of pregnancy immunization timing to elicit optimal systemic Ab levels at birth. Interestingly, the strongest correlation to the number of challenges required to infect the infants was the percentage of activated CD4+ T cells in the infant peripheral blood at the time of the first challenge. These findings suggest that, in addition to maternal immunization, interventions that limit the activation of target cells that contribute to susceptibility to oral HIV-1 acquisition independently of vaccination may be required to reduce infant HIV-1 acquisition via breastfeeding. IMPORTANCE Without novel strategies to prevent mother-to-child HIV-1 transmission, more than 5% of HIV-1-exposed infants will continue to acquire HIV-1, most through breastfeeding. This study of rhesus macaque dam-and-infant pairs is the first preclinical study to investigate the protective role of transplacentally transferred HIV-1 vaccine-elicited antibodies and HIV-1 vaccine-elicited breast milk antibody responses in infant oral virus acquisition. It revealed highly variable placental transfer of potentially protective antibodies and emphasized the importance of pregnancy immunization timing to reach peak antibody levels prior to delivery. While there was no discernible impact of maternal immunization on late infant oral virus acquisition, we observed a strong correlation between the percentage of activated CD4+ T cells in infant peripheral blood and a reduced number of challenges to infection. This finding highlights an important consideration for future studies evaluating alternative strategies to further reduce the vertical HIV-1 transmission risk.
Collapse
|
3
|
Abstract
Human Immunodeficiency Virus (HIV) transmission through genital and rectal mucosa has led to intensive study of mucosal immune responses to HIV and to the development of a vaccine administered locally. However, HIV transmission through the oral mucosa is a rare event. The oral mucosa represents a physical barrier and contains immunological elements to prevent the invasion of pathogenic organisms. This particular defense differs between micro-compartments represented by the salivary glands, oral mucosa, and palatine tonsils. Secretory immunity of the salivary glands, unique features of cellular structure in the oral mucosa and palatine tonsils, the high rate of oral blood flow, and innate factors in saliva may all contribute to the resistance to HIV/Simian Immunodeficiency Virus (SIV) oral mucosal infection. In the early stage of HIV infection, humoral and cellular immunity and innate immune functions in oral mucosa are maintained. However, these particular immune responses may all be impaired as a result of chronic HIV infection. A better understanding of oral mucosal immune mechanisms should lead to improved prevention of viral and bacterial infections, particularly in immunocompromised persons with Acquired Immune Deficiency Syndrome (AIDS), and to the development of a novel strategy for a mucosal AIDS vaccine, as well as vaccines to combat other oral diseases, such as dental caries and periodontal diseases.
Collapse
Affiliation(s)
- F X Lü
- California National Primate Research Center and Center for Comparative Medicine, University of California Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
4
|
De Gregorio PR, Juárez Tomás MS, Nader-Macías MEF. Immunomodulation of Lactobacillus reuteri CRL1324 on Group B Streptococcus Vaginal Colonization in a Murine Experimental Model. Am J Reprod Immunol 2015; 75:23-35. [PMID: 26547516 DOI: 10.1111/aji.12445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/06/2015] [Indexed: 12/26/2022] Open
Abstract
PROBLEM Maternal Group B Streptococcus (GBS) colonization is a risk factor for infectious disease in newborns. One promising strategy is the modulation of vaginal defense to increase the host's ability to combat infection. METHOD OF STUDY The effect of intravaginal (i.va.) Lactobacillus reuteri CRL1324 inoculation on different immune cell populations, cytokines, and immunoglobulin isotypes in a murine model of GBS vaginal colonization was evaluated. RESULTS Seven i.va. inoculations of L. reuteri CRL1324 previous to GBS challenge showed an immunomodulatory effect on the cells and mediators of innate immunity, decreasing the number of neutrophils induced by the pathogen and increasing the activated macrophage population. Moreover, increases in B lymphocytes and IgA and IgG subclasses were observed in mice inoculated with L. reuteri CRL1324 and then challenged with GBS. CONCLUSION Lactobacillus reuteri CRL1324 shows a protective effect against GBS colonization that could be mediated by the modulation of the immune response.
Collapse
|
5
|
Pollara J, McGuire E, Fouda GG, Rountree W, Eudailey J, Overman RG, Seaton KE, Deal A, Edwards RW, Tegha G, Kamwendo D, Kumwenda J, Nelson JAE, Liao HX, Brinkley C, Denny TN, Ochsenbauer C, Ellington S, King CC, Jamieson DJ, van der Horst C, Kourtis AP, Tomaras GD, Ferrari G, Permar SR. Association of HIV-1 Envelope-Specific Breast Milk IgA Responses with Reduced Risk of Postnatal Mother-to-Child Transmission of HIV-1. J Virol 2015; 89:9952-61. [PMID: 26202232 PMCID: PMC4577885 DOI: 10.1128/jvi.01560-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/14/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Infants born to HIV-1-infected mothers in resource-limited areas where replacement feeding is unsafe and impractical are repeatedly exposed to HIV-1 throughout breastfeeding. Despite this, the majority of infants do not contract HIV-1 postnatally, even in the absence of maternal antiretroviral therapy. This suggests that immune factors in breast milk of HIV-1-infected mothers help to limit vertical transmission. We compared the HIV-1 envelope-specific breast milk and plasma antibody responses of clade C HIV-1-infected postnatally transmitting and nontransmitting mothers in the control arm of the Malawi-based Breastfeeding Antiretrovirals and Nutrition Study using multivariable logistic regression modeling. We found no association between milk or plasma neutralization activity, antibody-dependent cell-mediated cytotoxicity, or HIV-1 envelope-specific IgG responses and postnatal transmission risk. While the envelope-specific breast milk and plasma IgA responses also did not reach significance in predicting postnatal transmission risk in the primary model after correction for multiple comparisons, subsequent exploratory analysis using two distinct assay methodologies demonstrated that the magnitudes of breast milk total and secretory IgA responses against a consensus HIV-1 envelope gp140 (B.con env03) were associated with reduced postnatal transmission risk. These results suggest a protective role for mucosal HIV-1 envelope-specific IgA responses in the context of postnatal virus transmission. This finding supports further investigations into the mechanisms by which mucosal IgA reduces risk of HIV-1 transmission via breast milk and into immune interventions aimed at enhancing this response. IMPORTANCE Infants born to HIV-1-infected mothers are repeatedly exposed to the virus in breast milk. Remarkably, the transmission rate is low, suggesting that immune factors in the breast milk of HIV-1-infected mothers help to limit transmission. We compared the antibody responses in plasma and breast milk of HIV-1-transmitting and -nontransmitting mothers to identify responses that correlated with reduced risk of postnatal HIV-1 transmission. We found that neither plasma nor breast milk IgG antibody responses were associated with risk of HIV-1 transmission. In contrast, the magnitudes of the breast milk IgA and secretory IgA responses against HIV-1 envelope proteins were associated with reduced risk of postnatal HIV-1 transmission. The results of this study support further investigations of the mechanisms by which mucosal IgA may reduce the risk of HIV-1 transmission via breastfeeding and the development of strategies to enhance milk envelope-specific IgA responses to reduce mother-to-child HIV transmission and promote an HIV-free generation.
Collapse
MESH Headings
- Adult
- Antibodies, Neutralizing/metabolism
- Antibody Specificity
- Antibody-Dependent Cell Cytotoxicity
- Breast Feeding/adverse effects
- Female
- HIV Antibodies/blood
- HIV Antibodies/metabolism
- HIV Infections/complications
- HIV Infections/immunology
- HIV Infections/transmission
- HIV-1/immunology
- Humans
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin A/metabolism
- Immunoglobulin A, Secretory/metabolism
- Immunoglobulin G/metabolism
- Infant
- Infant, Newborn
- Infectious Disease Transmission, Vertical
- Malawi
- Milk, Human/immunology
- Milk, Human/virology
- Models, Immunological
- Pregnancy
- Pregnancy Complications, Infectious/immunology
- Pregnancy Complications, Infectious/virology
- Risk Factors
- Young Adult
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Justin Pollara
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Erin McGuire
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Genevieve G Fouda
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Wes Rountree
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Josh Eudailey
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - R Glenn Overman
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kelly E Seaton
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aaron Deal
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - R Whitney Edwards
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gerald Tegha
- The University of North Carolina Project, Lilongwe, Malawi
| | | | - Jacob Kumwenda
- The University of North Carolina Project, Lilongwe, Malawi
| | - Julie A E Nelson
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christie Brinkley
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Thomas N Denny
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina Ochsenbauer
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sascha Ellington
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Caroline C King
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Denise J Jamieson
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Charles van der Horst
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Athena P Kourtis
- Division of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Georgia D Tomaras
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Guido Ferrari
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Sallie R Permar
- Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
6
|
Sholukh AM, Watkins JD, Vyas HK, Gupta S, Lakhashe SK, Thorat S, Zhou M, Hemashettar G, Bachler BC, Forthal DN, Villinger F, Sattentau QJ, Weiss RA, Agatic G, Corti D, Lanzavecchia A, Heeney JL, Ruprecht RM. Defense-in-depth by mucosally administered anti-HIV dimeric IgA2 and systemic IgG1 mAbs: complete protection of rhesus monkeys from mucosal SHIV challenge. Vaccine 2015; 33:2086-95. [PMID: 25769884 DOI: 10.1016/j.vaccine.2015.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/03/2015] [Accepted: 02/07/2015] [Indexed: 12/19/2022]
Abstract
Although IgA is the most abundantly produced immunoglobulin in humans, its role in preventing HIV-1 acquisition, which occurs mostly via mucosal routes, remains unclear. In our passive mucosal immunizations of rhesus macaques (RMs), the anti-HIV-1 neutralizing monoclonal antibody (nmAb) HGN194, given either as dimeric IgA1 (dIgA1) or dIgA2 intrarectally (i.r.), protected 83% or 17% of the RMs against i.r. simian-human immunodeficiency virus (SHIV) challenge, respectively. Data from the RV144 trial implied that vaccine-induced plasma IgA counteracted the protective effector mechanisms of IgG1 with the same epitope specificity. We thus hypothesized that mucosal dIgA2 might diminish the protection provided by IgG1 mAbs targeting the same epitope. To test our hypothesis, we administered HGN194 IgG1 intravenously (i.v.) either alone or combined with i.r. HGN194 dIgA2. We enrolled SHIV-exposed, persistently aviremic RMs protected by previously administered nmAbs; RM anti-human IgG responses were undetectable. However, low-level SIV Gag-specific proliferative T-cell responses were found. These animals resemble HIV-exposed, uninfected humans, in which local and systemic cellular immune responses have been observed. HGN194 IgG1 and dIgA2 used alone and the combination of the two neutralized the challenge virus equally well in vitro. All RMs given only i.v. HGN194 IgG1 became infected. In contrast, all RMs given HGN194 IgG1+dIgA2 were completely protected against high-dose i.r. SHIV-1157ipEL-p challenge. These data imply that combining suboptimal defenses at the mucosal and systemic levels can completely prevent virus acquisition. Consequently, active vaccination should focus on defense-in-depth, a strategy that seeks to build up defensive fall-back positions well behind the fortified frontline.
Collapse
Affiliation(s)
- Anton M Sholukh
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jennifer D Watkins
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Hemant K Vyas
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sandeep Gupta
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Samir K Lakhashe
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Swati Thorat
- Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Mingkui Zhou
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | | | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Francois Villinger
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA; Yerkes National Primate Research Center, Atlanta, GA, USA
| | - Quentin J Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Robin A Weiss
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | | | - Davide Corti
- Humabs BioMed SA, Bellinzona 6500, Switzerland; Institute for Research in Biomedicine, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Bellinzona 6500, Switzerland; Eidgenoessische Technische Hochschule, Zurich CH-8093, Switzerland
| | - Jonathan L Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ruth M Ruprecht
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, USA; Southwest National Primate Research Center, San Antonio, TX, USA; Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Braibant M, Barin F. The role of neutralizing antibodies in prevention of HIV-1 infection: what can we learn from the mother-to-child transmission context? Retrovirology 2013; 10:103. [PMID: 24099103 PMCID: PMC3851888 DOI: 10.1186/1742-4690-10-103] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
In most viral infections, protection through existing vaccines is linked to the presence of vaccine-induced neutralizing antibodies (NAbs). However, more than 30 years after the identification of AIDS, the design of an immunogen able to induce antibodies that would neutralize the highly diverse HIV-1 variants remains one of the most puzzling challenges of the human microbiology. The role of antibodies in protection against HIV-1 can be studied in a natural situation that is the mother-to-child transmission (MTCT) context. Indeed, at least at the end of pregnancy, maternal antibodies of the IgG class are passively transferred to the fetus protecting the neonate from new infections during the first weeks or months of life. During the last few years, strong data, presented in this review, have suggested that some NAbs might confer protection toward neonatal HIV-1 infection. In cases of transmission, it has been shown that the viral population that is transmitted from the mother to the infant is usually homogeneous, genetically restricted and resistant to the maternal HIV-1-specific antibodies. Although the breath of neutralization was not associated with protection, it has not been excluded that NAbs toward specific HIV-1 strains might be associated with a lower rate of MTCT. A better identification of the antibody specificities that could mediate protection toward MTCT of HIV-1 would provide important insights into the antibody responses that would be useful for vaccine development. The most convincing data suggesting that NAbs migh confer protection against HIV-1 infection have been obtained by experiments of passive immunization of newborn macaques with the first generation of human monoclonal broadly neutralizing antibodies (HuMoNAbs). However, these studies, which included only a few selected subtype B challenge viruses, provide data limited to protection against a very restricted number of isolates and therefore have limitations in addressing the hypervariability of HIV-1. The recent identification of highly potent second-generation cross-clade HuMoNAbs provides a new opportunity to evaluate the efficacy of passive immunization to prevent MTCT of HIV-1.
Collapse
Affiliation(s)
- Martine Braibant
- Université François-Rabelais, UFR Médecine, Inserm U966 10 bld Tonnellé, cedex, 37032 Tours, France.
| | | |
Collapse
|
8
|
Moussa S, Jenabian MA, Gody JC, Léal J, Grésenguet G, Le Faou A, Bélec L. Adaptive HIV-specific B cell-derived humoral immune defenses of the intestinal mucosa in children exposed to HIV via breast-feeding. PLoS One 2013; 8:e63408. [PMID: 23704905 PMCID: PMC3660449 DOI: 10.1371/journal.pone.0063408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/01/2013] [Indexed: 11/30/2022] Open
Abstract
Background We evaluated whether B cell-derived immune defenses of the gastro-intestinal tract are activated to produce HIV-specific antibodies in children continuously exposed to HIV via breast-feeding. Methods Couples of HIV-1-infected mothers (n = 14) and their breastfed non HIV-infected (n = 8) and HIV-infected (n = 6) babies, and healthy HIV-negative mothers and breastfed babies (n = 10) as controls, were prospectively included at the Complexe Pédiatrique of Bangui, Central African Republic. Immunoglobulins (IgA, IgG and IgM) and anti-gp160 antibodies from mother’s milk and stools of breastfed children were quantified by ELISA. Immunoaffinity purified anti-gp160 antibodies were characterized functionally regarding their capacity to reduce attachment and/or infection of R5- and X4- tropic HIV-1 strains on human colorectal epithelial HT29 cells line or monocyte-derived-macrophages (MDM). Results The levels of total IgA and IgG were increased in milk of HIV-infected mothers and stools of HIV-exposed children, indicating the activation of B cell-derived mucosal immunity. Breast milk samples as well as stool samples from HIV-negative and HIV-infected babies exposed to HIV by breast-feeding, contained high levels of HIV-specific antibodies, mainly IgG antibodies, less frequently IgA antibodies, and rarely IgM antibodies. Relative ratios of excretion by reference to lactoferrin calculated for HIV-specific IgA, IgG and IgM in stools of HIV-exposed children were largely superior to 1, indicating active production of HIV-specific antibodies by the intestinal mucosa. Antibodies to gp160 purified from pooled stools of HIV-exposed breastfed children inhibited the attachment of HIV-1NDK on HT29 cells by 63% and on MDM by 77%, and the attachment of HIV-1JRCSF on MDM by 40%; and the infection of MDM by HIV-1JRCSF by 93%. Conclusions The intestinal mucosa of children exposed to HIV by breast-feeding produces HIV-specific antibodies harbouring in vitro major functional properties against HIV. These observations lay the conceptual basis for the design of a prophylactic vaccine against HIV in exposed children.
Collapse
Affiliation(s)
- Sandrine Moussa
- Institut Pasteur de Bangui, Laboratoire des Rétrovirus-VIH, Bangui, Central African Republic.
| | | | | | | | | | | | | |
Collapse
|
9
|
Mabuka J, Nduati R, Odem-Davis K, Peterson D, Overbaugh J. HIV-specific antibodies capable of ADCC are common in breastmilk and are associated with reduced risk of transmission in women with high viral loads. PLoS Pathog 2012; 8:e1002739. [PMID: 22719248 PMCID: PMC3375288 DOI: 10.1371/journal.ppat.1002739] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/23/2012] [Indexed: 01/25/2023] Open
Abstract
There are limited data describing the functional characteristics of HIV-1 specific antibodies in breast milk (BM) and their role in breastfeeding transmission. The ability of BM antibodies to bind HIV-1 envelope, neutralize heterologous and autologous viruses and direct antibody-dependent cell cytotoxicity (ADCC) were analyzed in BM and plasma obtained soon after delivery from 10 non-transmitting and 9 transmitting women with high systemic viral loads and plasma neutralizing antibodies (NAbs). Because subtype A is the dominant subtype in this cohort, a subtype A envelope variant that was sensitive to plasma NAbs was used to assess the different antibody activities. We found that NAbs against the subtype A heterologous virus and/or the woman's autologous viruses were rare in IgG and IgA purified from breast milk supernatant (BMS)--only 4 of 19 women had any detectable NAb activity against either virus. Detected NAbs were of low potency (median IC50 value of 10 versus 647 for the corresponding plasma) and were not associated with infant infection (p = 0.58). The low NAb activity in BMS versus plasma was reflected in binding antibody levels: HIV-1 envelope specific IgG titers were 2.2 log(10) lower (compared to 0.59 log(10) lower for IgA) in BMS versus plasma. In contrast, antibodies capable of ADCC were common and could be detected in the BMS from all 19 women. BMS envelope-specific IgG titers were associated with both detection of IgG NAbs (p = 0.0001) and BMS ADCC activity (p = 0.014). Importantly, BMS ADCC capacity was inversely associated with infant infection risk (p = 0.039). Our findings indicate that BMS has low levels of envelope specific IgG and IgA with limited neutralizing activity. However, this small study of women with high plasma viral loads suggests that breastmilk ADCC activity is a correlate of transmission that may impact infant infection risk.
Collapse
Affiliation(s)
- Jennifer Mabuka
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Program of Pathobiology, Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Ruth Nduati
- Department of Pediatrics, University of Nairobi, Nairobi, Kenya
| | - Katherine Odem-Davis
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Dylan Peterson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Gordon SN, Kines RC, Kutsyna G, Ma ZM, Hryniewicz A, Roberts JN, Fenizia C, Hidajat R, Brocca-Cofano E, Cuburu N, Buck CB, Bernardo ML, Robert-Guroff M, Miller CJ, Graham BS, Lowy DR, Schiller JT, Franchini G. Targeting the vaginal mucosa with human papillomavirus pseudovirion vaccines delivering simian immunodeficiency virus DNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:714-23. [PMID: 22174446 PMCID: PMC3253208 DOI: 10.4049/jimmunol.1101404] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The majority of HIV infections occur via mucosal transmission. Vaccines that induce memory T and B cells in the female genital tract may prevent the establishment and systemic dissemination of HIV. We tested the immunogenicity of a vaccine that uses human papillomavirus (HPV)-based gene transfer vectors, also called pseudovirions (PsVs), to deliver SIV genes to the vaginal epithelium. Our findings demonstrate that this vaccine platform induces gene expression in the genital tract in both cynomolgus and rhesus macaques. Intravaginal vaccination with HPV16, HPV45, and HPV58 PsVs delivering SIV Gag DNA induced Gag-specific Abs in serum and the vaginal tract, and T cell responses in blood, vaginal mucosa, and draining lymph nodes that rapidly expanded following intravaginal exposure to SIV(mac251.) HPV PsV-based vehicles are immunogenic, which warrant further testing as vaccine candidates for HIV and may provide a useful model to evaluate the benefits and risks of inducing high levels of SIV-specific immune responses at mucosal sites prior to SIV infection.
Collapse
Affiliation(s)
- Shari N. Gordon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rhonda C. Kines
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Galyna Kutsyna
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zhong-Min Ma
- California National Primate Research Center and Center for Comparative Medicine, University of California Davis, Davis, CA 94118
| | - Anna Hryniewicz
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jeffery N. Roberts
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Claudio Fenizia
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rachmat Hidajat
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Egidio Brocca-Cofano
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Nicolas Cuburu
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Christopher B. Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Marcelino L. Bernardo
- Science Applications International Corporation (SAIC)-Frederick, Frederick, MD 21702
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Christopher J. Miller
- California National Primate Research Center and Center for Comparative Medicine, University of California Davis, Davis, CA 94118
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Douglas R. Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - John T. Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Bélec L, Kourtis AP. B lymphocyte-derived humoral immune defenses in breast milk transmission of the HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:139-60. [PMID: 22454347 DOI: 10.1007/978-1-4614-2251-8_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Laurent Bélec
- Sorbonne Paris Cité (Paris V), and Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Université Paris Descartes, 15-20 rue Leblanc, 75 908, Paris Cedex 15, France.
| | | |
Collapse
|
12
|
Mestecky J, Wright PF, Lopalco L, Staats HF, Kozlowski PA, Moldoveanu Z, Alexander RC, Kulhavy R, Pastori C, Maboko L, Riedner G, Zhu Y, Wrinn T, Hoelscher M. Scarcity or absence of humoral immune responses in the plasma and cervicovaginal lavage fluids of heavily HIV-1-exposed but persistently seronegative women. AIDS Res Hum Retroviruses 2011; 27:469-86. [PMID: 21091128 DOI: 10.1089/aid.2010.0169] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To address an existing controversy concerning the presence of HIV-1-specific antibodies of the IgA isotype in the female genital tract secretions of highly-exposed but persistently seronegative (HEPSN) women, 41 samples of plasma and cervicovaginal lavage (CVL) fluid were distributed to six laboratories for their blinded evaluation using ELISA with 10 different HIV-1 antigens, chemiluminescence-enhanced Western blots (ECL-WB), and virus neutralization. HIV-specific IgG or IgA antibodies in plasma samples from HEPSN women were absent or detectable only at low levels. In CVL, 11/41 samples displayed low levels of reactivity in ELISA against certain antigens. However, only one sample was positive in two of five laboratories. All but one CVL sample yielded negative results when analyzed by ECL-WB. Viral neutralizing activity was either absent or inconsistently detected in plasma and CVL. Plasma and CVL samples from 26 HIV-1-infected women were used as positive controls. Irrespective of the assays and antigens used, the results generated in all laboratories displayed remarkable concordance in the detection of HIV-1-specific antibodies of the IgG isotype. In contrast, IgA antibodies to HIV-1 antigens were not detected with consistency, and where present, IgA antibodies were at markedly lower levels than IgG. Although HIV-neutralizing activity was detected in plasma of all HIV-1-infected women, only a few of their CVL samples displayed such activity. In conclusion, frequent HIV-1 sexual exposure does not stimulate uniformly detectable mucosal or systemic HIV-1-specific responses, as convincingly documented in the present blindly performed study using a broad variety of immunological assays. Although HIV-1-infection leads to vigorous IgG responses in plasma and CVL, it does not stimulate sustained IgA responses in either fluid.
Collapse
Affiliation(s)
- Jiri Mestecky
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Institute of Immunology and Microbiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Peter F. Wright
- Department of Pediatrics, Dartmouth Medical School, Hanover, New Hampshire
| | | | - Herman F. Staats
- Department of Pathology and the Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina
| | - Pamela A. Kozlowski
- Gene Therapy Program and Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Science Center, New Orleans, Louisiana
| | - Zina Moldoveanu
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rashada C. Alexander
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rose Kulhavy
- Departments of Microbiology and Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Leonard Maboko
- National Institute for Medical Research–Mbeya Medical Research Programme, Mbeya, Tanzania
| | - Gabriele Riedner
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Terri Wrinn
- Monogram Biosciences, South San Francisco, California
| | - Michael Hoelscher
- Department of Infectious Diseases and Tropical Medicine, Clinic of the University of Munich, Munich, Germany
| |
Collapse
|
13
|
Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc Natl Acad Sci U S A 2011; 108:4388-93. [PMID: 21368166 DOI: 10.1073/pnas.1012861108] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
IgG is a major Ig subclass in mucosal secretions of the human female genital tract, where it predominates over the IgA isotype. Despite the abundance of IgG, surprisingly little is known about where and how IgG enters the lumen of the genital tract and the exact role local IgG plays in preventing sexually transmitted diseases. We demonstrate here that the neonatal Fc receptor, FcRn, is expressed in female genital tract epithelial cells of humans and mice and binds IgG in a pH-dependent manner. In vitro we show that FcRn mediates bidirectional IgG transport across polarized human endometrial HEC-1-A monolayers and primary human genital epithelial cells. Furthermore, endosomal acidification appears to be a prerequisite for FcRn-mediated IgG transcytosis; IgG transcytosis was demonstrated in vivo by translocation of systemically administered IgG into the genital lumen in WT but not FcRn-KO mice. The biological relevance of FcRn-transported IgG was demonstrated by passive immunization using herpes simplex virus-2 (HSV-2)-specific polyclonal serum, which conferred significantly higher protection against intravaginal challenge infection by the HSV-2 186 strain in WT mice than in FcRn-KO mice. These studies demonstrate that FcRn-mediated transport is a mechanism by which IgG can act locally in the female genital tract in immune surveillance and in host defense against sexually transmitted diseases.
Collapse
|
14
|
Wilks AB, Christian EC, Seaman MS, Sircar P, Carville A, Gomez CE, Esteban M, Pantaleo G, Barouch DH, Letvin NL, Permar SR. Robust vaccine-elicited cellular immune responses in breast milk following systemic simian immunodeficiency virus DNA prime and live virus vector boost vaccination of lactating rhesus monkeys. THE JOURNAL OF IMMUNOLOGY 2010; 185:7097-106. [PMID: 21041730 DOI: 10.4049/jimmunol.1002751] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Breast milk transmission of HIV remains an important mode of infant HIV acquisition. Enhancement of mucosal HIV-specific immune responses in milk of HIV-infected mothers through vaccination may reduce milk virus load or protect against virus transmission in the infant gastrointestinal tract. However, the ability of HIV/SIV strategies to induce virus-specific immune responses in milk has not been studied. In this study, five uninfected, hormone-induced lactating, Mamu A*01(+) female rhesus monkey were systemically primed and boosted with rDNA and the attenuated poxvirus vector, NYVAC, containing the SIVmac239 gag-pol and envelope genes. The monkeys were boosted a second time with a recombinant Adenovirus serotype 5 vector containing matching immunogens. The vaccine-elicited immunodominant epitope-specific CD8(+) T lymphocyte response in milk was of similar or greater magnitude than that in blood and the vaginal tract but higher than that in the colon. Furthermore, the vaccine-elicited SIV Gag-specific CD4(+) and CD8(+) T lymphocyte polyfunctional cytokine responses were more robust in milk than in blood after each virus vector boost. Finally, SIV envelope-specific IgG responses were detected in milk of all monkeys after vaccination, whereas an SIV envelope-specific IgA response was only detected in one vaccinated monkey. Importantly, only limited and transient increases in the proportion of activated or CCR5-expressing CD4(+) T lymphocytes in milk occurred after vaccination. Therefore, systemic DNA prime and virus vector boost of lactating rhesus monkeys elicits potent virus-specific cellular and humoral immune responses in milk and may warrant further investigation as a strategy to impede breast milk transmission of HIV.
Collapse
Affiliation(s)
- Andrew B Wilks
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Limited contribution of mucosal IgA to Simian immunodeficiency virus (SIV)-specific neutralizing antibody response and virus envelope evolution in breast milk of SIV-infected, lactating rhesus monkeys. J Virol 2010; 84:8209-18. [PMID: 20519381 DOI: 10.1128/jvi.00656-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Breast milk transmission of human immunodeficiency virus (HIV) remains an important mode of infant HIV acquisition. Interestingly, the majority of infants remain uninfected during prolonged virus exposure via breastfeeding, raising the possibility that immune components in milk prevent mucosal virus transmission. HIV-specific antibody responses are detectable in the milk of HIV-infected women and simian immunodeficiency virus (SIV)-infected monkeys; however, the role of these humoral responses in virus neutralization and local virus quasispecies evolution has not been characterized. In this study, four lactating rhesus monkeys were inoculated with SIVmac251 and monitored for SIV envelope-specific humoral responses and virus evolution in milk and plasma throughout infection. While the kinetics and breadth of the SIV-specific IgG and IgA responses in milk were similar to those in plasma, the magnitude of the milk responses was considerably lower than that of the plasma responses. Furthermore, a neutralizing antibody response against the inoculation virus was not detected in milk samples at 1 year after infection, despite a measurable autologous neutralizing antibody response in plasma samples obtained from three of four monkeys. Interestingly, while IgA is the predominant immunoglobulin in milk, the milk SIV envelope-specific IgA response was lower in magnitude and demonstrated more limited neutralizing capacity against a T-cell line-adapted SIV compared to those of the milk IgG response. Finally, amino acid mutations in the envelope gene product of SIV variants in milk and plasma samples occurred in similar numbers and at similar positions, indicating that the humoral immune pressure in milk does not drive distinct virus evolution in the breast milk compartment.
Collapse
|
16
|
Lü FX, Esch RE. Novel nasal secretion collection method for the analysis of allergen specific antibodies and inflammatory biomarkers. J Immunol Methods 2010; 356:6-17. [DOI: 10.1016/j.jim.2010.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/26/2010] [Accepted: 03/02/2010] [Indexed: 10/19/2022]
|
17
|
Hel Z, Stringer E, Mestecky J. Sex steroid hormones, hormonal contraception, and the immunobiology of human immunodeficiency virus-1 infection. Endocr Rev 2010; 31:79-97. [PMID: 19903932 PMCID: PMC2852204 DOI: 10.1210/er.2009-0018] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Worldwide, an increasing number of women use oral or injectable hormonal contraceptives. However, inadequate information is available to aid women and health care professionals in weighing the potential risks of hormonal contraceptive use in individuals living with HIV-1 or at high risk of infection. Numerous epidemiological studies and challenge studies in a rhesus macaque model suggest that progesterone-based contraceptives increase the risk of HIV-1 infection in humans and simian immunodeficiency virus (SIV) infection in macaques, accelerate disease progression, and increase viral shedding in the genital tract. However, because several other studies in humans have not observed any effect of exogenously administered progesterone on HIV-1 acquisition and disease progression, the issue continues to be a topic of intense research and ongoing discussion. In contrast to progesterone, systemic or intravaginal treatment with estrogen efficiently protects female rhesus macaques against the transmission of SIV, likely by enhancing the natural protective properties of the lower genital tract mucosal tissue. Although the molecular and cellular mechanisms underlying the effect of sex steroid hormones on HIV-1 and SIV acquisition and disease progression are not well understood, progesterone and estrogen are known to regulate a number of immune mechanisms that may exert an effect on retroviral infection. This review summarizes current knowledge of the effects of various types of sex steroid hormones on immune processes involved in the biology of HIV-1 infection.
Collapse
Affiliation(s)
- Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, 845 19th Street South, Birmingham, Alabama 35294-2170, USA.
| | | | | |
Collapse
|
18
|
Mestecky J. Humoral immune responses to the human immunodeficiency virus type-1 (HIV-1) in the genital tract compared to other mucosal sites. J Reprod Immunol 2007; 73:86-97. [PMID: 17354294 DOI: 10.1016/j.jri.2007.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infection with the human immunodeficiency virus-1 (HIV-1) must be considered as a primarily mucosal disease. On a worldwide basis, the absolute majority of HIV infections occur through mucosal surfaces of the genital and intestinal tracts, and the earliest and most dramatic immunologic alterations are induced by the virus in mucosal tissues. However, individual compartments of mucosal components of the immune system display remarkable differences with respect to dominant antibody isotypes, virus phenotypes, densities and origins of cells involved in innate and specific immunity, presence or absence of inductive sites, and routes of immunizations that induce humoral and cellular responses. In this regard, the mucosal immune system of the female and male genital tracts exhibit several features which are distinct from other mucosal tissues, including dominance of the IgG isotype, local as well as pronounced systemic origin of antibodies, the absence of organized lymphoepithelial inductive sites and limited humoral responses stimulated by local antigen administration. Furthermore, it is evident that, irrespective of the route of infection, HIV-1 induces easily detectable IgG but not IgA specific antibody responses. These differences must be considered in the design of protective vaccines against infection with HIV and other agents of sexually transmitted diseases.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Box 1, 845 19th Street South, Birmingham, AL 35294, USA.
| |
Collapse
|
19
|
Mestecky J. Humoral immune responses to the human immunodeficiency virus type-1 (HIV-1) in the genital tract compared to other mucosal sites. J Reprod Immunol 2007; 72:1-17. [PMID: 17095369 DOI: 10.1016/j.jri.2006.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 05/21/2006] [Accepted: 05/22/2006] [Indexed: 12/12/2022]
Abstract
Infection with the human immunodeficiency virus-1 (HIV-1) must be considered as a primarily mucosal disease. On a worldwide basis, the absolute majority of HIV infections occur through mucosal surfaces of the genital and intestinal tracts, and the earliest and most dramatic immunologic alterations are induced by the virus in mucosal tissues. However, individual compartments of mucosal components of the immune system display remarkable differences with respect to dominant antibody isotypes, virus phenotypes, densities and origins of cells involved in innate and specific immunity, presence or absence of inductive sites, and routes of immunizations that induce humoral and cellular responses. In this regard, the mucosal immune system of the female and male genital tracts exhibit several features which are distinct from other mucosal tissues, including dominance of the IgG isotype, local as well as pronounced systemic origin of antibodies, the absence of organized lymphoepithelial inductive sites and limited humoral responses stimulated by local antigen administration. Furthermore, it is evident that, irrespective of the route of infection, HIV-1 induces easily detectable IgG but not IgA specific antibody responses. These differences must be considered in the design of protective vaccines against infection with HIV and other agents of sexually transmitted diseases.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Box 1, 845 19th Street South, Birmingham, AL 35294, USA.
| |
Collapse
|
20
|
Hel Z, McGhee JR, Mestecky J. HIV infection: first battle decides the war. Trends Immunol 2006; 27:274-81. [PMID: 16679064 DOI: 10.1016/j.it.2006.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Revised: 03/28/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
The traditional view of HIV-1 infection characterized by the slow decline of CD4+ T cells has radically changed in light of recent observations in rhesus macaques and humans of rapid and extensive infection and removal of memory CD4+ T cells in mucosal tissues within the first three weeks of infection. This initial strike to the immune system seems to be the distinguishing feature of HIV-1 pathogenesis and its extent sets the overall course of the ensuing infection. Qualitatively different mechanisms of CD4+ T-cell depletion prevail during the acute, chronic and advanced phases of infection depending on the availability of the target-cell population and competence of the immune system. The elimination of CD4+ T cells in mucosal lymphoid tissues results in the absence of important regulatory and effector functions that these cells normally perform in controlling immune responses to environmental antigens and pathogens. Ablation of acute HIV-1 viremia limits the initial damage to the CD4+ T-cell compartment and helps to establish a state of equilibrium between the replicating virus, the availability of the target-cell population and the immune control characteristic of long-term non-progression.
Collapse
Affiliation(s)
- Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, 619 19th Street South, Room SW-W286, Birmingham, AL 35249-7331, USA.
| | | | | |
Collapse
|
21
|
Mestecky J, Moldoveanu Z, Russell MW. Immunologic Uniqueness of the Genital Tract: Challenge for Vaccine Development. Am J Reprod Immunol 2005; 53:208-14. [PMID: 15833098 DOI: 10.1111/j.1600-0897.2005.00267.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Although the genital tract is considered to be a component of the mucosal immune system, it displays several distinct features not shared by other typical mucosal tissues and external secretions. Both male and female genital tract tissues lack inductive mucosal sites analogous to intestinal Peyer's patches. Consequently, local humoral and cellular immune responses stimulated by infections [with e.g. Neisseria gonorrhoeae, Chlamydia trachomatis, papilloma virus, and human immunodeficiency virus (HIV-1)] are weak or absent, and repeated local intravaginal immunizations result in minimal humoral responses. In contrast to typical external secretions such as intestinal fluid that contain secretory immunoglobulin A (S-IgA) as the dominant isotype, semen and cervico-vaginal fluid contain more IgG than IgA. Furthermore, irrespective of the route of infection, humoral immune responses to HIV-1 are dominated by specific IgG and low or absent IgA antibodies in all external secretions. Because a significant proportion of IgG in genital tract secretions is derived from the circulation, systemic immunization may provide protective IgG antibody-mediated immunity in the genital tract. Furthermore, combined systemic and mucosal (oral, rectal, and especially intranasal) immunization may induce protective humoral responses in both the systemic and mucosal compartments of the immune system.
Collapse
Affiliation(s)
- Jiri Mestecky
- Department of Microbiology, University of Alabama at Birmingham, Box 1, 845 19th Street South, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
22
|
Abstract
As a model of breast milk transmission of HIV, we characterized humoral immune responses in the milk and plasma of 14 female rhesus macaques with suckling infants. Total immunoglobulin levels in plasma and milk were similar in all females and could not be correlated with transmission to the infant. These females, however, had elevated milk IgG levels and decreased milk IgA levels as compared with levels in seronegative controls. SIV envelope-specific antibody responses developed similarly in all females over the first 14-28 days after inoculation; however, 2 females had significantly lower titers by 98 days after inoculation. These females, characterized as rapid disease progressors, were the only animals to transmit SIV through breast-feeding during the period of acute viremia (14-21 days after inoculation). The remaining 12 females developed similar levels of high-avidity SIV envelope-specific IgG in plasma and low, but detectable, levels of IgA in milk. Despite similar quantities of antibody in milk, transmission of SIV through breast-feeding occurred in 8 of 12 mother-baby pairs during the chronic phase of disease. These observations are comparable with those for HIV-infected women and indicate that the SIV-macaque model provides a unique resource for deciphering the functional role of antibodies in breast milk transmission of HIV.
Collapse
Affiliation(s)
- Jenna Rychert
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
23
|
Stambas J, Brown SA, Gutierrez A, Sealy R, Yue W, Jones B, Lockey TD, Zirkel A, Freiden P, Brown B, Surman S, Coleclough C, Slobod KS, Doherty PC, Hurwitz JL. Long lived multi-isotype anti-HIV antibody responses following a prime-double boost immunization strategy. Vaccine 2005; 23:2454-64. [PMID: 15752831 DOI: 10.1016/j.vaccine.2004.10.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 10/10/2004] [Accepted: 10/28/2004] [Indexed: 10/26/2022]
Abstract
Despite decades of work, an effective HIV vaccine remains elusive. In an effort to elicit protective immunity, investigators have sought to define vaccines able to elicit durable HIV-specific B-cell and T-cell activities. Additionally, vaccines are sought which can induce antibodies of a variety of isotypes, as each isotype possesses unique attributes in terms of opsonization, Fc receptor binding capacity, complement fixation and location. One prominent new vaccine strategy, applied to numerous distinct antigenic systems is the prime boost-regimen, with DNA, vaccinia virus (VV), and/or purified recombinant protein. To examine the durability, location and isotype distribution of responses induced by prime-boost regimens, we tested successive immunizations with DNA, VV and protein (D-V-P), comparing three forms of protein inoculations: (i) purified protein administered intramuscularly with complete Freunds adjuvant, (ii) purified protein administered intranasally, and (iii) purified protein conjugated to oxidized mannan, administered intranasally. We found that all three protocols elicited serum antibodies of multiple isotypes, with serum IgA being most prominent among mice immunized with mannan-conjugated protein. All D-V-P protocols, regardless of protein form or route, also elicited antibody responses at mucosal surfaces. In bronchoalveolar lavage, a tendency toward IgA production was again most prominent in mice boosted with the protein-mannan conjugate. Both B-cell and T-cell responses were sustained for more than 1 year post-immunization following each form of vaccination. Contemporaneous with long-lasting serum and mucosal antibodies were antibody forming cells in the bone marrow of primed animals. Results highlight the D-V-P vaccination strategy as a promising approach for attaining durable, multi-isotype B-cell and T-cell activities toward HIV.
Collapse
Affiliation(s)
- J Stambas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mestecky J, Jackson S, Moldoveanu Z, Nesbit LR, Kulhavy R, Prince SJ, Sabbaj S, Mulligan MJ, Goepfert PA. Paucity of antigen-specific IgA responses in sera and external secretions of HIV-type 1-infected individuals. AIDS Res Hum Retroviruses 2004; 20:972-88. [PMID: 15585085 DOI: 10.1089/aid.2004.20.972] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study was undertaken to resolve existing controversies with respect to the detection of IgA HIV-1-specific mucosal antibodies in infected individuals. External secretions, including tears, nasal, rectal, and vaginal washes, saliva, semen, urine, and sera were obtained from 50 HIV-1-infected individuals and 20 controls using collection procedures that minimize the irritation of mucosal surfaces. Levels of total and antigen (gp120 and gp160)-specific antibodies of the IgG and IgA isotypes were measured by assays that proved reliable in a large multicenter study: quantitative ELISA and chemiluminescence-enhanced Western blot analyses. Although the levels of total IgG and IgA were increased or remained unchanged in body fluids of HIV-1-infected individuals as compared to the controls, HIV-1-specific IgA antibodies were either absent or present at low levels even in secretions with characteristically high relative contents of total IgA vs. IgG (saliva, tears, and rectal and nasal washes). In these secretions, HIV-1-specific IgG antibodies dominated. In assessing levels and frequency of detection of IgG antibodies, both female and male genital tract secretions, urine, and nasal wash were preferable to parotid saliva and especially to rectal wash. External secretions contained IgG antibodies to gp160> gp120> gp41 and p24; when present, IgA antibodies were predominantly directed at gp160. Analyses of peripheral blood antibody-secreting cells (ASC) isolated from the same individuals paralleled these serological findings: gp160-specific IgG-secreting ASC were dominant. Therefore, in striking contrast to other mucosally encountered microbial infections, HIV-1 does not induce vigorous specific IgA responses in any body fluid examined or in ASC in peripheral blood.
Collapse
Affiliation(s)
- Jiri Mestecky
- Departments of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Amedee AM, Rychert J, Lacour N, Fresh L, Ratterree M. Viral and immunological factors associated with breast milk transmission of SIV in rhesus macaques. Retrovirology 2004; 1:17. [PMID: 15253769 PMCID: PMC493286 DOI: 10.1186/1742-4690-1-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Accepted: 07/14/2004] [Indexed: 11/22/2022] Open
Abstract
Background The viral and host factors involved in transmission of HIV through breastfeeding are largely unknown, and intervention strategies are urgently needed to protect at-risk populations. To evaluate the viral and immunological factors directly related to milk transmission of virus, we have evaluated the disease course of Simian Immunodeficiency Virus (SIV) in lactating rhesus macaques (Macaca mulatta) as a model of natural breast milk transmission of HIV. Results Fourteen lactating macaques were infected intravenously with SIV/DeltaB670, a pathogenic isolate of SIV and were pair-housed with their suckling infants throughout the disease course. Transmission was observed in 10 mother-infant pairs over a one-year period. Two mothers transmitted virus during the period of initial viremia 14–21 days post inoculation (p.i.) and were classified as early transmitters. Peak viral loads in milk and plasma of early transmitters were similar to other animals, however the early transmitters subsequently displayed a rapid progressor phenotype and failed to control virus expression as well as other animals at 56 days p.i. Eight mothers were classified as late transmitters, with infant infection detected at time points in the chronic stage of the maternal SIV disease course (81 to 360 days). Plasma viral loads, CD4+ T cell counts and SIV-specific antibody titers were similar in late transmitters and non-transmitters. Late breast milk transmission, however, was correlated with higher average milk viral loads and more persistent viral expression in milk 12 to 46 weeks p.i. as compared to non-transmitters. Four mothers failed to transmit virus, despite disease progression and continuous lactation. Conclusion These studies validate the SIV-infected rhesus macaque as a model for breast milk transmission of HIV. As observed in studies of HIV-infected women, transmission occurred at time points throughout the period of lactation. Transmission during the chronic stage of SIV-infection correlated with a threshold level of virus expression as well as more persistent shedding in milk. This model will be a valuable resource for deciphering viral and host factors responsible for transmission of HIV through breastfeeding.
Collapse
Affiliation(s)
- Angela M Amedee
- Department of Microbiology, Immunology, Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Jenna Rychert
- Department of Microbiology, Immunology, Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Nedra Lacour
- Department of Microbiology, Immunology, Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA USA
| | - Lynn Fresh
- Department of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| | - Marion Ratterree
- Department of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|
26
|
Ochiel DO, Wango EO, Kigondu CS, Otsyula MG. Effect of menstrual cycle on mucosal immunity to SHIV within the reproductive tract of baboons (Papio anubis): preliminary findings. J Med Primatol 2003; 32:161-9. [PMID: 12823626 DOI: 10.1034/j.1600-0684.2003.00019.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The presence of human immunodeficiency virus (HIV) in genital secretions is regarded as a risk factor for sexual and perinatal transmission of HIV. A better understanding of correlates of genital shedding of HIV is crucial to the development of effective strategies against transmission of this virus. Events during menstrual cycle are likely to influence local immune responses and viral load in genital secretions, and hence determine susceptibility to HIV or efficiency of virus transmission. We report, in this study, preliminary findings on the relationship of menstrual cycle to genital mucosal and systemic immunity in female olive baboons (Papio anubis) experimentally inoculated with simian/human immunodeficiency virus (SHIV)89.6P.
Collapse
Affiliation(s)
- D O Ochiel
- Reproductive Biology Unit, Department of Animal Physiology, University of Nairobi, Kenya.
| | | | | | | |
Collapse
|
27
|
Coombs RW, Reichelderfer PS, Landay AL. Recent observations on HIV type-1 infection in the genital tract of men and women. AIDS 2003; 17:455-80. [PMID: 12598766 DOI: 10.1097/00002030-200303070-00001] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Robert W Coombs
- Departments of Laboratory Medicine and Medicine, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|