1
|
Coomer CE, Naumova D, Talay M, Zolyomi B, Snell NJ, Sorkaç A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, McLean DL, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. Nat Neurosci 2025; 28:189-200. [PMID: 39702668 DOI: 10.1038/s41593-024-01815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/30/2024] [Indexed: 12/21/2024]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function, is a central goal of neuroscience research. Here we report the in vivo mapping of connections between presynaptic and postsynaptic partners in zebrafish, by adapting the trans-Tango genetic approach that was first developed for anterograde transsynaptic tracing in Drosophila. Neural connections were visualized between synaptic partners in larval retina, brain and spinal cord and followed over development. The specificity of labeling was corroborated by functional experiments in which optogenetic activation of presynaptic spinal cord interneurons elicited responses in known motor neuronal postsynaptic targets, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator or by electrophysiology. Transsynaptic signaling through trans-Tango reveals synaptic connections in the zebrafish nervous system, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
Affiliation(s)
- Cagney E Coomer
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Daria Naumova
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Mustafa Talay
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Harvard University, Boston, MA, USA
| | - Bence Zolyomi
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Nathaniel J Snell
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Altar Sorkaç
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Jean Michel Chanchu
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA
| | - Ji Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Ivana Roman
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Jennifer Li
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Drew Robson
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - David L McLean
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
- Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Gilad Barnea
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
| | - Marnie E Halpern
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
2
|
Goldblatt D, Rosti B, Hamling KR, Leary P, Panchal H, Li M, Gelnaw H, Huang S, Quainoo C, Schoppik D. Motor neurons are dispensable for the assembly of a sensorimotor circuit for gaze stabilization. eLife 2024; 13:RP96893. [PMID: 39565353 DOI: 10.7554/elife.96893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.
Collapse
Affiliation(s)
- Dena Goldblatt
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Basak Rosti
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Kyla Rose Hamling
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Paige Leary
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Harsh Panchal
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Marlyn Li
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Hannah Gelnaw
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - Stephanie Huang
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
- Center for Neural Science, New York University, New York, United States
| | - Cheryl Quainoo
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| | - David Schoppik
- Department of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
3
|
Coomer C, Naumova D, Talay M, Zolyomi B, Snell N, Sorkac A, Chanchu JM, Cheng J, Roman I, Li J, Robson D, Barnea G, Halpern ME. Transsynaptic labeling and transcriptional control of zebrafish neural circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535421. [PMID: 37066422 PMCID: PMC10103993 DOI: 10.1101/2023.04.03.535421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Deciphering the connectome, the ensemble of synaptic connections that underlie brain function is a central goal of neuroscience research. The trans-Tango genetic approach, initially developed for anterograde transsynaptic tracing in Drosophila, can be used to map connections between presynaptic and postsynaptic partners and to drive gene expression in target neurons. Here, we describe the successful adaptation of trans-Tango to visualize neural connections in a living vertebrate nervous system, that of the zebrafish. Connections were validated between synaptic partners in the larval retina and brain. Results were corroborated by functional experiments in which optogenetic activation of retinal ganglion cells elicited responses in neurons of the optic tectum, as measured by trans-Tango-dependent expression of a genetically encoded calcium indicator. Transsynaptic signaling through trans-Tango reveals predicted as well as previously undescribed synaptic connections, providing a valuable in vivo tool to monitor and interrogate neural circuits over time.
Collapse
|
4
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
5
|
Asad Z, Sachidanandan C. Chemical screens in a zebrafish model of CHARGE syndrome identifies small molecules that ameliorate disease-like phenotypes in embryo. Eur J Med Genet 2019; 63:103661. [PMID: 31051269 DOI: 10.1016/j.ejmg.2019.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 01/03/2023]
Abstract
CHARGE syndrome is an autosomal dominant congenital disorder caused primarily by mutations in the CHD7 gene. Using a small molecule screen in a zebrafish model of CHARGE syndrome, we identified 4 compounds that rescue embryos from disease-like phenotypes. Our screen yielded DAPT, a Notch signaling inhibitor that could ameliorate the craniofacial, cranial neuronal and myelination defects in chd7 morphant zebrafish embryos. We discovered that Procainamide, an inhibitor of DNA methyltransferase 1, was able to recover the pattern of expression of isl2a, a cranial neuronal marker while also reducing the effect on craniofacial cartilage and myelination. M344, an inhibitor of Histone deacetylases had a strong recovery effect on craniofacial cartilage defects and could also modestly revert the myelination defects in zebrafish embryos. CHIC-35, a SIRT1 inhibitor partially restored the expression of isl2a in cranial neurons while causing a partial reversion of myelination and craniofacial cartilage defects. Our results suggest that a modular approach to phenotypic rescue in multi-organ syndromes might be a more successful approach to treat these disorders. Our findings also open up the possibility of using these compounds for other disorders with shared phenotypes.
Collapse
Affiliation(s)
- Zainab Asad
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
6
|
Vetrivel S, Tiso N, Kügler A, Irmler M, Horsch M, Beckers J, Hladik D, Giesert F, Gailus-Durner V, Fuchs H, Sabrautzki S, Hrabě de Angelis M, Graw J. Mutation in the mouse histone gene Hist2h3c1 leads to degeneration of the lens vesicle and severe microphthalmia. Exp Eye Res 2019; 188:107632. [PMID: 30991053 PMCID: PMC6876282 DOI: 10.1016/j.exer.2019.03.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/20/2019] [Accepted: 03/30/2019] [Indexed: 12/21/2022]
Abstract
During an ENU (N-ethyl-N-nitrosourea) mutagenesis screen, we observed a dominant small-eye mutant mouse with viable homozygotes. A corresponding mutant line was established and referred to as Aey69 (abnormality of the eye #69). Comprehensive phenotyping of the homozygous Aey69 mutants in the German Mouse Clinic revealed only a subset of statistically significant alterations between wild types and homozygous mutants. The mutation causes microphthalmia without a lens but with retinal hyperproliferation. Linkage was demonstrated to mouse chromosome 3 between the markers D3Mit188 and D3Mit11. Sequencing revealed a 358 A-> C mutation (Ile120Leu) in the Hist2h3c1 gene and a 71 T-> C (Val24Ala) mutation in the Gja8 gene. Detailed analysis of eye development in the homozygous mutant mice documented a perturbed lens development starting from the lens vesicle stage including decreasing expression of crystallins as well as of lens-specific transcription factors like PITX3 and FOXE3. In contrast, we observed an early expression of retinal progenitor cells characterized by several markers including BRN3 (retinal ganglion cells) and OTX2 (cone photoreceptors). The changes in the retina at the early embryonic stages of E11.5-E15.5 happen in parallel with apoptotic processes in the lens at the respective stages. The excessive retinal hyperproliferation is characterized by an increased level of Ki67. The hyperproliferation, however, does not disrupt the differentiation and appearance of the principal retinal cell types at postnatal stages, even if the overgrowing retina covers finally the entire bulbus of the eye. Morpholino-mediated knock-down of the hist2h3ca1 gene in zebrafish leads to a specific perturbation of lens development. When injected into zebrafish zygotes, only the mutant mouse mRNA leads to severe malformations, ranging from cyclopia to severe microphthalmia. The wild-type Hist2h3c1 mRNA can rescue the morpholino-induced defects corroborating its specific function in lens development. Based upon these data, it is concluded that the ocular function of the Hist2h3c1 gene (encoding a canonical H3.2 variant) is conserved throughout evolution. Moreover, the data highlight also the importance of Hist2h3c1 in the coordinated formation of lens and retina during eye development. A dominant small-eye mutant mouse is caused by a mutation in the histone gene Hist2H3c1. Morpholino-mediated knock-down of hist2h3ca1 in the zebrafish validated this finding. The mutation leads to degeneration of the lens vesicle and retina hyperproliferation.
Collapse
Affiliation(s)
- Sharmilee Vetrivel
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131 Padova, Italy.
| | - Andrea Kügler
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Martin Irmler
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Marion Horsch
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Johannes Beckers
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, D-85354 Freising, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Daniela Hladik
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Florian Giesert
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany
| | - Valerie Gailus-Durner
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Helmut Fuchs
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany
| | - Sibylle Sabrautzki
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany; Helmholtz Center Munich, German Research Center for Environmental Health, Research Unit Comparative Medicine, D-85764 Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Experimental Genetics, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, D-85354 Freising, Germany; German Center for Diabetes Research (DZD), D-85764 Neuherberg, Germany
| | - Jochen Graw
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Developmental Genetics, D-85764 Neuherberg, Germany.
| |
Collapse
|
7
|
Baeuml SW, Biechl D, Wullimann MF. Adult islet1 Expression Outlines Ventralized Derivatives Along Zebrafish Neuraxis. Front Neuroanat 2019; 13:19. [PMID: 30863287 PMCID: PMC6399416 DOI: 10.3389/fnana.2019.00019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/01/2019] [Indexed: 01/16/2023] Open
Abstract
Signals issued by dorsal roof and ventral floor plates, respectively, underlie the major patterning process of dorsalization and ventralization during vertebrate neural tube development. The ventrally produced morphogen Sonic hedgehog (SHH) is crucial for vertebrate hindbrain and spinal motor neuron development. One diagnostic gene for motor neurons is the LIM/homeodomain gene islet1, which has additional ventral expression domains extending into mid- and forebrain. In order to corroborate motor neuron development and, in particular, to improve on the identification of poorly documented zebrafish forebrain islet1 populations, we studied adult brains of transgenic islet1-GFP zebrafish (3 and 6 months). This molecular neuroanatomical analysis was supported by immunostaining these brains for tyrosine hydroxylase (TH) or choline acetyltransferase (ChAT), respectively, revealing zebrafish catecholaminergic and cholinergic neurons. The present analysis of ChAT and islet1-GFP label confirms ongoing adult expression of islet1 in zebrafish (basal plate) midbrain, hindbrain, and spinal motor neurons. In contrast, non-motor cholinergic systems lack islet1 expression. Additional presumed basal plate islet1 positive systems are described in detail, aided by TH staining which is particularly informative in the diencephalon. Finally, alar plate zebrafish forebrain systems with islet1 expression are described (i.e., thalamus, preoptic region, and subpallium). We conclude that adult zebrafish continue to express islet1 in the same brain systems as in the larva. Further, pending functional confirmation we hypothesize that the larval expression of sonic hedgehog (shh) might causally underlie much of adult islet1 expression because it explains findings beyond ventrally located systems, for example regarding shh expression in the zona limitans intrathalamica and correlated islet1-GFP expression in the thalamus.
Collapse
Affiliation(s)
- Stephan W Baeuml
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Biechl
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mario F Wullimann
- Division of Neurobiology, Department Biology II, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
8
|
Morrow ZT, Maxwell AM, Hoshijima K, Talbot JC, Grunwald DJ, Amacher SL. tbx6l and tbx16 are redundantly required for posterior paraxial mesoderm formation during zebrafish embryogenesis. Dev Dyn 2017; 246:759-769. [PMID: 28691257 DOI: 10.1002/dvdy.24547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/19/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND T-box genes encode a large transcription factor family implicated in many aspects of development. We are focusing on two related zebrafish T-box genes, tbx6l and tbx16, that are expressed in highly overlapping patterns in embryonic paraxial mesoderm. tbx16 mutants are deficient in trunk, but not tail, somites; we explored whether presence of tail somites in tbx16 mutants was due to compensatory function provided by the tbx6l gene. RESULTS We generated two zebrafish tbx6l mutant alleles. Loss of tbx6l has no apparent effect on embryonic development, nor does tbx6l loss enhance the phenotype of two other T-box gene mutants, ta and tbx6, or of the mesp family gene mutant msgn1. In contrast, loss of tbx6l function dramatically enhances the paraxial mesoderm deficiency of tbx16 mutants. CONCLUSIONS These data demonstrate that tbx6l and tbx16 genes function redundantly to direct tail somite development. tbx6l single mutants develop normally because tbx16 fully compensates for loss of tbx6l function. However, tbx6l only partially compensates for loss of tbx16 function. These results resolve the question of why loss of function of tbx16 gene, which is expressed throughout the ventral and paraxial mesoderm, profoundly affects somite development in the trunk but not the tail. Developmental Dynamics 246:759-769, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Adrienne M Maxwell
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio.,Department of Biological Chemistry and Pharmacology, The Ohio State University School of Medicine, Columbus, Ohio.,Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio
| | - David J Grunwald
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio.,Department of Biological Chemistry and Pharmacology, The Ohio State University School of Medicine, Columbus, Ohio.,Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, Ohio.,Center for RNA Biology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
9
|
Juárez-Morales JL, Martinez-De Luna RI, Zuber ME, Roberts A, Lewis KE. Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons. Dev Neurobiol 2017; 77:1007-1020. [PMID: 28188691 DOI: 10.1002/dneu.22490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/26/2017] [Accepted: 02/08/2017] [Indexed: 12/19/2022]
Abstract
A correctly functioning spinal cord is crucial for locomotion and communication between body and brain but there are fundamental gaps in our knowledge of how spinal neuronal circuitry is established and functions. To understand the genetic program that regulates specification and functions of this circuitry, we need to connect neuronal molecular phenotypes with physiological analyses. Studies using Xenopus laevis tadpoles have increased our understanding of spinal cord neuronal physiology and function, particularly in locomotor circuitry. However, the X. laevis tetraploid genome and long generation time make it difficult to investigate how neurons are specified. The opacity of X. laevis embryos also makes it hard to connect functional classes of neurons and the genes that they express. We demonstrate here that Tol2 transgenic constructs using zebrafish enhancers that drive expression in specific zebrafish spinal neurons label equivalent neurons in X. laevis and that the incorporation of a Gal4:UAS amplification cassette enables cells to be observed in live X. laevis tadpoles. This technique should enable the molecular phenotypes, morphologies and physiologies of distinct X. laevis spinal neurons to be examined together in vivo. We have used an islet1 enhancer to label Rohon-Beard sensory neurons and evx enhancers to identify V0v neurons, for the first time, in X. laevis spinal cord. Our work demonstrates the homology of spinal cord circuitry in zebrafish and X. laevis, suggesting that future work could combine their relative strengths to elucidate a more complete picture of how vertebrate spinal cord neurons are specified, and function to generate behavior. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1007-1020, 2017.
Collapse
Affiliation(s)
- José L Juárez-Morales
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244.,Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
| | - Reyna I Martinez-De Luna
- The Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave. Syracuse, New York, 13210
| | - Michael E Zuber
- The Center for Vision Research, Department of Ophthalmology, SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave. Syracuse, New York, 13210
| | - Alan Roberts
- School of Biological Sciences, Bristol University, 24 Tyndall Avenue, Bristol, BS8 1TQ, United Kingdom
| | - Katharine E Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, New York, 13244
| |
Collapse
|
10
|
Aoki M, Segawa H, Naito M, Okamoto H. Identification of possible downstream genes required for the extension of peripheral axons in primary sensory neurons. Biochem Biophys Res Commun 2014; 445:357-62. [PMID: 24513284 DOI: 10.1016/j.bbrc.2014.01.193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 10/25/2022]
Abstract
The LIM-homeodomain transcription factor Islet2a establishes neuronal identity in the developing nervous system. Our previous study showed that Islet2a function is crucial for extending peripheral axons of sensory neurons in zebrafish embryo. Overexpressing a dominant-negative form of Islet2a significantly reduced peripheral axon extension in zebrafish sensory neurons, implicating Islet2a in the gene regulation required for neurite formation or proper axon growth in developing sensory neurons. Based on this, we conducted systematic screening to isolate genes regulated by Islet2a and affecting the development of axon growth in embryonic zebrafish sensory neurons. The 26 genes selected included some encoding factors involved in neuronal differentiation, axon growth, cellular signaling, and structural integrity of neurons, as well as genes whose functions are not fully determined. We chose four representative candidates as possible Islet2a downstream functional targets (simplet, tppp, tusc5 and tmem59l) and analyzed their respective mRNA expressions in dominant-negative Islet2a-expressing embryos. They are not reported the involvement of axonal extension or their functions in neural cells. Finally, knockdown of these genes suggested their direct actual involvement in the extension of peripheral axons in sensory neurons.
Collapse
Affiliation(s)
- Makoto Aoki
- Laboratory for Developmental Gene Regulation, Brain Science Institute, Riken, Japan
| | - Hiroshi Segawa
- Laboratory for Developmental Gene Regulation, Brain Science Institute, Riken, Japan
| | - Mayumi Naito
- Laboratory for Developmental Gene Regulation, Brain Science Institute, Riken, Japan
| | - Hitoshi Okamoto
- Laboratory for Developmental Gene Regulation, Brain Science Institute, Riken, Japan.
| |
Collapse
|
11
|
Kastenhuber E, Gesemann M, Mickoleit M, Neuhauss SCF. Phylogenetic analysis and expression of zebrafish transient receptor potential melastatin family genes. Dev Dyn 2013; 242:1236-49. [PMID: 23908157 DOI: 10.1002/dvdy.24020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 07/02/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The transient receptor potential melastatin (TRPM) gene family belongs to the superfamily of nonselective TRP ion channels. TRP channels are cellular sensors, detecting a multitude of inputs, including temperature, light, chemical, and mechanical stimuli. Recent studies revealed diverse roles during development, linking TRP channels to differentiation, proliferation, cell motility, cell death, and survival. A detailed description of this gene family in the zebrafish is still missing. RESULTS Phylogenetic analysis revealed 11 trpm genes in the zebrafish genome. The zebrafish orthologs of mammalian TRPM1 and TRPM4 are duplicated and quadruplicated, respectively, and TRPM8, a cold sensitive channel has been lost in zebrafish. Whole-mount in situ hybridization experiments revealed dynamic expression pattern of trpm genes in the developing embryo and early larva. Transcripts were mainly found in neural cell clusters, but also in tissues involved in ion homeostasis. CONCLUSIONS Our results suggest a role of TRPM channels in sensory information processing, including vision, olfaction, taste, and mechanosensation. An involvement in developmental processes is likely, as some trpm genes were found to be expressed in differentiating cells. Our data now provide a basis for functional analyses of this gene family of ion channels in the vertebrate model organism Danio rerio.
Collapse
Affiliation(s)
- Edda Kastenhuber
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
12
|
Asakawa K, Abe G, Kawakami K. Cellular dissection of the spinal cord motor column by BAC transgenesis and gene trapping in zebrafish. Front Neural Circuits 2013; 7:100. [PMID: 23754985 PMCID: PMC3664770 DOI: 10.3389/fncir.2013.00100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 05/04/2013] [Indexed: 11/13/2022] Open
Abstract
Bacterial artificial chromosome (BAC) transgenesis and gene/enhancer trapping are effective approaches for identification of genetically defined neuronal populations in the central nervous system (CNS). Here, we applied these techniques to zebrafish (Danio rerio) in order to obtain insights into the cellular architecture of the axial motor column in vertebrates. First, by using the BAC for the Mnx class homeodomain protein gene mnr2b/mnx2b, we established the mnGFF7 transgenic line expressing the Gal4FF transcriptional activator in a large part of the motor column. Single cell labeling of Gal4FF-expressing cells in the mnGFF7 line enabled a detailed investigation of the morphological characteristics of individual spinal motoneurons, as well as the overall organization of the motor column in a spinal segment. Secondly, from a large-scale gene trap screen, we identified transgenic lines that marked discrete subpopulations of spinal motoneurons with Gal4FF. Molecular characterization of these lines led to the identification of the ADAMTS3 gene, which encodes an evolutionarily conserved ADAMTS family of peptidases and is dynamically expressed in the ventral spinal cord. The transgenic fish established here, along with the identified gene, should facilitate an understanding of the cellular and molecular architecture of the spinal cord motor column and its connection to muscles in vertebrates.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Developmental Genetics, Division of Molecular and Developmental Biology, National Institute of Genetics Mishima, Shizuoka, Japan ; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI) Mishima, Shizuoka, Japan
| | | | | |
Collapse
|
13
|
Wilfinger A, Arkhipova V, Meyer D. Cell type and tissue specific function of islet genes in zebrafish pancreas development. Dev Biol 2013; 378:25-37. [PMID: 23518338 PMCID: PMC3657195 DOI: 10.1016/j.ydbio.2013.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 02/06/2013] [Accepted: 03/11/2013] [Indexed: 12/21/2022]
Abstract
Isl1 is a LIM homeobox transcription factor showing conserved expression in the developing and mature vertebrate pancreas. So far, functions of pancreatic Isl1 have mainly been studied in the mouse, where Isl1 has independent functions during formation of exocrine and endocrine tissues. Here, we take advantage of a recently described isl1 mutation in zebrafish to address pancreatic isl1 functions in a non-mammalian system. Isl1 in zebrafish, as in mouse, shows transient expression in mesenchyme flanking the pancreatic endoderm, and continuous expression in all endocrine cells. In isl1 mutants, endocrine cells are specified in normal numbers but more than half of these cells fail to establish expression of endocrine hormones. By using a lineage tracking approach that highlights cells leaving cell cycle early in development, we show that isl1 functions are different in first and second wave endocrine cells. In isl1 mutants, early forming first wave cells show virtually no glucagon expression and a reduced number of cells expressing insulin and somatostatin, while in the later born second wave cells somatostatin expressing cells are strongly reduced and insulin and glucagon positive cells form in normal numbers. Isl1 mutant zebrafish also display a smaller exocrine pancreas. We find that isl1 expression in the pancreatic mesenchyme overlaps with that of the related genes isl2a and isl2b and that pancreatic expression of isl-genes is independent of each other. As a combined block of two or three isl1/2 genes results in a dose-dependent reduction of exocrine tissue, our data suggest that all three genes cooperatively contribute to non-cell autonomous exocrine pancreas extension. The normal expression of the pancreas mesenchyme markers meis3, fgf10 and fgf24 in isl1/2 depleted embryos suggests that this activity is independent of isl-gene function in pancreatic mesenchyme formation as was found in mouse. This indicates species-specific differences in the requirement for isl-genes in pancreatic mesenchyme formation. Overall, our data reveal a novel interaction of isl1 and isl2 genes in exocrine pancreas expansion and cell type specific requirements during endocrine cell maturation. • Overlapping functions of islet1, islet2a and islet2b in exocrine pancreas formation. • Islet1/2a/2b are not required for pancreatic mesenchyme formation. • Islet1 but not islet2a/b is required for endocrine cell maturation. • Endocrine cell types are differently affected by the loss of islet1.
Collapse
Affiliation(s)
- Armin Wilfinger
- Institute for Molecular Biology/ CMBI, University of Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
14
|
Liu C, Ma W, Su W, Zhang J. Prdm14 acts upstream of islet2 transcription to regulate axon growth of primary motoneurons in zebrafish. Development 2012; 139:4591-600. [PMID: 23136389 DOI: 10.1242/dev.083055] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The precise formation of three-dimensional motor circuits is essential for movement control. Within these circuits, motoneurons (MNs) are specified from spinal progenitors by dorsoventral signals and distinct transcriptional programs. Different MN subpopulations have stereotypic cell body positions and show specific spatial axon trajectories. Our knowledge of MN axon outgrowth remains incomplete. Here, we report a zebrafish gene-trap mutant, short lightning (slg), in which prdm14 expression is disrupted. slg mutant embryos show shortened axons in caudal primary (CaP) MNs resulting in defective embryonic movement. Both the CaP neuronal defects and behavior abnormality of the mutants can be phenocopied by injection of a prdm14 morpholino into wild-type embryos. By removing a copy of the inserted transposon from homozygous mutants, prdm14 expression and normal embryonic movement were restored, confirming that loss of prdm14 expression accounts for the observed defects. Mechanistically, Prdm14 protein binds to the promoter region of islet2, a known transcription factor required for CaP development. Notably, disruption of islet2 function caused similar CaP axon outgrowth defects as observed in slg mutant embryos. Furthermore, overexpression of islet2 in slg mutant embryos rescued the shortened CaP axon phenotypes. Together, these data reveal that prdm14 regulates CaP axon outgrowth through activation of islet2 expression.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
15
|
Won YJ, Ono F, Ikeda SR. Characterization of Na+ and Ca2+ channels in zebrafish dorsal root ganglion neurons. PLoS One 2012; 7:e42602. [PMID: 22880050 PMCID: PMC3411820 DOI: 10.1371/journal.pone.0042602] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 07/10/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Dorsal root ganglia (DRG) somata from rodents have provided an excellent model system to study ion channel properties and modulation using electrophysiological investigation. As in other vertebrates, zebrafish (Danio rerio) DRG are organized segmentally and possess peripheral axons that bifurcate into each body segment. However, the electrical properties of zebrafish DRG sensory neurons, as compared with their mammalian counterparts, are relatively unexplored because a preparation suitable for electrophysiological studies has not been available. METHODOLOGY/PRINCIPAL FINDINGS We show enzymatically dissociated DRG neurons from juvenile zebrafish expressing Isl2b-promoter driven EGFP were easily identified with fluorescence microscopy and amenable to conventional whole-cell patch-clamp studies. Two kinetically distinct TTX-sensitive Na(+) currents (rapidly- and slowly-inactivating) were discovered. Rapidly-inactivating I(Na) were preferentially expressed in relatively large neurons, while slowly-inactivating I(Na) was more prevalent in smaller DRG neurons. RT-PCR analysis suggests zscn1aa/ab, zscn8aa/ab, zscn4ab and zscn5Laa are possible candidates for these I(Na) components. Voltage-gated Ca(2+) currents (I(Ca)) were primarily (87%) comprised of a high-voltage activated component arising from ω-conotoxin GVIA-sensitive Ca(V)2.2 (N-type) Ca(2+) channels. A few DRG neurons (8%) displayed a miniscule low-voltage-activated component. I(Ca) in zebrafish DRG neurons were modulated by neurotransmitters via either voltage-dependent or -independent G-protein signaling pathway with large cell-to-cell response variability. CONCLUSIONS/SIGNIFICANCE Our present results indicate that, as in higher vertebrates, zebrafish DRG neurons are heterogeneous being composed of functionally distinct subpopulations that may correlate with different sensory modalities. These findings provide the first comparison of zebrafish and rodent DRG neuron electrical properties and thus provide a basis for future studies.
Collapse
Affiliation(s)
- Yu-Jin Won
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Fumihito Ono
- Section on Model Synaptic Systems, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen R. Ikeda
- Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
16
|
Chondrolectin mediates growth cone interactions of motor axons with an intermediate target. J Neurosci 2012; 32:4426-39. [PMID: 22457492 DOI: 10.1523/jneurosci.5179-11.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The C-type lectin chondrolectin (chodl) represents one of the major gene products dysregulated in spinal muscular atrophy models in mice. However, to date, no function has been determined for the gene. We have identified chodl and other novel genes potentially involved in motor axon differentiation, by expression profiling of transgenically labeled motor neurons in embryonic zebrafish. To enrich the profile for genes involved in differentiation of peripheral motor axons, we inhibited the function of LIM-HDs (LIM homeodomain factors) by overexpression of a dominant-negative cofactor, thereby rendering labeled axons unable to grow out of the spinal cord. Importantly, labeled cells still exhibited axon growth and most cells retained markers of motor neuron identity. Functional tests of chodl, by overexpression and knockdown, confirm crucial functions of this gene for motor axon growth in vivo. Indeed, knockdown of chodl induces arrest or stalling of motor axon growth at the horizontal myoseptum, an intermediate target and navigational choice point, and reduced muscle innervation at later developmental stages. This phenotype is rescued by chodl overexpression, suggesting that correct expression levels of chodl are important for interactions of growth cones of motor axons with the horizontal myoseptum. Combined, these results identify upstream regulators and downstream functions of chodl during motor axon growth.
Collapse
|
17
|
Higashijima SI, Okamoto H. Yoshiki Hotta and the dawn of zebrafish molecular neurogenetics in Japan. J Neurogenet 2012; 26:28-33. [PMID: 22413917 DOI: 10.3109/01677063.2012.663426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract: After coming back to Japan to work in the Department of Physics at the University of Tokyo, Yoshiki Hotta spent a year or so on searching for behavioral mutants of goldfish. Although this endeavor did not succeed, he remained an adamant supporter of the development of zebrafish research in Japan. Here we review how his support helped zebrafish neurogenetics in Japan gain a unique position in the world research community.
Collapse
Affiliation(s)
- Shin-Ichi Higashijima
- National Institutes of Natural Sciences, Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | | |
Collapse
|
18
|
Barresi MJF, Burton S, Dipietrantonio K, Amsterdam A, Hopkins N, Karlstrom RO. Essential genes for astroglial development and axon pathfinding during zebrafish embryogenesis. Dev Dyn 2011; 239:2603-18. [PMID: 20806318 DOI: 10.1002/dvdy.22393] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of the central nervous system depends on the coordinated development of neural and glial cell types that arise from a common precursor. Using an existing group of zebrafish mutants generated by viral insertion, we performed a "shelf-screen" to identify genes necessary for astroglial development and axon scaffold formation. We screened 274 of 315 viral insertion lines using antibodies that label axons (anti-Acetylated Tubulin) and astroglia (anti-Gfap) and identified 25 mutants with defects in gliogenesis, glial patterning, neurogenesis, and axon guidance. We also identified a novel class of mutants affecting radial glial cell numbers. Defects in astroglial patterning were always associated with axon defects, supporting an important role for axon-glial interactions during axon scaffold development. The genes disrupted in these viral lines have all been identified, providing a powerful new resource for the study of axon guidance, glio- and neurogenesis, and neuron-glial interactions during development of the vertebrate CNS.
Collapse
|
19
|
Tanaka H, Nojima Y, Shoji W, Sato M, Nakayama R, Ohshima T, Okamoto H. Islet1 selectively promotes peripheral axon outgrowth in Rohon-Beard primary sensory neurons. Dev Dyn 2010; 240:9-22. [DOI: 10.1002/dvdy.22499] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
20
|
Wells S, Conran JG, Tamme R, Gaudin A, Webb J, Lardelli M. Cryptic organisation within an apparently irregular rostrocaudal distribution of interneurons in the embryonic zebrafish spinal cord. Exp Cell Res 2010; 316:3292-303. [DOI: 10.1016/j.yexcr.2010.06.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 05/31/2010] [Accepted: 06/23/2010] [Indexed: 11/26/2022]
|
21
|
Won YJ, Ono F, Ikeda SR. Identification and modulation of voltage-gated Ca2+ currents in zebrafish Rohon-Beard neurons. J Neurophysiol 2010; 105:442-53. [PMID: 20962070 DOI: 10.1152/jn.00625.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Electrically excitable cells have voltage-dependent ion channels on the plasma membrane that regulate membrane permeability to specific ions. Voltage-gated Ca(2+) channels (VGCCs) are especially important as Ca(2+) serves as both a charge carrier and second messenger. Zebrafish (Danio rerio) are an important model vertebrate for studies of neuronal excitability, circuits, and behavior. However, electrophysiological properties of zebrafish VGCCs remain largely unexplored because a suitable preparation for whole cell voltage-clamp studies is lacking. Rohon-Beard (R-B) sensory neurons represent an attractive candidate for this purpose because of their relatively large somata and functional homology to mammalian dorsal root ganglia (DRG) neurons. Transgenic zebrafish expressing green fluorescent protein in R-B neurons, (Isl2b:EGFP)(ZC7), were used to identify dissociated neurons suitable for whole cell patch-clamp experiments. Based on biophysical and pharmacological properties, zebrafish R-B neurons express both high- and low-voltage-gated Ca(2+) current (HVA- and LVA-I(Ca), respectively). Ni(+)-sensitive LVA-I(Ca) occur in the minority of R-B neurons (30%) and ω-conotoxin GVIA-sensitive Ca(V)2.2 (N-type) Ca(2+) channels underlie the vast majority (90%) of HVA-I(Ca). To identify G protein coupled receptors (GPCRs) that modulate HVA-I(Ca), a panel of neurotransmitters was screened. Application of GABA/baclofen or serotonin produced a voltage-dependent inhibition while application of the mu-opioid agonist DAMGO resulted in a voltage-independent inhibition. Unlike in mammalian neurons, GPCR-mediated voltage-dependent modulation of I(Ca) appears to be transduced primarily via a cholera toxin-sensitive Gα subunit. These results provide the basis for using the zebrafish model system to understanding Ca(2+) channel function, and in turn, how Ca(2+) channels contribute to mechanosensory function.
Collapse
Affiliation(s)
- Yu-Jin Won
- 1Section on Transmitter Signaling, Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20892-9411, USA
| | | | | |
Collapse
|
22
|
A systematic approach to identify functional motifs within vertebrate developmental enhancers. Dev Biol 2009; 337:484-95. [PMID: 19850031 DOI: 10.1016/j.ydbio.2009.10.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/28/2009] [Accepted: 10/10/2009] [Indexed: 01/22/2023]
Abstract
Uncovering the cis-regulatory logic of developmental enhancers is critical to understanding the role of non-coding DNA in development. However, it is cumbersome to identify functional motifs within enhancers, and thus few vertebrate enhancers have their core functional motifs revealed. Here we report a combined experimental and computational approach for discovering regulatory motifs in developmental enhancers. Making use of the zebrafish gene expression database, we computationally identified conserved non-coding elements (CNEs) likely to have a desired tissue-specificity based on the expression of nearby genes. Through a high throughput and robust enhancer assay, we tested the activity of approximately 100 such CNEs and efficiently uncovered developmental enhancers with desired spatial and temporal expression patterns in the zebrafish brain. Application of de novo motif prediction algorithms on a group of forebrain enhancers identified five top-ranked motifs, all of which were experimentally validated as critical for forebrain enhancer activity. These results demonstrate a systematic approach to discover important regulatory motifs in vertebrate developmental enhancers. Moreover, this dataset provides a useful resource for further dissection of vertebrate brain development and function.
Collapse
|
23
|
Moreno RL, Ribera AB. Zebrafish motor neuron subtypes differ electrically prior to axonal outgrowth. J Neurophysiol 2009; 102:2477-84. [PMID: 19692510 PMCID: PMC2775388 DOI: 10.1152/jn.00446.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 08/13/2009] [Indexed: 11/22/2022] Open
Abstract
Different muscle targets and transcription factor expression patterns reveal the presence of motor neuron subtypes. However, it is not known whether these subtypes also differ with respect to electrical membrane properties. To address this question, we studied primary motor neurons (PMNs) in the spinal cord of zebrafish embryos. PMN genesis occurs during gastrulation and gives rise to a heterogeneous set of motor neurons that differ with respect to transcription factor expression, muscle targets, and soma location within each spinal cord segment. The unique subtype-specific soma locations and axonal trajectories of two PMNs-MiP (middle) and CaP (caudal)-allowed their identification in situ as early as 17 h postfertilization (hpf), prior to axon genesis. Between 17 and 48 hpf, CaPs and MiPs displayed subtype-specific electrical membrane properties. Voltage-dependent inward and outward currents differed significantly between MiPs and CaPs. Moreover, by 48 hpf, CaPs and MiPs displayed subtype-specific firing behaviors. Our results demonstrate that motor neurons that differ with respect to muscle targets and transcription factor expression acquire subtype-specific electrical membrane properties. Moreover, the differences are evident prior to axon genesis and persist to the latest stage studied, 2 days postfertilization.
Collapse
Affiliation(s)
- Rosa L Moreno
- Department of Physiology and Biophysics, University of Colorado Denver at Anschutz Medical Campus, Aurora, Colorado 80045, USA.
| | | |
Collapse
|
24
|
Ohata S, Kinoshita S, Aoki R, Tanaka H, Wada H, Tsuruoka-Kinoshita S, Tsuboi T, Watabe S, Okamoto H. Neuroepithelial cells require fucosylated glycans to guide the migration of vagus motor neuron progenitors in the developing zebrafish hindbrain. Development 2009; 136:1653-63. [PMID: 19369395 DOI: 10.1242/dev.033290] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The molecular mechanisms by which neurons migrate and accumulate to form the neural layers and nuclei remain unclear. The formation of vagus motor nuclei in zebrafish embryos is an ideal model system in which to address this issue because of the transparency of the embryos and the availability of established genetic and molecular biological techniques. To determine the genes required for the formation of the vagus motor nuclei, we performed N-ethyl-N-nitrosourea-based mutant screening using a zebrafish line that expresses green fluorescent protein in the motor neurons. In wild-type embryos, the vagus motor neuron progenitors are born in the ventral ventricular zone, then migrate tangentially in the dorsolateral direction, forming the nuclei. However, in towhead (twd(rw685)) mutant embryos, the vagus motor neuron progenitors stray medially away from the normal migratory pathway and fail to stop in the right location. The twd(rw685) mutant has a defect in the GDP-mannose 4,6 dehydratase (gmds) gene, which encodes a key enzyme in the fucosylation pathway. Levels of fucosylated glycans were markedly and specifically reduced in twd(rw685) mutant embryos. Cell transplantation analysis revealed that GMDS is not essential in the vagus motor neuron progenitors for correct formation of the vagus motor nuclei, but is required in the neuroepithelial cells that surround the progenitors. Together, these findings suggest that fucosylated glycans expressed in neuroepithelial cells are required to guide the migration of vagus motor neuron progenitors.
Collapse
Affiliation(s)
- Shinya Ohata
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sato-Maeda M, Obinata M, Shoji W. Position fine-tuning of caudal primary motoneurons in the zebrafish spinal cord. Development 2008; 135:323-32. [DOI: 10.1242/dev.007559] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In zebrafish embryos, each myotome is typically innervated by three primary motoneurons (PMNs): the caudal primary (CaP), middle primary (MiP) and rostral primary (RoP). PMN axons first exit the spinal cord through a single exit point located at the midpoint of the overlying somite, which is formed beneath the CaP cell body and is pioneered by the CaP axon. However, the placement of CaP cell bodies with respect to corresponding somites is poorly understood. Here, we determined the early events in CaP cell positioning using neuropilin 1a (nrp1a):gfp transgenic embryos in which CaPs were specifically labeled with GFP. CaP cell bodies first exhibit an irregular pattern in presence of newly formed corresponding somites and then migrate to achieve their proper positions by axonogenesis stages. CaPs are generated in excess compared with the number of somites, and two CaPs often overlap at the same position through this process. Next, we showed that CaP cell bodies remain in the initial irregular positions after knockdown of Neuropilin1a, a component of the class III semaphorin receptor. Irregular CaP position frequently results in aberrant double exit points of motor axons, and secondary motor axons form aberrant exit points following CaP axons. Its expression pattern suggests that sema3ab regulates the CaP position. Indeed, irregular CaP positions and exit points are induced by Sema3ab knockdown, whose ectopic expression can alter the position of CaP cell bodies. Results suggest that Semaphorin-Neuropilin signaling plays an important role in position fine-tuning of CaP cell bodies to ensure proper exit points of motor axons.
Collapse
Affiliation(s)
- Mika Sato-Maeda
- Department of Cell Biology, Institute of Development, Aging and Cancer,Tohoku University, Sendai 980-8575, Japan
| | - Masuo Obinata
- Department of Cell Biology, Institute of Development, Aging and Cancer,Tohoku University, Sendai 980-8575, Japan
| | - Wataru Shoji
- Department of Cell Biology, Institute of Development, Aging and Cancer,Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
26
|
Tanaka H, Maeda R, Shoji W, Wada H, Masai I, Shiraki T, Kobayashi M, Nakayama R, Okamoto H. Novel mutations affecting axon guidance in zebrafish and a role for plexin signalling in the guidance of trigeminal and facial nerve axons. Development 2007; 134:3259-69. [PMID: 17699608 DOI: 10.1242/dev.004267] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In zebrafish embryos, the axons of the posterior trigeminal (Vp) and facial (VII) motoneurons project stereotypically to a small number of target muscles derived from the first and second branchial arches (BA1, BA2). Use of the Islet1 (Isl1)-GFP transgenic line enabled precise real-time observations of the growth cone behaviour of the Vp and VII motoneurons within BA1 and BA2. Screening for N-ethyl-N-nitrosourea-induced mutants identified seven distinct mutations affecting different steps in the axonal pathfinding of these motoneurons. The class 1 mutations caused severe defasciculation and abnormal pathfinding in both Vp and VII motor axons before they reached their target muscles in BA1. The class 2 mutations caused impaired axonal outgrowth of the Vp motoneurons at the BA1-BA2 boundary. The class 3 mutation caused impaired axonal outgrowth of the Vp motoneurons within the target muscles derived from BA1 and BA2. The class 4 mutation caused retraction of the Vp motor axons in BA1 and abnormal invasion of the VII motor axons in BA1 beyond the BA1-BA2 boundary. Time-lapse observations of the class 1 mutant, vermicelli (vmc), which has a defect in the plexin A3 (plxna3) gene, revealed that Plxna3 acts with its ligand Sema3a1 for fasciculation and correct target selection of the Vp and VII motor axons after separation from the common pathways shared with the sensory axons in BA1 and BA2, and for the proper exit and outgrowth of the axons of the primary motoneurons from the spinal cord.
Collapse
Affiliation(s)
- Hideomi Tanaka
- Laboratory for Developmental Gene Regulation, Brain Science Institute, The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Shin J, Poling J, Park HC, Appel B. Notch signaling regulates neural precursor allocation and binary neuronal fate decisions in zebrafish. Development 2007; 134:1911-20. [PMID: 17442701 DOI: 10.1242/dev.001602] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Notch signaling plays a well-described role in regulating the formation of neurons from proliferative neural precursors in vertebrates but whether, as in flies, it also specifies sibling cells for different neuronal fates is not known. Ventral spinal cord precursors called pMN cells produce mostly motoneurons and oligodendrocytes, but recent lineage-marking experiments reveal that they also make astrocytes, ependymal cells and interneurons. Our own clonal analysis of pMN cells in zebrafish showed that some produce a primary motoneuron and KA' interneuron at their final division. We investigated the possibility that Notch signaling regulates a motoneuron-interneuron fate decision using a combination of mutant, transgenic and pharmacological manipulations of Notch activity. We show that continuous absence of Notch activity produces excess primary motoneurons and a deficit of KA' interneurons, whereas transient inactivation preceding neurogenesis results in an excess of both cell types. By contrast, activation of Notch signaling at the neural plate stage produces excess KA' interneurons and a deficit of primary motoneurons. Furthermore, individual pMN cells produce similar kinds of neurons at their final division in mib mutant embryos, which lack Notch signaling. These data provide evidence that, among some postmitotic daughters of pMN cells, Notch promotes KA' interneuron identity and inhibits primary motoneuron fate, raising the possibility that Notch signaling diversifies vertebrate neuron type by mediating similar binary fate decisions.
Collapse
Affiliation(s)
- Jimann Shin
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
28
|
Hutchinson SA, Cheesman SE, Hale LA, Boone JQ, Eisen JS. Nkx6 proteins specify one zebrafish primary motoneuron subtype by regulating late islet1 expression. Development 2007; 134:1671-7. [PMID: 17376808 PMCID: PMC2586877 DOI: 10.1242/dev.02826] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ability of animals to carry out their normal behavioral repertoires requires exquisitely precise matching between specific motoneuron subtypes and the muscles they innervate. However, the molecular mechanisms that regulate motoneuron subtype specification remain unclear. Here, we use individually identified zebrafish primary motoneurons to describe a novel role for Nkx6 and Islet1 proteins in the specification of vertebrate motoneuron subtypes. We show that zebrafish primary motoneurons express two related Nkx6 transcription factors. In the absence of both Nkx6 proteins, the CaP motoneuron subtype develops normally, whereas the MiP motoneuron subtype develops a more interneuron-like morphology. In the absence of Nkx6 function, MiPs exhibit normal early expression of islet1, which is required for motoneuron formation; however, they fail to maintain islet1 expression. Misexpression of islet1 RNA can compensate for loss of Nkx6 function, providing evidence that Islet1 acts downstream of Nkx6. We suggest that Nkx6 proteins regulate MiP development at least in part by maintaining the islet1 expression that is required both to promote the MiP subtype and to suppress interneuron development.
Collapse
|
29
|
Schneider H, Sulner B. Innervation of dorsal and caudal fin muscles in adult zebrafish Danio rerio. J Comp Neurol 2006; 497:702-16. [PMID: 16786559 DOI: 10.1002/cne.21038] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The organization of the neuromuscular system of the dorsal and caudal fin of zebrafish, Danio rerio, was studied, including the anatomy of fin motoneurons as revealed by neurobiotin backfills and differential staining using fluorescent markers. The musculature of the dorsal fin consists of one pair of protractor and retractor muscles and 10 sets of muscles attaching to the bases of dorsal fin rays. Each set consists of one pair of erector, depressor, and inclinator muscles. The supplying nerves of the dorsal fin musculature originate from spinal segments 9-17 and form a dorsal fin plexus at the base of the muscles. Dorsal and caudal fin motoneurons have small cell bodies and ipsilateral dendritic branching patterns, thus resembling secondary motoneurons of the axial musculature. As shown by differential staining using fluorescent-labeled dextrans, cell bodies of dorsal fin motoneurons and axial motoneurons seem to be located in separate motor columns. The musculature of the caudal fin is composed of 12 muscles that are arranged in a superficial and a deep muscle layer. The nerves that supply the caudal fin musculature arise from the last five caudal segments of the spinal cord and form the caudal plexus. Neurobiotin backfills were performed on the dorsal caudal muscles, the medial caudal muscles, and the ventral caudal muscles. Most cell bodies of caudal fin motoneurons are small and are located in a ventral motor column. The organization of dorsal and caudal fin motoneurons is compared with the innervation of fins in other fish.
Collapse
Affiliation(s)
- Henning Schneider
- Department of Biology, DePauw University, Greencastle, Indiana 46135, USA.
| | | |
Collapse
|
30
|
Pineda RH, Svoboda KR, Wright MA, Taylor AD, Novak AE, Gamse JT, Eisen JS, Ribera AB. Knockdown of Nav1.6a Na+ channels affects zebrafish motoneuron development. Development 2006; 133:3827-36. [PMID: 16943272 DOI: 10.1242/dev.02559] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In addition to rapid signaling, electrical activity provides important cues to developing neurons. Electrical activity relies on the function of several different types of voltage-gated ion channels. Whereas voltage-gated Ca2+ channel activity regulates several aspects of neuronal differentiation, much less is known about developmental roles of voltage-gated Na+ channels, essential mediators of electrical signaling. Here, we focus on the zebrafish Na+ channel isotype, Nav1.6a, which is encoded by the scn8a gene. A restricted set of spinal neurons, including dorsal sensory Rohon-Beard cells, two motoneuron subtypes with different axonal trajectories, express scn8a during embryonic development. CaP, an early born primary motoneuron subtype with ventrally projecting axons expresses scn8a, as does a class of secondary motoneurons with axons that project dorsally. To test for developmental roles of scn8a, we knocked down Nav1.6a protein using antisense morpholinos. Na+ channel protein and current amplitudes were reduced in neurons that express scn8a. Furthermore, Nav1.6a knockdown altered axonal morphologies of some but not all motoneurons. Dorsally projecting secondary motoneurons express scn8a and displayed delayed axonal outgrowth. By contrast, CaP axons developed normally, despite expression of the gene. Surprisingly, ventrally projecting secondary motoneurons, a population in which scn8a was not detected, displayed aberrant axonal morphologies. Mosaic analysis indicated that effects on ventrally projecting secondary motoneurons were non cell-autonomous. Thus, voltage-gated Na+ channels play cell-autonomous and non cell-autonomous roles during neuronal development.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Department of Physiology and Biophysics, 8307 University of Colorado Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hutchinson SA, Eisen JS. Islet1 and Islet2 have equivalent abilities to promote motoneuron formation and to specify motoneuron subtype identity. Development 2006; 133:2137-47. [PMID: 16672347 DOI: 10.1242/dev.02355] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The expression of LIM homeobox genes islet1 and islet2 is tightly regulated during development of zebrafish primary motoneurons. All primary motoneurons express islet1 around the time they exit the cell cycle. By the time primary motoneurons undergo axogenesis, specific subtypes express islet1, whereas other subtypes express islet2, suggesting that these two genes have different functions. Here, we show that Islet1 is required for formation of zebrafish primary motoneurons; in the absence of Islet1, primary motoneurons are missing and there is an apparent increase in some types of ventral interneurons. We also provide evidence that Islet2 can substitute for Islet1 during primary motoneuron formation. Surprisingly, our results demonstrate that despite the motoneuron subtype-specific expression patterns of Islet1 and Islet2, the differences between the Islet1 and Islet2 proteins are not important for specification of the different primary motoneuron subtypes. Thus, primary motoneuron subtypes are likely to be specified by factors that act in parallel to or upstream of islet1 and islet2.
Collapse
|
32
|
Conway G. STAT3-dependent pathfinding and control of axonal branching and target selection. Dev Biol 2006; 296:119-36. [PMID: 16729994 DOI: 10.1016/j.ydbio.2006.04.444] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Revised: 04/13/2006] [Accepted: 04/14/2006] [Indexed: 10/24/2022]
Abstract
Signal transducers and transcription factors are used in common for developmental cell migration, vasculogenesis, branching morphogenesis, as well as neuronal pathfinding. STAT3, a transcription factor, has been shown to function in all of these processes except neuronal pathfinding. Here, it is shown that STAT3 also facilitates this process. Elimination of STAT3 signaling results in half of zebrafish CaP motoneurons stalling along their ventral pathfinding trajectory. Conversely, constitutive activation leads to precocious branching and redefines CaP axons as a responding population to dorsal guidance cues, resulting in bifurcated axons innervating normal ventral targets as well as additional dorsal muscle groups. These results are consistent with and highlight a fundamental role for STAT3 as a factor promoting cellular responses to guidance cues, not only in nonneural cells but also in pathfinding neurons.
Collapse
Affiliation(s)
- Greg Conway
- Life Sciences Division, MS239-11, NASA Ames Research Center, Moffett Field, CA 94035, USA.
| |
Collapse
|
33
|
Schweitzer J, Becker T, Lefebvre J, Granato M, Schachner M, Becker CG. Tenascin-C is involved in motor axon outgrowth in the trunk of developing zebrafish. Dev Dyn 2006; 234:550-66. [PMID: 16110513 DOI: 10.1002/dvdy.20525] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Motor axons in the trunk of the developing zebrafish exit from the ventral spinal cord in one ventral root per hemisegment and grow on a common path toward the region of the horizontal myoseptum, where they select their specific pathways. Tenascin-C, a component of the extracellular matrix, is concentrated in this choice region. Adaxial cells and other myotomal cells express tenascin-C mRNA, suggesting that these cells are the source of tenascin-C protein. Overexpressing an axon repellent fragment containing the cysteine-rich region and the epidermal growth factor-like repeats of tenascin-C led to retarded growth of ventral motor nerves between their spinal exit point and the horizontal myoseptum. Injection of a protein fragment containing the same part of tenascin-C also induced slower growth of motor nerves. Conversely, knock down of tenascin-C protein resulted in abnormal lateral branching of ventral motor nerves. In the zebrafish unplugged mutant, in which axons display pathfinding defects in the region of the horizontal myoseptum, tenascin-C immunoreactivity was not detectable in this region, indicating an abnormal extracellular matrix in unplugged. We conclude that tenascin-C is part of a specialized extracellular matrix in the region of the horizontal myoseptum that influences the growth of motor axons.
Collapse
|
34
|
Feldner J, Becker T, Goishi K, Schweitzer J, Lee P, Schachner M, Klagsbrun M, Becker CG. Neuropilin-1a is involved in trunk motor axon outgrowth in embryonic zebrafish. Dev Dyn 2005; 234:535-49. [PMID: 16110501 DOI: 10.1002/dvdy.20520] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neuropilin-1, a receptor for axon-repellent semaphorins and vascular endothelial growth factor (VEGF), functions both in angiogenesis and axon growth. Here, we show strong expression of neuropilin-1a in primary motor neurons in the trunk of embryonic zebrafish. Reducing the expression of neuropilin-1a using antisense morpholino oligonucleotides induced aberrant branching of motor nerves, additional exit points of motor nerves from the spinal cord, and migration of neurons out of the spinal cord along the motor axon pathway in a dose-dependent manner. These phenotypes could be partially rescued by co-injecting neuropilin-1a mRNA. Other axons in the spinal cord and head appeared unaffected by the morpholino treatment. In addition, neuropilin-1a morpholino treatment disturbed normal formation of blood vessels in the trunk of 24 hours postfertilization embryos, as shown by microangiography. Morpholinos to VEGF also disturbed formation of blood vessels but did not affect motor axons, indicating that correct formation of blood vessels is not needed for the growth of primary motor axons. Morpholinos to the semaphorin 3A homologs semaphorin 3A1 and semaphorin 3A2 also had no effect on motor axon growth. However, combined injections of neuropilin-1a morpholino, at a concentration that did not elicit axonal aberrations when injected alone, with VEGF, semaphorin 3A1, or semaphorin 3A2 morpholinos synergistically increased the proportion of embryos showing aberrant motor axon growth. Thus, neuropilin-1a in primary motor neurons may integrate signals from several ligands and is needed for proper segmental growth of primary motor nerves in zebrafish.
Collapse
Affiliation(s)
- Julia Feldner
- Zentrum für Molekulare Neurobiologie Hamburg, Universität Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Katsuyama Y, Okada T, Matsumoto J, Ohtsuka Y, Terashima T, Okamura Y. Early specification of ascidian larval motor neurons. Dev Biol 2005; 278:310-22. [PMID: 15680352 DOI: 10.1016/j.ydbio.2004.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2004] [Revised: 11/05/2004] [Accepted: 11/05/2004] [Indexed: 01/09/2023]
Abstract
In the tadpole larvae of the ascidian Halocynthia roretzi, six motor neurons, Moto-A, -B, and -C (a pair of each), are localized proximal to the caudal neural tube and show distinct morphology and innervation patterns. To gain insights into early mechanisms underlying differentiation of individual motor neurons, we have isolated an ascidian homologue of Islet, a LIM type homeobox gene. Earliest expression of Islet was detected in a pair of bilateral blastomeres on the dorsal edge of the late gastrula. At the neurula stage, this expression began to disappear and more posterior cells started to express Islet. Compared to expression of a series of motor neuron genes, it was confirmed that early Islet-positive blastomeres are the common precursors of Moto-A and -B, and late Islet-positive cells in the posterior neural tube are the precursors of Moto-C. Overexpression of Islet induced ectopic expression of motor neuron markers, suggesting that Islet is capable of regulating motor neuron differentiation. Since early expression of Islet colocalizes with that of HrBMPb, the ascidian homologue of BMP2/4, we tested a role of BMP in specification of the motor neuron fate. Overexpression of HrBMPb led to expansion of Lim and Islet expression toward the central area of the neural plate, and microinjection of mRNA coding for a dominant-negative BMP receptor weakened the expression of these genes. Our results suggest that determination of the ascidian motor neuron fate takes place at late gastrula stage and local BMP signaling may play a role in this step.
Collapse
Affiliation(s)
- Yu Katsuyama
- Molecular Neurobiology Group, Neuroscience Research Institute, AIST Tsukuba Central 6-12, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Uemura O, Okada Y, Ando H, Guedj M, Higashijima SI, Shimazaki T, Chino N, Okano H, Okamoto H. Comparative functional genomics revealed conservation and diversification of three enhancers of the isl1 gene for motor and sensory neuron-specific expression. Dev Biol 2005; 278:587-606. [PMID: 15680372 DOI: 10.1016/j.ydbio.2004.11.031] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2004] [Revised: 11/22/2004] [Accepted: 11/23/2004] [Indexed: 12/30/2022]
Abstract
Islet-1 (Isl1) is a member of the Isl1 family of LIM-homeodomain transcription factors (LIM-HD) that is expressed in a defined subset of motor and sensory neurons during vertebrate embryogenesis. To investigate how this specific expression of isl1 is regulated, we searched for enhancers of the isl1 gene that are conserved in vertebrate evolution. Initially, two enhancer elements, CREST1 and CREST2, were identified downstream of the isl1 locus in the genomes of fugu, chick, mouse, and human by BLAST searching for highly similar elements to those originally identified as motor and sensory neuron-specific enhancers in the zebrafish genome. The combined action of these elements is sufficient for completely recapitulating the subtype-specific expression of the isl1 gene in motor neurons of the mouse spinal cord. Furthermore, by direct comparison of the upstream flanking regions of the zebrafish and human isl1 genes, we identified another highly conserved noncoding element, CREST3, and subsequently C3R, a similar element to CREST3 with two CDP CR1 recognition motifs, in the upstream regions of all other isl1 family members. In mouse and human, CRESTs are located as far as more than 300 kb away from the isl1 locus, while they are much closer to the isl1 locus in zebrafish. Although all of zebrafish CREST2, CREST3, and C3R activate gene expression in the sensory neurons of zebrafish, CREST2 of mouse and human does not have the sequence necessary for sensory neuron-specific expression. Our results revealed both a remarkable conservation of the regulatory elements regulating subtype-specific gene expression in motor and sensory neurons and the dynamic process of reorganization of these elements whereby each element increases the level of cell-type specificity by losing redundant functions with the other elements during vertebrate evolution.
Collapse
Affiliation(s)
- Osamu Uemura
- Laboratory for Developmental Gene Regulation, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yeo SY, Miyashita T, Fricke C, Little MH, Yamada T, Kuwada JY, Huh TL, Chien CB, Okamoto H. Involvement of Islet-2 in the Slit signaling for axonal branching and defasciculation of the sensory neurons in embryonic zebrafish. Mech Dev 2005; 121:315-24. [PMID: 15110042 DOI: 10.1016/j.mod.2004.03.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 11/21/2022]
Abstract
In Drosophila melanogaster, Slit acts as a repulsive cue for the growth cones of the commissural axons which express a receptor for Slit, Roundabout (Robo), thus preventing the commissural axons from crossing the midline multiple times. Experiments using explant culture have shown that vertebrate Slit homologues also act repulsively for growth cone navigation and neural migration, and promote branching and elongation of sensory axons. Here, we demonstrate that overexpression of Slit2 in vivo in transgenic zebrafish embryos severely affected the behavior of the commissural reticulospinal neurons (Mauthner neurons), promoted branching of the peripheral axons of the trigeminal sensory ganglion neurons, and induced defasciculation of the medial longitudinal fascicles. In addition, Slit2 overexpression caused defasciculation and deflection of the central axons of the trigeminal sensory ganglion neurons from the hindbrain entry point. The central projection was restored by either functional repression or mutation of Robo2, supporting its role as a receptor mediating the Slit signaling in vertebrate neurons. Furthermore, we demonstrated that Islet-2, a LIM/homeodomain-type transcription factor, is essential for Slit2 to induce axonal branching of the trigeminal sensory ganglion neurons, suggesting that factors functioning downstream of Islet-2 are essential for mediating the Slit signaling for promotion of axonal branching.
Collapse
Affiliation(s)
- Sang-Yeob Yeo
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cheesman SE, Layden MJ, Von Ohlen T, Doe CQ, Eisen JS. Zebrafish and fly Nkx6 proteins have similar CNS expression patterns and regulate motoneuron formation. Development 2004; 131:5221-32. [PMID: 15456722 DOI: 10.1242/dev.01397] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genes belonging to the Nkx, Gsh and Msx families are expressed in similar dorsovental spatial domains of the insect and vertebrate central nervous system (CNS), suggesting the bilaterian ancestor used this genetic program during CNS development. We have investigated the significance of these similar expression patterns by testing whether Nkx6 proteins expressed in ventral CNS of zebrafish and flies have similar functions. In zebrafish, Nkx6.1 is expressed in early-born primary and later-born secondary motoneurons. In the absence of Nkx6.1, there are fewer secondary motoneurons and supernumerary ventral interneurons, suggesting Nkx6.1 promotes motoneuron and suppresses interneuron formation. Overexpression of fish or fly Nkx6 is sufficient to generate supernumerary motoneurons in both zebrafish and flies. These results suggest that one ancestral function of Nkx6 proteins was to promote motoneuron development.
Collapse
Affiliation(s)
- Sarah E Cheesman
- Institute of Neuroscience, 1254 University of Oregon, Eugene OR, 97403-1254, USA
| | | | | | | | | |
Collapse
|
39
|
Miyashita T, Yeo SY, Hirate Y, Segawa H, Wada H, Little MH, Yamada T, Takahashi N, Okamoto H. PlexinA4 is necessary as a downstream target of Islet2 to mediate Slit signaling for promotion of sensory axon branching. Development 2004; 131:3705-15. [PMID: 15229183 DOI: 10.1242/dev.01228] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Slit is a secreted protein known to repulse the growth cones of commissural neurons. By contrast, Slit also promotes elongation and branching of axons of sensory neurons. The reason why different neurons respond to Slit in different ways is largely unknown. Islet2 is a LIM/homeodomain-type transcription factor that specifically regulates elongation and branching of the peripheral axons of the primary sensory neurons in zebrafish embryos. We found that PlexinA4, a transmembrane protein known to be a co-receptor for class III semaphorins, acts downstream of Islet2 to promote branching of the peripheral axons of the primary sensory neurons. Intriguingly, repression of PlexinA4 function by injection of the antisense morpholino oligonucleotide specific to PlexinA4 or by overexpression of the dominant-negative variant of PlexinA4 counteracted the effects of overexpression of Slit2 to induce branching of the peripheral axons of the primary sensory neurons in zebrafish embryos, suggesting involvement of PlexinA4 in the Slit signaling cascades for promotion of axonal branching of the sensory neurons. Colocalized expression of Robo, a receptor for Slit2, and PlexinA4 is observed not only in the primary sensory neurons of zebrafish embryos but also in the dendrites of the pyramidal neurons of the cortex of the mammals, and may be important for promoting the branching of either axons or dendrites in response to Slit, as opposed to the growth cone collapse.
Collapse
Affiliation(s)
- Toshio Miyashita
- Laboratory for Developmental Gene Regulation, RIKEN Brain Science Institute, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lewis KE, Eisen JS. Paraxial mesoderm specifies zebrafish primary motoneuron subtype identity. Development 2004; 131:891-902. [PMID: 14757641 DOI: 10.1242/dev.00981] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We provide the first analysis of how a segmentally reiterated pattern of neurons is specified along the anteroposterior axis of the vertebrate spinal cord by investigating how zebrafish primary motoneurons are patterned. Two identified primary motoneuron subtypes, MiP and CaP, occupy distinct locations within the ventral neural tube relative to overlying somites, express different genes and innervate different muscle territories. In all vertebrates examined so far, paraxial mesoderm-derived signals specify distinct motoneuron subpopulations in specific anteroposterior regions of the spinal cord. We show that signals from paraxial mesoderm also control the much finer-grained segmental patterning of zebrafish primary motoneurons. We examined primary motoneuron specification in several zebrafish mutants that have distinct effects on paraxial mesoderm development. Our findings suggest that in the absence of signals from paraxial mesoderm, primary motoneurons have a hybrid identity with respect to gene expression, and that under these conditions the CaP axon trajectory may be dominant.
Collapse
Affiliation(s)
- Katharine E Lewis
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
41
|
|
42
|
Zhou XH, Brandau O, Feng K, Oohashi T, Ninomiya Y, Rauch U, Fässler R. The murine Ten-m/Odz genes show distinct but overlapping expression patterns during development and in adult brain. Gene Expr Patterns 2003; 3:397-405. [PMID: 12915301 DOI: 10.1016/s1567-133x(03)00087-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The mouse TEN-M/ODZ proteins belong to a new family of type II transmembrane proteins with unknown function. The family consists of four members, which are expressed highly in brain and less in many other tissues. In the present study we have generated specific RNA probes and antibodies to characterize the expression of the 4 Ten-m/Odz genes in the developing and adult central nervous system (CNS) of mice. Ten-m/Odz3 and Ten-m/Odz4 mRNAs were first detectable at E7.5, Ten-m/Odz2 expression started at the 37 somite (E 10.5) stage, while Ten-m/Odz1 mRNA is not found before E15.5. In the adult mouse CNS mRNAs of the 4 Ten-m/Odzs were expressed in distinct patterns, which partially overlapped. Immunostaining and in situ hybridization localized proteins and mRNAs of Ten-m/Odzs in adjacent areas suggesting that TEN-M/ODZ proteins might be transported from the cell body along the axon or that they are shed from the cell surface and diffuse into distant regions.
Collapse
Affiliation(s)
- Xiao-Hong Zhou
- Department of Experimental Pathology, Lund University, 22185 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
43
|
Bae YK, Shimizu T, Yabe T, Kim CH, Hirata T, Nojima H, Muraoka O, Hirano T, Hibi M. A homeobox gene, pnx, is involved in the formation of posterior neurons in zebrafish. Development 2003; 130:1853-65. [PMID: 12642490 DOI: 10.1242/dev.00418] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A homeobox gene, pnx, is expressed in prospective posterior neurogenic regions and later in primary neurons. pnx expression was regulated by a signal from the non-axial mesendoderm and by Notch signaling. Pnx contains an Eh1 repressor domain, which interacted with Groucho and acted as a transcriptional repressor. Misexpression of pnx increased neural precursor cells and postmitotic neurons, which express neurogenin1 and elavl3/HuC, respectively. Expression of an antimorphic Pnx (VP16Pnx) or inhibition of Pnx by antisense morpholino oligonucleotide led to the reduction in the number of a subset of primary neurons. Misexpression of pnx promoted neurogenesis independent of Notch signaling. Epistatic analyses showed that Pnx also functions downstream of the Notch signal. These data indicate that pnx is a novel repressor-type homeobox gene that regulates posterior neurogenesis.
Collapse
Affiliation(s)
- Young-Ki Bae
- Laboratory for Vertebrate Axis Formation, Center for Developmental Biology, RIKEN, Kobe, Hyogo 650-0047, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The ability of an animal to carry out its normal behavioral repertoire requires generation of an enormous diversity of neurons and glia. The relative simplicity of the spinal cord makes this an especially attractive part of the nervous system for addressing questions about the development of vertebrate neural specification and function. The last decade has witnessed an explosion in our understanding of spinal cord development and the functional interactions among spinal cord neurons and glia. Cellular, genetic, molecular, physiological and behavioral studies in zebrafish have all been important in providing insights into questions that remained unanswered by studies from other vertebrate model organisms. This is the case because many zebrafish spinal neurons can be individually identified and followed over time in living embryos and larvae. In this review, we discuss what is currently known about the cellular, genetic and molecular mechanisms involved in specifying distinct cell types in the zebrafish spinal cord and how these cells establish the functional circuitry that mediates particular behaviors. We start by describing the early signals and morphogenetic movements that form the nervous system, and in particular, the spinal cord. We then provide an overview of the cell types within the spinal cord and describe how they are specified and patterned. We begin ventrally with floor plate and proceed dorsally, through motoneurons and oligodendrocytes, interneurons, astrocytes and radial glia, spinal sensory neurons and neural crest. We next describe axon pathfinding of spinal neurons. Finally, we discuss the roles of particular spinal cord neurons in specific behaviors.
Collapse
Affiliation(s)
- Katharine E Lewis
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
45
|
Abstract
The topographic assembly of neural circuits is dependent upon the generation of specific neuronal subtypes, each subtype displaying unique properties that direct the formation of selective connections with appropriate target cells. Studies of motor neuron development in the spinal cord have begun to elucidate the molecular mechanisms involved in controlling motor projections. In this review, we first describe the actions of transcription factors within motor neuron progenitors, which initiate a cascade of transcriptional interactions that lead to motor neuron specification. We next highlight the contribution of the LIM homeodomain (LIM-HD) transcription factors in establishing motor neuron subtype identity. Importantly, it has recently been shown that the combinatorial expression of LIM-HD transcription factors, the LIM code, confers motor neuron subtypes with the ability to select specific axon pathways to reach their distinct muscle targets. Finally, the downstream targets of the LIM code are discussed, especially in the context of subtype-specific motor axon pathfinding.
Collapse
Affiliation(s)
- Ryuichi Shirasaki
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
46
|
Tamme R, Wells S, Conran JG, Lardelli M. The identity and distribution of neural cells expressing the mesodermal determinant spadetail. BMC DEVELOPMENTAL BIOLOGY 2002; 2:9. [PMID: 12126484 PMCID: PMC119859 DOI: 10.1186/1471-213x-2-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2002] [Accepted: 07/18/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND The spadetail (spt) gene of zebrafish is expressed in presomitic mesoderm and in neural cells previously suggested to be Rohon-Beard neurons. The mechanism(s) generating the apparently irregular rostrocaudal distribution of spt-expressing cells in the developing CNS is unknown. RESULTS spt-expressing neural cells co-express huC, a marker of neurons. These cells also co-express the genes islet-1, -2 and -3 but not valentino. The islet-1 gene expression, irregular distribution and dorsolateral position of spt-expressing cells in the developing CNS are characteristic of dorsal longitudinal ascending (DoLA) interneurons. Shortly after their birth, these neurons extend processes rostrally into which spt mRNA is transported. At 24 hours post fertilisation(hpf), spt-expressing neurons occur most frequently at rostral levels caudal of the 5th-formed somite pair. There is no apparent bias in the number of spt-expressing cells on the left or right sides of embryos. Extended staining for spt-transcription reveals expression in the dorsocaudal cells of somites at the same dorsoventral level as the spt-expressing neurons. There is frequent juxtaposition of spt-expression in newly formed somites and in neurons. This suggests that both types of spt-expressing cell respond to a common positional cue or that neurons expressing spt are patterned irregularly by flanking somitic mesoderm. CONCLUSIONS spt-expressing cells in the developing CNS appear to be DoLA interneurons. The irregular distribution of these cells along the rostrocaudal axis of the spinal cord may be due to "inefficient" patterning of neural spt expression by a signal(s) from flanking, regularly distributed somites also expressing spt.
Collapse
Affiliation(s)
- Richard Tamme
- Department of Molecular Biosciences, The University of Adelaide, Adelaide, SA 5005, Australia
- The Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Simon Wells
- Department of Molecular Biosciences, The University of Adelaide, Adelaide, SA 5005, Australia
- The Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, SA 5005, Australia
| | - John G Conran
- Department of Environmental Biology, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Michael Lardelli
- Department of Molecular Biosciences, The University of Adelaide, Adelaide, SA 5005, Australia
- The Special Research Centre for the Molecular Genetics of Development, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
47
|
Amacher SL, Draper BW, Summers BR, Kimmel CB. The zebrafish T-box genesno tailandspadetailare required for development of trunk and tail mesoderm and medial floor plate. Development 2002; 129:3311-23. [PMID: 12091302 DOI: 10.1242/dev.129.14.3311] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
T-box genes encode transcriptional regulators that control many aspects of embryonic development. Here, we demonstrate that the mesodermally expressed zebrafish spadetail (spt)/VegT and no tail (ntl)/Brachyury T-box genes are semi-redundantly and cell-autonomously required for formation of all trunk and tail mesoderm. Despite the lack of posterior mesoderm in spt–;ntl– embryos, dorsal-ventral neural tube patterning is relatively normal, with the notable exception that posterior medial floor plate is completely absent. This contrasts sharply with observations in single mutants, as mutations singly in ntl or spt enhance posterior medial floor plate development. We find that ntl function is required to repress medial floor plate and promote notochord fate in cells of the wild-type notochord domain and that spt and ntl together are required non cell-autonomously for medial floor plate formation, suggesting that an inducing signal present in wild-type mesoderm is lacking in spt–;ntl– embryos.
Collapse
Affiliation(s)
- Sharon L Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
| | | | | | | |
Collapse
|
48
|
Wang X, Korzh V, Gong Z. The functional specificity of NeuroD is defined by a single amino acid residue (N11) in the basic domain. FEBS Lett 2002; 520:139-44. [PMID: 12044886 DOI: 10.1016/s0014-5793(02)02809-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In zebrafish, the basic helix-loop-helix (bHLH) gene neuroD specifies distinct neurons in the spinal cord. A preliminary experiment indicated that a related bHLH gene, ndr1a, normally expressed only in the olfactory organ in late embryos, also functions as neuroD to induce ectopic formation of spinal cord neurons in early embryos after introduction of its mRNA into early embryos. To define the functional specificity of these bHLH proteins, several mutant forms with selected point mutations in the basic domain were constructed and tested for inducing sensory neurons in the spinal cord. Our data indicate that the functional specificity of NeuroD to define sensory neurons is mainly due to a single residue (asparagine 11) in its basic domain.
Collapse
Affiliation(s)
- Xukun Wang
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | |
Collapse
|
49
|
Cornell RA, Eisen JS. Delta/Notch signaling promotes formation of zebrafish neural crest by repressing Neurogenin 1 function. Development 2002; 129:2639-48. [PMID: 12015292 DOI: 10.1242/dev.129.11.2639] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In zebrafish, cells at the lateral edge of the neural plate become Rohon-Beard primary sensory neurons or neural crest. Delta/Notch signaling is required for neural crest formation. ngn1 is expressed in primary neurons; inhibiting Ngn1 activity prevents Rohon-Beard cell formation but not formation of other primary neurons. Reducing Ngn1 activity in embryos lacking Delta/Notch signaling restores neural crest formation, indicating Delta/Notch signaling inhibits neurogenesis without actively promoting neural crest. Ngn1 activity is also required for later development of dorsal root ganglion sensory neurons; however, Rohon-Beard neurons and dorsal root ganglion neurons are not necessarily derived from the same precursor cell. We propose that temporally distinct episodes of Ngn1 activity in the same precursor population specify these two different types of sensory neurons.
Collapse
Affiliation(s)
- Robert A Cornell
- Institute of Neuroscience, 1254 University of Oregon, Eugene 97403, USA.
| | | |
Collapse
|
50
|
Andermann P, Weinberg ES. Expression of zTlxA, a Hox11-like gene, in early differentiating embryonic neurons and cranial sensory ganglia of the zebrafish embryo. Dev Dyn 2001; 222:595-610. [PMID: 11748829 DOI: 10.1002/dvdy.1239] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have isolated a cDNA encoding a member of the Tlx/Hox11 family of homeodomain factors from the zebrafish, most closely related to the vertebrate Tlx-1/Hox11 and Tlx-3/Hox11L2 proteins. The gene is expressed in a set of early differentiating neurons that project to a common tract, the lateral longitudinal fascicle. We show that the gene is specifically expressed in spinal cord Rohon Beard neurons, in nucleus of the posterior commissure neurons of the midbrain, in a set of hindbrain neurons that include RoL3 reticulospinal interneurons, and in the trigeminal, statoacoustic, anterior lateral line, glossopharyngeal, and vagal cranial sensory ganglia. Timing of expression of the gene in these neurons correlates with the phase of axonal outgrowth and target innervation. Expression of the gene is also observed in several non-neural tissues, including the pharyngeal arches, budding gill filaments, outgrowing semicircular protrusions in the otic vesicle, and in the pectoral fin buds.
Collapse
Affiliation(s)
- P Andermann
- Department of Biology, The University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|