1
|
Guo S, Yang L, Hou C, Jiang S, Ma X, Shi L, Zheng B, Ye L, He X. The low-entropy hydration shell mediated ice-binding mechanism of antifreeze proteins. Int J Biol Macromol 2024; 277:134562. [PMID: 39116982 DOI: 10.1016/j.ijbiomac.2024.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Antifreeze proteins (AFPs) can inhibit ice crystal growth. The ice-binding mechanism of AFPs remains unclear, yet the hydration shells of AFPs are thought to play an important role in modulating the binding of AFPs and ice. Here, we performed all-atom molecular dynamics simulations of an AFP from Choristoneura fumiferana (CfAFP) at four different temperatures, with a focus on analysis at 240 and 300 K, to investigate the dynamic and thermodynamic characteristics of hydration shells around ice-binding surfaces (IBS) and non-ice-binding surfaces (NIBS). Our results revealed that the dynamics of CfAFP hydration shells were highly heterogeneous, with its IBS favoring a less dense and more tetrahedral solvation shell, and NIBS hydration shells having opposite features to those of the IBS. The IBS of nine typical hyperactive AFPs were found to be in pure low-entropy hydration shell region, indicating that low-entropy hydration shell region of IBS and the tetrahedral arrangements of water molecules around them mediate the ice-binding mechanism of AFPs. It is because the entropy increase of the low-entropy hydration shell around IBS, while the higher entropy water molecules at NIBS most likely prevent ice crystal growth. These findings provide new mechanistic insights into the ice-binding of AFPs.
Collapse
Affiliation(s)
- Shuai Guo
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Lin Yang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, NSW 2006, Australia.
| | - Chengyu Hou
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Shenda Jiang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Xiaoliang Ma
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Liping Shi
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
| | - Bing Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education) and School of Chemistry and Materials Science, Heilongjiang University, Harbin 150001, China
| | - Lin Ye
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China; Shenzhen STRONG Advanced Materials Research Institute Co. Ltd., Shenzhen 518035, China.
| |
Collapse
|
2
|
Gill LT, Kennedy JR, Box ICH, Marshall KE. Ice in the intertidal: patterns and processes of freeze tolerance in intertidal invertebrates. J Exp Biol 2024; 227:jeb247043. [PMID: 39051142 DOI: 10.1242/jeb.247043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Many intertidal invertebrates are freeze tolerant, meaning that they can survive ice formation within their body cavity. Freeze tolerance is a fascinating trait, and understanding its mechanisms is important for predicting the survival of intertidal animals during extreme cold weather events. In this Review, we bring together current research on the ecology, biochemistry and physiology of this group of freeze-tolerant organisms. We first introduce the ecology of the intertidal zone, then highlight the strong geographic and taxonomic biases within the current body of literature on this topic. Next, we detail current knowledge on the mechanisms of freeze tolerance used by intertidal invertebrates. Although the mechanisms of freeze tolerance in terrestrial arthropods have been well-explored, marine invertebrate freeze tolerance is less well understood and does not appear to work similarly because of the osmotic differences that come with living in seawater. Freeze tolerance mechanisms thought to be utilized by intertidal invertebrates include: (1) low molecular weight cryoprotectants, such as compatible osmolytes and anaerobic by-products; (2) high molecular weight cryoprotectants, such as ice-binding proteins; as well as (3) other molecular mechanisms involving heat shock proteins and aquaporins. Lastly, we describe untested hypotheses, methods and approaches that researchers can use to fill current knowledge gaps. Understanding the mechanisms and consequences of freeze tolerance in the intertidal zone has many important ecological implications, but also provides an opportunity to broaden our understanding of the mechanisms of freeze tolerance more generally.
Collapse
Affiliation(s)
- Lauren T Gill
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Jessica R Kennedy
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Warkworth, 0985, New Zealand
| | - Isaiah C H Box
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
3
|
Bieber P, Borduas-Dedekind N. High-speed cryo-microscopy reveals that ice-nucleating proteins of Pseudomonas syringae trigger freezing at hydrophobic interfaces. SCIENCE ADVANCES 2024; 10:eadn6606. [PMID: 38959312 PMCID: PMC11221516 DOI: 10.1126/sciadv.adn6606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/22/2024] [Indexed: 07/05/2024]
Abstract
Ice-nucleating proteins (INpro) trigger the freezing of supercooled water droplets relevant to atmospheric, biological, and technological applications. The high ice nucleation activity of INpro isolated from the bacteria Pseudomonas syringae could be linked to the aggregation of proteins at the bacterial membrane or at the air-water interface (AWI) of droplets. Here, we imaged freezing onsets, providing direct evidence of these proposed mechanisms. High-speed cryo-microscopy identified the onset location of freezing in droplets between two protein-repellent glass slides. INpro from sterilized P. syringae (Snomax) statistically favored nucleation at the AWI of the droplets. Removing cellular fragments by filtration or adding surfactants increased the frequency of nucleation events at the AWI. On the other hand, cultivated intact bacteria cells or lipid-free droplets nucleated ice without an affinity to the AWI. Overall, we provide visual evidence that INpro from P. syringae trigger freezing at hydrophobic interfaces, such as the AWI or the bacterial membrane, with important mechanistic implications for applications of INpro.
Collapse
|
4
|
Isiksacan Z, William N, Senturk R, Boudreau L, Wooning C, Castellanos E, Isiksacan S, Yarmush ML, Acker JP, Usta OB. Extended supercooled storage of red blood cells. Commun Biol 2024; 7:765. [PMID: 38914723 PMCID: PMC11196592 DOI: 10.1038/s42003-024-06463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/16/2024] [Indexed: 06/26/2024] Open
Abstract
Red blood cell (RBC) transfusions facilitate many life-saving acute and chronic interventions. Transfusions are enabled through the gold-standard hypothermic storage of RBCs. Today, the demand for RBC units is unfulfilled, partially due to the limited storage time, 6 weeks, in hypothermic storage. This time limit stems from high metabolism-driven storage lesions at +1-6 °C. A recent and promising alternative to hypothermic storage is the supercooled storage of RBCs at subzero temperatures, pioneered by our group. Here, we report on long-term supercooled storage of human RBCs at physiological hematocrit levels for up to 23 weeks. Specifically, we assess hypothermic RBC additive solutions for their ability to sustain supercooled storage. We find that a commercially formulated next-generation solution (Erythro-Sol 5) enables the best storage performance and can form the basis for further improvements to supercooled storage. Our analyses indicate that oxidative stress is a prominent time- and temperature-dependent injury during supercooled storage. Thus, we report on improved supercooled storage of RBCs at -5 °C by supplementing Erythro-Sol 5 with the exogenous antioxidants, resveratrol, serotonin, melatonin, and Trolox. Overall, this study shows the long-term preservation potential of supercooled storage of RBCs and establishes a foundation for further improvement toward clinical translation.
Collapse
Affiliation(s)
- Ziya Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Nishaka William
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Rahime Senturk
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Chemical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Luke Boudreau
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| | - Celine Wooning
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Human Biology, Scripps College, Claremont, CA, USA
| | - Emily Castellanos
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Psychology, Amherst College, Amherst, MA, USA
| | - Salih Isiksacan
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Electrical-Electronics Engineering, Bilkent University, Ankara, Turkey
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, USA
| | - Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
- Innovation and Portfolio Management, Canadian Blood Services, Edmonton, AB, Canada.
| | - O Berk Usta
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Shriners Children's, Boston, MA, USA.
| |
Collapse
|
5
|
Buschi E, Dell’Anno A, Tangherlini M, Candela M, Rampelli S, Turroni S, Palladino G, Esposito E, Martire ML, Musco L, Stefanni S, Munari C, Fiori J, Danovaro R, Corinaldesi C. Resistance to freezing conditions of endemic Antarctic polychaetes is enhanced by cryoprotective proteins produced by their microbiome. SCIENCE ADVANCES 2024; 10:eadk9117. [PMID: 38905343 PMCID: PMC11192080 DOI: 10.1126/sciadv.adk9117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 05/14/2024] [Indexed: 06/23/2024]
Abstract
The microbiome plays a key role in the health of all metazoans. Whether and how the microbiome favors the adaptation processes of organisms to extreme conditions, such as those of Antarctica, which are incompatible with most metazoans, is still unknown. We investigated the microbiome of three endemic and widespread species of Antarctic polychaetes: Leitoscoloplos geminus, Aphelochaeta palmeri, and Aglaophamus trissophyllus. We report here that these invertebrates contain a stable bacterial core dominated by Meiothermus and Anoxybacillus, equipped with a versatile genetic makeup and a unique portfolio of proteins useful for coping with extremely cold conditions as revealed by pangenomic and metaproteomic analyses. The close phylosymbiosis between Meiothermus and Anoxybacillus and these Antarctic polychaetes indicates a connection with their hosts that started in the past to support holobiont adaptation to the Antarctic Ocean. The wide suite of bacterial cryoprotective proteins found in Antarctic polychaetes may be useful for the development of nature-based biotechnological applications.
Collapse
Affiliation(s)
- Emanuela Buschi
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Michael Tangherlini
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn,” Fano Marine Centre, Fano, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Simone Rampelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
- Fano Marine Center, the Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
| | - Erika Esposito
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Marco Lo Martire
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Luigi Musco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Sergio Stefanni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica “Anton Dohrn,” Villa Comunale, Napoli, Italy
| | - Cristina Munari
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Jessica Fiori
- Department of Chemistry “G. Ciamician” Alma Mater Studiorum, University of Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italia
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Jedal JYB, Malmendal A, Ramløv H. Metabolites, ions, and the mechanisms behind seasonal cold hardening of Pyrochroa coccinea (Pyrochroidae) larvae. JOURNAL OF INSECT PHYSIOLOGY 2024; 153:104610. [PMID: 38145824 DOI: 10.1016/j.jinsphys.2023.104610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 12/27/2023]
Abstract
The larvae of the black headed cardinal beetle Pyrochroa coccinea, overwinters under the bark of dead logs in northern European dioecious forests, and are thus exposed to temperatures below the melting point of their bodily fluids. Here we explore the mechanisms behind their seasonal cold hardening by characterising field samples collected monthly throughout the year. Both the lower lethal temperature and supercooling point dropped as much as 10℃ in the second half of November, reaching values around -15℃ by the beginning of December. This change was accompanied by a 320 mosmol/kg increase in hemolymph osmolality, which is a doubling compared to the summer levels. We used NMR metabolomics to identify and measure the absolute concentrations of the responsible cryoprotective C-H containing metabolites in the hemolymph. The largest increase was found to be in either glucose or trehalose, with an average total increase of 120 mM. Proline, alanine, and choline concentrations were found to increase by around 10 mM each. Contrarily, phosphocholine and phosphoethanolamine were halved, resulting in a total decrease of around 50 mM. These measurements were complemented with ion exchange chromatography measurements. This allowed us to account for all the osmotic pressure in the summer hemolymph, and the measured concentration changes explained as much as 40 % of the observed osmolality increase upon cold hardening. Preliminary results indicate that the remainder may be explained by non-colligative protein contributions.
Collapse
Affiliation(s)
- Jonathan Y B Jedal
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Anders Malmendal
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| | - Hans Ramløv
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
7
|
Whale TF. Quantification of the Ice Nucleation Activity of Ice-Binding Proteins Using a Microliter Droplet Freezing Experiment. Methods Mol Biol 2024; 2730:121-134. [PMID: 37943455 DOI: 10.1007/978-1-0716-3503-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Many ice-binding proteins can stimulate nucleation of ice from supercooled liquid water. Quantification of ice nucleation usually involves cooling a population of droplets and observing their freezing temperatures. Here, a method for measuring the freezing temperatures of microliter-scale droplets is described and its application to quantifying a substances' ice nucleation activity discussed.
Collapse
Affiliation(s)
- Thomas F Whale
- Department of Chemistry, University of Warwick, Coventry, UK.
- School of Earth and Environment, University of Leeds, Leeds, UK.
| |
Collapse
|
8
|
Melnik BS, Glukhova KA, Sokolova (Voronova) EA, Balalaeva IV, Garbuzynskiy SO, Finkelstein AV. Physics of Ice Nucleation and Antinucleation: Action of Ice-Binding Proteins. Biomolecules 2023; 14:54. [PMID: 38254654 PMCID: PMC10813080 DOI: 10.3390/biom14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Ice-binding proteins are crucial for the adaptation of various organisms to low temperatures. Some of these, called antifreeze proteins, are usually thought to inhibit growth and/or recrystallization of ice crystals. However, prior to these events, ice must somehow appear in the organism, either coming from outside or forming inside it through the nucleation process. Unlike most other works, our paper is focused on ice nucleation and not on the behavior of the already-nucleated ice, its growth, etc. The nucleation kinetics is studied both theoretically and experimentally. In the theoretical section, special attention is paid to surfaces that bind ice stronger than water and thus can be "ice nucleators", potent or relatively weak; but without them, ice cannot be nucleated in any way in calm water at temperatures above -30 °C. For experimental studies, we used: (i) the ice-binding protein mIBP83, which is a previously constructed mutant of a spruce budworm Choristoneura fumiferana antifreeze protein, and (ii) a hyperactive ice-binding antifreeze protein, RmAFP1, from a longhorn beetle Rhagium mordax. We have shown that RmAFP1 (but not mIBP83) definitely decreased the ice nucleation temperature of water in test tubes (where ice originates at much higher temperatures than in bulk water and thus the process is affected by some ice-nucleating surfaces) and, most importantly, that both of the studied ice-binding proteins significantly decreased the ice nucleation temperature that had been significantly raised in the presence of potent ice nucleators (CuO powder and ice-nucleating bacteria Pseudomonas syringae). Additional experiments on human cells have shown that mIBP83 is concentrated in some cell regions of the cooled cells. Thus, the ice-binding protein interacts not only with ice, but also with other sites that act or potentially may act as ice nucleators. Such ice-preventing interaction may be the crucial biological task of ice-binding proteins.
Collapse
Affiliation(s)
- Bogdan S. Melnik
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
| | - Ksenia A. Glukhova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
| | - Evgeniya A. Sokolova (Voronova)
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia (I.V.B.)
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia (I.V.B.)
| | - Sergiy O. Garbuzynskiy
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
| | - Alexei V. Finkelstein
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (K.A.G.); (S.O.G.)
- Faculty of Biotechnology, Lomonosov Moscow State University, 142290 Pushchino, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119192 Moscow, Russia
| |
Collapse
|
9
|
Consiglio AN, Ouyang Y, Powell-Palm MJ, Rubinsky B. An extreme value statistics model of heterogeneous ice nucleation for quantifying the stability of supercooled aqueous systems. J Chem Phys 2023; 159:064511. [PMID: 37565684 DOI: 10.1063/5.0155494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The propensity of water to remain in a metastable liquid state at temperatures below its equilibrium melting point holds significant potential for cryopreserving biological material such as tissues and organs. The benefits conferred are a direct result of progressively reducing metabolic expenditure due to colder temperatures while simultaneously avoiding the irreversible damage caused by the crystallization of ice. Unfortunately, the freezing of water in bulk systems of clinical relevance is dominated by random heterogeneous nucleation initiated by uncharacterized trace impurities, and the marked unpredictability of this behavior has prevented the implementation of supercooling outside of controlled laboratory settings and in volumes larger than a few milliliters. Here, we develop a statistical model that jointly captures both the inherent stochastic nature of nucleation using conventional Poisson statistics as well as the random variability of heterogeneous nucleation catalysis through bivariate extreme value statistics. Individually, these two classes of models cannot account for both the time-dependent nature of nucleation and the sample-to-sample variability associated with heterogeneous catalysis, and traditional extreme value models have only considered variations of the characteristic nucleation temperature. We conduct a series of constant cooling rate and isothermal nucleation experiments with physiological saline solutions and leverage the statistical model to evaluate the natural variability of kinetic and thermodynamic nucleation parameters. By quantifying freezing probability as a function of temperature, supercooled duration, and system volume while accounting for nucleation site variability, this study also provides a basis for the rational design of stable supercooled biopreservation protocols.
Collapse
Affiliation(s)
- Anthony N Consiglio
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Yu Ouyang
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Matthew J Powell-Palm
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77840, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Eufemio RJ, de Almeida Ribeiro I, Sformo TL, Laursen GA, Molinero V, Fröhlich-Nowoisky J, Bonn M, Meister K. Lichen species across Alaska produce highly active and stable ice nucleators. BIOGEOSCIENCES (ONLINE) 2023; 20:2805-2812. [PMID: 38818347 PMCID: PMC11138219 DOI: 10.5194/bg-20-2805-2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Forty years ago, lichens were identified as extraordinary biological ice nucleators (INs) that enable ice formation at temperatures close to 0°C. By employing INs, lichens thrive in freezing environments that surpass the physiological limits of other vegetation, thus making them the majority of vegetative biomass in northern ecosystems. Aerosolized lichen INs might further impact cloud glaciation and have the potential to alter atmospheric processes in a warming Arctic. Despite the ecological importance and formidable ice nucleation activities, the abundance, diversity, sources, and role of ice nucleation in lichens remain poorly understood. Here, we investigate the ice nucleation capabilities of lichens collected from various ecosystems across Alaska. We find ice-nucleating activity in lichen to be widespread, particularly in the coastal rainforest of Southeast Alaska. Across 29 investigated lichen, all species show ice nucleation temperatures above -15 °C and ~30% initiate freezing at temperatures above -6 °C. Concentration series of lichen ice nucleation assays in combination with statistical analysis reveal that the lichens contain two subpopulations of INs, similar to previous observations in bacteria. However, unlike the bacterial INs, the lichen INs appear as independent subpopulations resistant to freeze-thaw cycles and against temperature treatment. The ubiquity and high stability of the lichen INs suggest that they can impact local atmospheric processes and that ice nucleation activity is an essential trait for their survival in cold environments.
Collapse
Affiliation(s)
- Rosemary J. Eufemio
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
- Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID 83725, USA
| | | | - Todd L. Sformo
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Gary A. Laursen
- High Latitude Mycological Research Institute, University of Montana, Missoula, MT 59801, USA
| | | | | | - Mischa Bonn
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Konrad Meister
- Department of Chemistry and Biochemistry, Boise State University, Boise, ID 83725, USA
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
11
|
Zhang M, Qiu Z, Yang K, Zhou W, Liu W, Lu J, Guo L. Design, synthesis and antifreeze properties of biomimetic peptoid oligomers. Chem Commun (Camb) 2023. [PMID: 37128894 DOI: 10.1039/d3cc01062g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ice crystals can cause great damage. The utilization of antifreeze agents is an efficient method to prevent or reduce ice crystal formation and growth. Synthetic antifreeze agents are toxic and have low efficiency, and natural antifreeze proteins suffer from high cost and low stability. Here, we have designed and synthesized a series of peptoid oligomers by mimicking the antifreeze protein structure, and the structure-property relationship was also studied. The reported peptoids here have excellent antifreeze properties and are nontoxic to cells. These novel peptoid materials have great potential to replace current commonly used antifreeze agents, such as dimethyl sulfoxide, and become a new generation of antifreeze agents applied in cryopreservation.
Collapse
Affiliation(s)
- Min Zhang
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Zhifeng Qiu
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Kang Yang
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Wencheng Zhou
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Wenqi Liu
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Jianwei Lu
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| | - Li Guo
- Research School of Polymeric Materials, School of Materials Sciences & Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China.
| |
Collapse
|
12
|
Currie-Olsen D, Hesketh AV, Grimm J, Kennedy J, Marshall KE, Harley CDG. Lethal and sublethal implications of low temperature exposure for three intertidal predators. J Therm Biol 2023; 114:103549. [PMID: 37244058 DOI: 10.1016/j.jtherbio.2023.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 03/15/2023] [Accepted: 03/15/2023] [Indexed: 05/29/2023]
Abstract
Benthic invertebrate predators play a key role in top-down trophic regulation in intertidal ecosystems. While the physiological and ecological consequences of predator exposure to high temperatures during summer low tides are increasingly well-studied, the effects of cold exposure during winter low tides remain poorly understood. To address this knowledge gap, we measured the supercooling points, survival, and feeding rates of three intertidal predator species in British Columbia, Canada - the sea stars Pisaster ochraceus and Evasterias troschelii and the dogwhelk Nucella lamellosa - in response to exposure to sub-zero air temperatures. Overall, we found that all three predators exhibited evidence of internal freezing at relatively mild sub-zero temperatures, with sea stars exhibiting an average supercooling point of -2.50 °C, and the dogwhelk averaging approximately -3.99 °C. None of the tested species are strongly freeze tolerant, as evidenced by moderate-to-low survival rates after exposure to -8 °C air. All three predators exhibited significantly reduced feeding rates over a two-week period following a single 3-h sublethal (-0.5 °C) exposure event. We also quantified variation in predator body temperature among thermal microhabitats during winter low tides. Predators that were found at the base of large boulders, on the sediment, and within crevices had higher body temperatures during winter low tides, as compared to those situated in other microhabitats. However, we did not find evidence of behavioural thermoregulation via selective microhabitat use during cold weather. Since these intertidal predators are less freeze tolerant than their preferred prey, winter low temperature exposures can have important implications for organism survival and predator-prey dynamics across thermal gradients at both local (habitat-driven) and geographic (climate-driven) scales.
Collapse
Affiliation(s)
- Danja Currie-Olsen
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Amelia V Hesketh
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jaime Grimm
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jessica Kennedy
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher D G Harley
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Chen X, Wu J, Yang F, Zhou M, Wang R, Huang J, Rong Y, Liu J, Wang S. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress. J Adv Res 2023; 45:127-140. [PMID: 35599106 PMCID: PMC10006524 DOI: 10.1016/j.jare.2022.05.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/14/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION Antifreeze peptides regulate the physiological functions of frozen cells and even their apoptosis; however, the mechanisms by which antifreeze peptides regulate these processes remain unclear, although the interactions between cell membranes and ice are well known to be important in this process. OBJECTIVES Our study aims to investigate how antifreeze peptides regulate cell physiological functions during the freezing process. METHODS We investigated the cryoprotective effect of rsfAFP on the physiological functions of S. thermophilus under freezing stress by measuring cellular metabolism activity, intracellular enzyme activity, cell membrane characterization, and cell apoptosis. The mechanism by which rsfAFP impacts S. thermophilus physiological functions under freezing stress was investigated using multispectral techniques and cryo-TEM. RESULTS We show that a recombinant antifreeze peptide (rsfAFP) interacts with the extracellular capsular polysaccharides and peptidoglycan of Streptococcus thermophilus and ice to cover the outer layer of the membrane, forming a dense protective layer that regulates the molecular structure of extracellular ice crystals, which results in reduced extracellular membrane damage, depressed apoptosis and increased intracellular metabolic activity. This interaction mechanism was indicated by the fact that S. thermophilus better maintained its permeability barrier, membrane fluidity, membrane structural integrity, and cytoplasmic membrane potential during freezing stress with rsfAFP treatment. CONCLUSION These results provide new insights into the mechanism by which rsfAFP regulates frozen cellphysiological functionsand apoptosis under freezing stress.
Collapse
Affiliation(s)
- Xu Chen
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Mi Zhou
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruibin Wang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing of Ministry of Agriculture and Rural Affairs, Xiamen 361022, China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jianhua Liu
- International Faculty of Applied Technology, Yibin University, Yibin, Sichuan 644000, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
14
|
Mousazadehkasin M, Mitchell N, Asenath-Smith E, Tsavalas JG. Ice Nucleation Promotion Impact on the Ice Recrystallization Inhibition Activity of Polyols. Biomacromolecules 2023; 24:678-689. [PMID: 36648113 DOI: 10.1021/acs.biomac.2c01120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Heterogeneous ice nucleation occurs vis-à-vis nucleating agents already present in solution yet can occur within a rather broad range of temperatures (0 to ca. -38 °C). Controlling this temperature and the subsequent growth of resulting ice crystals is crucial for the survival of biological organisms (certain insects, fish, and plants that endure subzero temperatures), as well as in the context of medical cryopreservation and food science. In these environments, uncontrolled crystal shape and size can rupture the cell membrane causing irreversible and catastrophic damage. Antifreeze (AF) proteins and synthetic AF analogs address this issue to restrict crystal growth and to shape ice crystals. Yet, if the nucleation temperature is not controlled and occurs in a lower temperature range, nascent ice crystals will have grown to a significantly larger size before the AF agents can be active on their surface to halt or slow the Ostwald ripening process during recrystallization. At a higher nucleation temperature, diffusion of AF macromolecules is enhanced, and dynamic crystal shaping can start earlier, producing smaller crystals overall. While antifreeze proteins, the inspiration for these synthetic analogs, are always applied in a salt buffer aqueous environment (most typically phosphate-buffered saline (PBS) buffer), the heterogeneous nucleation events are stochastic and occur within a wide temperature range. Silver iodide (AgI), however, is a highly effective ice nucleation promoter as its crystal lattice structure is a 98% lattice match to the basal plane of hexagonal ice (Ih) crystals acting as a template for water molecule orientation and decreasing the interfacial free energy. Here, we expose the advantage of purposely seeding such nascent ice crystals with AgI at a defined and higher temperature (-7 °C) in ultrapure water (UPW) such that nucleation can only come from AgI (and also in AgI/PBS), resulting in the most potent synthetic IRI observed to date (at concentrations as low as 0.001 mg·mL-1).
Collapse
Affiliation(s)
- Mohammad Mousazadehkasin
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Nick Mitchell
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Emily Asenath-Smith
- Cold Regions Research and Engineering Laboratory, US Army Engineer Research and Development Center, Hanover, New Hampshire 03755, United States
| | - John G Tsavalas
- Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824, United States.,Materials Science Program, University of New Hampshire, Durham, New Hampshire 03824, United States
| |
Collapse
|
15
|
Abstract
Winter provides many challenges for insects, including direct injury to tissues and energy drain due to low food availability. As a result, the geographic distribution of many species is tightly coupled to their ability to survive winter. In this review, we summarize molecular processes associated with winter survival, with a particular focus on coping with cold injury and energetic challenges. Anticipatory processes such as cold acclimation and diapause cause wholesale transcriptional reorganization that increases cold resistance and promotes cryoprotectant production and energy storage. Molecular responses to low temperature are also dynamic and include signaling events during and after a cold stressor to prevent and repair cold injury. In addition, we highlight mechanisms that are subject to selection as insects evolve to variable winter conditions. Based on current knowledge, despite common threads, molecular mechanisms of winter survival vary considerably across species, and taxonomic biases must be addressed to fully appreciate the mechanistic basis of winter survival across the insect phylogeny.
Collapse
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, University of Kentucky, Lexington, Kentucky, USA;
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
16
|
Xiao QH, He Z, Wu RW, Zhu DH. Physiological and biochemical differences in diapause and non-diapause pupae of Sericinus montelus (Lepidoptera: Papilionidae). Front Physiol 2022; 13:1031654. [PMID: 36406979 PMCID: PMC9666684 DOI: 10.3389/fphys.2022.1031654] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 03/10/2024] Open
Abstract
The swallowtail butterfly, Sericinus montelus Gray, is endemic to East Asia, has high ornamental value but faces an increased risk of extinction. To understand the overwintering strategies of this species, the dynamic changes in supercooling point (SCP) and water and biochemical contents of diapause-destined and non-diapause S. montelus pupae were investigated. The SCP of laboratory-reared diapause pupae was as low as -26°C compared to -24°C in diapause pupae in the field. Although there was no significant difference in total water content between diapause-destined and non-diapause pupae, the free water of diapause-destined pupae was significantly lower, and the bound water was significantly higher, than that of non-diapause pupae. Lipid, glycogen, and protein contents of diapause-destined pupae showed a downward trend, whereas the total sugar content showed the opposite trend after pupation. The glycogen content decreased rapidly during the initial stage of pupation, whereas the lipid content decreased significantly after 30 days of pupation, suggesting that diapause-destined pupae deplete glycogen stores during the pre-diapause period and then switch to using lipids during the diapause maintenance phase. Trehalose levels in diapause-destined pupae increased significantly and remained high after pupation. Meanwhile, the trehalose content of overwintering pupae during the diapause maintenance period was significantly higher than that of diapause termination pupae in the field. These results suggest that trehalose is the main cryoprotectant for overwintering pupae. Thus, diapausing S. montelus pupae appear to be freeze avoidant, accumulate trehalose as a cryoprotectant, and reduce the free water content to decrease the SCP, enhancing their cold tolerance.
Collapse
Affiliation(s)
- Quan-Hong Xiao
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology (CSUFT), Changsha, China
- College of Physical Education, Central South University of Forestry and Technology (CSUFT), Changsha, China
| | - Zhe He
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology (CSUFT), Changsha, China
| | - Rong-Wei Wu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology (CSUFT), Changsha, China
| | - Dao-Hong Zhu
- Laboratory of Insect Behavior and Evolutionary Ecology, College of Life Science and Technology, Central South University of Forestry and Technology (CSUFT), Changsha, China
| |
Collapse
|
17
|
Zhang X, Maeda N. Nucleation curves of ice in the presence of nucleation promoters. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Choi HW, Jang H. Application of Nanoparticles and Melatonin for Cryopreservation of Gametes and Embryos. Curr Issues Mol Biol 2022; 44:4028-4044. [PMID: 36135188 PMCID: PMC9497981 DOI: 10.3390/cimb44090276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Cryopreservation of gametes and embryos, a technique widely applied in human infertility clinics and to preserve desirable genetic traits of livestock, has been developed over 30 years as a component of the artificial insemination process. A number of researchers have conducted studies to reduce cell toxicity during cryopreservation using adjuvants leading to higher gamete and embryo survival rates. Melatonin and Nanoparticles are novel cryoprotectants and recent studies have investigated their properties such as regulating oxidative stresses, lipid peroxidation, and DNA fragmentation in order to protect gametes and embryos during vitrification. This review presented the current status of cryoprotectants and highlights the novel biomaterials such as melatonin and nanoparticles that may improve the survivability of gametes and embryos during this process.
Collapse
Affiliation(s)
- Hyun-Woo Choi
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Hoon Jang
- Department of Life Sciences, Jeonbuk National University, Jeonju 54896, Korea
- Correspondence: ; Tel.: +82-63-270-3359
| |
Collapse
|
19
|
Cryopreservation of stool samples altered the microbial viability quantitively and compositionally. Arch Microbiol 2022; 204:557. [PMID: 35972563 DOI: 10.1007/s00203-022-03169-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 11/02/2022]
Abstract
Stool is the most commonly used sample for gut microbiota analysis in humans and animals. Cryopreservation of stool at - 80 °C is a feasible and simple method in clinics and researches, especially in large-scale cohort studies. However, the viability of bacteria in stool after freezing has yet well-demonstrated quantitatively and compositionally. This study determined the viable microbiota of samples under cryopreservation at - 80 °C, relative to fresh samples and that stored at ambient. Stool samples were collected from three healthy adults. Propidium monoazide treatment combined with quantitative PCR and 16S rRNA gene sequencing was performed to target viable microbiota. After freezing, the number of viable bacteria decreased, though inter-individual difference existed. Notably, the alpha diversity of viable microbiota after freezing did not change significantly, while its composition changed. Freezing significantly reduced the viable bacteria in Gram-negative genera of Bacteroidetes and Firmicutes, and proportionally increased Gram-positive bacteria in genera of Actinobacteria and Firmicutes, including Bifidobacterium, Collinsella and Blautia, implying that the cell envelope structure associated with the bacterial sensitivity to freezing. On the contrary, the room temperature storage not only decreased the number of viable bacteria, but also decreased the microbial alpha diversity, and remarkably enriched facultative anaerobes of Escherichia-Shigella, Enterococcus and Lactococcus, some of which are opportunistic pathogens. Our findings suggested that changes in viable microbiota in stool samples caused by cryopreservation should be paid enough attention for downstream utilization.
Collapse
|
20
|
Kuramochi M, Zhu S, Takanashi C, Yang Y, Arai T, Shinkai Y, Doi M, Mio K, Tsuda S, Sasaki YC. A mutation to a fish ice-binding protein synthesized in transgenic Caenorhabditis elegans modulate its cold tolerance. Biochem Biophys Res Commun 2022; 628:98-103. [PMID: 36084557 DOI: 10.1016/j.bbrc.2022.08.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
A cryoprotectant known as ice-binding protein (IBP) is thought to facilitate the cold survival of plants, insects, and fungi. Here, we prepared a genetically modified Caenorhabditis elegans strain to synthesize fish-derived IBPs in its body wall muscles and examined whether the antifreeze activity modification of this IBP by point mutation affects the cold tolerance of this worm. We chose a 65-residue IBP identified from notched-fin eelpout, for which the replacement of the 20th alanine residue (A20) modifies its antifreeze activity. These mutant proteins are denoted A20L, A20G, A20T, A20V, and A20I along with the wild-type (WT) protein. We evaluated the survival rate (%) of the transgenic C. elegans that synthesized each IBP mutant following 24 h of preservation at -5, +2, and +5 °C. Significantly, a dramatic improvement in the survival rate was detected for the worms synthesizing the activity-enhanced mutants (A20T and A20I), especially at +2 °C. In contrast, the rate was not improved by the expression of the defective mutants (A20L, A20G, WT and A20V). The survival rate (%) probably correlates with the antifreeze activity of the IBP. These data suggest that IBP protects the cell membrane by employing its ice-binding mechanism, which ultimately improves the cold tolerance of an IBP-containing animal.
Collapse
|
21
|
Tessier SN, de Vries RJ, Pendexter CA, Cronin SEJ, Ozer S, Hafiz EOA, Raigani S, Oliveira-Costa JP, Wilks BT, Lopera Higuita M, van Gulik TM, Usta OB, Stott SL, Yeh H, Yarmush ML, Uygun K, Toner M. Partial freezing of rat livers extends preservation time by 5-fold. Nat Commun 2022; 13:4008. [PMID: 35840553 PMCID: PMC9287450 DOI: 10.1038/s41467-022-31490-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
The limited preservation duration of organs has contributed to the shortage of organs for transplantation. Recently, a tripling of the storage duration was achieved with supercooling, which relies on temperatures between -4 and -6 °C. However, to achieve deeper metabolic stasis, lower temperatures are required. Inspired by freeze-tolerant animals, we entered high-subzero temperatures (-10 to -15 °C) using ice nucleators to control ice and cryoprotective agents (CPAs) to maintain an unfrozen liquid fraction. We present this approach, termed partial freezing, by testing gradual (un)loading and different CPAs, holding temperatures, and storage durations. Results indicate that propylene glycol outperforms glycerol and injury is largely influenced by storage temperatures. Subsequently, we demonstrate that machine perfusion enhancements improve the recovery of livers after freezing. Ultimately, livers that were partially frozen for 5-fold longer showed favorable outcomes as compared to viable controls, although frozen livers had lower cumulative bile and higher liver enzymes.
Collapse
Affiliation(s)
- Shannon N. Tessier
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Reinier J. de Vries
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Casie A. Pendexter
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,Present Address: Sylvatica Biotech Inc., North Charleston, SC USA
| | - Stephanie E. J. Cronin
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Sinan Ozer
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Ehab O. A. Hafiz
- grid.420091.e0000 0001 0165 571XDepartment of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Siavash Raigani
- grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Joao Paulo Oliveira-Costa
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Benjamin T. Wilks
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Manuela Lopera Higuita
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Thomas M. van Gulik
- grid.7177.60000000084992262Department of Surgery, Amsterdam University Medical Centers – location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Osman Berk Usta
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Shannon L. Stott
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA USA
| | - Heidi Yeh
- grid.32224.350000 0004 0386 9924Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Boston, MA USA
| | - Martin L. Yarmush
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA ,grid.430387.b0000 0004 1936 8796Department of Biomedical Engineering, Rutgers University, Piscataway, NJ USA
| | - Korkut Uygun
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| | - Mehmet Toner
- grid.38142.3c000000041936754XCenter for Engineering in Medicine and Surgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA USA ,grid.415829.30000 0004 0449 5362Shriners Hospitals for Children Boston, Boston, MA USA
| |
Collapse
|
22
|
Sklenář P, Ptáček J, Klimeš A. Genome size of alpine plants does not predict temperature resistance. PLANTA 2022; 256:18. [PMID: 35748952 DOI: 10.1007/s00425-022-03935-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Genome size of alpine plants is not related to their resistance against frost and heat. Genome size is a variable trait in angiosperms, and it was suggested that large genome size represents a constraint in stressful environments. We measured genome size and resistance to frost and heat in 89 species of plants from tropical and temperate alpine habitats. Genome size of the species, ranging from 0.49 pg to 25.8 pg across the entire dataset, was not related to either frost or heat resistance in either group of plants. Genome size does not predict resistance to extreme temperatures in alpine plants and is thus not likely to predict plant responses to climate changes.
Collapse
Affiliation(s)
- Petr Sklenář
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.
| | - Jan Ptáček
- Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Adam Klimeš
- Department of Experimental and Functional Morphology, Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 37901, Třeboň, Czech Republic
- Department of Biological Sciences, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlens gate 53, 5020, Bergen, Norway
| |
Collapse
|
23
|
Melillo JH, Swenson J, Cerveny S. Influence of ice formation on the dynamic and thermodynamic properties of aqueous solutions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Abstract
Abstract
Antifreeze proteins, expressed in cold-blooded organisms, prevent ice formation in their bodies, and thus help them to survive in extremely cold winter temperatures. However, the mechanism of action of these proteins is still not clear. In any case, it is not simply a decrease in the temperature of normal ice formation. In this work, investigating the ice-binding protein (a mutant form of the antifreeze protein cfAFP from the spruce budworm Choristoneura fumiferana, which overwinters in needles), we showed that this antifreeze protein does not at all lower the freezing point of water and, paradoxically, increases the melting point of ice. On the other hand, calculations based on the theory of crystallization show that at temperatures of 0 ° to –30°C ice can only appear on surfaces that contact water, but not in the body of water. These facts suggest a new perspective on the role of antifreeze proteins: their task is not (as it is commonly believed) to bind with nascent ice crystals already formed in the organism and stop their growth, but to bind to those surfaces, on which ice nuclei can appear, and thus completely inhibit the ice formation in supercooled water or biological fluid.
Collapse
|
25
|
Whale TF. Disordering effect of the ammonium cation accounts for anomalous enhancement of heterogeneous ice nucleation. J Chem Phys 2022; 156:144503. [DOI: 10.1063/5.0084635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Heterogeneous nucleation of ice from supercooled water is the process responsible for triggering nearly all ice formation in the natural environment. Understanding of heterogeneous ice nucleation is particularly key for understanding the formation of ice in clouds, which impacts weather and climate. While many effective ice nucleators are known the mechanisms of their actions remain poorly understood. Some inorganic nucleators have been found to nucleate ice at warmer temperatures in dilute ammonium solution than in pure water. This is surprising, analogous to salty water melting at a warmer temperature than pure water. Here, the magnitude of this effect is rationalized as being due to thermodynamically favorable ammonium-induced disordering of the hydrogen bond network of ice critical clusters formed on inorganic ice nucleators. Theoretical calculations are shown to be consistent with new experimental measurements aimed at finding the maximum magnitude of the effect. The implication of this study is that the ice-nucleating sites and surfaces of many inorganic ice nucleators are either polar or charged and therefore tend to induce formation of hydrogen ordered ice clusters. This work corroborates various literature reports indicating that some inorganic ice nucleators are most effective when nominally neutral and implies a commonality in mechanism between a wide range of inorganic ice nucleators.
Collapse
Affiliation(s)
- Thomas F Whale
- Department of Chemistry, University of Warwick, United Kingdom
| |
Collapse
|
26
|
Alba-Simionesco C, Judeinstein P, Longeville S, Osta O, Porcher F, Caupin F, Tarjus G. Interplay of vitrification and ice formation in a cryoprotectant aqueous solution at low temperature. Proc Natl Acad Sci U S A 2022; 119:e2112248119. [PMID: 35302891 PMCID: PMC8944663 DOI: 10.1073/pnas.2112248119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/21/2021] [Indexed: 12/16/2022] Open
Abstract
The proneness of water to crystallize is a major obstacle to understanding its putative exotic behavior in the supercooled state. It also represents a strong practical limitation to cryopreservation of biological systems. Adding some concentration of glycerol, which has a cryoprotective effect preventing, to some degree, water crystallization, has been proposed as a possible way out, provided the concentration is small enough for water to retain some of its bulk character and/or for limiting the damage caused by glycerol on living organisms. Contrary to previous expectations, we show that, in the “marginal” glycerol molar concentration ≈ 18%, at which vitrification is possible with no crystallization on rapid cooling, water crystallizes upon isothermal annealing even below the calorimetric glass transition of the solution. Through a time-resolved polarized neutron scattering investigation, we extract key parameters, size and shape of the ice crystallites, fraction of water that crystallizes, and crystallization time, which are important for cryoprotection, as a function of the annealing temperature. We also characterize the nature of the out-of-equilibrium liquid phases that are present at low temperature, providing more arguments against the presence of an isocompositional liquid–liquid transition. Finally, we propose a rule of thumb to estimate the lower temperature limit below which water crystallization does not occur in aqueous solutions.
Collapse
Affiliation(s)
| | - Patrick Judeinstein
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Stéphane Longeville
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Oriana Osta
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Florence Porcher
- Laboratoire Léon Brillouin, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Frédéric Caupin
- Institut Lumière Matière, Université de Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Gilles Tarjus
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
27
|
Hwang J, Kim B, Lee MJ, Kim EJ, Cho SM, Lee SG, Han SJ, Kim K, Lee JH, Do H. Importance of rigidity of ice-binding protein (FfIBP) for hyperthermal hysteresis activity and microbial survival. Int J Biol Macromol 2022; 204:485-499. [PMID: 35149098 DOI: 10.1016/j.ijbiomac.2022.02.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 01/18/2023]
Abstract
Ice-binding proteins (IBPs) are well-characterized proteins responsible for the cold-adaptation mechanisms. Despite extensive structural and biological investigation of IBPs and antifreeze proteins, only a few studies have considered the relationship between protein stabilization and thermal hysteresis (TH) activity as well as the implication of hyperactivity. Here, we investigated the important role of the head capping region in stabilization and the hyper-TH activity of FfIBP using molecular dynamics simulation. Data comparison revealed that residues on the ice-binding site of the hyperactive FfIBP are immobilized, which could be correlated with TH activity. Further comparison analysis indicated the disulfide bond in the head region is mainly involved in protein stabilization and is crucial for hyper-TH activity. This finding could also be generalized to known hyperactive IBPs. Furthermore, in mimicking the physiological conditions, bacteria with membrane-anchored FfIBP formed brine pockets in a TH activity-dependent manner. Cells with a higher number of TH-active IBPs showed an increased number of brine pockets, which may be beneficial for short- and long-term survival in cold environments by reducing the salt concentration. The newly identified conditions for hyper-TH activity and their implications on bacterial survival provide insights into novel mechanistic aspects of cold adaptation in polar microorganisms.
Collapse
Affiliation(s)
- Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Bomi Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Min Ju Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Eun Jae Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sung Mi Cho
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Sung Gu Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea
| | - Se Jong Han
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea; Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Kitae Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| | - Hackwon Do
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Republic of Korea; Department of Polar Sciences, University of Science and Technology, Incheon 21990, Republic of Korea.
| |
Collapse
|
28
|
Chen X, Wu J, Li X, Yang F, Huang D, Huang J, Wang S, Guyonnet V. Snow flea antifreeze peptide for cryopreservation of lactic acid bacteria. NPJ Sci Food 2022; 6:10. [PMID: 35115563 PMCID: PMC8813996 DOI: 10.1038/s41538-022-00128-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/10/2022] [Indexed: 01/10/2023] Open
Abstract
Cryogenic machining is one of the most commonly used techniques for processing and preserving in food industry, and traditional antifreeze agents cannot regulate the mechanical stress damage caused by ice crystals formed during recrystallization or thawing. In this study, we successfully developed an express system of a novel recombinant snow flea antifreeze peptide (rsfAFP), which has significant ice recrystallization inhibition ability, thermal hysteresis activity and alters ice nucleation, thus regulating extracellular ice crystal morphology and recrystallization. We showed that rsfAFP improved the survival rate, acid-producing ability, freezing stability, and cellular metabolism activity of Streptococcus thermophilus. We further showed that rsfAFP interacts with the membrane and ice crystals to cover the outer layer of cells, forming a dense protective layer that maintains the physiological functions of S. thermophilus under freezing stress. These findings provide the scientific basis for using rsfAFP as an effective antifreeze agent for lactic acid bacteria cryopreservation or other frozen food.
Collapse
Affiliation(s)
- Xu Chen
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Jinhong Wu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaozhen Li
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Fujia Yang
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China.,College of Chemical Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China
| | - Dan Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, 361022, Xiamen, China.,Fujian Anjoy Food Co. Ltd, 361022, Xiamen, China
| | - Jianlian Huang
- Fujian Provincial Key Laboratory of Frozen Processed Aquatic Products, 361022, Xiamen, China.,Fujian Anjoy Food Co. Ltd, 361022, Xiamen, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, 350108, Fuzhou, Fujian, China.
| | - Vincent Guyonnet
- FFI Consulting Ltd, 2488 Lyn Road, Brockville, ON, K6V 5T3, Canada
| |
Collapse
|
29
|
Tessier SN, Haque O, Pendexter CA, Cronin SEJ, Hafiz EOA, Weng L, Yeh H, Markmann JF, Taylor MJ, Fahy GM, Toner M, Uygun K. The role of antifreeze glycoprotein (AFGP) and polyvinyl alcohol/polyglycerol (X/Z-1000) as ice modulators during partial freezing of rat livers. FRONTIERS IN PHYSICS 2022; 10:1033613. [PMID: 37151819 PMCID: PMC10161798 DOI: 10.3389/fphy.2022.1033613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Introduction The current liver organ shortage has pushed the field of transplantation to develop new methods to prolong the preservation time of livers from the current clinical standard of static cold storage. Our approach, termed partial freezing, aims to induce a thermodynamically stable frozen state at high subzero storage temperatures (-10°C to -15°C), while simultaneously maintaining a sufficient unfrozen fraction to limit ice-mediated injury. Methods and results Using glycerol as the main permeating cryoprotectant agent, this research first demonstrated that partially frozen rat livers showed similar outcomes after thawing from either -10°C or -15°C with respect to subnormothermic machine perfusion metrics. Next, we assessed the effect of adding ice modulators, including antifreeze glycoprotein (AFGP) or a polyvinyl alcohol/polyglycerol combination (X/Z-1000), on the viability and structural integrity of partially frozen rat livers compared to glycerol-only control livers. Results showed that AFGP livers had high levels of ATP and the least edema but suffered from significant endothelial cell damage. X/Z-1000 livers had the highest levels of ATP and energy charge (EC) but also demonstrated endothelial damage and post-thaw edema. Glycerol-only control livers exhibited the least DNA damage on Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining but also had the lowest levels of ATP and EC. Discussion Further research is necessary to optimize the ideal ice modulator cocktail for our partial-freezing protocol. Modifications to cryoprotective agent (CPA) combinations, including testing additional ice modulators, can help improve the viability of these partially frozen organs.
Collapse
Affiliation(s)
- Shannon N. Tessier
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Omar Haque
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Casie A. Pendexter
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Stephanie E. J. Cronin
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Ehab O. A. Hafiz
- Department of Electron Microscopy Research, Theodor Bilharz Research Institute, Giza, Egypt
| | - Lindong Weng
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
| | - Heidi Yeh
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - James F. Markmann
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Michael J. Taylor
- Sylvatica Biotech Inc, North Charleston, SC, United States
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | | | - Mehmet Toner
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- CORRESPONDENCE: Mehmet Toner, , Korkut Uygun,
| | - Korkut Uygun
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Shriners Hospitals for Children, Boston, MA, United States
- CORRESPONDENCE: Mehmet Toner, , Korkut Uygun,
| |
Collapse
|
30
|
Yamauchi A, Miura A, Kondo H, Arai T, Sasaki YC, Tsuda S. Subzero Nonfreezing Hypothermia with Insect Antifreeze Protein Dramatically Improves Survival Rate of Mammalian Cells. Int J Mol Sci 2021; 22:ijms222312680. [PMID: 34884483 PMCID: PMC8657916 DOI: 10.3390/ijms222312680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 01/16/2023] Open
Abstract
Cells for therapeutic use are often preserved at +4 °C, and the storage period is generally limited to 2–3 days. Here, we report that the survival rate (%) of mammalian cells is improved to 10–20 days when they are preserved with a subzero supercooled solution containing the antifreeze protein (AFP), for which an ability to stabilize both supercooled water and cell membrane integrity has been postulated. We chose adherent rat insulinoma (RIN-5F) cells as the preservation target, which were immersed into −5 °C-, −2 °C-, or +4 °C-chilled “unfrozen” solution of Euro-Collins or University of Washington (UW) containing the AFP sample obtained from insect or fish. Our results show that the survival rate of the cells preserved with the solution containing insect AFP was always higher than that of the fish AFP solution. A combination of the −5 °C-supercooling and insect AFP gave the best preservation result, namely, UW solution containing insect AFP kept 53% of the cells alive, even after 20 days of preservation at −5 °C. The insect AFP locates highly organized ice-like waters on its molecular surface. Such waters may bind to semiclathrate waters constructing both embryonic ice crystals and a membrane–water interface in the supercooled solution, thereby protecting the cells from damage due to chilling.
Collapse
Affiliation(s)
- Akari Yamauchi
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (H.K.)
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
| | - Hidemasa Kondo
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (H.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
| | - Tatsuya Arai
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan; (T.A.); (Y.C.S.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan; (T.A.); (Y.C.S.)
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Sakae Tsuda
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan; (A.Y.); (H.K.)
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
- Correspondence: ; Tel.: +81-11-857-8912
| |
Collapse
|
31
|
Baskaran A, Kaari M, Venugopal G, Manikkam R, Joseph J, Bhaskar PV. Anti freeze proteins (Afp): Properties, sources and applications - A review. Int J Biol Macromol 2021; 189:292-305. [PMID: 34419548 DOI: 10.1016/j.ijbiomac.2021.08.105] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Extreme cold marine and freshwater temperatures (below 4 °C) induce massive deterioration to the cell membranes of organisms resulting in the formation of ice crystals, consequently causing organelle damage or cell death. One of the adaptive mechanisms organisms have evolved to thrive in cold environments is the production of antifreeze proteins with the functional capabilities to withstand frigid temperatures. Antifreeze proteins are extensively identified in different cold-tolerant species and they facilitate the persistence of cold-adapted organisms by decreasing the freezing point of their body fluids. Various structurally diverse types of antifreeze proteins detected possess the ability to modify ice crystal growth by thermal hysteresis and ice recrystallization inhibition. The unique properties of antifreeze proteins have made them a promising resource in industry, biomedicine, food storage and cryobiology. This review collates the findings of the various studies carried out in the past and the recent developments observed in the properties, functional mechanisms, classification, distinct sources and the ever-increasing applications of antifreeze proteins. This review also summarizes the possibilities of the way forward to identify new avenues of research on anti-freeze proteins.
Collapse
Affiliation(s)
- Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Gopikrishnan Venugopal
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India.
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai 600 119, Tamil Nadu, India
| | - Parli V Bhaskar
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Vasco-da-Gama 403804, Goa, India
| |
Collapse
|
32
|
Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS. Phyllosphere microbiome: Diversity and functions. Microbiol Res 2021; 254:126888. [PMID: 34700185 DOI: 10.1016/j.micres.2021.126888] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Phyllosphere or aerial surface of plants represents the globally largest and peculiar microbial habitat that inhabits diverse and rich communities of bacteria, fungi, viruses, cyanobacteria, actinobacteria, nematodes, and protozoans. These hyperdiverse microbial communities are related to the host's specific functional traits and influence the host's physiology and the ecosystem's functioning. In the last few years, significant advances have been made in unravelling several aspects of phyllosphere microbiology, including diversity and microbial community composition, dynamics, and functional interactions. This review highlights the current knowledge about the assembly, structure, and composition of phyllosphere microbial communities across spatio-temporal scales, besides functional significance of different microbial communities to the plant host and the surrounding environment. The knowledge will help develop strategies for modelling and manipulating these highly beneficial microbial consortia for furthering scientific inquiry into their interactions with the host plants and also for their useful and economic utilization.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India.
| | - Aadil Farooq War
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Iflah Rafiq
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | - Irfan Rashid
- Department of Botany, University of Kashmir, Srinagar, 190006, Jammu and Kashmir, India
| | | |
Collapse
|
33
|
Arias NS, Scholz FG, Goldstein G, Bucci SJ. Low-temperature acclimation and legacy effects of summer water deficits in olive freezing resistance. TREE PHYSIOLOGY 2021; 41:1836-1847. [PMID: 33823046 DOI: 10.1093/treephys/tpab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 05/11/2023]
Abstract
Low temperatures and drought are the main environmental factors affecting plant growth and productivity across most of the terrestrial biomes. The objective of this study was to analyze the effects of water deficits before the onset of low temperatures in winter to enhance freezing resistance in olive trees. The study was carried out near the coast of Chubut, Argentina. Plants of five olive cultivars were grown outdoor in pots and exposed to different water deficit treatments. We assessed leaf water relations, ice nucleation temperature (INT), cell damage (LT50), plant growth and leaf nitrogen content during summer and winter in all cultivars and across water deficit treatments. Leaf INT and LT50 decreased significantly from summer to winter within each cultivar and between treatments. We observed a trade-off between resources allocation to freezing resistance and vegetative growth, such that an improvement in resistance to sub-zero temperatures was associated with lower growth in tree height. Water deficit applied during summer increased the amount of osmotically active solutes and decreased the leaf water potentials. This type of legacy effect persists during the winter after the water deficit even when treatment was removed by natural rainfalls.
Collapse
Affiliation(s)
- Nadia S Arias
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), Facultad de Ciencias Naturales y Ciencias de la Salud, UNPSJB, Comodoro Rivadavia, Argentina
| | - Fabián G Scholz
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), Facultad de Ciencias Naturales y Ciencias de la Salud, UNPSJB, Comodoro Rivadavia, Argentina
| | - Guillermo Goldstein
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IGEBA-CONICET) Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Laboratorio de Ecología Funcional (LEF), UBA, Buenos Aires, Argentina
- Department of Biology, University of Miami, Coral Gables PO Box 249118, FL, USA
| | - Sandra J Bucci
- Instituto de Biociencias de la Patagonia (INBIOP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia, Argentina
- Grupo de Estudios Biofísicos y Eco-fisiológicos (GEBEF), Facultad de Ciencias Naturales y Ciencias de la Salud, UNPSJB, Comodoro Rivadavia, Argentina
| |
Collapse
|
34
|
Vitrification with microinjection of single seminiferous tubules: an efficient cryopreservation approach for limited testicular tissue. Reprod Biomed Online 2021; 43:687-699. [PMID: 34556414 DOI: 10.1016/j.rbmo.2021.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022]
Abstract
RESEARCH QUESTION Is vitrification with microinjection of single seminiferous tubules an efficient cryopreservation approach for limited testicular tissue? DESIGN Testicular tissue from 10 patients with normal spermatogenesis were assigned to a fresh control group or one of the following cryopreservation procedures: uncontrolled slow freezing (USF) using either 1.5 or 2.1 M DMSO combined with sucrose and vitrification with or without single seminiferous tubules microinjection. RESULTS Single seminiferous tubules microinjected with cryoprotective agents (CPA) enhanced the penetration of CPA compared with CPA-treated testicular tissue fragments. Microinjection of seminiferous tubules (VLP) maintained tubule structural integrity and germ cell numbers, and reduced spermatogonial apoptosis after cryopreservation compared with vitrification without microinjection (apoptosis rate: VLP versus vitrification without microinjection, P = 0.047; VLP versus USF, P= 0.049). Freezing of single seminiferous tubules using 0.25-ml straws and traditional sperm freezing methods protected sperm retrieval and recovery rates, and the progressive motility index. CONCLUSIONS Vitrification of single seminiferous tubule with microinjection of low CPA concentration is an effective approach to testicular cryopreservation.
Collapse
|
35
|
Mohammadian B, Namdari N, Abou Yassine AH, Heil J, Rizvi R, Sojoudi H. Interfacial phenomena in snow from its formation to accumulation and shedding. Adv Colloid Interface Sci 2021; 294:102480. [PMID: 34314954 DOI: 10.1016/j.cis.2021.102480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/28/2022]
Abstract
Snow accumulation alters the energy budget of engineered (i.e. photovoltaic panels) and natural surfaces (i.e. earth) by affecting the amount of solar energy these surfaces can absorb. Falling of accumulated snow from overhead structures (i.e. telecommunication towers, power lines, wind turbines, and bridge cables) and slipping pedestrians and vehicles on surfaces covered with snow and ice can lead to injuries and safety issues. This review article aimed to provide an overview of snow from its nucleation/formation fundamentals to its interaction with man-made and natural surfaces leading to its accumulation, followed by its removal via shedding and/or melting. Mechanical, thermal, and thermodynamics properties of snow were reviewed providing insights on their impact on snow interaction with surfaces. Finally, currently-available active and passive techniques to mitigate issues associated with snow accumulation on surfaces were reviewed, and perspectives on challenges ahead were provided.
Collapse
Affiliation(s)
- Behrouz Mohammadian
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo 43606, United States
| | - Navid Namdari
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo 43606, United States
| | - Abdel Hakim Abou Yassine
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo 43606, United States
| | - Jamie Heil
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo 43606, United States
| | - Reza Rizvi
- Department of Mechanical Engineering, York University, 4700 Keele St BRG 437, Toronto, ON M3J 1P3, Canada
| | - Hossein Sojoudi
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo 43606, United States.
| |
Collapse
|
36
|
Ajdary R, Tardy BL, Mattos BD, Bai L, Rojas OJ. Plant Nanomaterials and Inspiration from Nature: Water Interactions and Hierarchically Structured Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001085. [PMID: 32537860 PMCID: PMC11468645 DOI: 10.1002/adma.202001085] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/08/2020] [Accepted: 03/20/2020] [Indexed: 05/26/2023]
Abstract
Recent developments in the area of plant-based hydrogels are introduced, especially those derived from wood as a widely available, multiscale, and hierarchical source of nanomaterials, as well as other cell wall elements. With water being fundamental in a hydrogel, water interactions, hydration, and swelling, all critically important in designing, processing, and achieving the desired properties of sustainable and functional hydrogels, are highlighted. A plant, by itself, is a form of a hydrogel, at least at given states of development, and for this reason phenomena such as fluid transport, diffusion, capillarity, and ionic effects are examined. These aspects are highly relevant not only to plants, especially lignified tissues, but also to the porous structures produced after removal of water (foams, sponges, cryogels, xerogels, and aerogels). Thus, a useful source of critical and comprehensive information is provided regarding the synthesis of hydrogels from plant materials (and especially wood nanostructures), and about the role of water, not only for processing but for developing hydrogel properties and uses.
Collapse
Affiliation(s)
- Rubina Ajdary
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Bruno D. Mattos
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
| | - Long Bai
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| | - Orlando J. Rojas
- Department of Bioproducts and BiosystemsSchool of Chemical EngineeringAalto UniversityP.O. Box 16300, AaltoEspooFIN‐00076Finland
- Departments of Chemical & Biological EngineeringChemistry and, Wood ScienceThe University of British Columbia2360 East MallVancouverBCV6T 1Z3Canada
| |
Collapse
|
37
|
Ice Nucleation Activity of Alpine Bioaerosol Emitted in Vicinity of a Birch Forest. ATMOSPHERE 2021. [DOI: 10.3390/atmos12060779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In alpine environments, many plants, bacteria, and fungi contain ice nuclei (IN) that control freezing events, providing survival benefits. Once airborne, IN could trigger ice nucleation in cloud droplets, influencing the radiation budget and the hydrological cycle. To estimate the atmospheric relevance of alpine IN, investigations near emission sources are inevitable. In this study, we collected 14 aerosol samples over three days in August 2019 at a single site in the Austrian Alps, close to a forest of silver birches, which are known to release IN from their surface. Samples were taken during and after rainfall, as possible trigger of aerosol emission by an impactor and impinger at the ground level. In addition, we collected aerosol samples above the canopy using a rotary wing drone. Samples were analyzed for ice nucleation activity, and bioaerosols were characterized based on morphology and auto-fluorescence using microscopic techniques. We found high concentrations of IN below the canopy, with a freezing behavior similar to birch extracts. Sampled particles showed auto-fluorescent characteristics and the morphology strongly suggested the presence of cellular material. Moreover, some particles appeared to be coated with an organic film. To our knowledge, this is the first investigation of aerosol emission sources in alpine vegetation with a focus on birches.
Collapse
|
38
|
Liu Z, Wang Y, Zheng X, Jin S, Liu S, He Z, Xiang JF, Wang J. Bioinspired Crowding Inhibits Explosive Ice Growth in Antifreeze Protein Solutions. Biomacromolecules 2021; 22:2614-2624. [PMID: 33945264 DOI: 10.1021/acs.biomac.1c00331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antifreeze (glyco)proteins (AF(G)Ps) are naturally evolved ice inhibitors incomparable to any man-made materials, thus, they are gaining intensive interest for cryopreservation and beyond. AF(G)Ps depress the freezing temperature (Tf) noncolligatively below the melting temperature (Tm), generating a thermal hysteresis (TH) gap, within which the ice growth is arrested. However, the ice crystals have been reported to undergo a retaliatory and explosive growth beyond the TH gap, which is lethal to living organisms. Although intensive research has been carried to inhibit such an explosive ice growth, no satisfactory strategy has been discovered until now. Here, we report that crowded solutions mimicking an extracellular matrix (ECM), in which AF(G)Ps are located, can completely inhibit the explosive ice growth. The crowded solutions are the condensates of liquid-liquid phase separation consisting of polyethylene glycol (PEG) and sodium citrate (SC), which possess a nanoscale network and strong hydrogen bond (HB) forming ability, completely different to crowded solutions made of single components, that is, PEG or SC. Due to these unique features, the dynamics of the water is significantly slowed down, and the energy needed for breaking the HB between water molecules is distinctly increased; consequently, ice growth is inhibited as the rate of water molecules joining the ice is substantially reduced. The present work not only opens a new avenue for cryopreservation, but also suggests that the ECM of cold-hardy organisms, which also exhibit great water confining properties, may have a positive effect in protecting the living organisms from freezing damage.
Collapse
Affiliation(s)
- Zhang Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Yan Wang
- School of Medicine, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Xia Zheng
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shenglin Jin
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shuo Liu
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Zhiyuan He
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jun-Feng Xiang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,CAS Research/Education Center for Excellence in Molecular Sciences, and Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| |
Collapse
|
39
|
Marshall KE, Roe AD. Surviving in a Frozen Forest: the Physiology of Eastern Spruce Budworm Overwintering. Physiology (Bethesda) 2021; 36:174-182. [PMID: 33904790 DOI: 10.1152/physiol.00037.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The eastern spruce budworm, Choristoneura fumiferana, is one of North America's most destructive forest insects. It survives the harsh winters by deploying both a sophisticated diapause program and a complex suite of cryoprotective molecules. The spruce budworm's cryoprotective biochemistry could revolutionize organ storage and transplants. Here we review the latest in C. fumiferana overwintering physiology and identify emerging theoretical and practical questions that are open for exploration.
Collapse
Affiliation(s)
- Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Amanda D Roe
- Great Lakes Forestry Center, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, Canada
| |
Collapse
|
40
|
Arai T, Yamauchi A, Miura A, Kondo H, Nishimiya Y, Sasaki YC, Tsuda S. Discovery of Hyperactive Antifreeze Protein from Phylogenetically Distant Beetles Questions Its Evolutionary Origin. Int J Mol Sci 2021; 22:3637. [PMID: 33807342 PMCID: PMC8038014 DOI: 10.3390/ijms22073637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/28/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
Beetle hyperactive antifreeze protein (AFP) has a unique ability to maintain a supercooling state of its body fluids, however, less is known about its origination. Here, we found that a popular stag beetle Dorcus hopei binodulosus (Dhb) synthesizes at least 6 isoforms of hyperactive AFP (DhbAFP). Cold-acclimated Dhb larvae tolerated -5 °C chilled storage for 24 h and fully recovered after warming, suggesting that DhbAFP facilitates overwintering of this beetle. A DhbAFP isoform (~10 kDa) appeared to consist of 6-8 tandem repeats of a 12-residue consensus sequence (TCTxSxNCxxAx), which exhibited 3 °C of high freezing point depression and the ability of binding to an entire surface of a single ice crystal. Significantly, these properties as well as DNA sequences including the untranslated region, signal peptide region, and an AFP-encoding region of Dhb are highly similar to those identified for a known hyperactive AFP (TmAFP) from the beetle Tenebrio molitor (Tm). Progenitor of Dhb and Tm was branched off approximately 300 million years ago, so no known evolution mechanism hardly explains the retainment of the DNA sequence for such a lo-ng divergence period. Existence of unrevealed gene transfer mechanism will be hypothesized between these two phylogenetically distant beetles to acquire this type of hyperactive AFP.
Collapse
Affiliation(s)
- Tatsuya Arai
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
| | - Akari Yamauchi
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Ai Miura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Hidemasa Kondo
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
| | - Yuji C. Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| | - Sakae Tsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan; (T.A.); (A.M.); (H.K.); (Y.N.)
- Graduate School of Life Sciences, Hokkaido University, Sapporo 060-0810, Japan;
- OPERANDO Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8563, Japan
| |
Collapse
|
41
|
Bojic S, Murray A, Bentley BL, Spindler R, Pawlik P, Cordeiro JL, Bauer R, de Magalhães JP. Winter is coming: the future of cryopreservation. BMC Biol 2021; 19:56. [PMID: 33761937 PMCID: PMC7989039 DOI: 10.1186/s12915-021-00976-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
The preservative effects of low temperature on biological materials have been long recognised, and cryopreservation is now widely used in biomedicine, including in organ transplantation, regenerative medicine and drug discovery. The lack of organs for transplantation constitutes a major medical challenge, stemming largely from the inability to preserve donated organs until a suitable recipient is found. Here, we review the latest cryopreservation methods and applications. We describe the main challenges-scaling up to large volumes and complex tissues, preventing ice formation and mitigating cryoprotectant toxicity-discuss advantages and disadvantages of current methods and outline prospects for the future of the field.
Collapse
Affiliation(s)
- Sanja Bojic
- School of Computing, Newcastle University, Newcastle upon Tyne, UK.,Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.,Department of Genetics, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Alex Murray
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Barry L Bentley
- Faculty of Science, Technology, Engineering & Mathematics, The Open University, Milton Keynes, UK.,Magdalene College, University of Cambridge, Cambridge, UK
| | | | - Piotr Pawlik
- Cancer Genome Evolution Research Group, University College London Cancer Institute, University College London, London, UK
| | | | - Roman Bauer
- Department of Computer Science, University of Surrey, Guildford, UK.
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK.
| |
Collapse
|
42
|
Jin J, Pak AJ, Han Y, Voth GA. A new one-site coarse-grained model for water: Bottom-up many-body projected water (BUMPer). II. Temperature transferability and structural properties at low temperature. J Chem Phys 2021; 154:044105. [PMID: 33514078 PMCID: PMC7826166 DOI: 10.1063/5.0026652] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/14/2020] [Indexed: 11/14/2022] Open
Abstract
A number of studies have constructed coarse-grained (CG) models of water to understand its anomalous properties. Most of these properties emerge at low temperatures, and an accurate CG model needs to be applicable to these low-temperature ranges. However, direct use of CG models parameterized from other temperatures, e.g., room temperature, encounters a problem known as transferability, as the CG potential essentially follows the form of the many-body CG free energy function. Therefore, temperature-dependent changes to CG interactions must be accounted for. The collective behavior of water at low temperature is generally a many-body process, which often motivates the use of expensive many-body terms in the CG interactions. To surmount the aforementioned problems, we apply the Bottom-Up Many-Body Projected Water (BUMPer) CG model constructed from Paper I to study the low-temperature behavior of water. We report for the first time that the embedded three-body interaction enables BUMPer, despite its pairwise form, to capture the growth of ice at the ice/water interface with corroborating many-body correlations during the crystal growth. Furthermore, we propose temperature transferable BUMPer models that are indirectly constructed from the free energy decomposition scheme. Changes in CG interactions and corresponding structures are faithfully recapitulated by this framework. We further extend BUMPer to examine its ability to predict the structure, density, and diffusion anomalies by employing an alternative analysis based on structural correlations and pairwise potential forms to predict such anomalies. The presented analysis highlights the existence of these anomalies in the low-temperature regime and overcomes potential transferability problems.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander J. Pak
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Yining Han
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
43
|
Smith A, Turnbull KF, Moulton JH, Sinclair BJ. Metabolic cost of freeze-thaw and source of CO 2 production in the freeze-tolerant cricket Gryllus veletis. J Exp Biol 2021; 224:jeb234419. [PMID: 33144372 DOI: 10.1242/jeb.234419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Freeze-tolerant insects can survive the conversion of a substantial portion of their body water to ice. While the process of freezing induces active responses from some organisms, these responses appear absent from freeze-tolerant insects. Recovery from freezing likely requires energy expenditure to repair tissues and re-establish homeostasis, which should be evident as elevations in metabolic rate after thaw. We measured carbon dioxide (CO2) production in the spring field cricket (Gryllus veletis) as a proxy for metabolic rate during cooling, freezing and thawing and compared the metabolic costs associated with recovery from freezing and chilling. We hypothesized that freezing does not induce active responses, but that recovery from freeze-thaw is metabolically costly. We observed a burst of CO2 release at the onset of freezing in all crickets that froze, including those killed by either cyanide or an insecticide (thiacloprid), implying that the source of this CO2 was neither aerobic metabolism nor a coordinated nervous system response. These results suggest that freezing does not induce active responses from G. veletis, but may liberate buffered CO2 from hemolymph. There was a transient 'overshoot' in CO2 release during the first hour of recovery, and elevated metabolic rate at 24, 48 and 72 h, in crickets that had been frozen compared with crickets that had been chilled (but not frozen). Thus, recovery from freeze-thaw and the repair of freeze-induced damage appears metabolically costly in G. veletis, and this cost persists for several days after thawing.
Collapse
Affiliation(s)
- Adam Smith
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Kurtis F Turnbull
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| | - Julian H Moulton
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, CO 80903, USA
| | - Brent J Sinclair
- Department of Biology, University of Western Ontario, London, ON, Canada N6A 5B7
| |
Collapse
|
44
|
Huang S, Hu W, Chen J, Wu Z, Zhang D, Fu P. Overview of biological ice nucleating particles in the atmosphere. ENVIRONMENT INTERNATIONAL 2021; 146:106197. [PMID: 33271442 DOI: 10.1016/j.envint.2020.106197] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 05/14/2023]
Abstract
Biological particles in the Earth's atmosphere are a distinctive category of ice nucleating particles (INPs) due to their capability of facilitating ice crystal formation in clouds at relatively warm temperatures. Field observations and model simulations have shown that biological INPs affect cloud and precipitation formation and regulate regional or even global climate, although there are considerable uncertainties in modeling and large gaps between observed and model simulated contribution of biological particles to atmospheric INPs. This paper overviews the latest researches about biological INPs in the atmosphere. Firstly, we describe the primary ice nucleation mechanisms, and measurements and model simulations of atmospheric biological INPs. Secondly, we summarize the ice nucleating properties of biological INPs from diverse sources such as soils or dust, vegetation (e.g., leaves and pollen grains), sea spray, and fresh waters, and controlling factors of biological INPs in the atmosphere. Then we review the abundance and distribution of atmospheric biological INPs in diverse ecosystems. Finally, we discuss the open questions in further studies on atmospheric biological INPs, including the requirements for developing novel detection techniques and simulation models, as well as the comprehensive investigation of characteristics and influencing factors of atmospheric biological INPs.
Collapse
Affiliation(s)
- Shu Huang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Wei Hu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Jie Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Daizhou Zhang
- Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
45
|
Ramadan MM, Abdel-Hady AAA, Guedes RNC, Hashem AS. Low temperature shock and chill-coma consequences for the red flour beetle (Tribolium castaneum) and the rice weevil (Sitophilus oryzae). J Therm Biol 2020; 94:102774. [PMID: 33293005 DOI: 10.1016/j.jtherbio.2020.102774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/04/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022]
Abstract
Insects face several (environmental) abiotic stressors, including low temperature, which cause the failure of neuromuscular function. Such exposure leads insects toa reversible comatose state termed chill-coma, but the consequences of this state for the organism biology were little explored. Here, the consequences of the chill-coma phase were investigated in two of the main stored product pest species - the red flour beetle Tribolium castaneum (larvae and adults) and the rice weevil Sitophilus oryzae (adults). For this purpose, a series of low-temperature shocks were used to estimate the chill-coma recovery time (CCRT), survival, nutrition and weight gain/growth of T. castaneum (larvae and adults) and S. oryzae, as well as the development of T. castaneum life stages. The relatively long CCRT was characteristic of beetle larvae, at different low-temperature shocks, and CCRT increased with decreasing temperatures and increasing exposure intervals for both pest species. The survival was little affected by the low-temperature shocks applied, but such shocks affected insect feeding and growth. Tribolium castaneum larvae was more sensitive than adults of both insect species. Moreover, the relative consumption and weight gain of S. oryzae adults were lower than those of T. castaneum adults and mainly larvae, while feeding deterrence was not affected by low temperature shocks, unlike food conversion efficiency. Low-temperature shocks, even under short duration at some temperatures, significantly delayed development. The lower the temperature and the higher the exposure period, the more delayed the development. Thus, the physiological costs of chill-coma are translated into life-history consequences, with potential implications for the management of this insect pest species in stored products and even more so on red flour beetles and rice weevils.
Collapse
Affiliation(s)
- Marwa M Ramadan
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Amira A A Abdel-Hady
- Economic Entomology Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Ahmed S Hashem
- Stored Product Pests Research Department, Plant Protection Research Institute, Agricultural Research Center, Sakha, Kafr El-Sheikh, Egypt.
| |
Collapse
|
46
|
Arcarons N, Vendrell-Flotats M, Yeste M, Mercade E, López-Béjar M, Mogas T. Cryoprotectant role of exopolysaccharide of Pseudomonas sp. ID1 in the vitrification of IVM cow oocytes. Reprod Fertil Dev 2020; 31:1507-1519. [PMID: 31092307 DOI: 10.1071/rd18447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 04/02/2019] [Indexed: 12/12/2022] Open
Abstract
Biological molecules isolated from organisms that live under subzero conditions could be used to protect oocytes from cryoinjuries suffered during cryopreservation. This study examined the cryoprotectant role of exopolysaccharides of Pseudomonas sp. ID1 (EPS ID1) in the vitrification of prepubertal and adult cow oocytes. IVM oocytes were vitrified and warmed in media supplemented with 0, 1, 10, 100 or 1000µgmL-1 EPS ID1. After warming, oocytes were fertilised and embryo development, spindle morphology and the expression of several genes in Day 8 blastocysts were assessed. Vitrification led to significantly lower proportion of prepubertal oocytes exhibiting a normal spindle configuration. In fresh control oocytes and most groups of vitrified adult oocytes, similar percentages of oocytes with a normal spindle configuration were observed. Percentages of Day 8 blastocysts were similar for prepubertal oocytes vitrified in the absence or presence of 1 or 10µgmL-1 EPS ID1 and for adult oocytes vitrified in the presence of 10µgmL-1 EPS ID1 compared with non-vitrified oocytes. EPS ID1 supplementation had no effect on solute carrier family 2 member 3 (SLC2A3), ubiquitin-conjugating enzyme E2A (UBE2A) and histone deacetylase 1 (HDAC1) expression in Day 8 blastocysts form adult oocytes. However, supplementation with 10 and 100µgmL-1 EPS ID1 led to increased expression of genes involved in epigenetic modifications (DNA methyltransferase 3 alpha (DNMT3A) and K (lysine) acetyltransferase 2A (KAT2A)) and apoptosis (BCL2 associated X apoptosis regulator (BAX) and BCL2-like 1 (BCL2L1)). The lowest BAX:BCL2L1 ratio was found in the 10µgmL-1 EPS ID1-supplemented group. The results suggest that 10µgmL-1 EPS ID1 added to vitrification and warming media may help protect bovine oocytes against cryodamage.
Collapse
Affiliation(s)
- Núria Arcarons
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Meritxell Vendrell-Flotats
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain; and Department of Animal Health and Anatomy, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Marc Yeste
- Department of Biology, Institute of Food and Agricultural Technology, University of Girona, Girona, C/ Maria Aurèlia Campany 69, Campus Montilivi, E-17003 Girona, Spain
| | - Elena Mercade
- Department de Biology, Health and Environment, Microbiology Section, University of Barcelona, E-08028, Barcelona, Spain
| | - Manel López-Béjar
- Department of Animal Health and Anatomy, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain
| | - Teresa Mogas
- Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Travessera dels Turons s/n, E-08193, Cerdanyola del Vallès (Barcelona), Spain; and Corresponding author.
| |
Collapse
|
47
|
Schulz M, Risopatrón J, Uribe P, Isachenko E, Isachenko V, Sánchez R. Human sperm vitrification: A scientific report. Andrology 2020; 8:1642-1650. [DOI: 10.1111/andr.12847] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Mabel Schulz
- Laboratory in Reproductive Medicine and Molecular Endocrinology Center of Translational Medicine‐Scientific and Technological Bioresource Nucleus (CEMT‐BIOREN) Faculty of Medicine Universidad de La Frontera Temuco Chile
- Department of Preclinical Science Faculty of Medicine Universidad de La Frontera Temuco Chile
| | - Jennie Risopatrón
- Department of Basic Science Faculty of Medicine Universidad de La Frontera Temuco Chile
| | - Pamela Uribe
- Laboratory in Reproductive Medicine and Molecular Endocrinology Center of Translational Medicine‐Scientific and Technological Bioresource Nucleus (CEMT‐BIOREN) Faculty of Medicine Universidad de La Frontera Temuco Chile
- Department of Internal Medicine Faculty of Medicine Universidad de La Frontera Temuco Chile
| | - Evgenia Isachenko
- Department of Obstetrics and Gynecology University of Cologne Cologne Germany
| | - Vladimir Isachenko
- Department of Obstetrics and Gynecology University of Cologne Cologne Germany
| | - Raúl Sánchez
- Laboratory in Reproductive Medicine and Molecular Endocrinology Center of Translational Medicine‐Scientific and Technological Bioresource Nucleus (CEMT‐BIOREN) Faculty of Medicine Universidad de La Frontera Temuco Chile
- Department of Preclinical Science Faculty of Medicine Universidad de La Frontera Temuco Chile
| |
Collapse
|
48
|
Georgiou PG, Kontopoulou I, Congdon TR, Gibson MI. Ice recrystallisation inhibiting polymer nano-objects via saline-tolerant polymerisation-induced self-assembly. MATERIALS HORIZONS 2020; 8:1883-1887. [PMID: 33692903 PMCID: PMC7116880 DOI: 10.1039/d0mh00354a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical tools to modulate ice formation/growth have great (bio)-technological value, with ice binding/antifreeze proteins being exciting targets for biomimetic materials. Here we introduce polymer nanomaterials that are potent inhibitors of ice recrystallisation using polymerisation-induced self-assembly (PISA), employing a poly(vinyl alcohol) graft macromolecular chain transfer agent (macro-CTA). Crucially, engineering the core-forming block with diacetone acrylamide enabled PISA to be conducted in saline, whereas poly(2-hydroxypropyl methacrylate) cores led to coagulation. The most active particles inhibited ice growth as low as 0.5 mg mL-1, and were more active than the PVA stabiliser block alone, showing that the dense packing of this nanoparticle format enhanced activity. This provides a unique route towards colloids capable of modulating ice growth.
Collapse
Affiliation(s)
| | | | | | - Matthew I. Gibson
- Department of Chemistry, University of Warwick, CV4 7AL, UK
- Warwick Medical School, University of Warwick, CV4 7AL, UK
| |
Collapse
|
49
|
Freezing from the inside: Ice nucleation in Escherichia coli and Escherichia coli ghosts by inner membrane bound ice nucleation protein InaZ. Biointerphases 2020; 15:031003. [PMID: 32429672 DOI: 10.1116/1.5142174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ice nucleation (IN) active bacteria such as Pseudomonas syringae promote the growth of ice crystals more effectively than any material known. Using the specialized ice nucleation protein (INP) InaZ, P. syringae-the well studied epiphytic plant pathogen-attacks plants by frost damage and, likewise fascinating, drives ice nucleation within clouds when airborne in the atmosphere by linkage to the Earth's water cycle. While ice nucleation proteins play a tremendous role for life on the planet, the molecular details of their activity on the bacterial membrane surface are largely unknown. Bacterial ghosts (BGs) derived from Escherichia coli can be used as simplified model systems to study the mode of action of InaZ. In this work, the authors used BGs to study the role of InaZ localization on the luminal side of the bacterial inner membrane. Naturally, P. syringae INPs are displayed on the surface of the outer membrane; so in contrast, the authors engineered an N-terminal truncated form of inaZ lacking the transport sequence for anchoring of InaZ on the outer membrane. This construct was fused to N- and C-terminal inner membrane anchors and expressed in Escherichia coli C41. The IN activity of the corresponding living recombinant E. coli catalyzing interfacial ice formation of supercooled water at high subzero temperatures was tested by a droplet-freezing assay and surface spectroscopy. The median freezing temperature (T50) of the parental living E. coli C41 cells without INP was detected at -20.1 °C and with inner membrane anchored INPs at a T50 value between -7 and -9 °C, demonstrating that the induction of IN from the inside of the bacterium by inner membrane anchored INPs facing the luminal inner membrane side is very similar to IN induced by bacterial INPs located at the outer membrane. Bacterial ghosts derived from these different constructs showed first droplet freezing values between -6 and -8 °C, whereas E. coli C41 BGs alone without carrying inner membrane anchored INPs exhibit a T50 of -18.9 °C. Sum frequency generation spectroscopy showed structural ordered water at the BG/water interface, which increased close to the water melting point. Together, this indicates that the more efficient IN of INP-BGs compared to their living parental strains can be explained by the free access of inner membrane anchored INP constructs to ultrapure water filling the inner space of the BGs.
Collapse
|
50
|
Nguyen TH, Kim Y, Kim JS, Jeong Y, Park HM, Kim JW, Kim JE, Kim H, Paek NS, Kang CH. Evaluating the Cryoprotective Encapsulation of the Lactic Acid Bacteria in Simulated Gastrointestinal Conditions. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0406-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|