1
|
Bullington BW, Klemperer K, Mages K, Chalem A, Mazigo HD, Changalucha J, Kapiga S, Wright PF, Yazdanbakhsh MM, Downs JA. Effects of schistosomes on host anti-viral immune response and the acquisition, virulence, and prevention of viral infections: A systematic review. PLoS Pathog 2021; 17:e1009555. [PMID: 34015063 PMCID: PMC8172021 DOI: 10.1371/journal.ppat.1009555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 04/13/2021] [Indexed: 11/18/2022] Open
Abstract
Although a growing number of studies suggest interactions between Schistosoma parasites and viral infections, the effects of schistosome infections on the host response to viruses have not been evaluated comprehensively. In this systematic review, we investigated how schistosomes impact incidence, virulence, and prevention of viral infections in humans and animals. We also evaluated immune effects of schistosomes in those coinfected with viruses. We screened 4,730 studies and included 103. Schistosomes may increase susceptibility to some viruses, including HIV and Kaposi’s sarcoma-associated herpesvirus, and virulence of hepatitis B and C viruses. In contrast, schistosome infection may be protective in chronic HIV, Human T-cell Lymphotropic Virus-Type 1, and respiratory viruses, though further research is needed. Schistosome infections were consistently reported to impair immune responses to hepatitis B and possibly measles vaccines. Understanding the interplay between schistosomes and viruses has ramifications for anti-viral vaccination strategies and global control of viral infections. Many studies have described the effects of parasitic Schistosoma worm infections on the way that humans and animals respond to a variety of viral infections. Our goal was to evaluate, in a systematic manner, how having a schistosome parasitic infection affects a host’s susceptibility to viral infections, the clinical disease course of viral infections, and prevention of viral infections by vaccines. We also assessed the effects of schistosome infection on the host immune response to viruses. We screened 4,730 studies for potential relevance and included 103 of them in this review. Overall, our analysis showed that schistosome infection impairs the host response to many viruses. This includes increasing host susceptibility to HIV and possibly Kaposi’s sarcoma-associated herpesvirus, worsening the severity of clinical disease in hepatitis B and C infections, and decreasing immune responses to vaccines for hepatitis B and possibly measles. The studies that we analyzed also suggested that schistosome infection may protect the host against poor clinical outcomes from some viral infections including Human T-cell Lymphotropic Virus-Type 1, respiratory viruses, and chronic HIV. We discuss how these findings might be interpreted, and the additional research needed, in order to improve anti-viral vaccination strategies and control of viral infections globally.
Collapse
Affiliation(s)
- Brooke W. Bullington
- Center for Global Health, Weill Cornell Medicine, New York, NY, United States of America
- * E-mail:
| | | | - Keith Mages
- Samuel J. Wood Library Weill Cornell Medicine, New York, NY, United States of America
| | - Andrea Chalem
- Center for Global Health, Weill Cornell Medicine, New York, NY, United States of America
| | - Humphrey D. Mazigo
- Mwanza Intervention Trials Unit, National Institute for Medical Research Mwanza, Tanzania
| | - John Changalucha
- Mwanza Intervention Trials Unit, National Institute for Medical Research Mwanza, Tanzania
| | - Saidi Kapiga
- Mwanza Intervention Trials Unit, National Institute for Medical Research Mwanza, Tanzania
- Department of Infectious Diseases Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter F. Wright
- Department of Pediatrics, Dartmouth Geisel School of Medicine, Hanover, New Hampshire, United States of America
| | | | - Jennifer A. Downs
- Center for Global Health, Weill Cornell Medicine, New York, NY, United States of America
| |
Collapse
|
2
|
Buch S, Yao H, Guo M, Mori T, Su TP, Wang J. Cocaine and HIV-1 interplay: molecular mechanisms of action and addiction. J Neuroimmune Pharmacol 2011; 6:503-15. [PMID: 21766222 DOI: 10.1007/s11481-011-9297-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/07/2011] [Indexed: 01/16/2023]
Abstract
Human immunodeficiency virus (HIV) infection is now being driven by drug-abusing populations. Epidemiological studies on drug abusers with AIDS link abuse of cocaine, even more than other drugs, to increased incidence of HIV seroprevalence and progression to AIDS. Both cell culture and animal studies demonstrate that cocaine can both potentiate HIV replication and can potentiate HIV proteins to cause enhanced glial cell activation, neurotoxicity, and breakdown of the blood-brain barrier. Based on the ability of both HIV proteins and cocaine to modulate NMDA receptor on neurons, NMDA receptors have been suggested as a common link underlying the crosstalk between drug addiction and HIV infection. While the role of dopamine system as a major target of cocaine cannot be overlooked, recent studies on the role of sigma receptors in mediating the effects of cocaine in both cell and organ systems warrants a deeper understanding of their functional role in the field. In this review, recent findings on the interplay of HIV infection and cocaine abuse and their possible implications in mode of action and/or addiction will be discussed.
Collapse
Affiliation(s)
- Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center (DRC 8011), University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Nolting T, Lindecke A, Koutsilieri E, Maschke M, Husstedt IW, Sopper S, Stüve O, Hartung HP, Arendt G. Measurement of soluble inflammatory mediators in cerebrospinal fluid of human immunodeficiency virus-positive patients at distinct stages of infection by solid-phase protein array. J Neurovirol 2010; 15:390-400. [PMID: 20001608 DOI: 10.3109/13550280903350192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The objective of this study was to evaluate immune cytokine expression in cerebrospinal fluid (CSF) of patients with human immunodeficiency virus-1 (HIV-1)-associated dementia (HAD) using a novel cytokine array assay. HIV-1 induces a condition resembling classical subcortical dementia, known as HAD. The immune mechanisms contributing to HAD have not been elucidated. Cytokine expression in CSF was determined by solid-phase protein array in 33 neurologically asymptomatic HIV-positive male patients and were compared to levels in non-HIV controls and patients with HAD. Neurological examinations and lumbar and venous punctures were conducted in all patients and controls. Interleukin (IL)-1, IL-4, and IL-10, were up-regulated in all treated acquired immunodeficiency syndrome (AIDS) patients independent of neurological status compared to controls. In contrast, interferon gamma (IFN-gamma), IL-1alpha, IL-15, and tumor necrosis factor alpha (TNF-alpha) were highly expressed in patients with HAD compared to undemented HIV-positive patients. These results show that solid-phase protein array can detect immunological changes in patients infected with HIV. Cytokine expression levels differ in different disease stages and in patients on different treatment paradigms. Pending further validation on a larger number of patients, this method may be a useful tool in CSF diagnostics and the longitudinal evaluation of patient with HAD.
Collapse
Affiliation(s)
- Thorsten Nolting
- Department of Neurology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Dhillon N, Zhu X, Peng F, Yao H, Williams R, Qiu J, Callen S, Ladner AO, Buch S. Molecular mechanism(s) involved in the synergistic induction of CXCL10 by human immunodeficiency virus type 1 Tat and interferon-gamma in macrophages. J Neurovirol 2008; 14:196-204. [PMID: 18569454 DOI: 10.1080/13550280801993648] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Synergistic interactions between viral proteins and soluble host factors released from infected mononuclear phagocytes play a critical role in the pathogenesis of human immunodeficiency virus (HIV)-associated dementia (HAD). The chemokine CXCL10 has been found to be closely associated with the progression of HIV-1-related central nervous system (CNS) disease and its related neuropsychiatric impairment. In this report the authors demonstrate that the HIV-1 protein Tat can interact with the proinflammatory cytokine interferon (IFN)-gamma to dramatically induce the expression of CXCL10 in macrophages. Synergistic induction of CXCL10 by both Tat and IFN-gamma was susceptible to inhibition by the MEK1/2 inhibitor U0126 and the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580. In addition, JAK/STAT pathway plays a major role in Tat/gamma-mediated CXCL10 induction in macrophages because pretreatment of stimulated macrophages with JAK inhibitor completely abrogated the synergistic induction of the chemokine. Functionality of the synergistically induced CXCL10 was further demonstrated by its chemotactic activity for peripheral blood lymphocytes. Taken together, these findings demonstrate that the cooperative interaction of Tat and IFN-gamma results in enhanced chemokine expression, which in turn can amplify the inflammatory responses within the CNS of HAD patients by recruiting more lymphocytes in the brain.
Collapse
Affiliation(s)
- Navneet Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dhillon NK, Williams R, Peng F, Tsai YJ, Dhillon S, Nicolay B, Gadgil M, Kumar A, Buch SJ. Cocaine-mediated enhancement of virus replication in macrophages: implications for human immunodeficiency virus-associated dementia. J Neurovirol 2008; 13:483-95. [PMID: 18097880 DOI: 10.1080/13550280701528684] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Injection drug use has been recognized as a major risk factor for acquired immunodeficiency syndrome (AIDS) from the outset of the epidemic. Cocaine, one of the most widely abused drugs in the United States, can both impair the functions of macrophages and CD4(+) lymphocytes and also activate human immunodeficiency virus (HIV)-1 expression in these cells. Because the brain is the target organ for both cocaine and HIV, the objective of the present study was to explore the effects of cocaine on virus replication in macrophages, the target cells for the virus in the central nervous system (CNS). Cocaine markedly enhanced virus production in simian human immunodeficiency virus (SHIV)-infected monocyte-derived macrophages (MDMs) and in U1 cells, a chronically infected promonocytic cell line as monitored by enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Cocaine treatment also resulted in the activation of nuclear factor (NF)-kappa B and transcriptional activation of the HIV-LTR (long terminal repeat) gag-GFP (green fluorescent protein). Analyses of chemokines in cocaine-treated macrophages by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and Luminex assays suggested increased expression of interleukin (IL)-10, a cytokine that is known to promote HIV replication in MDMs. In addition to enhancing IL-10 expression, cocaine also caused an up-regulation of the macrophage activation marker, human leukocyte antigen (HLA)-DR, in MDMs. The synergistic effect of cocaine on virus replication and its enhancement of host activation markers suggest that cocaine functions at multiple pathways to accelerate HIV-associated dementia (HAD).
Collapse
Affiliation(s)
- Navneet K Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Dhillon NK, Pinson D, Dhillon S, Tawfik O, Danley M, Davis M, Nemon O, Mayo M, Kumar A, Tsai YJ, Kumar A, Buch S. Bleomycin treatment causes enhancement of virus replication in the lungs of SHIV-infected macaques. Am J Physiol Lung Cell Mol Physiol 2007; 292:L1233-40. [PMID: 17220371 DOI: 10.1152/ajplung.00293.2006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pneumonia is a major complication of human immunodeficiency virus (HIV) pathogenesis but it develops only after prolonged infection. We used the macaque model to explore a hypothesis that the disease is a two-stage process, the first stage being establishment of the viral infection in the lung and the second being amplification of virus replication by host factors induced by chemical agents or opportunistic pathogens in the lung. Bleomycin, a chemical known to induce diffuse alveolar damage and pulmonary fibrosis with accumulation of macrophages and a rich T helper type 2 (Th2) cytokine environment, was inoculated intratracheally into five of eight SHIV 89.6P-infected macaques and into one uninfected macaque. Three additional simian HIV (SHIV)-infected macaques without bleomycin treatment served as untreated virus controls. Although none of the animals became clinically ill, bleomycin induced classical host responses in the lungs of all the treated, virus-infected macaques. There was enhanced production of the chemokine, monocyte chemotactic protein-1 (MCP-1), that had previously been shown to cause enhanced replication of the virus. Four of the five treated animals developed more productive SHIV infection in the lungs compared with the infected untreated animals. Enhanced virus replication was found primarily in infiltrating macrophages. Enhanced replication of the virus in the lungs was associated with host factors induced by the drug and supported the hypothesis for a two-stage process of pulmonary pathogenesis.
Collapse
Affiliation(s)
- Navneet Kaur Dhillon
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
In many regions of the world, both schistosomiasis and HIV/AIDS are endemic, resulting in patients harbouring co-infections. Because interaction with host CD4(+) T cells is a characteristic of schistosome as well as HIV-1 infections, bi-directional disease effects may be sufficiently different from sequelae caused by either infectious agent alone to warrant alteration of public health approaches in areas of co-endemnicity. Studies published over the past decade provide useful insights into interactions between schistosomiasis and infection with HIV-1, and overall support the hypothesis that special emphasis on treatment of schistosomiasis in populations with elevated prevalence or risk of HIV-1 infection is justified.
Collapse
Affiliation(s)
- W E Secor
- Division of Parasitic Diseases, Centers for Disease Control and Prevention, Public Health Service, Department of Health and Human Services, Atlanta, Georgia, USA.
| |
Collapse
|
8
|
Saïdi H, Magri G, Carbonneil C, Nasreddine N, Réquena M, Bélec L. IFN-gamma-activated monocytes weakly produce HIV-1 but induce the recruitment of HIV-sensitive T cells and enhance the viral production by these recruited T cells. J Leukoc Biol 2006; 81:642-53. [PMID: 16971466 DOI: 10.1189/jlb.0406278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ability of macrophages to adapt to changing cytokine environments results in the dominance of a particular functional phenotype of macrophages, which would play a significant role in HIV pathogenesis. In comparison with untreated macrophages (M0), we examined the role of macrophages derived from IFN-gamma-activated monocytes (M1) in the HIV spread. We show that M0 and M1 bind with the same efficiency HIV-1 with a predominant role of C-type lectins in the R5-HIV attachment and of the heparan sulfate proteoglycans in the X4-HIV attachment. Despite similar levels of R5- and X4-HIV DNA, M1 replicates and weakly transmits the virus to activated T cells by releasing CXCR4- and CCR5-interacting chemokines. The blockade of dendritic cell-specific ICAM-3-grabbing nonintegrin expressed on M1 by mAb does not interfere with the viral transfer. Uninfected M1 recruits HIV-sensitive T cells efficiently and releases soluble factors, enhancing the viral production by these recruited cells. This study highlights the role of IFN-gamma to induce a population of macrophages that archive HIV-1 within a latent stage and cause the persistence of the virus by favoring the recruitment of T cells or enhancing the viral replication in infected CD4(+) T cells.
Collapse
Affiliation(s)
- Héla Saïdi
- Université Paris, Unité INSERM U743 Equipe Immunité et Biothérapie Muqueuse, 15 rue de l'Ecole de Médecine, 75270 Paris, Cedex 06, France.
| | | | | | | | | | | |
Collapse
|
9
|
Dhillon NK, Dhillon S, Chebloune Y, Pinson D, Villinger F, Kumar A, Narayan O, Buch S. Therapy of "SHIV" infected macaques with liposomes delivering antisense interleukin-4 DNA. AIDS 2006; 20:1125-30. [PMID: 16691063 DOI: 10.1097/01.aids.0000226952.49353.36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND/OBJECTIVES To explore the effects of antisense (AS) interleukin (IL)-4 on virus replication and CD8+ T-cell responses in lymph nodes and blood of macaques infected with simian human immunodeficiency virus, SHIV(89.6)P. METHODS Six macaques were inoculated with simian human immunodeficiency virus (SHIV(89.6)P). Seven days later, four of the animals were given 1 mg AS IL-4 plasmid complexed with Megafectin liposome, intravenously, and two of these received a second injection of the same material on day 9. All six macaques were killed at 2 weeks post infection (pi) and monitored for viral RNA and CD8+ T cells in blood and lymph nodes by real-time reverse transcriptase-polymerase chain reaction, flow cytometry and immunohistochemistry. RESULTS In contrast to the lymph nodes from virus control animals, the lymph nodes of AS IL-4-treated animals had a significant reduction in viral loads and reduced depletion of cells from the nodes. There was an increase in CD8+ T cells in the nodes, and many of the cells expressed granzyme B, suggesting functional activation. This trend of virus reduction and increased CD8+ T cell numbers was also reflected in blood. CONCLUSIONS The therapeutic effect of the AS IL-4 suggests indirectly that the acute immunosuppressive disease caused by SHIVs is mediated, in part, by IL-4 that causes enhanced virus replication by suppressing anti-viral CD8+ T-cell responses, and that this effect was reduced by treatment of the animals with AS IL-4.
Collapse
Affiliation(s)
- Navneet K Dhillon
- Department of Microbiology, Immunology and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, Emory University, Atlanta, Georgia, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gallagher M, Malhotra I, Mungai PL, Wamachi AN, Kioko JM, Ouma JH, Muchiri E, King CL. The effects of maternal helminth and malaria infections on mother-to-child HIV transmission. AIDS 2005; 19:1849-55. [PMID: 16227793 DOI: 10.1097/01.aids.0000189846.90946.5d] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effect of helminth and/or malaria infection on the risk of HIV infection in pregnant women and its transmission to their offspring. DESIGN A retrospective cohort study of pregnant Kenyan women and their offspring from term, uncomplicated vaginal deliveries (n = 936) with a nested case-control study. METHODS We determined the presence of HIV, malaria, schistosomiasis, lymphatic filariasis, and intestinal helminthes in mothers and tested for HIV antibodies in 12-24 month-old offspring of HIV-positive women. We related these findings to the presence of cord blood lymphocyte activation and cytokine production in response to helminth antigens. RESULTS HIV-positive women (n = 83, 8.9% of all women tested) were 2-fold more likely to have peripheral blood and/or placental malaria (P < 0.025) and a 2.1-fold greater likelihood of lymphatic filariasis infection (P < 0.001) compared to location-and-parity matched HIV-negative women. Women with HIV and malaria tended to show an increased risk for mother-to-child-transmission (MTCT) of HIV, although this difference was not significant. MTCT of HIV, however, was significantly higher in women co-infected with one or more helminthes (48%) verses women without helminth infections (10%, P < 0.01; adjusted odds ratio, 7.3; 95% confidence interval, 2.4-33.7). This increased risk for MTCT of HIV correlated with cord blood lymphocytes production of interleukin-5/interleukin-13 in response to helminth antigens (P < 0.001). CONCLUSION Helminth co-infection is associated with increased risk for MTCT of HIV, possibly by a mechanism in which parasite antigens activates lymphocytes in utero. Treatment of helminthic infections during pregnancy may reduce the risk of MTCT of HIV.
Collapse
Affiliation(s)
- Maureen Gallagher
- Center for Global Health and Diseases and Center for AIDS Research, Case Western Reserve University, Cleveland, OH 44106-7286, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Smith MS, Niu Y, Buch S, Li Z, Adany I, Pinson DM, Potula R, Novembre FJ, Narayan O. Active simian immunodeficiency virus (strain smmPGm) infection in macaque central nervous system correlates with neurologic disease. J Acquir Immune Defic Syndr 2005; 38:518-30. [PMID: 15793361 DOI: 10.1097/01.qai.0000156395.65562.99] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Simian immunodeficiency virus strain smmPGm can induce neuropathology in macaques and is a model for the development of human HIV-related brain injury. For quantitative studies of proviral presence and expression in the central nervous system (CNS), we inoculated 8 macaques intravenously with the virus. Three animals were necropsied 2 to 4 weeks after development of infection, and we obtained lymphoid tissue biopsies from 5 animals before 5 weeks after infection. Peak plasma viral loads averaged 10 viral RNA Eq/mL at week 2, whereas cerebrospinal fluid viral loads peaked at 10 viral RNA Eq/mL. The proviral DNA loads and viral gag mRNA expression in tissues were quantified by real-time polymerase chain reaction. Two animals developed neurologic disease characterized by meningoencephalitis and meningitis. Proviral DNA levels in CNS tissues of these animals at necropsy revealed 10 and 10 copies/microg of DNA, respectively, whereas viral RNA expression in the CNS reached 100 to 1000 times higher levels than those seen in early necropsies. In sharp contrast, in 2 animals necropsied at later times without CNS disease, virus mRNA expression was not detected in any CNS tissue. Our results are consistent with the hypothesis that active virus expression in the CNS is strongly correlated with neurologic disease and that the event occurs at variable periods after infection.
Collapse
Affiliation(s)
- Marilyn S Smith
- Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sui Y, Li S, Pinson D, Adany I, Li Z, Villinger F, Narayan O, Buch S. Simian human immunodeficiency virus-associated pneumonia correlates with increased expression of MCP-1, CXCL10, and viral RNA in the lungs of rhesus macaques. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:355-65. [PMID: 15681820 PMCID: PMC1602335 DOI: 10.1016/s0002-9440(10)62259-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pulmonary disorders are the most frequent cause of death in HIV-1-infected individuals with AIDS and remain important even in the current era of potent antiretroviral therapy. Macaques infected with Simian/Human Immunodeficiency Virus (SHIV) develop pulmonary disease and concurrent opportunistic infections similar to those observed in HIV-infected individuals, thereby providing an excellent working model to elucidate the pathogenesis of the human lung disease. Since chemokines play a crucial role in the recruitment of inflammatory cells to tissues, we investigated the relationship between respiratory disease and the levels of chemokines, monocyte chemotactic protein-1 (MCP-1) and CXCL10, in the lungs of SHIV-infected rhesus macaques. We found that lung pathology in infected macaques was closely associated with overexpression of MCP-1 and CXCL10. In addition, these chemokines could, in part, be responsible for the recruitment of inflammatory cells infiltrating into the diseased lungs as demonstrated by chemotactic assays. Lung pathology and increased levels of MCP-1 and CXCL10 correlated with high viral loads in the lung parenchyma. Using confocal microscopy, we identified SHIV-infected macrophages as the major producers of MCP-1 and CXCL10 in the diseased lungs. These data suggest that chemokine overexpression plays an important role in the pathogenesis of SHIV-associated pulmonary disease in macaques.
Collapse
Affiliation(s)
- Yongjun Sui
- Department of Microbiology, Immunology, and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, 5000 Wahl Hall East, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Buch S, Sui Y, Dhillon N, Potula R, Zien C, Pinson D, Li S, Dhillon S, Nicolay B, Sidelnik A, Li C, Villinger T, Bisarriya K, Narayan O. Investigations on four host response factors whose expression is enhanced in X4 SHIV encephalitis. J Neuroimmunol 2005; 157:71-80. [PMID: 15579283 DOI: 10.1016/j.jneuroim.2004.08.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2004] [Indexed: 11/22/2022]
Abstract
HIV encephalopathy, one of the major complications of HIV infection, involves productive virus replication in macrophages in the brain in association with heightened expression of several host response factors. One or more of these factors are thought to be the cause of the degenerative changes in neurons in the brain. Macaques infected with SIV and SHIV viruses have provided excellent working models for studying mechanisms of the human disease. Although HIV encephalopathy is primarily associated with CCR5-utilizing viruses, our findings have shown that CXCR4-utilizing SHIVs were also capable of causing the syndrome in rhesus macaques. In SHIV-infected macaques, approximately 30% of the animals developed encephalitis. In order to understand the factors leading to end-stage encephalitis, we performed microarray analyses on brains of encephalitic and non-encephalitic-infected macaques, and found pronounced enhancement of expression of interleukin-4, platelet-derived growth factor-B chain, monocyte chemoattractant protein-1 and CXCL10 in the brains of the encephalitic animals. This review discusses the role of each of these factors in mediating SHIV encephalitis.
Collapse
Affiliation(s)
- Shilpa Buch
- Department of Microbiology, Immunology and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, 5000 Wahl Hall East, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dhillon NK, Sui Y, Potula R, Dhillon S, Adany I, Li Z, Villinger F, Pinson D, Narayan O, Buch S. Inhibition of pathogenic SHIV replication in macaques treated with antisense DNA of interleukin-4. Blood 2004; 105:3094-9. [PMID: 15618469 DOI: 10.1182/blood-2004-09-3515] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interleukin-4 is implicated in the pathogenesis of HIV-induced AIDS and causes enhancement of replication of virus strains that use the CXCR4 (X4) coreceptor. In this study, we explored the effects of interleukin-4 (IL-4) antisense (AS) DNA on replication of X4, simian human immunodeficiency viruses, SHIV(KU-2) and SHIV89.6P. AS IL-4 oligomer caused inhibition of virus replication in cultures of CD4+ T cells and macrophages derived from macaques. Plasmid expressing AS IL-4 DNA was also effective in abrogating virus replication in macrophage cultures. Relevance of these cell culture studies was confirmed in vivo by treating SHIV89.6P-infected macaques with AS IL-4 DNA. Six macaques were inoculated with the virus, and 4 were treated with AS IL-4 DNA. This resulted in a significant decrease in viral RNA concentrations in the liver, lungs, and spleen tissues that are all sites of virus replication in macrophages. This is the first demonstration of effective inhibition of an HIV-like virus in tissues by AS DNA of a cytokine. In the present era of increasing resistance of HIV to antiviral compounds, exploration of adjunct therapies directed at host responses in combination with antiretroviral drugs may be of value for the treatment of AIDS.
Collapse
Affiliation(s)
- Navneet Kaur Dhillon
- Department of Microbiology, Immunology and Molecular Genetics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Buch S, Sui Y, Potula R, Pinson D, Adany I, Li Z, Huang M, Li S, Dhillon N, Major E, Narayan O. Role of interleukin-4 and monocyte chemoattractant protein-1 in the neuropathogenesis of X4 simian human immunodeficiency virus infection in macaques. J Neurovirol 2004; 10 Suppl 1:118-24. [PMID: 14982750 DOI: 10.1080/753312763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Recent studies on the coreceptor usage of human immunodeficiency virus (HIV) strains associated with acquired immunodeficiency syndrome (AIDS) dementia have shown that both X4 and R5 viruses are involved in the process. The disease is associated with enhanced virus replication and monocyte chemoattractant protein (MCP)-1 production in macrophages in the brain. Using the macaque model of the disease, the authors show here that X4, macrophage-tropic simian human immunodeficiency virus (SHIV) required the enhancing effect of interleukin (IL)-4 to achieve equivalent concentrations of virus and MCP-1 that are produced in macrophages infected with R5 viruses alone. Confocal microscopy showed that macrophages in the encephalitic brains were the major producers of MCP-1. The authors surmise, therefore, that whereas R5 viruses maybe capable of causing the disease as a primary pathogen, X4 viruses may require IL-4, induced by opportunistic pathogens, for induction of the neuropathological syndrome.
Collapse
Affiliation(s)
- Shilpa Buch
- Department of Microbiology, Immunology and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sui Y, Potula R, Pinson D, Adany I, Li Z, Day J, Buch E, Segebrecht J, Villinger F, Liu Z, Huang M, Narayan O, Buch S. Microarray analysis of cytokine and chemokine genes in the brains of macaques with SHIV-encephalitis. J Med Primatol 2003; 32:229-39. [PMID: 14498983 DOI: 10.1034/j.1600-0684.2003.00030.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human immunodeficiency virus (HIV)-encephalitis results from a cascade of viral-host interactions that lead to cytokine and chemokine imbalance, which then leads to neuropathologic manifestations of the disease. These include macrophage/microglia activation, astrocytosis and neuronal dysfunction or death. As the molecular mechanisms of this process are poorly understood, we used Atlas human cytokine or cytokine receptor microarray analysis to highlight gene expression profiles that accompanied encephalitis in Simian human immunodeficiency virus (SHIV) 89.6P-infected macaques. Of the 277 genes screened, marked upregulation of monocyte chemoattractant protein-1, interferon-inducible peptide IP-10 and interleukin-4 were observed specifically in the encephalitic brains. These genes are collectively known to promote macrophage infiltration and activation and virus replication. In contrast, genes regulating neurotrophic functions, such as brain-derived neurotrophic factor were downregulated. We also found that some of the apoptosis genes were up- or down-regulated. These data provide a comprehensive spectrum of gene expression that underscores the two major clinical manifestations of this unique syndrome: enhanced virus replication in brain macrophages and dystrophic changes in neurons.
Collapse
Affiliation(s)
- Yongjun Sui
- Department of Microbiology, Immunology and Molecular Genetics, Marion Merrell Dow Laboratory of Viral Pathogenesis, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Stahl-Hennig C, Gundlach BR, Dittmer U, ten Haaft P, Heeney J, Zou W, Emilie D, Sopper S, Uberla K. Replication, immunogenicity, and protective properties of live-attenuated simian immunodeficiency viruses expressing interleukin-4 or interferon-gamma. Virology 2003; 305:473-85. [PMID: 12573592 DOI: 10.1006/viro.2002.1763] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nef deletion mutants of SIV-expressing interleukin-4 (SIV-IL4) or interferon-gamma (SIV-IFN) were constructed to study the effect of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) on viral load, immunogenicity, and protective properties. Four rhesus monkeys were infected with SIV-IL4 and four were infected with SIV-IFN. During the acute phase of infection, the cell-associated viral load, but not the plasma viral RNA load, was approximately 10-fold lower in SIV-IFN-infected macaques than in SIV-IL4-infected rhesus monkeys. The viral load declined to hardly detectable levels 4 months postinfection in all animals. SIV antibody titers and the affinity of these antibodies were higher in SIV-IL4-infected macaques than in SIV-IFN-infected animals, consistent with a stimulation of T helper cell type 2 immune responses by IL-4. At peak viremia, there was a trend to higher interleukin-12 and perforin mRNA levels of the lymph nodes in the SIV-IFN-infected macaques than in the SIV-IL4-infected monkeys. Deletion of the viral IFN gene, but not the viral IL-4 gene, after the development of antiviral immune responses suggests a repressive effect of IFN, but not IL-4, on virus spread in vivo. A trend to higher set point viral RNA levels in SIV-IL4-infected monkeys in comparison to monkeys infected with the parental nef deletion mutant and similar viral RNA levels during the acute phase of infection suggest that IL-4 expression leads to a slight reduction in the control of virus replication by host immune responses. However, SIV-IL4 and SIV-IFN induced protection against a homologous challenge virus. Subsequent challenge with an SIV-HIV-1 hybrid virus (SHIV) also revealed protection in the absence of neutralizing antibodies.
Collapse
|
18
|
Antonucci G, Goletti D, Lanini S, Girardi E, Loiacono O. HIV/HCV co-infection: putting the pieces of the puzzle together. Cell Death Differ 2003; 10 Suppl 1:S25-6. [PMID: 12655343 DOI: 10.1038/sj.cdd.4401164] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- G Antonucci
- Istituto Nazionale per le Malattie Infettive; IRCCS L. Spallanzani, Rome, Italy.
| | | | | | | | | |
Collapse
|
19
|
Fuller CL, Choi YK, Fallert BA, Capuano S, Rajakumar P, Murphey-Corb M, Reinhart TA. Restricted SIV replication in rhesus macaque lung tissues during the acute phase of infection. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:969-78. [PMID: 12213725 PMCID: PMC1867265 DOI: 10.1016/s0002-9440(10)64257-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The extent to which simian immunodeficiency virus (SIV) replication in lung tissues contributes to the pool of viruses replicating during acute infection is incompletely understood. To address this issue, in situ hybridization was used to examine SIV replication in multiple lobes of lung from rhesus macaques infected with pathogenic SIV. Despite widespread viral replication in lymphoid and intestinal tissues, the lungs during acute infection harbored rare productively infected cells. Simultaneous immunohistochemical staining for the monocytic marker, CD68, revealed that SIV RNA(+) cells in lung tissues during acute infection were CD68(-), whereas during AIDS they were predominantly CD68(+) and localized in large foci in caudal lobes. SIV RNA(+) cells in spleen remained CD68(-) throughout disease. Since CD68 is also expressed by subpopulations of dendritic cells (DC), we also examined pulmonary CD68(+) cells for expression of additional DC markers. DC-LAMP mRNA was abundant in lung tissues and expressed predominantly by CD68(-) cells, whereas DC-SIGN mRNA was expressed in only very rare cells, indicating that SIV RNA(+) cells late in disease were most likely macrophages. These studies of SIV/host interactions demonstrate that macaque lung tissues are minimally infected during acute infection, exhibit changes in predominant target cells for infection, and express very little DC-SIGN.
Collapse
Affiliation(s)
- Craig L Fuller
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Hicks A, Potula R, Sui YJ, Villinger F, Pinson D, Adany I, Li Z, Long C, Cheney P, Marcario J, Novembre F, Mueller N, Kumar A, Major E, Narayan O, Buch S. Neuropathogenesis of lentiviral infection in macaques: roles of CXCR4 and CCR5 viruses and interleukin-4 in enhancing monocyte chemoattractant protein-1 production in macrophages. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:813-22. [PMID: 12213709 PMCID: PMC1867257 DOI: 10.1016/s0002-9440(10)64241-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neurological disease associated with lentiviral infection occurs mainly as a consequence of primary replication of the virus or a combination of the virus infection and replication of opportunistic pathogens in the central nervous system. Recent studies have shown that whereas the disease can be caused by CCR5 tropic viruses alone, its induction by CXCR4 (X4) tropic viruses occurred usually in association with infections caused by opportunistic pathogens and in the presence of a Th2 cytokine, interleukin (IL)-4.(1,2) Further, X4-mediated neurological disease developed preferentially in rhesus compared to pig-tailed macaques. Because macrophages are the target cells for lentiviral infection in the brain and because macrophage chemoattractant protein (MCP)-1 is one of the major chemokines that is closely associated with acquired immune deficiency syndrome (AIDS) dementia, we tested for correlations between MCP-1 production and virus tropism in macrophages from the two species of macaques. The studies showed that the higher susceptibility of rhesus macaques to X4 virus-mediated encephalitis correlated with heightened production of virus and MCP-1 in cultured macrophages from this species and that these effects were further enhanced with treatment with IL-4. However, the latter effect was restricted to macrophages infected with X4 viruses. IL-4 may therefore be a basic requirement for X4 viruses to cause central nervous system disease.
Collapse
Affiliation(s)
- Andrey Hicks
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kansas Medical Center, Kansas City 66160, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Harrold SM, Wang G, McMahon DK, Riddler SA, Mellors JW, Becker JT, Caldararo R, Reinhart TA, Achim CL, Wiley CA. Recovery of replication-competent HIV type 1-infected circulating monocytes from individuals receiving antiretroviral therapy. AIDS Res Hum Retroviruses 2002; 18:427-34. [PMID: 11958686 DOI: 10.1089/088922202753614191] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The affect of antiretroviral therapy (ART) on HIV-1 recovery from blood monocytes was determined in purified peripheral blood monocyte-derived macrophage (MDM) cultures from HIV-1-infected subjects with undetectable plasma viremia or active viral replication. Additionally, the association between replication-competent HIV-1-infected MDM and neurocognitive status was examined. Fifty-two individual with previous AIDS-defining illnesses receiving nucleoside analogues with and without protease inhibitors or no ART were followed for up to 1.5 years. Detection of plasma viremia significantly correlated with the occurrence of infected monocytes. Viral replication was detected in less than 10% of the MDM cultures from 23 individuals receiving effective antiretroviral therapy. In contrast, approximately 50% of the MDM cultures from 29 individuals with active viral replication and evidence of decreased immune function, including all individuals with neurocognitive impairment, produced detectable virus indicating that a lack of adequate ART results in increased abundance of replication-competent blood monocytes. Proviral DNA levels were a minimum of 13-fold higher in MDM from subjects with active viral replication. The infrequent detection of viral DNA in cultures from individuals receiving effective ART suggested low levels of circulating monocytes harboring replication-incompetent virus. These studies demonstrate that HIV-infected individuals on ART with breakthrough viremia have significantly higher levels of circulating infected monocytes, the precursors of tissue macrophages.
Collapse
Affiliation(s)
- Sharon M Harrold
- Department of Pathology, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Buch SJ, Villinger F, Pinson D, Hou Y, Adany I, Li Z, Dalal R, Raghavan R, Kumar A, Narayan O. Innate differences between simian-human immunodeficiency virus (SHIV)(KU-2)-infected rhesus and pig-tailed macaques in development of neurological disease. Virology 2002; 295:54-62. [PMID: 12033765 DOI: 10.1006/viro.2001.1369] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurological disease associated with HIV infection results from either primary replication of the virus or a combination of virus infection and replication of opportunistic pathogens in the CNS. Recent studies indicate that the primary infection is mediated mainly by viruses that utilize CCR5 as the coreceptor; it is not known whether the syndrome can be mediated by viruses that use the CXCR4 coreceptor. The macaque model of the disease using simian immunodeficiency virus (SIV) has confirmed that CCR5-using viruses such as SIV(mac)251 can cause primary disease in the CNS. In this report we have examined the role of simian-human immunodeficiency virus (SHIV)(KU-2), a CXCR4 virus which replicates productively in rhesus macrophages, in causing CNS disease. A survey of archival brain tissues from SHIV(KU-2)-infected rhesus and pig-tailed macaques that succumbed to AIDS showed productive viral replication in the CNS of 10 of 14 rhesus animals. Eight of these 10 had additional infections with opportunistic pathogens. In contrast, 21 of 22 pig-tailed macaques had no evidence of productive viral infection in the brain. In an earlier study we had shown that inoculation of SHIV-infected rhesus macaques with eggs of Schistosoma mansoni, a potent inducer of IL-4, resulted in enhanced replication of the virus in tissue macrophages. In the present study, we compared the replication of the virus in macrophages from normal rhesus and pig-tailed macaques and determined further whether exogenous IL-4 could cause enhancement of virus replication in these cells. These studies showed that the virus replicated productively in rhesus macrophages, and this was enhanced significantly after recombinant macaque IL-4 was added to the medium. IL-4 also caused enhancement of virus production in macrophages isolated from virus-infected animals. In contrast, the virus replicated only minimally in pig-tailed macaque macrophages and supplemental IL-4 had negligible effects. The data thus suggested that failure of pig-tailed macaques to develop encephalitis was due to the innate resistance of macrophages from this species of macaque to support replication of SHIV(KU-2). The ability of the virus to replicate in the brains of rhesus macaques was dependent on coinfection in the brain with opportunistic pathogens which presumably induced both macrophages and IL-4 in the CNS microenvironment. A supportive role for IL-4 in the CNS disease was suggested by the presence of IL-4 RNA in the encephalitic brains of rhesus macaques and reduced levels of this cytokine in the brains from pig-tailed macaques.
Collapse
Affiliation(s)
- Shilpa J Buch
- Marion Merrell Dow Laboratory of Viral Pathogenesis, Department of Microbiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|