1
|
Lin WH, Tzeng CY, Kao FC, Tsao CW, Li N, Wu CC, Lee SH, Huang KF, Hu WW, Chen SL. The proliferation and differentiation of skeletal muscle stem cells are enhanced in a bioreactor. Biotechnol Bioeng 2024. [PMID: 39369338 DOI: 10.1002/bit.28857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024]
Abstract
Skeletal muscle (SKM) is the largest organ in mammalian body and it can repair damages by using the residential myogenic stem cells (MuSC), but this repairing capacity reduces with age and in some genetic muscular dystrophy. Under these circumstances, artificial amplification of autologous MuSC in vitro might be necessary to repair the damaged SKM. The amplification of MuSC is highly dependent on myogenic signals, such as sonic hedgehog (Shh), Wnt3a, and fibroblast growth factors, so formulating an optimum myogenic kit composed of specific myogenic signals might increase the proliferation and differentiation of MuSC efficiently. In this study, various myogenic signals have been tested on C2C12 myoblasts and primary MuSC, and a myogenic kit consists of insulin, lithium chloride, T3, and retinoic acid has been formulated, and we found it significantly increased the fusion index and MHC expression level of both C2C12 and MuSC myotubes. A novel bioreactor providing cyclic stretching (CS) and electrical stimulation (ES) has been fabricated to enhance the myogenic differentiation of both C2C12 and MuSC. We further found that coating the bioreactor substratum with collagen gave the best effect on proliferation and differentiation of MuSC. Furthermore, combining the collagen coating and physical stimuli (CS + ES) in the bioreactor can generate more proliferative primary MuSC cells. Our results have demonstrated that the combination of myogenic kit and bioreactor can provide environment for efficient MuSC proliferation and differentiation. These MuSC and mature myotubes amplified in the bioreactor might be useful for clinical grafting into damaged SKM in the future.
Collapse
Affiliation(s)
- Wei-Hsuan Lin
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chung-Yuh Tzeng
- Department of Orthopedics, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing, and Management, Miaoli, Taiwan
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Fan-Che Kao
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Sheng-Huei Lee
- Department of Electric Engineering, Chien Hsin University of Science and Technology, Taoyuan, Taiwan
| | - Kai-Fan Huang
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| | - Wei-Wen Hu
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, Taiwan
| | - Shen-Liang Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Chen SL, Wu CC, Li N, Weng TH. Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil 2024; 45:21-39. [PMID: 38206489 DOI: 10.1007/s10974-023-09663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024]
Abstract
The transcriptional regulation of skeletal muscle (SKM) development (myogenesis) has been documented for over 3 decades and served as a paradigm for tissue-specific cell type determination and differentiation. Myogenic stem cells (MuSC) in embryos and adult SKM are regulated by the transcription factors Pax3 and Pax7 for their stem cell characteristics, while their lineage determination and terminal differentiation are both dictated by the myogenic regulatory factors (MRF) that comprise Mrf4, Myf5, Myogenin, and MyoD. The myocyte enhancer factor Mef2c is activated by MRF during terminal differentiation and collaborates with them to promote myoblast fusion and differentiation. Recent studies have found critical regulation of these myogenic transcription factors at mRNA level, including subcellular localization, stability, and translational regulation. Therefore, the regulation of Pax3/7, MRFs and Mef2c mRNAs by RNA-binding factors and non-coding RNAs (ncRNA), including microRNAs and long non-coding RNAs (lncRNA), will be the focus of this review and the impact of this regulation on myogenesis will be further addressed. Interestingly, the stem cell characteristics of MuSC has been found to be critically regulated by ncRNAs, implying the involvement of ncRNAs in SKM homeostasis and regeneration. Current studies have further identified that some ncRNAs are implicated in the etiology of some SKM diseases and can serve as valuable tools/indicators for prediction of prognosis. The roles of ncRNAs in the MuSC biology and SKM disease etiology will also be discussed in this review.
Collapse
Affiliation(s)
- Shen-Liang Chen
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan.
| | - Chuan-Che Wu
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Ning Li
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| | - Tzu-Han Weng
- Department of Life Sciences, National Central University, 300 Jhongda Rd, Jhongli, 32001, Taiwan
| |
Collapse
|
3
|
Agarwal NK, Kim CH, Kunkalla K, Vaghefi A, Sanchez S, Manuel S, Bilbao D, Vega F, Landgraf R. Smoothened (SMO) regulates insulin-like growth factor 1 receptor (IGF1R) levels and protein kinase B (AKT) localization and signaling. J Transl Med 2022; 102:401-410. [PMID: 34893758 PMCID: PMC8969180 DOI: 10.1038/s41374-021-00702-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
The oncoprotein Smoothened (SMO), a Frizzled-class-G-protein-coupled receptor, is the central transducer of hedgehog (Hh) signaling. While canonical SMO signaling is best understood in the context of cilia, evidence suggests that SMO has other functions in cancer biology that are unrelated to canonical Hh signaling. Herein, we provided evidence that elevated levels of human SMO show a strong correlation with elevated levels of insulin-like growth factor 1 receptor (IGF1R) and reduced survival in diffuse large B-cell lymphoma (DLBCL). As an integral component of raft microdomains, SMO plays a fundamental role in maintaining the levels of IGF1R in lymphoma and breast cancer cells as well IGF1R-associated activation of protein kinase B (AKT). Silencing of SMO increases lysosomal degradation and favors a localization of IGF1R to late endosomal compartments instead of early endosomal compartments from which much of the receptor would normally recycle. In addition, loss of SMO interferes with the lipid raft localization and retention of the remaining IGF1R and AKT, thereby disrupting the primary signaling context for IGF1R/AKT. This activity of SMO is independent of its canonical signaling and represents a novel and clinically relevant contribution to signaling by the highly oncogenic IGF1R/AKT signaling axis.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX
| | - Chae-Hwa Kim
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Kranthi Kunkalla
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Amineh Vaghefi
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Sandra Sanchez
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Samantha Manuel
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Francisco Vega
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA.
| | - Ralf Landgraf
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Park J, Lee J, Song KD, Kim SJ, Kim DC, Lee SC, Son YJ, Choi HW, Shim K. Growth factors improve the proliferation of Jeju black pig muscle cells by regulating myogenic differentiation 1 and growth-related genes. Anim Biosci 2021; 34:1392-1402. [PMID: 33561926 PMCID: PMC8255883 DOI: 10.5713/ab.20.0585] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/12/2020] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The growth rate of pigs is related to differentiation and proliferation of muscle cells, which are regulated by growth factors and expression of growth-related genes. Thus, the objective of this study was to establish optimal culture conditions for Jeju black pig (JBP) muscle cells and determine the relationship of various factors involved in muscle growth with the proliferation of JBP muscle cells. METHODS Muscles were taken from the femur skeletal muscle of JBP embryos. After isolation of the muscle cells, cells were cultured in a 6-well plate under four different culture conditions to optimize culture conditions for JBP muscle cells. To analyze proliferation rate of JBP muscle cells, these muscle cells were seeded into 6-well plates at a density of 1.5×105 cells per well and cultured for 3 days. Western blot and quantitative real-time polymerase chain reaction were applied to verify the myogenic differentiation 1 (MyoD) expression and growth-related gene expression in JBP muscle cells, respectively. RESULTS We established a muscle cell line from JBP embryos and optimized its culture conditions. These muscle cells were positive for MyoD, but not for paired box 7. The proliferation rate of these muscle cells was significantly higher in a culture medium containing bFGF and epidermal growth factor + basic fibroblast growth factor (EGF+bFGF) than that without a growth factor or containing EGF alone. Treatment with EGF and bFGF significantly induced the expression of MyoD protein, an important transcription factor in muscle cells. Moreover, we checked the changes of expression of growth-related genes in JBP muscle cells by presence or absence of growth factors. Expression level of collagen type XXI alpha 1 gene was changed only when EGF and bFGF were added together to culture media for JBP muscle cells. CONCLUSION Concurrent use of EGF and bFGF increased the expression of MyoD protein, thus regulating the proliferation of JBP muscle cells and the expression of growth-related genes.
Collapse
Affiliation(s)
- Jinryong Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Jeongeun Lee
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea
| | - Ki-Duk Song
- The Animal Molecular Genetics and Breeding Center, Jeonbuk National University, Jeonju 54896, Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| | - Sung-Jo Kim
- Division of Cosmetics and Biotechnology, Hoseo University, Asan 31499, Korea
| | - Dae Cheol Kim
- Livestock Promotion Institute, Jeju Special Self-Governing Province, Jeju 63122, Korea
| | | | | | - Hyun Woo Choi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea.,Department of Animal Science, Jeonbuk National University, Jeonju 54896, Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896, Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
5
|
Chen Y, Renfree MB. Hormonal and Molecular Regulation of Phallus Differentiation in a Marsupial Tammar Wallaby. Genes (Basel) 2020; 11:genes11010106. [PMID: 31963388 PMCID: PMC7017150 DOI: 10.3390/genes11010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Congenital anomalies in phalluses caused by endocrine disruptors have gained a great deal of attention due to its annual increasing rate in males. However, the endocrine-driven molecular regulatory mechanism of abnormal phallus development is complex and remains largely unknown. Here, we review the direct effect of androgen and oestrogen on molecular regulation in phalluses using the marsupial tammar wallaby, whose phallus differentiation occurs after birth. We summarize and discuss the molecular mechanisms underlying phallus differentiation mediated by sonic hedgehog (SHH) at day 50 pp and phallus elongation mediated by insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3), as well as multiple phallus-regulating genes expressed after day 50 pp. We also identify hormone-responsive long non-coding RNAs (lncRNAs) that are co-expressed with their neighboring coding genes. We show that the activation of SHH and IGF1, mediated by balanced androgen receptor (AR) and estrogen receptor 1 (ESR1) signalling, initiates a complex regulatory network in males to constrain the timing of phallus differentiation and to activate the downstream genes that maintain urethral closure and phallus elongation at later stages.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32603, USA
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| |
Collapse
|
6
|
Chi B, Fan X, Li Z, Liu G, Zhang G, Xu H, Li Z, Lian Q, Xing L, Tian F. Identification of Gli1-interacting proteins during simvastatin-stimulated osteogenic differentiation of bone marrow mesenchymal stem cells. J Cell Biochem 2019; 120:18979-18994. [PMID: 31245876 DOI: 10.1002/jcb.29221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/31/2019] [Accepted: 05/31/2019] [Indexed: 01/20/2023]
Abstract
Simvastatin has been shown to promote osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Our study aimed to illuminate the underlying mechanism, with a specific focus on the role of Hedgehog signaling in this process. BMSCs cultured with or without 10-7 mol/L simvastatin were subjected to evaluation of osteogenic differentiation capacity. Osteogenic markers such as type 1 collagen (COL1) and osteocalcin (OCN), as well as key molecules of Hedgehog signaling molecules, were examined by Western blot and real-time polymerase chain reaction (PCR). Co-immunoprecipitation and mass spectrometry assays were applied to screen for Gli1-interacting proteins. Cyclopamine (Cpn) was used as a Hedgehog signaling inhibitor. Our results indicated that simvastatin increased alkaline phosphatase (ALP) activity; mineralization of extracellular matrix; mRNA expression of ALP, COL1, and OCN; and expression and nuclear translocation of Gli1. Contrasting effects were observed in Cpn-exposed groups, but were partially rescued by the simvastatin treatment. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that Gli1-interacting proteins were primarily associated with mitogen-activated protein kinase (MAPK) (P = 7.04E-04 ), hippo, insulin, and glucagon signaling. Further, hub genes identified by protein-protein interaction network analysis included Gli1-interacting proteins such as Ppp2r1a, Rac1, Etf1, and XPO1/CRM1. In summary, the current study showed that the mechanism by which simvastatin stimulates osteogenic differentiation of BMSCs involves activation of Hedgehog signaling, as indicated by interactions with Gli1 and, most notably, the MAPK signaling pathway.
Collapse
Affiliation(s)
- Bojing Chi
- Medical Research Center, North China University of Science and Technology, Tangshan, China.,Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Xinhao Fan
- Department of Stomatology, Kailuan General Hospital, Tangshan, China
| | - Zhengxiao Li
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangyuan Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Guobin Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Hong Xu
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Zhiguo Li
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Qiangqiang Lian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| | - Lei Xing
- Department of Geriatrics, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
7
|
Kohama I, Kosaka N, Chikuda H, Ochiya T. An Insight into the Roles of MicroRNAs and Exosomes in Sarcoma. Cancers (Basel) 2019; 11:E428. [PMID: 30917542 PMCID: PMC6468388 DOI: 10.3390/cancers11030428] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are rare solid tumors, but at least one-third of patients with sarcoma die from tumor-related disease. MicroRNA (miRNA) is a noncoding RNA that regulates gene expression in all cells and plays a key role in the progression of cancers. Recently, it was identified that miRNAs are transferred between cells by enclosure in extracellular vesicles, especially exosomes. The exosome is a 100 nm-sized membraned vesicle that is secreted by many kinds of cells and contains miRNA, mRNA, DNA, and proteins. Cancer uses exosomes to influence not only the tumor microenvironment but also the distant organ to create a premetastatic niche. The progression of sarcoma is also regulated by miRNAs and exosomes. These miRNAs and exosomes can be targeted as biomarkers and treatments. In this review, we summarize the studies of miRNA and exosomes in sarcoma.
Collapse
Affiliation(s)
- Isaku Kohama
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Nobuyoshi Kosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
- Department of Translational Research for Extracellular Vesicles, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| | - Hirotaka Chikuda
- Department of Orthopaedic Surgery, Gunma University Graduate School of Medicine, 3-39-22 Showamachi, Maebashi, Gunma 371-8511, Japan.
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
| |
Collapse
|
8
|
FoxO1: a novel insight into its molecular mechanisms in the regulation of skeletal muscle differentiation and fiber type specification. Oncotarget 2018; 8:10662-10674. [PMID: 27793012 PMCID: PMC5354690 DOI: 10.18632/oncotarget.12891] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/19/2016] [Indexed: 02/03/2023] Open
Abstract
FoxO1, a member of the forkhead transcription factor forkhead box protein O (FoxO) family, is predominantly expressed in most muscle types. FoxO1 is a key regulator of muscle growth, metabolism, cell proliferation and differentiation. In the past two decades, many researches have indicated that FoxO1 is a negative regulator of skeletal muscle differentiation while contrasting opinions consider that FoxO1 is crucial for myoblast fusion. FoxO1 is expressed much higher in fast twitch fiber enriched muscles than in slow muscles and is also closely related to muscle fiber type specification. In this review, we summarize the molecular mechanisms of FoxO1 in the regulation of skeletal muscle differentiation and fiber type specification.
Collapse
|
9
|
Moon JS, Ko HM, Park JI, Kim JH, Kim SH, Kim MS. Inhibition of human mesenchymal stem cell proliferation via Wnt signaling activation. J Cell Biochem 2017; 119:1670-1678. [PMID: 28776719 DOI: 10.1002/jcb.26326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
Human mesenchymal stem cells (hMSCs), characterized by rapid in vitro expandability and multi-differentiation potential, have been widely used in the clinical field of tissue engineering. Recent studies have shown that various signaling networks are involved in the growth and differentiation of hMSCs. Although Wnts and their downstream signaling components have been implicated in the regulation of hMSCs, the role of Wnt signaling in hMSC self-renewal is still controversial. Here, it was observed that activation of endogenous canonical Wnt signaling with LiCl, which decreased β-catenin phosphorylation, leads to a decrease in hMSC proliferation. The fact that this growth arrest is not linked to apoptosis was verified by annexin V-FITC/propidium iodide assay. It was associated with sealing off of the cells in the G1 phase of the cell cycle accompanied by changes in expression of cell cycle-associated genes such as cyclin A and D. In addition, activation of Wnt signaling during hMSC proliferation seemed to reduce their clonogenic potential. On the contrary, Wnt signaling activation during hMSC proliferation had little effect on the osteogenic differentiation capability of cells. These findings show that canonical Wnt signaling is a critical regulator of hMSC proliferation and clonogenicity.
Collapse
Affiliation(s)
| | - Hyun-Mi Ko
- Department of Microbiology, College of Medicine, Seonam University, Namwon, Korea
| | - Ji-Il Park
- Department of Dental Hygiene, Gwangju Health College, Gwangju, Korea
| | - Jae-Hyung Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sun-Hun Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Min-Seok Kim
- Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
10
|
Parent VA, Tremblay JP, Garnier A. Rational design of a serum-free culture medium for the growth of human myoblasts destined to cell therapy. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jacques P. Tremblay
- Département de Médecine Moléculaire, Faculté de Médecine, and Centre de Recherche du CHU de Québec; 2705 Laurier blv., room P09300; Québec, QC G1V 4G2 Canada
| | - Alain Garnier
- Département de génie chimique, Faculté des sciences et de génie; Université Laval, 1065, avenue de la médecine; Québec, QC G1V 0A6 Canada
| |
Collapse
|
11
|
Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, Khademhosseini A, Shi S, Moshaverinia A. Muscle Tissue Engineering Using Gingival Mesenchymal Stem Cells Encapsulated in Alginate Hydrogels Containing Multiple Growth Factors. Ann Biomed Eng 2016; 44:1908-20. [PMID: 27009085 DOI: 10.1007/s10439-016-1594-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 03/14/2016] [Indexed: 12/15/2022]
Abstract
Repair and regeneration of muscle tissue following traumatic injuries or muscle diseases often presents a challenging clinical situation. If a significant amount of tissue is lost the native regenerative potential of skeletal muscle will not be able to grow to fill the defect site completely. Dental-derived mesenchymal stem cells (MSCs) in combination with appropriate scaffold material, present an advantageous alternative therapeutic option for muscle tissue engineering in comparison to current treatment modalities available. To date, there has been no report on application of gingival mesenchymal stem cells (GMSCs) in three-dimensional scaffolds for muscle tissue engineering. The objectives of the current study were to develop an injectable 3D RGD-coupled alginate scaffold with multiple growth factor delivery capacity for encapsulating GMSCs, and to evaluate the capacity of encapsulated GMSCs to differentiate into myogenic tissue in vitro and in vivo where encapsulated GMSCs were transplanted subcutaneously into immunocompromised mice. The results demonstrate that after 4 weeks of differentiation in vitro, GMSCs as well as the positive control human bone marrow mesenchymal stem cells (hBMMSCs) exhibited muscle cell-like morphology with high levels of mRNA expression for gene markers related to muscle regeneration (MyoD, Myf5, and MyoG) via qPCR measurement. Our quantitative PCR analyzes revealed that the stiffness of the RGD-coupled alginate regulates the myogenic differentiation of encapsulated GMSCs. Histological and immunohistochemical/fluorescence staining for protein markers specific for myogenic tissue confirmed muscle regeneration in subcutaneous transplantation in our in vivo animal model. GMSCs showed significantly greater capacity for myogenic regeneration in comparison to hBMMSCs (p < 0.05). Altogether, our findings confirmed that GMSCs encapsulated in RGD-modified alginate hydrogel with multiple growth factor delivery capacity is a promising candidate for muscle tissue engineering.
Collapse
Affiliation(s)
- Sahar Ansari
- Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chider Chen
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xingtian Xu
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA.,Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Homayoun H Zadeh
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Benjamin M Wu
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Ali Khademhosseini
- Biomaterials Innovation Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Songtao Shi
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prothodontics, School of Dentistry, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Hedgehog signaling activates a positive feedback mechanism involving insulin-like growth factors to induce osteoblast differentiation. Proc Natl Acad Sci U S A 2015; 112:4678-83. [PMID: 25825734 DOI: 10.1073/pnas.1502301112] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Hedgehog (Hh) signaling is essential for osteoblast differentiation in the endochondral skeleton during embryogenesis. However, the molecular mechanism underlying the osteoblastogenic role of Hh is not completely understood. Here, we report that Hh markedly induces the expression of insulin-like growth factor 2 (Igf2) that activates the mTORC2-Akt signaling cascade during osteoblast differentiation. Igf2-Akt signaling, in turn, stabilizes full-length Gli2 through Serine 230, thus enhancing the output of transcriptional activation by Hh. Importantly, genetic deletion of the Igf signaling receptor Igf1r specifically in Hh-responding cells diminishes bone formation in the mouse embryo. Thus, Hh engages Igf signaling in a positive feedback mechanism to activate the osteogenic program.
Collapse
|
13
|
Gurevich D, Siegel A, Currie PD. Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling. Results Probl Cell Differ 2015; 56:49-76. [PMID: 25344666 DOI: 10.1007/978-3-662-44608-9_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Current evidence indicates that post-embryonic muscle growth and regeneration in amniotes is mediated almost entirely by stem cells derived from muscle progenitor cells (MPCs), known as satellite cells. Exhaustion and impairment of satellite cell activity is involved in the severe muscle loss associated with degenerative muscle diseases such as Muscular Dystrophies and is the main cause of age-associated muscle wasting. Understanding the molecular and cellular basis of satellite cell function in muscle generation and regeneration (myogenesis) is critical to the broader goal of developing treatments that may ameliorate such conditions. Considerable knowledge exists regarding the embryonic stages of amniote myogenesis. Much less is known about how post-embryonic amniote myogenesis proceeds, how adult myogenesis relates to embryonic myogenesis on a cellular or genetic level. Of the studies focusing on post-embryonic amniote myogenesis, most are post-mortem and in vitro analyses, precluding the understanding of cellular behaviours and genetic mechanisms in an undisturbed in vivo setting. Zebrafish are optically clear throughout much of their post-embryonic development, facilitating their use in live imaging of cellular processes. Zebrafish also possess a compartment of MPCs, which appear similar to satellite cells and persist throughout the post-embryonic development of the fish, permitting their use in examining the contribution of these cells to muscle tissue growth and regeneration.
Collapse
Affiliation(s)
- David Gurevich
- Australian Regenerative Medicine Institute, Monash University, Level 1, Building 75, Wellington Road, Clayton, VIC, 3800, Australia
| | | | | |
Collapse
|
14
|
Wu YJ, Fang YH, Chi HC, Chang LC, Chung SY, Huang WC, Wang XW, Lee KW, Chen SL. Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One 2014; 9:e88450. [PMID: 24551104 PMCID: PMC3923792 DOI: 10.1371/journal.pone.0088450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Most recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT). The nuclear shuttling of FoxO1 in PMB could be prevented by leptomycin B and we further found that cytoplasmic accumulation of FoxO1 in myotubes was caused by the blockade of its nuclear import. Although over-expression of wildtype FoxO1 in C2C12 myoblasts significantly blocked their myogenic differentiation under serum withdrawal condition, application of insulin and LiCl, an activator of Wnt signaling pathway, to these cells successfully rescued their myogenic differentiation and generated myotubes with larger diameters. Interestingly, insulin treatment significantly reduced FoxO1 level and also delayed nuclear re-accumulation of FoxO1 triggered by mitogen deprivation. We further found that FoxO1 directly repressed the promoter activity of myogenic genes and this repression can be relieved by insulin and LiCl treatment. These results suggest that FoxO1 inhibits myogenesis in serum withdrawal condition but turns into a hypertrophy potentiator when other myogenic signals, such as Wnt and insulin, are available.
Collapse
Affiliation(s)
- Yi Ju Wu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Yen Hsin Fang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Hsiang Cheng Chi
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li Chiung Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shih Ying Chung
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Wei Chieh Huang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Xiao Wen Wang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Kuan Wei Lee
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
- * E-mail:
| |
Collapse
|
15
|
Li Y, Drnevich J, Akraiko T, Band M, Li D, Wang F, Matoba R, Tanaka TS. Gene expression profiling reveals the heterogeneous transcriptional activity of Oct3/4 and its possible interaction with Gli2 in mouse embryonic stem cells. Genomics 2013; 102:456-67. [PMID: 24121003 DOI: 10.1016/j.ygeno.2013.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 01/19/2023]
Abstract
We examined the transcriptional activity of Oct3/4 (Pou5f1) in mouse embryonic stem cells (mESCs) maintained under standard culture conditions to gain a better understanding of self-renewal in mESCs. First, we built an expression vector in which the Oct3/4 promoter drives the monocistronic transcription of Venus and a puromycin-resistant gene via the foot-and-mouth disease virus self-cleaving peptide T2A. Then, a genetically-engineered mESC line with the stable integration of this vector was isolated and cultured in the presence or absence of puromycin. The cultures were subsequently subjected to Illumina expression microarray analysis. We identified approximately 4600 probes with statistically significant differential expression. The genes involved in nucleic acid synthesis were overrepresented in the probe set associated with mESCs maintained in the presence of puromycin. In contrast, the genes involved in cell differentiation were overrepresented in the probe set associated with mESCs maintained in the absence of puromycin. Therefore, it is suggested with these data that the transcriptional activity of Oct3/4 fluctuates in mESCs and that Oct3/4 plays an essential role in sustaining the basal transcriptional activities required for cell duplication in populations with equal differentiation potential. Heterogeneity in the transcriptional activity of Oct3/4 was dynamic. Interestingly, we found that genes involved in the hedgehog signaling pathway showed unique expression profiles in mESCs and validated this observation by RT-PCR analysis. The expression of Gli2, Ptch1 and Smo was consistently detected in other types of pluripotent stem cells examined in this study. Furthermore, the Gli2 protein was heterogeneously detected in mESC nuclei by immunofluorescence microscopy and this result correlated with the detection of the Oct3/4 protein. Finally, forced activation of Gli2 in mESCs increased their proliferation rate. Collectively, it is suggested with these results that Gli2 may play a novel role in the self-renewal of pluripotent stem cells.
Collapse
Affiliation(s)
- Yanzhen Li
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jenny Drnevich
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tatiana Akraiko
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Mark Band
- The W.M. Keck Center for Comparative and Functional Genomics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dong Li
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Fei Wang
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryo Matoba
- DNA Chip Research Inc., Yokohama, Kanagawa 230-0045, Japan
| | - Tetsuya S Tanaka
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
16
|
Qin L, Chen Y, Liu X, Ye S, Yu K, Huang Z, Yu J, Zhou X, Chen H, Mo D. Integrative analysis of porcine microRNAome during skeletal muscle development. PLoS One 2013; 8:e72418. [PMID: 24039761 PMCID: PMC3770649 DOI: 10.1371/journal.pone.0072418] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023] Open
Abstract
Pig is an important agricultural animal for meat production and provides a valuable model for many human diseases. Functional studies have demonstrated that microRNAs (miRNAs) play critical roles in almost all aspects of skeletal muscle development and disease pathogenesis. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for porcine microRNAome (miRNAome) during 10 skeletal muscle developmental stages including 35, 49, 63, 77, 91 dpc (days post coitum) and 2, 28, 90, 120, 180 dpn (days postnatal) using Solexa sequencing technology. Our results extend the repertoire of pig miRNAome to 247 known miRNAs processed from 210 pre-miRNAs and 297 candidate novel miRNAs through comparison with known miRNAs in the miRBase. Expression analysis of the 15 most abundant miRNAs in every library indicated that functional miRNAome may be smaller and tend to be highly expressed. A series of muscle-related miRNAs summarized in our study present different patterns between myofibers formation phase and muscle maturation phase, providing valuable reference for investigation of functional miRNAs during skeletal muscle development. Analysis of temporal profiles of miRNA expression identifies 18 novel candidate myogenic miRNAs in pig, which might provide new insight into regulation mechanism mediated by miRNAs underlying muscle development.
Collapse
Affiliation(s)
- Lijun Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Sanxing Ye
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Kaifan Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Zheng Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Jingwei Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Xingyu Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Hu Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, P. R. China
| |
Collapse
|
17
|
Rao N, Evans S, Stewart D, Spencer KH, Sheikh F, Hui EE, Christman KL. Fibroblasts influence muscle progenitor differentiation and alignment in contact independent and dependent manners in organized co-culture devices. Biomed Microdevices 2013; 15:161-9. [PMID: 22983793 PMCID: PMC3537877 DOI: 10.1007/s10544-012-9709-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Myoblasts are precursor muscle cells that lie nascent to mature skeletal muscle. Once muscle is damaged, these cells migrate, fuse, and regenerate the muscle tissue. It is known that skeletal muscle can partially regenerate in vivo after muscle tissue damage. However, this regeneration does not always occur, especially in more severe injuries. Cellular therapy using tissue-engineering approaches has been shown to improve organ repair and function. To exploit potential benefits of using cell therapy as an avenue for skeletal muscle repair, it is important to understand the cellular dynamics underlying skeletal myocyte formation and growth. Cardiac fibroblasts have been shown to have a major influence on cardiomyocyte function, repair, and overall spatial distribution. However, little is known regarding fibroblasts' role on skeletal myocyte function. In this study, we utilized a reconfigurable co-culture device to understand the contact and paracrine effects of fibroblasts on skeletal myocyte alignment and differentiation using murine myoblast and fibroblast cell lines. We demonstrate that myotube alignment is increased by direct contact with fibroblasts, while myotube differentiation is reduced both in the gap and contact configurations with fibroblasts after 6 days of co-culture. Furthermore, neutralizing antibodies to FGF-2 can block these effects of fibroblasts on myotube differentiation and alignment. Finally, bi-directional signaling is critical to the observed myoblast-fibroblast interactions, since conditioned media could not reproduce the same effects observed in the gap configuration. These findings could have direct implications on cell therapies for repairing skeletal muscle, which have only utilized skeletal myoblasts or stem cell populations alone.
Collapse
Affiliation(s)
- Nikhil Rao
- Department of Bioengineering, University of California, San Diego. 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Madhala-Levy D, Williams VC, Hughes SM, Reshef R, Halevy O. Cooperation between Shh and IGF-I in promoting myogenic proliferation and differentiation via the MAPK/ERK and PI3K/Akt pathways requires Smo activity. J Cell Physiol 2012; 227:1455-64. [PMID: 21618536 DOI: 10.1002/jcp.22861] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sonic Hedgehog (Shh) has been shown to promote adult myoblast proliferation and differentiation and affect Akt phosphorylation via its effector Smoothened (Smo). Here, the relationship between Shh and insulin-like growth factor I (IGF-I) was examined with regard to myogenic differentiation via signaling pathways which regulate this process. Each factor enhanced Akt and MAPK/ERK (p42/44) phosphorylation and myogenic factor expression levels in a dose-responsive manner, while combinations of Shh and IGF-I showed additive effects. Blockage of the IGF-I effects by neutralizing antibody partially reduced Shh's effects on signaling pathways, suggesting that IGF-I enhances, but is not essential for Shh effects. Addition of cyclopamine, a Smo inhibitor, reduced Shh- and IGF-I-induced Akt phosphorylation in a similar manner, implying that Shh affects gain of the IGF-I signaling pathway. This implication was also examined via a genetic approach. In cultures derived from Smo(mut) (MCre;Smo(flox/flox)) mice lacking Smo expression specifically in hindlimb muscles, IGF-I-induced Akt and p42/44 phosphorylation was significantly reduced compared to IGF-I's effect on Smo(cont) cells. Moreover, remarkable inhibition of the stimulatory effect of IGF-I on myogenic differentiation was observed in Smo(mut) cultures, implying that intact Smo is required for IGF-I effects in myoblasts. Immunoprecipitation assays revealed that tyrosine-phosphorylated proteins, including the regulatory unit of PI3K (p85), are recruited to Smo in response to Shh. Moreover, IGF-IR was found to associate with Smo in response to Shh and to IGF-I, suggesting that Shh and IGF-I are already integrated at the receptor level, a mechanism by which their signaling pathways interact in augmenting their effects on adult myoblasts.
Collapse
Affiliation(s)
- D Madhala-Levy
- Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | | | |
Collapse
|
19
|
Myhre JL, Pilgrim DB. Cellular Differentiation in Primary Cell Cultures from Single Zebrafish Embryos as a Model for the Study of Myogenesis. Zebrafish 2010; 7:255-66. [DOI: 10.1089/zeb.2010.0665] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. Layne Myhre
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Zisa D, Shabbir A, Mastri M, Suzuki G, Lee T. Intramuscular VEGF repairs the failing heart: role of host-derived growth factors and mobilization of progenitor cells. Am J Physiol Regul Integr Comp Physiol 2009; 297:R1503-15. [PMID: 19759338 DOI: 10.1152/ajpregu.00227.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle produces a myriad of mitogenic factors possessing cardiovascular regulatory effects that can be explored for cardiac repair. Given the reported findings that VEGF may modulate muscle regeneration, we investigated the therapeutic effects of chronic injections of low doses of human recombinant VEGF-A(165) (0.1-1 microg/kg) into the dystrophic hamstring muscle in a hereditary hamster model of heart failure and muscular dystrophy. In vitro, VEGF stimulated proliferation, migration, and growth factor production of cultured C2C12 skeletal myocytes. VEGF also induced production of HGF, IGF2, and VEGF by skeletal muscle. Analysis of skeletal muscle revealed an increase in myocyte nuclear [531 +/- 12 VEGF 1 microg/kg vs. 364 +/- 19 for saline (number/mm(2)) saline] and capillary [591 +/- 80 VEGF 1 microg/kg vs. 342 +/- 21 for saline (number/mm(2))] densities. Skeletal muscle analysis revealed an increase in Ki67(+) nuclei in the VEGF 1 microg/kg group compared with saline. In addition, VEGF mobilized c-kit(+), CD31(+), and CXCR4(+) progenitor cells. Mobilization of progenitor cells was consistent with higher SDF-1 concentrations found in hamstring, plasma, and heart in the VEGF group. Echocardiogram analysis demonstrated improvement in left ventricular ejection fraction (0.60 +/- 0.02 VEGF 1 microg/kg vs. 0.45 +/- 0.01 mm for saline) and an attenuation in ventricular dilation [5.59 +/- 0.12 VEGF 1 microg/kg vs. 6.03 +/- 0.09 for saline (mm)] 5 wk after initiating therapy. Hearts exhibited higher cardiomyocyte nuclear [845 +/- 22 VEGF 1 microg/kg vs. 519 +/- 40 for saline (number/mm(2))] and capillary [2,159 +/- 119 VEGF 1 microg/kg vs. 1,590 +/- 66 for saline (number/mm(2))] densities. Myocardial analysis revealed approximately 2.5 fold increase in Ki67+ cells and approximately 2.8-fold increase in c-kit(+) cells in the VEGF group, which provides evidence for cardiomyocyte regeneration and progenitor cell expansion. This study provides novel evidence of a salutary effect of VEGF in the cardiomyopathic hamster via induction of myogenic growth factor production by skeletal muscle and mobilization of progenitor cells, which resulted in attenuation of cardiomyopathy and repair of the heart.
Collapse
Affiliation(s)
- David Zisa
- Department of Biochemistry and Center for Research in Cardiovascular Medicine, University at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
21
|
McCullar JS, Oesterle EC. Cellular targets of estrogen signaling in regeneration of inner ear sensory epithelia. Hear Res 2009; 252:61-70. [PMID: 19450430 PMCID: PMC2975607 DOI: 10.1016/j.heares.2009.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/16/2009] [Accepted: 01/22/2009] [Indexed: 01/19/2023]
Abstract
Estrogen signaling in auditory and vestibular sensory epithelia is a newly emerging focus propelled by the role of estrogen signaling in many other proliferative systems. Understanding the pathways with which estrogen interacts can provide a means to identify how estrogen may modulate proliferative signaling in inner ear sensory epithelia. Reviewed herein are two signaling families, EGF and TGFbeta. Both pathways are involved in regulating proliferation of supporting cells in mature vestibular sensory epithelia and have well characterized interactions with estrogen signaling in other systems. It is becoming increasingly clear that elucidating the complexity of signaling in regeneration will be necessary for development of therapeutics that can initiate regeneration and prevent progression to a pathogenic state.
Collapse
Affiliation(s)
- Jennifer S. McCullar
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, P.O. Box 357923, Seattle, WA 98195, USA
| | - Elizabeth C. Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, University of Washington, CHDD CD176, P.O. Box 357923, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Park H, Bhalla R, Saigal R, Radisic M, Watson N, Langer R, Vunjak-Novakovic G. Effects of electrical stimulation in C2C12 muscle constructs. J Tissue Eng Regen Med 2008; 2:279-87. [PMID: 18512267 DOI: 10.1002/term.93] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrical stimulation affects the deposition of extracellular matrices and cellular differentiation. Type I collagen is one of the most abundant extracellular matrix proteins; however, not much is known about the effects of electrical stimulation on collagen type I deposition in C2C12 cells. Thus, we studied the effects of electrical voltage and stimulation frequency in 3D cultured C2C12 muscle cells in terms of metabolic activity, type I collagen deposition and cell morphology. Electrically excitable C2C12 muscle cells were seeded in collagen scaffolds and stimulated with rectangular signals of voltage (2, 5, 7 V) and frequency (1, 2 Hz), using parallel carbon electrodes spaced 1 cm apart. Metabolic activity was quantified by the glucose:lactate concentration ratio in the medium. Apoptotic activity was assessed by TUNEL staining and changes in collagen deposition were identified by immunohistology. The ultrastructure of the tissue was examined by TEM. Glucose and lactate analysis indicated that all groups had similar metabolic activity. TUNEL stain showed no significant difference in apoptotic damage induced by electrical stimulation compared to the control. Samples stimulated at 2 Hz exhibited reduced collagen deposition compared to the control and 1 Hz stimulated samples. Muscle-protein marker desmin was highly expressed in constructs stimulated with 1 Hz/5 V sample. TEM revealed that the stimulated samples developed highly organized sarcomeres, which coincided with improved contractile properties in the 1 Hz/5 V- and 2 Hz/5 V-stimulated groups. Our data implicate that a specific electrical frequency may modulate type I collagen accumulation and a specific voltage may affect the differentiation of muscle sarcomeres in excitable cells.
Collapse
Affiliation(s)
- Hyoungshin Park
- Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Tajika Y, Murakami T, Sato M, Kubota F, Yorifuji H. VAMP2 is expressed in myogenic cells during rat development. Dev Dyn 2008; 237:1886-92. [DOI: 10.1002/dvdy.21596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
24
|
Sun Q, Zhang Y, Yang G, Chen X, Zhang Y, Cao G, Wang J, Sun Y, Zhang P, Fan M, Shao N, Yang X. Transforming growth factor-beta-regulated miR-24 promotes skeletal muscle differentiation. Nucleic Acids Res 2008; 36:2690-9. [PMID: 18353861 PMCID: PMC2377434 DOI: 10.1093/nar/gkn032] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) have recently been proposed as a versatile class of molecules involved in regulation of a variety of biological processes. However, the role of miRNAs in TGF-beta-regulated biological processes is poorly addressed. In this study, we found that miR-24 was upregulated during myoblast differentiation and could be inhibited by TGF-beta1. Using both a reporter assay and Northern blot analysis, we showed that TGF-beta1 repressed miR-24 transcription which was dependent on the presence of Smad3 and a Smads binding site in the promoter region of miR-24. TGF-beta1 was unable to inhibit miR-24 expression in Smad3-deficient myoblasts, which exhibited accelerated myogenesis. Knockdown of miR-24 led to reduced expression of myogenic differentiation markers in C2C12 cells, while ectopic expression of miR-24 enhanced differentiation, and partially rescued inhibited myogenesis by TGF-beta1. This is the first study demonstrating a critical role for miRNAs in modulating TGF-beta-dependent inhibition of myogenesis, and provides a novel mechanism of the genetic regulation of TGF-beta signaling during skeletal muscle differentiation.
Collapse
Affiliation(s)
- Qiang Sun
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, 20 Dongdajie, Beijing 100071, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Protein kinase A represses skeletal myogenesis by targeting myocyte enhancer factor 2D. Mol Cell Biol 2008; 28:2952-70. [PMID: 18299387 DOI: 10.1128/mcb.00248-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation of protein kinase A (PKA) by elevation of the intracellular cyclic AMP (cAMP) level inhibits skeletal myogenesis. Previously, an indirect modulation of the myogenic regulatory factors (MRFs) was implicated as the mechanism. Because myocyte enhancer factor 2 (MEF2) proteins are key regulators of myogenesis and obligatory partners for the MRFs, here we assessed whether these proteins could be involved in PKA-mediated myogenic repression. Initially, in silico analysis revealed several consensus PKA phosphoacceptor sites on MEF2, and subsequent analysis by in vitro kinase assays indicated that PKA directly and efficiently phosphorylates MEF2D. Using mass spectrometric determination of phosphorylated residues, we document that MEF2D serine 121 and serine 190 are targeted by PKA. Transcriptional reporter gene assays to assess MEF2D function revealed that PKA potently represses the transactivation properties of MEF2D. Furthermore, engineered mutation of MEF2D PKA phosphoacceptor sites (serines 121 and 190 to alanine) rendered a PKA-resistant MEF2D protein, which efficiently rescues myogenesis from PKA-mediated repression. Concomitantly, increased intracellular cAMP-mediated PKA activation also resulted in an enhanced nuclear accumulation of histone deacetylase 4 (HDAC4) and a subsequent increase in the MEF2D-HDAC4 repressor complex. Collectively, these data identify MEF2D as a primary target of PKA signaling in myoblasts that leads to inhibition of the skeletal muscle differentiation program.
Collapse
|
26
|
The emerging biology of satellite cells and their therapeutic potential. Trends Mol Med 2008; 14:82-91. [PMID: 18218339 DOI: 10.1016/j.molmed.2007.12.004] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 12/12/2022]
Abstract
Adult skeletal muscle contains an abundant and highly accessible population of muscle stem and progenitor cells called satellite cells. The primary function of satellite cells is to mediate postnatal muscle growth and repair. Owing to their availability and remarkable capacity to regenerate damaged muscle, satellite cells and their descendent myoblasts have been considered as powerful candidates for cell-based therapies to treat muscular dystrophies and other neuromuscular diseases. However, regenerative medicine in muscle repair requires a thorough understanding of, and the ability to manipulate, the molecular mechanisms that control the proliferation, self-renewal and myogenic differentiation of satellite cells. Here, we review the latest advances in our current understanding of the quiescence, activation, proliferation and self-renewal of satellite cells and the challenges in the development of satellite cell-based regenerative medicine.
Collapse
|
27
|
Gerhart J, Neely C, Elder J, Pfautz J, Perlman J, Narciso L, Linask KK, Knudsen K, George-Weinstein M. Cells that express MyoD mRNA in the epiblast are stably committed to the skeletal muscle lineage. ACTA ACUST UNITED AC 2007; 178:649-60. [PMID: 17698608 PMCID: PMC2064471 DOI: 10.1083/jcb.200703060] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The epiblast of the chick embryo contains cells that express MyoD mRNA but not MyoD protein. We investigated whether MyoD-positive (MyoDpos) epiblast cells are stably committed to the skeletal muscle lineage or whether their fate can be altered in different environments. A small number of MyoDpos epiblast cells were tracked into the heart and nervous system. In these locations, they expressed MyoD mRNA and some synthesized MyoD protein. No MyoDpos epiblast cells differentiated into cardiac muscle or neurons. Similar results were obtained when MyoDpos cells were isolated from the epiblast and microinjected into the precardiac mesoderm or neural plate. In contrast, epiblast cells lacking MyoD differentiated according to their environment. These results demonstrate that the epiblast contains both multipotent cells and a subpopulation of cells that are stably committed to the skeletal muscle lineage before the onset of gastrulation. Stable programming in the epiblast may ensure that MyoDpos cells express similar signaling molecules in a variety of environments.
Collapse
Affiliation(s)
- Jacquelyn Gerhart
- Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
A role for Insulin-like growth factor 2 in specification of the fast skeletal muscle fibre. BMC DEVELOPMENTAL BIOLOGY 2007; 7:65. [PMID: 17559643 PMCID: PMC1906852 DOI: 10.1186/1471-213x-7-65] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 06/08/2007] [Indexed: 01/11/2023]
Abstract
Background Fibre type specification is a poorly understood process beginning in embryogenesis in which skeletal muscle myotubes switch myosin-type to establish fast, slow and mixed fibre muscle groups with distinct function. Growth factors are required to establish slow fibres; it is unknown how fast twitch fibres are specified. Igf-2 is an embryonically expressed growth factor with established in vitro roles in skeletal muscle. Its localisation and role in embryonic muscle differentiation had not been established. Results Between E11.5 and E15.5 fast Myosin (FMyHC) localises to secondary myotubes evenly distributed throughout the embryonic musculature and gradually increasing in number so that by E15.5 around half contain FMyHC. The Igf-2 pattern closely correlates with FMyHC from E13.5 and peaks at E15.5 when over 90% of FMyHC+ myotubes also contain Igf-2. Igf-2 lags FMyHC and it is absent from muscle myotubes until E13.5. Igf-2 strongly down-regulates by E17.5. A striking feature of the FMyHC pattern is its increased heterogeneity and attenuation in many fibres from E15.5 to day one after birth (P1). Transgenic mice (MIG) which express Igf-2 in all of their myotubes, have increased FMyHC staining, a higher proportion of FMyHC+ myotubes and loose their FMyHC staining heterogeneity. In Igf-2 deficient mice (MatDi) FMyHC+ myotubes are reduced to 60% of WT by E15.5. In vitro, MIG induces a 50% excess of FMyHC+ and a 30% reduction of SMHyC+ myotubes in C2 cells which can be reversed by Igf-2-targeted ShRNA resulting in 50% reduction of FMyHC. Total number of myotubes was not affected. Conclusion In WT embryos the appearance of Igf-2 in embryonic myotubes lags FMyHC, but by E15.5 around 45% of secondary myotubes contain both proteins. Forced expression of Igf-2 into all myotubes causes an excess, and absence of Igf-2 suppresses, the FMyHC+ myotube component in both embryonic muscle and differentiated myoblasts. Igf-2 is thus required, not for initiating secondary myotube differentiation, but for establishing the correct proportion of FMyHC+ myotubes during fibre type specification (E15.5 - P1). Since specific loss of FMyHC fibres is associated with many skeletal muscle pathologies these data have important medical implications.
Collapse
|
29
|
Williamson D, Selfe J, Gordon T, Lu YJ, Pritchard-Jones K, Murai K, Jones P, Workman P, Shipley J. Role for amplification and expression of glypican-5 in rhabdomyosarcoma. Cancer Res 2007; 67:57-65. [PMID: 17210683 DOI: 10.1158/0008-5472.can-06-1650] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of genes, through genomic amplification and other mechanisms, can critically affect the behavior of tumor cells. Genomic amplification of the 13q31-32 region is reported in many tumors, including rhabdomyosarcomas that are primarily pediatric sarcomas resembling developing skeletal muscle. The minimum overlapping region of amplification at 13q31-32 in rhabdomyosarcomas was defined as containing two genes: Glypican-5 (GPC5) encoding a cell surface proteoglycan and C13orf25 encompassing the miR-17-92 micro-RNA cluster. Genomic copy number and gene expression analyses of rhabdomyosarcomas indicated that GPC5 was the only gene consistently expressed and up-regulated in all cases with amplification. Constitutive overexpression and knockdown of GPC5 expression in rhabdomyosarcoma cell lines increased and decreased cell proliferation, respectively. A correlation between expression levels of nascent pre-rRNA and GPC5 (P = 0.001), but not a C13orf25 transcript containing miR-17-92, in primary samples supports an association of GPC5 with proliferative capacity in vivo. We show that GPC5 increases proliferation through potentiating the action of the growth factors fibroblast growth factor 2 (FGF2), hepatocyte growth factor (HGF), and Wnt1A. GPC5 enhanced the intracellular signaling of FGF2 and HGF and altered the cellular distribution of FGF2. The mesoderm-inducing effect of FGF2 and FGF4 in Xenopus blastocysts was also enhanced. Our data are consistent with a role of GPC5, in the context of sarcomagenesis, in enhancing FGF signaling that leads to mesodermal cell proliferation without induction of myogenic differentiation. Furthermore, the properties of GPC5 make it an attractive target for therapeutic intervention in rhabdomyosarcomas and other tumors that amplify and/or overexpress the gene.
Collapse
Affiliation(s)
- Daniel Williamson
- Molecular Cytogenetics Team, Paediatric Oncology, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Filipe M, Gonçalves L, Bento M, Silva AC, Belo JA. Comparative expression of mouse and chicken Shisa homologues during early development. Dev Dyn 2006; 235:2567-73. [PMID: 16773659 DOI: 10.1002/dvdy.20862] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
During vertebrate embryogenesis, fibroblast growth factor (FGF) and Wnt signaling have been implicated in diverse cellular processes, including cell growth, differentiation, and tissue patterning. The recently identified Xenopus Shisa protein promotes head formation by inhibiting Wnt and FGF signaling through its interaction with the immature forms of Frizzled and FGF receptors in the endoplasmic reticulum, which prevents their posttranslational maturation. Here, we describe the mouse and chicken homologues of Xenopus Shisa. The mouse and chicken Shisa proteins share, respectively, 33.6% and 33.8% identity with the Xenopus homolog. In situ hybridization analysis shows that mouse shisa is expressed throughout embryonic development, predominantly in the anterior visceral endoderm, headfolds, somites, forebrain, optic vesicle, and limb buds. Cross-species comparison shows that the expression pattern of cshisa closely mirrors that of mshisa. Our observations indicate that the Shisa family genes are typically expressed in tissues known to require the modulation of Wnt and FGF signaling.
Collapse
Affiliation(s)
- Mário Filipe
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
31
|
Kollias HD, Perry RLS, Miyake T, Aziz A, McDermott JC. Smad7 promotes and enhances skeletal muscle differentiation. Mol Cell Biol 2006; 26:6248-60. [PMID: 16880533 PMCID: PMC1592807 DOI: 10.1128/mcb.00384-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Transforming growth factor beta1 (TGF-beta1) and myostatin signaling, mediated by the same Smad downstream effectors, potently repress skeletal muscle cell differentiation. Smad7 inhibits these cytokine signaling pathways. The role of Smad7 during skeletal muscle cell differentiation was assessed. In these studies, we document that increased expression of Smad7 abrogates myostatin- but not TGF-beta1-mediated repression of myogenesis. Further, constitutive expression of exogenous Smad7 potently enhanced skeletal muscle differentiation and cellular hypertrophy. Conversely, targeting of endogenous Smad7 by small interfering RNA inhibited C2C12 muscle cell differentiation, indicating an essential role for Smad7 during myogenesis. Congruent with a role for Smad7 in myogenesis, we observed that the muscle regulatory factor (MyoD) binds to and transactivates the Smad7 proximal promoter region. Finally, we document that Smad7 directly interacts with MyoD and enhances MyoD transcriptional activity. Thus, Smad7 cooperates with MyoD, creating a positive loop to induce Smad7 expression and to promote MyoD driven myogenesis. Taken together, these data implicate Smad7 as a fundamental regulator of differentiation in skeletal muscle cells.
Collapse
Affiliation(s)
- Helen D Kollias
- Department of Biology, 327 Farquharson, LSB, York University, 4700 Keele St., Toronto M3J 1P3 Ontario, Canada
| | | | | | | | | |
Collapse
|
32
|
Pelletier M, Rossignol J, Oliver L, Zampieri M, Fontaine-Pérus J, Vallette FM, Lescaudron L. Soluble factors from neuronal cultures induce a specific proliferation and resistance to apoptosis of cognate mouse skeletal muscle precursor cells. Neurosci Lett 2006; 407:20-5. [PMID: 16959418 DOI: 10.1016/j.neulet.2006.06.076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 06/07/2006] [Accepted: 06/07/2006] [Indexed: 12/13/2022]
Abstract
The mechanisms or the physiological events, which control the regeneration of skeletal muscle through muscle precursor cell multiplication and differentiation, are still largely unknown. To address the question of the involvement of neurons in this process, skeletal muscle progenitors were grown in the presence of conditioned media obtained from 3-day-old cultures of embryonic neurons (derived from either the dorsal or the ventral region of 11-day-old mouse embryos) or media conditioned with satellite cells. Strikingly, only satellite cells cultured in medium conditioned from ventral embryonic neurons exhibited increased proliferation, as well as resistance to staurosporine (STS)-induced apoptosis. Our results suggest the existence of specific anti-apoptogenic neural soluble signals, which could be involved in skeletal muscle regeneration pathways.
Collapse
|
33
|
Abstract
Somatic stem cell populations participate in the development and regeneration of their host tissues. Skeletal muscle is capable of complete regeneration due to stem cells that reside in skeletal muscle and nonmuscle stem cell populations. However, in severe myopathic diseases such as Duchenne Muscular Dystrophy, this regenerative capacity is exhausted. In the present review, studies will be examined that focus on the origin, gene expression, and coordinated regulation of stem cell populations to highlight the regenerative capacity of skeletal muscle and emphasize the challenges for this field. Intense interest has focused on cell-based therapies for chronic, debilitating myopathic diseases. Future studies that enhance our understanding of stem cell biology and repair mechanisms will provide a platform for therapeutic applications directed toward these chronic, life-threatening diseases.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | |
Collapse
|
34
|
Riobó NA, Lu K, Ai X, Haines GM, Emerson CP. Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 2006; 103:4505-10. [PMID: 16537363 PMCID: PMC1450201 DOI: 10.1073/pnas.0504337103] [Citation(s) in RCA: 356] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hedgehogs (Hhs) are key signaling regulators of stem cell maintenance and tissue patterning in embryos, and activating mutations in the pathway that increase Gli transcriptional activity are causal in a diversity of cancers. Here, we report that phosphoinositide 3-kinase (PI3-kinase)-dependent Akt activation is essential for Sonic Hedgehog (Shh) signaling in the specification of neuronal fates in chicken neural explants, chondrogenic differentiation of 10T1/2 cells, and Gli activation in NIH 3T3 cells. Stimulation of PI3-kinase/Akt by insulin-like growth factor I potentiates Gli activation induced by low levels of Shh; however, insulin-like growth factor I alone is insufficient to induce Gli-dependent transcription. Protein kinase A (PKA) and glycogen synthase kinase 3beta sequentially phosphorylate Gli2 at multiple sites, identified by mutagenesis, thus resulting in a reduction of its transcriptional activity. Gli2 mutant proteins in which the major PKA and glycogen synthase kinase 3beta phosphorylation sites were mutated to alanine remain fully transcriptionally active; however, PKA-mutant Gli2 functions independently of Akt signaling, indicating that Akt positively regulates Shh signaling by controlling PKA-mediated Gli inactivation. Our findings provide a basis for the synergistic role of PI3-kinase/Akt in Hh signaling in embryonic development and Hh-dependent tumors.
Collapse
Affiliation(s)
- Natalia A. Riobó
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1157 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104; and
| | - Ke Lu
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| | - Xingbin Ai
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
| | - Gwendolyn M. Haines
- *Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1157 BRBII/III, 421 Curie Boulevard, Philadelphia, PA 19104; and
| | - Charles P. Emerson
- Boston Biomedical Research Institute, 64 Grove Street, Watertown, MA 02472
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Blandford MC, Barr FG, Lynch JC, Randall RL, Qualman SJ, Keller C. Rhabdomyosarcomas utilize developmental, myogenic growth factors for disease advantage: a report from the Children's Oncology Group. Pediatr Blood Cancer 2006; 46:329-38. [PMID: 16261596 DOI: 10.1002/pbc.20466] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Unresectable or metastatic disease represents the greatest obstacle to cure for children with rhabdomyosarcoma. In this study we sought to identify gene expression signatures of advanced stage and progressive disease. PROCEDURE Using oligonucleotide gene expression analysis for a focused set of 60 genes, we analyzed the myogenic expression profiles of 89 rhabdomyosarcomas from the Intergroup Rhabdomyosarcoma Study-IV. RESULTS While the expression profile of rhabdomyosarcomas closely paralleled gene expression profiles of normal embryonic myogenic progenitors, growth factors were most closely associated with disease progression. Specifically, we identified platelet-derived growth factor (PDGF) receptors and insulin-like growth factor as strongly correlated with decreased failure-free survival. Real-time reverse transcriptase polymerase chain reaction (RT-PCR) of an independent data set suggested that autocrine growth signaling, if present, is not regulated in a simple manner at the transcriptional level. CONCLUSIONS Increased transcriptional levels of PDGF receptors and insulin-like growth factor are associated with decreased survival in rhabdomyosarcomas. Dual blockade of these growth-factor-signaling pathways may be a valuable strategy in preclinical therapeutic studies.
Collapse
Affiliation(s)
- Mary C Blandford
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of Utah, Salt Lake City, USA
| | | | | | | | | | | |
Collapse
|
36
|
Krauss RS, Cole F, Gaio U, Takaesu G, Zhang W, Kang JS. Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact. J Cell Sci 2005; 118:2355-62. [PMID: 15923648 DOI: 10.1242/jcs.02397] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Cells of the vertebrate skeletal muscle lineage develop in a highly ordered process that includes specification, migration and differentiation into multinucleated myofibers. The changes in gene expression and cell morphology that occur during myogenic differentiation must be coordinated with each other in a spatiotemporal fashion; one way that this might occur is through regulation of these processes by cell-cell adhesion and resultant signaling. The past several years have witnessed the identification of molecules that are likely to be mediators of the promyogenic effects of cell-cell contact and some of the mechanisms by which they work. These include: the community factor, embryonic fibroblast growth factor (eFGF); classical cadherins, which mediate both adhesion and signaling; and cadherin-associated immunoglobulin superfamily members such as CDO, BOC and neogenin. Genetic evidence for the promyogenic roles of some of these factors is emerging. In other cases, potential compensatory or redundant functions necessitate future construction of double or triple mutants. Mechanistic studies in vitro indicate that specific cadherins and immunoglobulin superfamily proteins exert some of their effects in an interdependent fashion by signaling from a multiprotein complex found at sites of cell-cell contact.
Collapse
Affiliation(s)
- Robert S Krauss
- Brookdale Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
37
|
Aramaki S, Sato F, Soh T, Yamauchi N, Sakai T, Hattori MA. Temporal and spatial expression of TGF-beta2 in chicken somites during early embryonic development. ACTA ACUST UNITED AC 2005; 303:323-30. [PMID: 15828015 DOI: 10.1002/jez.a.148] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A multifunctional growth and differentiation factor TGF-beta is expressed at various developmental stages, and its principle role may be involvement in organogenesis. The present study was performed to evaluate the temporal and spatial expression of TGF-beta2 mRNA in developing somites of chicken embryos during their early developmental periods. TGF-betas were expressed in various tissues of the whole embryo obtained at stage 26 (5 days of incubation) as revealed by whole-mount in situ hybridization. TGF-beta2 mRNA was predominantly expressed in somites as well as the head, branchial arch, wing buds, and leg buds. TGF-beta2 mRNA first appeared in the rostral somites on E4, and its expression sites expanded to the middle range of somites at stage 26. At stages 29-31 (6-7 days), expression in the rostral somites disappeared, and it appeared in the caudal somites. TGF-beta2 expression was also analyzed in sections of the embryo by in situ hybridization. The expression sites of TGF-beta2 were clearly observed in the myotomal somite tips as well as the neural tube. RT-PCR analysis showed that TGF-beta2 expression was very low in the blastocyte stage embryo and thereafter increased linearly in the whole trunk until stage 26. These data indicate that TGF-beta2 may be a regulatory factor participating in the somitogenesis of chicken embryos.
Collapse
Affiliation(s)
- Shinya Aramaki
- Laboratory of Reproductive Physiology and Biotechnology, Department of Animal and Marine Bioresource Sciences, Graduate School Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Aramaki S, Sato F, Soh T, Yamauchi N, Hattori MA. Differential expression sites of TGF-β isoforms in chicken limb buds during morphogenesis. CAN J ZOOL 2005. [DOI: 10.1139/z05-052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TGF-β gene is expressed at various developmental stages and its principle role may be an involvement in organogenesis. The present study was performed to investigate the temporal expression of these TGF-β isoforms in the developing limb of White Leghorn Chicken, Gallus gallus (L., 1758). TGF-β isoforms were expressed in the developing limb as revealed by whole-mount in situ hybridization, but each showed a different pattern of expression. TGF-β2 was the dominant isoform compared with the other two isoforms. TGF-β2 first appeared along the proximodistal axis of the limb at stage 24 and condensed at the tip at stage 26. At stages 2931, expression appeared in digits and then was extended to the interdigital spaces. A weak signal for TGF-β3 was first shown in the developing limb at stage 26, but there was no interdigital expression, unlike for TGF-β2. TGF-β4 was expressed in the developing limb at stage 26 and only in the interdigital spaces at stage 29. Reverse transcription polymerase chain reaction analysis also showed that the transcript levels of TGF-β isoforms, especially TGF-β2, drastically increased at stage 29. These results suggest that TGF-β isoforms, with their patterns of expression, are specific regulatory factors that participate in limb development and digit morphogenesis.
Collapse
|
39
|
Quigley SP, Kleemann DO, Kakar MA, Owens JA, Nattrass GS, Maddocks S, Walker SK. Myogenesis in sheep is altered by maternal feed intake during the peri-conception period. Anim Reprod Sci 2004; 87:241-51. [PMID: 15911174 DOI: 10.1016/j.anireprosci.2004.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 10/06/2004] [Accepted: 11/09/2004] [Indexed: 10/26/2022]
Abstract
The effect of varying short-term maternal feed intake during the peri-conception period on the development of ovine fetal muscle at mid-gestation was investigated. Superovulated donor Merino ewes (n = 24) were fed a roughage/grain pelleted diet (10.1 MJME/kg dry matter) at either 1.5x maintenance (H; high) or 0.5x maintenance (L; low) from 18 days before until 6 days after ovulation. Embryos were transferred to recipient ewes (n = 60) on day 6. Singleton fetuses were collected on day 75 of gestation and placental weights, fetal body dimensions and fetal organ and muscle weights recorded. The number, type and size of muscle fibres and the dry matter, RNA, DNA and protein content in the semitendinosus muscle were determined. Maternal feed intake did not influence body dimensions, organ development or muscle weights in the fetus. However, L feed intake decreased total muscle fibre number in the fetus by approximately 20% (P = 0.06) compared to H feed intake. This resulted from a reduced secondary to primary fibre ratio (P < 0.05) and indicated that secondary fibre formation occurred at a reduced rate in L fetuses. In addition, protein:DNA ratio tended to be lower in muscles of L fetuses (P < 0.1). It is concluded that restricting feed intake over the peri-conception period reduces or delays myogenesis in fetal sheep. The potential mechanisms by which nutritional availability during this period may influence subsequent myogenic development are discussed.
Collapse
Affiliation(s)
- S P Quigley
- South Australian Research and Development Institute, Turretfield Research Centre, Rosedale SA 5350, Australia
| | | | | | | | | | | | | |
Collapse
|
40
|
Volonte D, Liu Y, Galbiati F. The modulation of caveolin-1 expression controls satellite cell activation during muscle repair. FASEB J 2004; 19:237-9. [PMID: 15545301 DOI: 10.1096/fj.04-2215fje] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We have previously shown that caveolin-1, the principal structural protein component of caveolar membrane domains, inhibits cellular proliferation and induces cell cycle arrest. We demonstrate here for the first time that caveolin-1 is expressed in satellite cells but not in mature muscle fibers. Satellite cells are quiescent myogenic precursors that, after muscle injury, become mitotically active, proliferate, and fuse together or, to existing myofibers, to form new muscle fibers. We show that down-regulation of caveolin-1 expression occurs in satellite cells/myogenic precursor cells (MPCs) during muscle regeneration and that hepatocyte growth factor, which is produced after muscle injury, down-regulates caveolin-1. We also demonstrate that down-regulation of endogenous caveolin-1 expression activates ERK and that activation of the p42/44 MAP kinase pathway is necessary to promote muscle regeneration. Finally, we show that overexpression of caveolin-1 inhibits muscle repair mechanisms both in vitro and in vivo. Taken together, these results propose caveolin-1 as a novel regulator of satellite cell functions and suggest that the following signaling pathway modulates satellite cell activation during muscle repair: injured fibers release HGF --> HGF down-regulates caveolin-1 protein expression --> down-regulation of caveolin-1 activates ERK --> activation of ERK promotes muscle repair by stimulating the proliferation and migration of MPCs toward the wounded area.
Collapse
MESH Headings
- Animals
- Caveolin 1
- Caveolins/biosynthesis
- Caveolins/physiology
- Cell Cycle/physiology
- Cell Differentiation/genetics
- Cell Line, Transformed
- Down-Regulation/genetics
- Down-Regulation/physiology
- Enzyme Activation/genetics
- Enzyme Activation/physiology
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Hepatocyte Growth Factor/metabolism
- Mice
- Mice, Inbred C57BL
- Muscle Fibers, Skeletal/chemistry
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/chemistry
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Myoblasts/chemistry
- Myoblasts/cytology
- Myoblasts/metabolism
- Regeneration/genetics
- Regeneration/physiology
- Satellite Cells, Skeletal Muscle/metabolism
- Satellite Cells, Skeletal Muscle/physiology
- Wound Healing/genetics
Collapse
Affiliation(s)
- Daniela Volonte
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
41
|
Schrager MA, Roth SM, Ferrell RE, Metter EJ, Russek-Cohen E, Lynch NA, Lindle RS, Hurley BF. Insulin-like growth factor-2 genotype, fat-free mass, and muscle performance across the adult life span. J Appl Physiol (1985) 2004; 97:2176-83. [PMID: 15298990 DOI: 10.1152/japplphysiol.00985.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The influence of insulin-like growth factor-2 (IGF2) genotype on total body fat-free mass (FFM), muscle strength, and sustained power (SP) was evaluated repeatedly at approximately 2-yr intervals in two cohorts from the Baltimore Longitudinal Study of Aging. Cohort 1 was comprised of 94 men tested for isometric grip strength and SP. Cohort 2 was comprised of 246 men and 239 women tested for total body FFM and isokinetic peak torque. Subjects were retrospectively genotyped for the IGF2 gene's ApaI polymorphism. Differences between genotype groups for total FFM, strength, and SP at first visit, at peak age (35 yr), at age 65, and across the adult age span were analyzed using either two-sample t-tests or mixed-effects models, depending on the specific comparisons made. Isokinetic arm strength at the time of first visit was lower in A/A men than in G/G men (P < 0.05). Compared with G/G women, A/A women had lower total body FFM, lower isokinetic arm and leg strength at the time of first visit, and lower values at age 35 (all P < 0.05) for these muscle phenotypes. Furthermore, this difference between the genotype groups was maintained at age 65 and across the adult age span (P < 0.05). No genotype-associated differences in rates of loss of grip strength or SP were found in cohort 1. These results from cohort 2 support the hypothesis that variation within a gene known to influence developing muscle affects muscle mass and muscle function in later life.
Collapse
Affiliation(s)
- Matthew A Schrager
- Dept. of Kinesiology, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Rochat A, Fernandez A, Vandromme M, Molès JP, Bouschet T, Carnac G, Lamb NJC. Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell 2004; 15:4544-55. [PMID: 15282335 PMCID: PMC519148 DOI: 10.1091/mbc.e03-11-0816] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pathways in reserve cell activation during myoblast differentiation and myotube hypertrophy. Inhibition of GSK-3 by LiCl or SB216763, restored insulin-dependent differentiation of C2ind myoblasts in low serum, and cooperated with insulin in serum-free medium to induce MyoD and myogenin expression in C2ind myoblasts, quiescent C2 or primary human reserve cells. We show that LiCl treatment induced nuclear accumulation of beta-catenin in C2 myoblasts, thus mimicking activation of canonical Wnt signaling. Similarly to the effect of GSK-3 inhibitors with insulin, coculturing C2 reserve cells with Wnt1-expressing fibroblasts enhanced insulin-stimulated induction of MyoD and myogenin in reserve cells. A similar cooperative effect of LiCl or Wnt1 with insulin was observed during late ex vivo differentiation and promoted increased size and fusion of myotubes. We show that this synergistic effect on myotube hypertrophy involved an increased fusion of reserve cells into preexisting myotubes. These data reveal insulin and Wnt/beta-catenin pathways cooperate in muscle cell differentiation through activation and recruitment of satellite cell-like reserve myoblasts.
Collapse
Affiliation(s)
- Anne Rochat
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, UPR-1142, 34396 Montpellier Cedex 5, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Li X, Blagden CS, Bildsoe H, Bonnin MA, Duprez D, Hughes SM. Hedgehog can drive terminal differentiation of amniote slow skeletal muscle. BMC DEVELOPMENTAL BIOLOGY 2004; 4:9. [PMID: 15238161 PMCID: PMC471547 DOI: 10.1186/1471-213x-4-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2004] [Accepted: 07/06/2004] [Indexed: 03/10/2023]
Abstract
BACKGROUND Secreted Hedgehog (Hh) signalling molecules have profound influences on many developing and regenerating tissues. Yet in most vertebrate tissues it is unclear which Hh-responses are the direct result of Hh action on a particular cell type because Hhs frequently elicit secondary signals. In developing skeletal muscle, Hhs promote slow myogenesis in zebrafish and are involved in specification of medial muscle cells in amniote somites. However, the extent to which non-myogenic cells, myoblasts or differentiating myocytes are direct or indirect targets of Hh signalling is not known. RESULTS We show that Sonic hedgehog (Shh) can act directly on cultured C2 myoblasts, driving Gli1 expression, myogenin up-regulation and terminal differentiation, even in the presence of growth factors that normally prevent differentiation. Distinct myoblasts respond differently to Shh: in some slow myosin expression is increased, whereas in others Shh simply enhances terminal differentiation. Exposure of chick wing bud cells to Shh in culture increases numbers of both muscle and non-muscle cells, yet simultaneously enhances differentiation of myoblasts. The small proportion of differentiated muscle cells expressing definitive slow myosin can be doubled by Shh. Shh over-expression in chick limb bud reduces muscle mass at early developmental stages while inducing ectopic slow muscle fibre formation. Abundant later-differentiating fibres, however, do not express extra slow myosin. Conversely, Hh loss of function in the limb bud, caused by implanting hybridoma cells expressing a functionally blocking anti-Hh antibody, reduces early slow muscle formation and differentiation, but does not prevent later slow myogenesis. Analysis of Hh knockout mice indicates that Shh promotes early somitic slow myogenesis. CONCLUSIONS Taken together, the data show that Hh can have direct pro-differentiative effects on myoblasts and that early-developing muscle requires Hh for normal differentiation and slow myosin expression. We propose a simple model of how direct and indirect effects of Hh regulate early limb myogenesis.
Collapse
Affiliation(s)
- Xiaopeng Li
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Christopher S Blagden
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University Medical Center, New York, NY 10016, USA
| | - Heidi Bildsoe
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| | - Marie Ange Bonnin
- CNRS, UMR 7622, Université P. et M. Curie, 75252 Paris cedex 05, France
| | - Delphine Duprez
- CNRS, UMR 7622, Université P. et M. Curie, 75252 Paris cedex 05, France
| | - Simon M Hughes
- Randall Division, New Hunt's House, Guy's Campus, King's College London, London, UK
| |
Collapse
|
44
|
Alzghoul MB, Gerrard D, Watkins BA, Hannon K. Ectopic expression of IGF‐I and Shh by skeletal muscle inhibits disuse‐mediated skeletal muscle atrophy and bone osteopenia in vivo. FASEB J 2003; 18:221-3. [PMID: 14597562 DOI: 10.1096/fj.03-0293fje] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The loss of normal weight-bearing activity, which occurs during bed rest, limb immobilization, and spaceflight, stimulates a catabolic response within the musculoskeletal system, which results in a loss of skeletal muscle mass and bone mineral. The mechanism by which loading of muscle and bone is sensed and translated into signals controlling tissue formation remains a major question in the field of musculoskeletal research. In this investigation, we have examined the ability of two potentially anti-atrophic proteins, IGF-I and Shh, to inhibit disuse atrophy within muscle and bone, when electroporated into skeletal muscle. We have found that electroporation and ectopic expression of IGF-I and/or Shh within the gastrocnemius/soleus muscle significantly stimulated muscle fiber hypertrophy and increases in muscle size. In addition, we report that electroporation and ectopic expression of IGF-I and/or Shh within the gastrocnemius/soleus muscle attenuated the lost of muscle fiber area, muscle mass, and muscle mass density that normally occurs during disuse muscle atrophy. Finally, we found that ectopic expression of IGF-I and Shh within the gastrocnemius/soleus muscle inhibits parameters of osteopenia within the tibia and fibula associated with hindlimb unloading. These results support the theory that skeletal muscle can regulate bone maintenance and could offer potentially novel and efficient therapeutic options for attenuating muscle and bone atrophy during aging, illness and spaceflight.
Collapse
|
45
|
Affiliation(s)
- Joshua R Sanes
- Department of Anatomy and Neurobiology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| |
Collapse
|
46
|
Newman CS, Krieg PA. Xenopus bagpipe-related gene, koza, may play a role in regulation of cell proliferation. Dev Dyn 2002; 225:571-80. [PMID: 12454933 DOI: 10.1002/dvdy.10186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The homeobox gene koza is a new member of the vertebrate bagpipe-related gene family. Embryonic expression of koza is observed at highest levels in the muscle layer of the somites and, during later development, is restricted to the lateral somitic cells, which correspond to slow twitch muscle tissue. Expression of koza is also observed in the myocardial layer of the heart and in the cement gland. In each of these tissues, koza transcription commences only after the expression of terminal differentiation markers. By injection of synthetic mRNA, we show that overexpression of koza leads to an apparent decrease in the number of cells in the somites. No reduction in cell number is observed when koza is present in neural tissues, suggesting that koza exhibits some tissue specificity in regulation of cell proliferation. Embryonic manipulations show that restriction of koza expression to the slow twitch muscle layer is independent of axial structures but is, at least partly, regulated by signals arising in ectodermal tissue. Finally, in Drosophila, bagpipe expression is regulated by the hedgehog signaling pathway. By using ectopic expression, we show that koza transcription is positively regulated by banded hedgehog. This result indicates that regulation of bagpipe expression by hedgehog signaling is evolutionarily conserved.
Collapse
Affiliation(s)
- Craig S Newman
- Department of Cell Biology and Anatomy, University of Arizona College of Medicine, Tucson, Arizona 85724, USA
| | | |
Collapse
|
47
|
Venters SJ, Ordahl CP. Persistent myogenic capacity of the dermomyotome dorsomedial lip and restriction of myogenic competence. Development 2002; 129:3873-85. [PMID: 12135925 DOI: 10.1242/dev.129.16.3873] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dorsomedial lip (DML) of the somite dermomyotome is the source of cells for the early growth and morphogenesis of the epaxial primary myotome and the overlying dermomyotome epithelium. We have used quail-chick transplantation to investigate the mechanistic basis for DML activity. The ablated DML of chick wing-level somites was replaced with tissue fragments from various mesoderm regions of quail embryos and their capacity to form myotomal tissue assessed by confocal microscopy. Transplanted fragments from the epithelial sheet region of the dermomyotome exhibited full DML growth and morphogenetic capacity. Ventral somite fragments (sclerotome), head paraxial mesoderm or non-paraxial (lateral plate) mesoderm tested in this assay were each able to expand mitotically in concert with the surrounding paraxial mesoderm, although no myogenic potential was evident. When ablated DMLs were replaced with fragments of the dermomyotome ventrolateral lip of wing-level somites or pre-somitic mesoderm (segmental plate), myotome development was evident but was delayed or otherwise limited in some cases. Timed DML ablation-replacement experiments demonstrate that DML activity is progressive throughout the embryonic period (to at least E7) and its continued presence is necessary for the complete patterning of each myotome segment. The results of serial transplantation and BrdU pulse-chase experiments are most consistent with the conclusion that the DML consists of a self-renewing population of progenitor cells that are the primary source of cells driving the growth and morphogenesis of the myotome and dermomyotome in the epaxial domain of the body.
Collapse
Affiliation(s)
- Sara J Venters
- Department of Anatomy and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143, USA
| | | |
Collapse
|
48
|
Goel HL, Dey CS. Focal adhesion kinase tyrosine phosphorylation is associated with myogenesis and modulated by insulin. Cell Prolif 2002; 35:131-42. [PMID: 12027949 PMCID: PMC6496752 DOI: 10.1046/j.1365-2184.2002.00232.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesion kinase (FAK) was heavily phosphorylated as a function of differentiation of C2C12 mouse skeletal muscle cells. Insulin caused increases in FAK phosphorylation before stabilization in proliferated cells, while in differentiated cells there was a consistent transient inhibition of FAK phosphorylation before stimulation. The expression level of FAK was unaltered. Specific inhibition of insulin receptor tyrosine kinase activity abolished the insulin-mediated dephosphorylation of FAK. The data strongly indicate that FAK tyrosine phosphorylation, necessary for skeletal muscle differentiation, is modulated by insulin. Thus, for the first time, we report the differential regulation of FAK tyrosine phosphorylation by insulin during skeletal muscle differentiation.
Collapse
Affiliation(s)
- H L Goel
- Signal Transduction Research Laboratory, Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | | |
Collapse
|
49
|
Rubin JB, Choi Y, Segal RA. Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development 2002; 129:2223-32. [PMID: 11959830 DOI: 10.1242/dev.129.9.2223] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sonic hedgehog promotes proliferation of developing cerebellar granule cells. As sonic hedgehog is expressed in the cerebellum throughout life it is not clear why proliferation occurs only in the early postnatal period and only in the external granule cell layer. We asked whether heparan sulfate proteoglycans might regulate sonic hedgehog-induced proliferation and thereby contribute to the specialized proliferative environment of the external granule cell layer. We identified a conserved sequence within sonic hedgehog that is essential for binding to heparan sulfate proteoglycans, but not for binding to the receptor patched. Sonic hedgehog interactions with heparan sulfate proteoglycans promote maximal proliferation of postnatal day 6 granule cells. By contrast, proliferation of less mature granule cells is not affected by sonic hedgehog-proteoglycan interactions. The importance of proteoglycans for proliferation increases during development in parallel with increasing expression of the glycosyltransferase genes, exostosin 1 and exostosin 2. These data suggest that heparan sulfate proteoglycans, synthesized by exostosins, may be critical determinants of granule cell proliferation.
Collapse
Affiliation(s)
- Joshua B Rubin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | |
Collapse
|
50
|
Mitchell PJ, Johnson SE, Hannon K. Insulin-like growth factor I stimulates myoblast expansion and myofiber development in the limb. Dev Dyn 2002; 223:12-23. [PMID: 11803566 DOI: 10.1002/dvdy.1227] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Insulin-like growth factor I (IGF-I) is expressed in the anterior and posterior mesodermal cells of the developing limb. However, a definite role for IGF-I during early limb organogenesis is unknown. To determine the inherent participation of IGF-I during limb organ development, a retroviral delivery system (RCAS) was used to overexpress IGF-I throughout the developing hind limb of stage 24 chicken embryos. The area of the belly of the external gastrocnemius muscle in the IGF-I infected limb was an average of 160, 90, 70, and 80% larger than the contralateral control muscle belly, 4, 5, 6, and 7 days postinjection, respectively (all differences P < 0.01). In comparison to the contralateral control muscles, there were a significantly greater number of muscle fibers in the IGF-I infected muscles (P < 0.05), confirming that the majority of IGF-I-mediated muscle enlargement was due to an increase in total fiber numbers (hyperplasia). Four days postinjection, there was a 32% increase in myoblast to myofiber ratio in the muscle of injected limbs compared with the muscle in the contralateral noninjected control limbs (P < 0.05). This result demonstrates that IGF-I acts to expand the undifferentiated myoblast population, and as a result, more myofibers subsequently develop, and the muscles expressing ectopic IGF-I are enlarged by means of hyperplasia. There was no difference in tibiotarsus and fibula length or diameter between the IGF-I injected and control limb, suggesting that ectopic IGF-I expression within the mesoderm was not a nonspecific growth stimulant of all tissues of the developing limb, but specifically enhanced skeletal muscle development and growth. Ectopic IGF-I expression had no significant effect on myostatin mRNA concentrations. Our results support a model where mesodermally expressed IGF-I acts to regulate the number of primary myofibers, and, therefore, size of skeletal muscles, which form during the initial events of limb myogenesis.
Collapse
Affiliation(s)
- Pamela J Mitchell
- Department of Basic Medical Sciences, School of Veterinary Medicine, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|