1
|
Martin M, Gutierrez-Avino F, Shaikh MN, Tejedor FJ. A novel proneural function of Asense is integrated with the sequential actions of Delta-Notch, L'sc and Su(H) to promote the neuroepithelial to neuroblast transition. PLoS Genet 2023; 19:e1010991. [PMID: 37871020 PMCID: PMC10621995 DOI: 10.1371/journal.pgen.1010991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
In order for neural progenitors (NPs) to generate distinct populations of neurons at the right time and place during CNS development, they must switch from undergoing purely proliferative, self-renewing divisions to neurogenic, asymmetric divisions in a tightly regulated manner. In the developing Drosophila optic lobe, neuroepithelial (NE) cells of the outer proliferation center (OPC) are progressively transformed into neurogenic NPs called neuroblasts (NBs) in a medial to lateral proneural wave. The cells undergoing this transition express Lethal of Scute (L'sc), a proneural transcription factor (TF) of the Acheate Scute Complex (AS-C). Here we show that there is also a peak of expression of Asense (Ase), another AS-C TF, in the cells neighboring those with transient L'sc expression. These peak of Ase cells help to identify a new transitional stage as they have lost NE markers and L'sc, they receive a strong Notch signal and barely exhibit NB markers. This expression of Ase is necessary and sufficient to promote the NE to NB transition in a more robust and rapid manner than that of l'sc gain of function or Notch loss of function. Thus, to our knowledge, these data provide the first direct evidence of a proneural role for Ase in CNS neurogenesis. Strikingly, we found that strong Delta-Notch signaling at the lateral border of the NE triggers l'sc expression, which in turn induces ase expression in the adjacent cells through the activation of Delta-Notch signaling. These results reveal two novel non-conventional actions of Notch signaling in driving the expression of proneural factors, in contrast to the repression that Notch signaling exerts on them during classical lateral inhibition. Finally, Suppressor of Hairless (Su(H)), which seems to be upregulated late in the transitioning cells and in NBs, represses l'sc and ase, ensuring their expression is transient. Thus, our data identify a key proneural role of Ase that is integrated with the sequential activities of Delta-Notch signaling, L'sc, and Su(H), driving the progressive transformation of NE cells into NBs.
Collapse
Affiliation(s)
- Mercedes Martin
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Francisco Gutierrez-Avino
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Mirja N. Shaikh
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| | - Francisco J. Tejedor
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernandez, Sant Joan d’Alacant, Spain
| |
Collapse
|
2
|
Chen D, Forghany Z, Liu X, Wang H, Merks RMH, Baker DA. A new model of Notch signalling: Control of Notch receptor cis-inhibition via Notch ligand dimers. PLoS Comput Biol 2023; 19:e1010169. [PMID: 36668673 PMCID: PMC9891537 DOI: 10.1371/journal.pcbi.1010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 02/01/2023] [Accepted: 12/30/2022] [Indexed: 01/22/2023] Open
Abstract
All tissue development and replenishment relies upon the breaking of symmetries leading to the morphological and operational differentiation of progenitor cells into more specialized cells. One of the main engines driving this process is the Notch signal transduction pathway, a ubiquitous signalling system found in the vast majority of metazoan cell types characterized to date. Broadly speaking, Notch receptor activity is governed by a balance between two processes: 1) intercellular Notch transactivation triggered via interactions between receptors and ligands expressed in neighbouring cells; 2) intracellular cis inhibition caused by ligands binding to receptors within the same cell. Additionally, recent reports have also unveiled evidence of cis activation. Whilst context-dependent Notch receptor clustering has been hypothesized, to date, Notch signalling has been assumed to involve an interplay between receptor and ligand monomers. In this study, we demonstrate biochemically, through a mutational analysis of DLL4, both in vitro and in tissue culture cells, that Notch ligands can efficiently self-associate. We found that the membrane proximal EGF-like repeat of DLL4 was necessary and sufficient to promote oligomerization/dimerization. Mechanistically, our experimental evidence supports the view that DLL4 ligand dimerization is specifically required for cis-inhibition of Notch receptor activity. To further substantiate these findings, we have adapted and extended existing ordinary differential equation-based models of Notch signalling to take account of the ligand dimerization-dependent cis-inhibition reported here. Our new model faithfully recapitulates our experimental data and improves predictions based upon published data. Collectively, our work favours a model in which net output following Notch receptor/ligand binding results from ligand monomer-driven Notch receptor transactivation (and cis activation) counterposed by ligand dimer-mediated cis-inhibition.
Collapse
Affiliation(s)
- Daipeng Chen
- School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| | - Zary Forghany
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Xinxin Liu
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
| | - Haijiang Wang
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- Department of General Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Roeland M. H. Merks
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| | - David A. Baker
- Leiden University Medical Center (LUMC), Department of Cell & Chemical Biology, Leiden, The Netherlands
- * E-mail: (RMHM); (DAB)
| |
Collapse
|
3
|
Vázquez-Ulloa E, Lin KL, Lizano M, Sahlgren C. Reversible and bidirectional signaling of notch ligands. Crit Rev Biochem Mol Biol 2022; 57:377-398. [PMID: 36048510 DOI: 10.1080/10409238.2022.2113029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Notch signaling pathway is a direct cell-cell communication system involved in a wide variety of biological processes, and its disruption is observed in several pathologies. The pathway is comprised of a ligand-expressing (sender) cell and a receptor-expressing (receiver) cell. The canonical ligands are members of the Delta/Serrate/Lag-1 (DSL) family of proteins. Their binding to a Notch receptor in a neighboring cell induces a conformational change in the receptor, which will undergo regulated intramembrane proteolysis (RIP), liberating the Notch intracellular domain (NICD). The NICD is translocated to the nucleus and promotes gene transcription. It has been demonstrated that the ligands can also undergo RIP and nuclear translocation, suggesting a function for the ligands in the sender cell and possible bidirectionality of the Notch pathway. Although the complete mechanism of ligand processing is not entirely understood, and its dependence on Notch receptors has not been ruled out. Also, ligands have autonomous functions beyond Notch activation. Here we review the concepts of reverse and bidirectional signalization of DSL proteins and discuss the characteristics that make them more than just ligands of the Notch pathway.
Collapse
Affiliation(s)
- Elenaé Vázquez-Ulloa
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kai-Lan Lin
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Medicina Genomica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Cecilia Sahlgren
- Faculty of Science and Engineering/Cell Biology, Åbo Akademi University, Turku, Finland.,Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland.,Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Martinez Lyons A, Boulter L. The developmental origins of Notch-driven intrahepatic bile duct disorders. Dis Model Mech 2021; 14:dmm048413. [PMID: 34549776 PMCID: PMC8480193 DOI: 10.1242/dmm.048413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Notch signaling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, cell fate specification, and maintenance of stem and progenitor cell populations. In the vertebrate liver, an absence of Notch signaling results in failure to form bile ducts, a complex tubular network that radiates throughout the liver, which, in healthy individuals, transports bile from the liver into the bowel. Loss of a functional biliary network through congenital malformations during development results in cholestasis and necessitates liver transplantation. Here, we examine to what extent Notch signaling is necessary throughout embryonic life to initiate the proliferation and specification of biliary cells and concentrate on the animal and human models that have been used to define how perturbations in this signaling pathway result in developmental liver disorders.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
5
|
Deliconstantinos G, Kalodimou K, Delidakis C. Translational Control of Serrate Expression in Drosophila Cells. In Vivo 2021; 35:859-869. [PMID: 33622878 DOI: 10.21873/invivo.12326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM The DSL proteins, Serrate and Delta, which act as Notch receptor ligands, mediate signalling between adjacent cells, when a ligand-expressing cell binds to Notch on an adjacent receiving cell. Notch is ubiquitously expressed and DSL protein mis-expression can have devastating developmental consequences. Although transcriptional regulation of Delta and Serrate has been amply documented, we examined whether they are also regulated at the level of translation. MATERIALS AND METHODS We generated a series of deletions to investigate the initiation codon usage for Serrate using Drosophila S2 cells. RESULTS Serrate mRNA contains three putative ATG initiation codons spanning a 60-codon region upstream of its signal peptide; we found that each one can act as an initiation codon, however, with a different translational efficiency. CONCLUSION Serrate expression is strictly regulated at the translational level.
Collapse
Affiliation(s)
| | - Konstantina Kalodimou
- Institute of Molecular Biology and Biotechnology, F.O.R.T.H., Heraklion, Greece.,Department of Biology, University of Crete Heraklion, Heraklion, Greece
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology, F.O.R.T.H., Heraklion, Greece.,Department of Biology, University of Crete Heraklion, Heraklion, Greece
| |
Collapse
|
6
|
Intracellular trafficking of Notch orchestrates temporal dynamics of Notch activity in the fly brain. Nat Commun 2021; 12:2083. [PMID: 33828096 PMCID: PMC8027629 DOI: 10.1038/s41467-021-22442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
While Delta non-autonomously activates Notch in neighboring cells, it autonomously inactivates Notch through cis-inhibition, the molecular mechanism and biological roles of which remain elusive. The wave of differentiation in the Drosophila brain, the ‘proneural wave’, is an excellent model for studying Notch signaling in vivo. Here, we show that strong nonlinearity in cis-inhibition reproduces the second peak of Notch activity behind the proneural wave in silico. Based on this, we demonstrate that Delta expression induces a quick degradation of Notch in late endosomes and the formation of the twin peaks of Notch activity in vivo. Indeed, the amount of Notch is upregulated and the twin peaks are fused forming a single peak when the function of Delta or late endosomes is compromised. Additionally, we show that the second Notch peak behind the wavefront controls neurogenesis. Thus, intracellular trafficking of Notch orchestrates the temporal dynamics of Notch activity and the temporal patterning of neurogenesis. During Drosophila development, two peaks of Notch activity propagate across the neuroepithelium to generate neuroblasts. Here, the authors show Notch cis-inhibition under the control of intracellular Notch trafficking establishes these two peaks, which temporally control neurogenesis in the brain.
Collapse
|
7
|
Martinez-Lozada Z, Robinson MB. Reciprocal communication between astrocytes and endothelial cells is required for astrocytic glutamate transporter 1 (GLT-1) expression. Neurochem Int 2020; 139:104787. [PMID: 32650029 DOI: 10.1016/j.neuint.2020.104787] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 06/14/2020] [Indexed: 12/12/2022]
Abstract
Astrocytes have diverse functions that are supported by their anatomic localization between neurons and blood vessels. One of these functions is the clearance of extracellular glutamate. Astrocytes clear glutamate using two Na+-dependent glutamate transporters, GLT-1 (also called EAAT2) and GLAST (also called EAAT1). GLT-1 expression increases during synaptogenesis and is a marker of astrocyte maturation. Over 20 years ago, several groups demonstrated that astrocytes in culture express little or no GLT-1 and that neurons induce expression. We recently demonstrated that co-culturing endothelia with mouse astrocytes also induced expression of GLT-1 and GLAST. These increases were blocked by an inhibitor of γ-secretase. This and other observations are consistent with the hypothesis that Notch signaling is required, but the ligands involved were not identified. In the present study, we used rat astrocyte cultures to further define the mechanisms by which endothelia induce expression of GLT-1 and GLAST. We found that co-cultures of astrocytes and endothelia express higher levels of GLT-1 and GLAST protein and mRNA. That endothelia activate Hes5, a transcription factor target of Notch, in astrocytes. Using recombinant Notch ligands, anti-Notch ligand neutralizing antibodies, and shRNAs, we provide evidence that both Dll1 and Dll4 contribute to endothelia-dependent regulation of GLT-1. We also provide evidence that astrocytes secrete a factor(s) that induces expression of Dll4 in endothelia and that this effect is required for Notch-dependent induction of GLT-1. Together these studies indicate that reciprocal communication between astrocytes and endothelia is required for appropriate astrocyte maturation and that endothelia likely deploy additional non-Notch signals to induce GLT-1.
Collapse
Affiliation(s)
- Zila Martinez-Lozada
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318
| | - Michael B Robinson
- Departments of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA, 19104-4318; Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
| |
Collapse
|
8
|
Ligand-Induced Cis-Inhibition of Notch Signaling: The Role of an Extracellular Region of Serrate. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1227:29-49. [PMID: 32072497 DOI: 10.1007/978-3-030-36422-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cellular development can be controlled by communication between adjacent cells mediated by the highly conserved Notch signaling system. A cell expressing the Notch receptor on one cell can be activated in trans by ligands on an adjacent cell leading to alteration of transcription and cellular fate. Ligands also have the ability to inhibit Notch signaling, and this can be accomplished when both receptor and ligands are coexpressed in cis on the same cell. The manner in which cis-inhibition is accomplished is not entirely clear but it is known to involve several different protein domains of the ligands and the receptor. Some of the protein domains involved in trans-activation are also used for cis-inhibition, but some are used uniquely for each process. In this work, the involvement of various ligand regions and the receptor are discussed in relation to their contributions to Notch signaling.
Collapse
|
9
|
Fic W, Faria C, St Johnston D. IMP regulates Kuzbanian to control the timing of Notch signalling in Drosophila follicle cells. Development 2019; 146:dev.168963. [PMID: 30635283 PMCID: PMC6361131 DOI: 10.1242/dev.168963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/19/2018] [Indexed: 12/31/2022]
Abstract
The timing of Drosophila egg chamber development is controlled by a germline Delta signal that activates Notch in the follicle cells to induce them to cease proliferation and differentiate. Here, we report that follicle cells lacking the RNA-binding protein IMP go through one extra division owing to a delay in the Delta-dependent S2 cleavage of Notch. The timing of Notch activation has previously been shown to be controlled by cis-inhibition by Delta in the follicle cells, which is relieved when the miRNA pathway represses Delta expression. imp mutants are epistatic to Delta mutants and give an additive phenotype with belle and Dicer-1 mutants, indicating that IMP functions independently of both cis-inhibition and the miRNA pathway. We find that the imp phenotype is rescued by overexpression of Kuzbanian, the metalloprotease that mediates the Notch S2 cleavage. Furthermore, Kuzbanian is not enriched at the apical membrane in imp mutants, accumulating instead in late endosomes. Thus, IMP regulates Notch signalling by controlling the localisation of Kuzbanian to the apical domain, where Notch cleavage occurs, revealing a novel regulatory step in the Notch pathway.
Collapse
Affiliation(s)
| | | | - Daniel St Johnston
- The Gurdon Institute and The Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, UK
| |
Collapse
|
10
|
Mib1 prevents Notch Cis-inhibition to defer differentiation and preserve neuroepithelial integrity during neural delamination. PLoS Biol 2018; 16:e2004162. [PMID: 29708962 PMCID: PMC5945229 DOI: 10.1371/journal.pbio.2004162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/10/2018] [Accepted: 03/29/2018] [Indexed: 12/16/2022] Open
Abstract
The vertebrate neuroepithelium is composed of elongated progenitors whose reciprocal attachments ensure the continuity of the ventricular wall. As progenitors commit to differentiation, they translocate their nucleus basally and eventually withdraw their apical endfoot from the ventricular surface. However, the mechanisms allowing this delamination process to take place while preserving the integrity of the neuroepithelial tissue are still unclear. Here, we show that Notch signaling, which is classically associated with an undifferentiated state, remains active in prospective neurons until they delaminate. During this transition period, prospective neurons rapidly reduce their apical surface and only later down-regulate N-Cadherin levels. Upon Notch blockade, nascent neurons disassemble their junctions but fail to reduce their apical surface. This disrupted sequence weakens the junctional network and eventually leads to breaches in the ventricular wall. We also provide evidence that the Notch ligand Delta-like 1 (Dll1) promotes differentiation by reducing Notch signaling through a Cis-inhibition mechanism. However, during the delamination process, the ubiquitin ligase Mindbomb1 (Mib1) transiently blocks this Cis-inhibition and sustains Notch activity to defer differentiation. We propose that the fine-tuned balance between Notch Trans-activation and Cis-inhibition allows neuroepithelial cells to seamlessly delaminate from the ventricular wall as they commit to differentiation.
Collapse
|
11
|
Steinbuck MP, Arakcheeva K, Winandy S. Novel TCR-Mediated Mechanisms of Notch Activation and Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 200:997-1007. [PMID: 29288204 PMCID: PMC5854196 DOI: 10.4049/jimmunol.1700070] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/22/2017] [Indexed: 01/04/2023]
Abstract
The Notch receptor is an evolutionarily highly conserved transmembrane protein that is essential to a wide spectrum of cellular systems. Notch signaling is especially important to T cell development, and its deregulation leads to leukemia. Although not well characterized, it continues to play an integral role in peripheral T cells, in which a unique mode of Notch activation can occur. In contrast to canonical Notch activation initiated by adjacent ligand-expressing cells, TCR stimulation is sufficient to induce Notch signaling. However, the interactions between these two pathways have not been defined. In this article, we show that Notch activation occurs in peripheral T cells within a few hours post-TCR stimulation and is required for optimal T cell activation. Using a panel of inhibitors against components of the TCR signaling cascade, we demonstrate that Notch activation is facilitated through initiation of protein kinase C-induced ADAM activity. Moreover, our data suggest that internalization of Notch via endocytosis plays a role in this process. Although ligand-mediated Notch stimulation relies on mechanical pulling forces that disrupt the autoinhibitory domain of Notch, we hypothesized that, in T cells in the absence of ligands, these conformational changes are induced through chemical adjustments in the endosome, causing alleviation of autoinhibition and receptor activation. Thus, T cells may have evolved a unique method of Notch receptor activation, which is described for the first time, to our knowledge, in this article.
Collapse
Affiliation(s)
- Martin Peter Steinbuck
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Ksenia Arakcheeva
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| | - Susan Winandy
- Department of Pathology and Laboratory Medicine, Immunology Training Program, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
12
|
Luna-Escalante JC, Formosa-Jordan P, Ibañes M. Redundancy and cooperation in Notch intercellular signaling. Development 2018; 145:dev.154807. [PMID: 29242285 DOI: 10.1242/dev.154807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 11/27/2017] [Indexed: 12/25/2022]
Abstract
During metazoan development, Notch signaling drives spatially coordinated differentiation by establishing communication between adjacent cells. This occurs through either lateral inhibition, in which adjacent cells acquire distinct fates, or lateral induction, in which all cells become equivalent. Notch signaling is commonly activated by several distinct ligands, each of which drives signaling with a different efficiency upon binding to the Notch receptor of adjacent cells. Moreover, these ligands can also be distinctly regulated by Notch signaling. Under such complex circumstances, the overall spatial coordination becomes elusive. Here, we address this issue through both mathematical and computational analyses. Our results show that when two ligands have distinct efficiencies and compete for the same Notch receptor, they cooperate to drive new signaling states, thereby conferring additional robustness and evolvability to Notch signaling. Counterintuitively, whereas antagonistically regulated ligands cooperate to drive and enhance the response that is expected from the more efficient ligand, equivalently regulated ligands coordinate emergent spatial responses that are dependent on both ligands. Our study highlights the importance of ligand efficiency in multi-ligand scenarios, and can explain previously reported complex phenotypes.
Collapse
Affiliation(s)
- Juan C Luna-Escalante
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pau Formosa-Jordan
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Marta Ibañes
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain .,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| |
Collapse
|
13
|
Bellavia D, Checquolo S, Palermo R, Screpanti I. The Notch3 Receptor and Its Intracellular Signaling-Dependent Oncogenic Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:205-222. [PMID: 30030828 DOI: 10.1007/978-3-319-89512-3_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During evolution, gene duplication of the Notch receptor suggests a progressive functional diversification. The Notch3 receptor displays a number of structural differences with respect to Notch1 and Notch2, most of which have been reported in the transmembrane and in the intracellular regions, mainly localized in the negative regulatory region (NRR) and trans-activation domain (TAD). Targeted deletion of Notch3 does not result in embryonic lethality, which is in line with its highly restricted tissue expression pattern. Importantly, deregulated Notch3 expression and/or activation, often results in disrupted cell differentiation and/or pathological development, most notably in oncogenesis in different cell contexts. Mechanistically this is due to Notch3-related genetic alterations or epigenetic or posttranslational control mechanisms. In this chapter we discuss the possible relationships between the structural differences and the pathological role of Notch3 in the control of mouse and human cancers. In future, targeting the unique features of Notch3-oncogenic mechanisms could be exploited to develop anticancer therapeutics.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Saula Checquolo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Rocco Palermo
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
14
|
Sakamoto K. Notch signaling in oral squamous neoplasia. Pathol Int 2016; 66:609-617. [PMID: 27671927 DOI: 10.1111/pin.12461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/15/2016] [Accepted: 08/26/2016] [Indexed: 12/14/2022]
Abstract
Notch signaling is involved in cell-cell communication. It is an evolutionarily ancient mechanism and plays a fundamental role in development. The typical function of Notch signaling is the regulation of cell fate segregation at asymmetric division; however, a role in tumorigenesis has also been suggested. Inactivating mutations of NOTCH1 are present in about 10 % of cases of squamous cell carcinoma of the skin, oral cavity, esophagus, and lung, rendering it one of the most frequently mutated genes in squamous cell carcinoma. Mouse knockout studies have demonstrated that Notch1 is imperative for early development but is dispensable for formation of the squamous epithelium. However, loss of Notch signaling predisposes the epidermis to hyperplasia and increases tumor incidence. This tumor-inducing effect resulting from the loss of Notch signaling is associated with non-cell-autonomous effects that are elicited by subtle alteration of epithelial cell features, generating a wound-like microenvironment in the underlying stroma. We found that Notch1 was expressed specifically in the basal cells of the oral squamous epithelium. In cancer and oral epithelial dysplasia, it was significantly downregulated, suggesting that reduced Notch activity plays a distinct role in oral neoplasia.
Collapse
Affiliation(s)
- Kei Sakamoto
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
15
|
Palau-Ortin D, Formosa-Jordan P, Sancho JM, Ibañes M. Pattern selection by dynamical biochemical signals. Biophys J 2016; 108:1555-1565. [PMID: 25809268 DOI: 10.1016/j.bpj.2014.12.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/23/2022] Open
Abstract
The development of multicellular organisms involves cells to decide their fate upon the action of biochemical signals. This decision is often spatiotemporally coordinated such that a spatial pattern arises. The dynamics that drive pattern formation usually involve genetic nonlinear interactions and positive feedback loops. These complex dynamics may enable multiple stable patterns for the same conditions. Under these circumstances, pattern formation in a developing tissue involves a selection process: why is a certain pattern formed and not another stable one? Herein we computationally address this issue in the context of the Notch signaling pathway. We characterize a dynamical mechanism for developmental selection of a specific pattern through spatiotemporal changes of the control parameters of the dynamics, in contrast to commonly studied situations in which initial conditions and noise determine which pattern is selected among multiple stable ones. This mechanism can be understood as a path along the parameter space driven by a sequence of biochemical signals. We characterize the selection process for three different scenarios of this dynamical mechanism that can take place during development: the signal either 1) acts in all the cells at the same time, 2) acts only within a cluster of cells, or 3) propagates along the tissue. We found that key elements for pattern selection are the destabilization of the initial pattern, the subsequent exploration of other patterns determined by the spatiotemporal symmetry of the parameter changes, and the speeds of the path compared to the timescales of the pattern formation process itself. Each scenario enables the selection of different types of patterns and creates these elements in distinct ways, resulting in different features. Our approach extends the concept of selection involved in cellular decision-making, usually applied to cell-autonomous decisions, to systems that collectively make decisions through cell-to-cell interactions.
Collapse
Affiliation(s)
- David Palau-Ortin
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Pau Formosa-Jordan
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - José M Sancho
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Marta Ibañes
- Departament d'Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
16
|
Murata A, Hayashi SI. Notch-Mediated Cell Adhesion. BIOLOGY 2016; 5:biology5010005. [PMID: 26784245 PMCID: PMC4810162 DOI: 10.3390/biology5010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
Notch family members are generally recognized as signaling molecules that control various cellular responses in metazoan organisms. Early fly studies and our mammalian studies demonstrated that Notch family members are also cell adhesion molecules; however, information on the physiological roles of this function and its origin is limited. In this review, we discuss the potential present and ancestral roles of Notch-mediated cell adhesion in order to explore its origin and the initial roles of Notch family members dating back to metazoan evolution. We hypothesize that Notch family members may have initially emerged as cell adhesion molecules in order to mediate multicellularity in the last common ancestor of metazoan organisms.
Collapse
Affiliation(s)
- Akihiko Murata
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Shin-Ichi Hayashi
- Department of Molecular and Cellular Biology, Division of Immunology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
17
|
Preuße K, Tveriakhina L, Schuster-Gossler K, Gaspar C, Rosa AI, Henrique D, Gossler A, Stauber M. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo. PLoS Genet 2015; 11:e1005328. [PMID: 26114479 PMCID: PMC4482573 DOI: 10.1371/journal.pgen.1005328] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 06/01/2015] [Indexed: 11/18/2022] Open
Abstract
Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool). In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity) raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt) and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki), we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM) where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4.
Collapse
Affiliation(s)
- Kristina Preuße
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Lena Tveriakhina
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Karin Schuster-Gossler
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Cláudia Gaspar
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra Isabel Rosa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Domingos Henrique
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Achim Gossler
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Stauber
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
18
|
Formosa-Jordan P, Ibañes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS One 2014; 9:e95744. [PMID: 24781918 PMCID: PMC4004554 DOI: 10.1371/journal.pone.0095744] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/31/2014] [Indexed: 12/05/2022] Open
Abstract
Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signaling sources share the same receptor and provides the tools for their characterization.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Marta Ibañes
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
19
|
James AC, Szot JO, Iyer K, Major JA, Pursglove SE, Chapman G, Dunwoodie SL. Notch4 reveals a novel mechanism regulating Notch signal transduction. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1272-84. [PMID: 24667410 DOI: 10.1016/j.bbamcr.2014.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/13/2014] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Notch4 is a divergent member of the Notch family of receptors that is primarily expressed in the vasculature. Its expression implies an important role for Notch4 in the vasculature; however, mice homozygous for the Notch4(d1) knockout allele are viable. Since little is known about the role of Notch4 in the vasculature and how it functions, we further investigated Notch4 in mice and in cultured cells. We found that the Notch4(d1) allele is not null as it expresses a truncated transcript encoding most of the NOTCH4 extracellular domain. In cultured cells, NOTCH4 did not signal in response to ligand. Moreover, NOTCH4 inhibited signalling from the NOTCH1 receptor. This is the first report of cis-inhibition of signalling by another Notch receptor. The NOTCH4 extracellular domain also inhibits NOTCH1 signalling when expressed in cis, raising the possibility that reported Notch4 phenotypes may not be due to loss of NOTCH4 function. To better address the role of NOTCH4 in vivo, we generated a Notch4 null mouse in which the entire coding region was deleted. Notch4 null mice exhibited slightly delayed vessel growth in the retina, consistent with our novel finding that NOTCH4 protein is expressed in the newly formed vasculature. These findings indicate a role of NOTCH4 in fine-tuning the forming vascular plexus.
Collapse
Affiliation(s)
- A C James
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - J O Szot
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, Australia.
| | - K Iyer
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - J A Major
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - S E Pursglove
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia.
| | - G Chapman
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia.
| | - S L Dunwoodie
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Sydney, Australia; St Vincent's Clinical School, Faculty of Medicine, UNSW, Sydney, Australia; School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, Australia.
| |
Collapse
|
20
|
Abstract
Theoretical and computational approaches for understanding different aspects of Notch signaling and Notch dependent patterning are gaining popularity in recent years. These in silico methodologies can provide dynamic insights that are often not intuitive and may help guide experiments aimed at elucidating these processes. This chapter is an introductory tutorial intended to allow someone with basic mathematical and computational knowledge to explore new mathematical models of Notch-mediated processes and perform numerical simulations of these models. In particular, we explain how to define and simulate models of lateral inhibition patterning processes. We provide a Matlab code for simulating various lateral inhibition models in a simple and intuitive manner, and show how to present the results from the computational models. This code can be used as a starting point for exploring more specific models that include additional aspects of the Notch pathway and its regulation.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Department of Structure and Constituents of Matter, Physics, University of Barcelona, Martí i Franquès 1, Barcelona, 08028, Spain
| | | |
Collapse
|
21
|
Kristoffersen K, Villingshøj M, Poulsen HS, Stockhausen MT. Level of Notch activation determines the effect on growth and stem cell-like features in glioblastoma multiforme neurosphere cultures. Cancer Biol Ther 2013; 14:625-37. [PMID: 23792644 PMCID: PMC3742492 DOI: 10.4161/cbt.24595] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/08/2013] [Accepted: 04/07/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Brain cancer stem-like cells (bCSC) are cancer cells with neural stem cell (NSC)-like properties found in glioblastoma multiforme (GBM) and they are assigned a central role in tumor initiation, progression and relapse. The Notch pathway is important for maintenance and cell fate decisions in the normal NSC population. Notch signaling is often deregulated in GBM and recent results suggest that this pathway plays a significant role in bCSC as well. We therefore wished to further elucidate the role of Notch activation in GBM-derived bCSC. METHODS Human-derived GBM xenograft cells were cultured as NSC-like neurosphere cultures. Notch modulation was accomplished either by blocking the pathway using the γ-secretase inhibitor DAPT or by activating it by transfecting the cells with the constitutive active Notch-1 receptor. RESULTS GBM neurosphere cultures with high endogenous Notch activation displayed sensitivity toward Notch inhibition with regard to tumorigenic features as demonstrated by increased G0/G1 population and reduced colony formation capacity. Of the NSC-like characteristics, only the primary sphere forming potential was affected, while no effect was observed on self-renewal or differentiation. In contrast, when Notch signaling was activated a decrease in the G0/G1 population and an enhanced capability of colony formation was observed, along with increased self-renewal and de-differentiation. CONCLUSION Based on the presented results we propose that active Notch signaling plays a role for cell growth and stem cell-like features in GBM neurosphere cultures and that Notch-targeted anti-bCSC treatment could be feasible for GBM patients with high endogenous Notch pathway activation.
Collapse
Affiliation(s)
- Karina Kristoffersen
- Department of Radiation Biology; The Finsen Center, Section 6321; Copenhagen University Hospital; Copenhagen, Denmark
| | - Mette Villingshøj
- Department of Radiation Biology; The Finsen Center, Section 6321; Copenhagen University Hospital; Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- Department of Radiation Biology; The Finsen Center, Section 6321; Copenhagen University Hospital; Copenhagen, Denmark
| | - Marie-Thérése Stockhausen
- Department of Radiation Biology; The Finsen Center, Section 6321; Copenhagen University Hospital; Copenhagen, Denmark
| |
Collapse
|
22
|
Torii KU. Two-dimensional spatial patterning in developmental systems. Trends Cell Biol 2012; 22:438-46. [DOI: 10.1016/j.tcb.2012.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 06/10/2012] [Accepted: 06/11/2012] [Indexed: 01/29/2023]
|
23
|
Richards GS, Degnan BM. The expression of Delta ligands in the sponge Amphimedon queenslandica suggests an ancient role for Notch signaling in metazoan development. EvoDevo 2012; 3:15. [PMID: 22824137 PMCID: PMC3482393 DOI: 10.1186/2041-9139-3-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 06/27/2012] [Indexed: 01/09/2023] Open
Abstract
Background Intercellular signaling via the Notch pathway regulates cell fate, patterning, differentiation and proliferation, and is essential for the proper development of bilaterians and cnidarians. To investigate the origins of the Notch pathway, we are studying its deployment in a representative of an early branching lineage, the poriferan Amphimedon queenslandica. The A. queenslandica genome encodes a single Notch receptor and five membrane-bound Delta ligands, as well as orthologs of many genes that enact and regulate canonical Notch signaling events in other animals. Methods In the present report we analyze the structure of the five A. queenslandica Deltas using bioinformatic methods, and characterize their developmental expression via whole mount in situ hybridization and histological staining. Results Sequence analysis of the A. queenslandica Delta ligands highlights the conservation of their extracellular domains. This contrasts with the divergence of their intracellular regions, each of which is predicted to bear a unique repertoire of protein interaction motifs. In keeping with this diversity, these ligands are expressed differentially and dynamically throughout A. queenslandica embryogenesis, both in cell type specific patterns and broader regional domains. Notably, this expression coincides with the development of the photosensitive larval pigment ring, the non-ciliated cuboidal cells located at the anterior pole of the larva, and the intraepithelial flask cells and globular cells that are presumed to have sensory and/or secretory roles. Conclusions Based on the dynamic and complex patterns of expression of these Delta ligands and the Notch receptor, we propose that the Notch signaling pathway is involved in regulating the development of diverse cell types in A. queenslandica. From these observations we infer that Notch signaling is a conserved feature of metazoan development, ancestrally contributing to cell determination, patterning and differentiation processes.
Collapse
Affiliation(s)
- Gemma S Richards
- School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| | | |
Collapse
|
24
|
Meloty-Kapella L, Shergill B, Kuon J, Botvinick E, Weinmaster G. Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsins, and actin. Dev Cell 2012; 22:1299-312. [PMID: 22658936 DOI: 10.1016/j.devcel.2012.04.005] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 02/15/2012] [Accepted: 04/04/2012] [Indexed: 12/17/2022]
Abstract
Notch signaling induced by cell surface ligands is critical to development and maintenance of many eukaryotic organisms. Notch and its ligands are integral membrane proteins that facilitate direct cell-cell interactions to activate Notch proteolysis and release the intracellular domain that directs Notch-specific cellular responses. Genetic studies suggest that Notch ligands require endocytosis, ubiquitylation, and epsin endocytic adaptors to activate signaling, but the exact role of ligand endocytosis remains unresolved. Here we characterize a molecularly distinct mode of clathrin-mediated endocytosis requiring ligand ubiquitylation, epsins, and actin for ligand cells to activate signaling in Notch cells. Using a cell-bead optical tweezers system, we obtained evidence for cell-mediated mechanical force dependent on this distinct mode of ligand endocytosis. We propose that the mechanical pulling force produced by endocytosis of Notch-bound ligand drives conformational changes in Notch that permit activating proteolysis.
Collapse
Affiliation(s)
- Laurence Meloty-Kapella
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
25
|
Tada M, Itoh S, Ishii-Watabe A, Suzuki T, Kawasaki N. Functional analysis of the Notch ligand Jagged1 missense mutant proteins underlying Alagille syndrome. FEBS J 2012; 279:2096-107. [PMID: 22487239 DOI: 10.1111/j.1742-4658.2012.08595.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heterozygous mutations in the JAG1 gene, encoding Notch ligand Jagged1, cause Alagille syndrome (ALGS). As most of the mutations are nonsense or frameshift mutations producing inactive truncated proteins, haplo-insufficiency is considered the major pathogenic mechanism of ALGS. However, the molecular mechanisms by which the missense mutations cause ALGS remain unclear. Here we analyzed the functional properties of four ALGS missense mutant proteins, P163L, R184H, G386R and C714Y, using transfected mammalian cells. P163L and R184H showed Notch-binding activities similar to that of the wild-type when assessed by immunoprecipitation. However, their trans-activation and cis-inhibition activities were almost completely impaired. These mutant proteins localized mainly to the endoplasmic reticulum (ER), suggesting that the mutations induced improper protein folding. Furthermore, the mutant proteins bound more strongly to the ER chaperone proteins calnexin and calreticulin than the wild-type did. C714Y also localized to the ER, but possessed significant trans-activation activity and lacked enhanced binding to the chaperones, indicating a less severe phenotype. The properties of G386R were the same as those of the wild-type. Dominant-negative effects were not detected for any mutant protein. These results indicate that accumulation in the ER and binding to the chaperones correlate with the impaired signal-transduction activities of the missense mutant proteins, which may contribute to the pathogenic mechanism of ALGS. Our findings, which suggest the requirement for cell-surface localization of Jagged1 for cis-inhibition activities, also provide important information for understanding the molecular basis of Notch-signaling pathways.
Collapse
Affiliation(s)
- Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
26
|
Reduction of NOTCH1 expression pertains to maturation abnormalities of keratinocytes in squamous neoplasms. J Transl Med 2012; 92:688-702. [PMID: 22330335 DOI: 10.1038/labinvest.2012.9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Notch is a transmembrane receptor functioning in the determination of cell fate. Abnormal Notch signaling promotes tumor development, showing either oncogenic or tumor suppressive activity. The uncertainty about the exact role of Notch signaling, partially, stems from inconsistencies in descriptions of Notch expression in human cancers. Here, we clarified basal-cell dominant expression of NOTCH1 in squamous epithelium. NOTCH1 was downregulated in squamous neoplasms of oral mucosa, esophagus and uterine cervix, compared with the normal basal cells, although the expression tended to be retained in cervical lesions. NOTCH1 downregulation was observed even in precancers, and there was little difference between cancers and high-grade precancerous lesions, suggesting its minor contribution to cancer-specific events such as invasion. In culture experiments, reduction of NOTCH1 expression resulted in downregulation of keratin 13 and keratin 15, and upregulation of keratin 17, and NOTCH1 knockdown cells formed a dysplastic stratified epithelium mimicking a precancerous lesion. The NOTCH1 downregulation and the concomitant alterations of those keratin expressions were confirmed in the squamous neoplasms both by immunohistochemical and cDNA microarray analyses. Our data indicate that reduction of NOTCH1 expression directs the basal cells to cease terminal differentiation and to form an immature epithelium, thereby playing a major role in the histopathogenesis of epithelial dysplasia. Furthermore, downregulation of NOTCH1 expression seems to be an inherent mechanism for switching the epithelium from a normal and mature state to an activated and immature state, suggesting its essential role in maintaining the epithelial integrity.
Collapse
|
27
|
Yaron A, Sprinzak D. The cis side of juxtacrine signaling: a new role in the development of the nervous system. Trends Neurosci 2012; 35:230-9. [PMID: 22222351 DOI: 10.1016/j.tins.2011.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/30/2011] [Accepted: 12/05/2011] [Indexed: 12/18/2022]
Abstract
Cell-cell communication by juxtacrine signaling plays a key role in the development of the nervous system, from cell fate determination through axonal guidance to synaptogenesis. Interestingly, several juxtacrine signaling systems exhibit an inhibitory interaction between receptors and ligands in the same cell, termed cis inhibition. These include the Notch, semaphorin and ephrin signaling systems. Here we review the role of cis inhibition in these signaling systems in the development of the nervous system. We compare and contrast cis inhibition mechanisms and discuss their potential cellular function as a threshold-generating mechanism. The prevalence of cis inhibition suggests that these interactions and their functional regulatory roles may serve as a general design principle for juxtacrine signaling-mediated processes during and beyond neurodevelopment.
Collapse
Affiliation(s)
- Avraham Yaron
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.
| | | |
Collapse
|
28
|
Wu X, Zou Y, Zhou Q, Huang L, Gong H, Sun A, Tateno K, Katsube KI, Radtke F, Ge J, Minamino T, Komuro I. Role of Jagged1 in Arterial Lesions After Vascular Injury. Arterioscler Thromb Vasc Biol 2011; 31:2000-6. [PMID: 21680900 DOI: 10.1161/atvbaha.111.225144] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Objective—
Impaired regeneration of endothelial cells (EC) and overactivity of vascular smooth muscle cells (VSMC) are hallmarks of the arterial lesions associated with aging. The occurrence of 2 opposing cellular processes in the same arterial milieu makes pharmaceutical treatment difficult to develop. We previously reported that endothelial expression of a Notch ligand (Jagged1) was reduced in aged animals and that growth of the neointima was enhanced in these animals.
Methods and Results—
Similar to aged animals, Tie2-cre
+
Jagged1
lox/+
mice (with heterologous knockout of Jagged1 in EC) showed exaggerated intimal and medial thickening after carotid artery ligation. Unexpectedly, these mice showed little increase of Jagged1 expression not only in EC but also in VSMC, in contrast to a significant upregulation of Jagged1 in wild-type arteries after ligation. Coculture of VSMC with Jagged1-null EC resulted in the transition of VSMC from the contractile to the synthetic phenotype, along with decreased Jagged1 expression by VSMC. Conversely, overexpression of Jagged1 by EC or VSMC was shown to prevent the unfavorable phenotypic transition of VSMC, under both monoculture and coculture conditions.
Conclusion—
These findings suggest a unidirectional effect of Jagged1 on both EC and VSMC that contributes to inhibition of arterial lesions after vascular injury. Our data also indicate that Jagged1 may be a novel therapeutic target for aging-related vascular diseases.
Collapse
Affiliation(s)
- Xiaojing Wu
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Yunzeng Zou
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Qi Zhou
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Lan Huang
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Hui Gong
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Aijun Sun
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Kaoru Tateno
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Ken-ichi Katsube
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Freddy Radtke
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Junbo Ge
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Tohru Minamino
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| | - Issei Komuro
- From the Cardiovascular Center of Xinqiao Hospital, Third Military Medical University, Chongqing, China (X.W., L.H.); the Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba, Japan (X.W., K.T., T.M.); Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China (Y.Z., H.G., A.S., J.G.); the Cardiovascular Department of the Second Affiliated Hospital, Chongqing Medical
| |
Collapse
|
29
|
Abstract
Lung cancer is the leading cause of cancer-related deaths in the Western world. The lungs can be affected by a number of histologically diverse malignancies. Nonetheless, the vast majority of lung cancers are classified as non-small-cell lung cancer (NSCLC). Despite extensive research on different therapeutic regimens, the overall 5-year survival of patients diagnosed with NSCLC (all stages) is a dismal 15%. Although strongly correlated with tobacco smoke, there is an increasing NSCLC morbidity in individuals who have never smoked. The pattern of genetic lesions found in NSCLC derived from smokers and never-smokers appears to be different. This fact led to the hypothesis that different, still unidentified carcinogens are responsible for lung cancer onset in never-smokers. All the aforementioned considerations compel the scientific community to find novel therapeutic targets to fight such a deadly disease. In recent years critical pathways governing embryonic development have been increasingly linked to cancer. Here we will focus on the role of Notch signaling in lung cancer. Notch receptors' activity can be blocked through the use of different strategies, thus representing a promising alternative/complement to the arsenal of therapeutic strategies currently used to treat lung cancer.
Collapse
Affiliation(s)
- Paola Galluzzo
- Loyola University Chicago Medical Center, Department of Pathology and Oncology Institute, 2160 South First Avenue, Maywood, IL 60153, USA
| | | |
Collapse
|
30
|
Wright GJ, Giudicelli F, Soza-Ried C, Hanisch A, Ariza-McNaughton L, Lewis J. DeltaC and DeltaD interact as Notch ligands in the zebrafish segmentation clock. Development 2011; 138:2947-56. [DOI: 10.1242/dev.066654] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We describe the production and characterisation of two monoclonal antibodies, zdc2 and zdd2, directed against the zebrafish Notch ligands DeltaC and DeltaD, respectively. We use our antibodies to show that these Delta proteins can bind to one another homo- and heterophilically, and to study the localisation of DeltaC and DeltaD in the zebrafish nervous system and presomitic mesoderm (PSM). Our findings in the nervous system largely confirm expectations from previous studies, but in the PSM we see an unexpected pattern in which the localisation of DeltaD varies according to the level of expression of DeltaC: in the anterior PSM, where DeltaC is plentiful, the two proteins are colocalised in intracellular puncta, but in the posterior PSM, where DeltaC is at a lower level, DeltaD is seen mainly on the cell surface. Forced overexpression of DeltaC reduces the amount of DeltaD on the cell surface in the posterior PSM; conversely, loss-of-function mutation of DeltaC increases the amount of DeltaD on the cell surface in the anterior PSM. These findings suggest an explanation for a long-standing puzzle regarding the functions of the two Delta proteins in the somite segmentation clock – an explanation that is based on the proposition that they associate heterophilically to activate Notch.
Collapse
Affiliation(s)
- Gavin J. Wright
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK
| | - François Giudicelli
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
- Laboratoire de Biologie du Développement, CNRS UMR 7622/INSERM ERL U969, Université Pierre et Marie Curie, 75005 Paris, France
| | - Cristian Soza-Ried
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Anja Hanisch
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Linda Ariza-McNaughton
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | - Julian Lewis
- Vertebrate Development Laboratory, Cancer Research UK, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| |
Collapse
|
31
|
Sprinzak D, Lakhanpal A, LeBon L, Garcia-Ojalvo J, Elowitz MB. Mutual inactivation of Notch receptors and ligands facilitates developmental patterning. PLoS Comput Biol 2011; 7:e1002069. [PMID: 21695234 PMCID: PMC3111533 DOI: 10.1371/journal.pcbi.1002069] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 04/12/2011] [Indexed: 11/18/2022] Open
Abstract
Developmental patterning requires juxtacrine signaling in order to tightly coordinate the fates of neighboring cells. Recent work has shown that Notch and Delta, the canonical metazoan juxtacrine signaling receptor and ligand, mutually inactivate each other in the same cell. This cis-interaction generates mutually exclusive sending and receiving states in individual cells. It generally remains unclear, however, how this mutual inactivation and the resulting switching behavior can impact developmental patterning circuits. Here we address this question using mathematical modeling in the context of two canonical pattern formation processes: boundary formation and lateral inhibition. For boundary formation, in a model motivated by Drosophila wing vein patterning, we find that mutual inactivation allows sharp boundary formation across a broader range of parameters than models lacking mutual inactivation. This model with mutual inactivation also exhibits robustness to correlated gene expression perturbations. For lateral inhibition, we find that mutual inactivation speeds up patterning dynamics, relieves the need for cooperative regulatory interactions, and expands the range of parameter values that permit pattern formation, compared to canonical models. Furthermore, mutual inactivation enables a simple lateral inhibition circuit architecture which requires only a single downstream regulatory step. Both model systems show how mutual inactivation can facilitate robust fine-grained patterning processes that would be difficult to implement without it, by encoding a difference-promoting feedback within the signaling system itself. Together, these results provide a framework for analysis of more complex Notch-dependent developmental systems. Multicellular development requires tightly regulated spatial pattern formation, frequently including the generation of sharp differences over short length scales. Classic examples include boundary formation in the Drosophila wing veins and lateral inhibition patterning in the differentiation of sensory cells. These processes and a diverse variety of others are mediated by the Notch signaling system which allows neighboring cells to exchange information, via interaction between the Notch receptor on one cell and its ligands such as Delta, on another. Interestingly, recent evidence has shown that Notch and Delta within the same cell (in cis) also interact, mutually inactivating each other. However, the significance of this interaction for pattern formation has remained unclear. Here we show, by analytical and computational modeling, how this cis interaction intrinsically generates a difference-promoting logic that optimizes the system for use in fine-grained pattern formation. Specifically, boundary formation and lateral inhibition patterning both operate more effectively and with simpler circuit architectures than they could without this interaction. Our results provide a foundation for understanding these and other Notch-dependent pattern formation processes.
Collapse
Affiliation(s)
- David Sprinzak
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Amit Lakhanpal
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Lauren LeBon
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
| | - Jordi Garcia-Ojalvo
- Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Michael B. Elowitz
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California, United States of America
- Division of Biology and Department of Applied Physics, California Institute of Technology, Pasadena, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
del Álamo D, Rouault H, Schweisguth F. Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol 2011; 21:R40-7. [PMID: 21215938 DOI: 10.1016/j.cub.2010.10.034] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Notch receptors in a given cell are activated by cell surface ligands in neighbouring cells but can also be inhibited by the ligands present within the same cell. This process is known as cis-inhibition of Notch. Additionally, reciprocal cis-inhibition of the ligands by Notch has also been observed, albeit to a limited extent. Here, we review the mechanisms, functional relevance and potential implications of these cis-inhibitory interactions for Notch-mediated fate decisions.
Collapse
Affiliation(s)
- David del Álamo
- Institut Pasteur, Dépt. Biologie du Développement, F-75015 Paris, France
| | | | | |
Collapse
|
33
|
Poulton JS, Huang YC, Smith L, Sun J, Leake N, Schleede J, Stevens LM, Deng WM. The microRNA pathway regulates the temporal pattern of Notch signaling in Drosophila follicle cells. Development 2011; 138:1737-45. [PMID: 21447549 DOI: 10.1242/dev.059352] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular development requires the correct spatial and temporal regulation of cell division and differentiation. These processes are frequently coordinated by the activities of various signaling pathways such as Notch signaling. From a screen for modifiers of Notch signaling in Drosophila we have identified the RNA helicase Belle, a recently described component of the RNA interference pathway, as an important regulator of the timing of Notch activity in follicle cells. We found that loss of Belle delays activation of Notch signaling, which results in delayed follicle cell differentiation and defects in the cell cycle. Because mutations in well-characterized microRNA components phenocopied the Notch defects observed in belle mutants, Belle might be functioning in the microRNA pathway in follicle cells. The effect of loss of microRNAs on Notch signaling occurs upstream of Notch cleavage, as expression of the constitutively active intracellular domain of Notch in microRNA-defective cells restored proper activation of Notch. Furthermore, we present evidence that the Notch ligand Delta is an important target of microRNA regulation in follicle cells and regulates the timing of Notch activation through cis inhibition of Notch. Here we have uncovered a complex regulatory process in which the microRNA pathway promotes Notch activation by repressing Delta-mediated inhibition of Notch in follicle cells.
Collapse
Affiliation(s)
- John S Poulton
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hoyne GF, Chapman G, Sontani Y, Pursglove SE, Dunwoodie SL. A cell autonomous role for the Notch ligand Delta-like 3 in αβ T-cell development. Immunol Cell Biol 2010; 89:696-705. [PMID: 21151194 DOI: 10.1038/icb.2010.154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Notch signalling is critical to help direct T-cell lineage commitment in early T-cell progenitors and in the development of αβ T-cells. Epithelial and stromal cell populations in the thymus express the Notch DSL (Delta, Serrate and Lag2)ligands Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged 1 and Jagged 2, and induce Notch signalling in thymocytes that express the Notch receptor. At present there is nothing known about the role of the Delta-like 3 (Dll3) ligand in the immune system. Here we describe a novel cell autonomous role for Dll3 in αβ T-cell development. We show that Dll3 cannot activate Notch when expressed in trans but like other Notch ligands it can inhibit Notch signalling when expressed in cis with the receptor. The loss of Dll3 leads to an increase in Hes5 expression in double positive thymocytes and their increased production of mature CD4(+) and CD8(+) T cells. Studies using competitive irradiation chimeras proved that Dll3 acts in a cell autonomous manner to regulate positive selection but not negative selection of autoreactive T cells. Our results indicate that Dll3 has a unique function during T-cell development that is distinct from the role played by the other DSL ligands of Notch and is in keeping with other recent studies indicating that Dll1 and Dll3 ligands have non-overlapping roles during embryonic development.
Collapse
Affiliation(s)
- Gerard F Hoyne
- The Laboratory of T Cell Development and Regulation, John Curtin School of Medical Research, Australian National University Canberra, Canberra, Australian Capital Territory, Australia.
| | | | | | | | | |
Collapse
|
35
|
Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand Delta-Like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet 2010; 20:905-16. [DOI: 10.1093/hmg/ddq529] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
36
|
Abstract
Experimental and theoretical biologists have long been fascinated with the emergence of self-organizing patterns in developing organisms, and much attention has focused on Notch-mediated lateral inhibition. Within sheets of cells that may adopt either of two possible cell fates, lateral inhibition establishes patterns through the activity of a negative intercellular feedback loop involving the receptor, Notch, and its ligands Delta or Serrate. Despite a long history of intensive study in Drosophila, where the mechanism was first described, as well as in other organisms, new work continues to yield important insights. Mathematical modeling, combined with biological analyses, has now shed light on two features of the process: how antagonistic and activating ligand-receptor interactions work together to accelerate inhibition and ensure fidelity, and how filopodial dynamics contribute to the observed pattern refinement and spacing.
Collapse
Affiliation(s)
- Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Johnston RJ, Desplan C. Stochastic mechanisms of cell fate specification that yield random or robust outcomes. Annu Rev Cell Dev Biol 2010; 26:689-719. [PMID: 20590453 DOI: 10.1146/annurev-cellbio-100109-104113] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although cell fate specification is tightly controlled to yield highly reproducible results and avoid extreme variation, developmental programs often incorporate stochastic mechanisms to diversify cell types. Stochastic specification phenomena are observed in a wide range of species and an assorted set of developmental contexts. In bacteria, stochastic mechanisms are utilized to generate transient subpopulations capable of surviving adverse environmental conditions. In vertebrate, insect, and worm nervous systems, stochastic fate choices are used to increase the repertoire of sensory and motor neuron subtypes. Random fate choices are also integrated into developmental programs controlling organogenesis. Although stochastic decisions can be maintained to produce a mosaic of fates within a population of cells, they can also be compensated for or directed to yield robust and reproducible outcomes.
Collapse
|
38
|
Kato TM, Kawaguchi A, Kosodo Y, Niwa H, Matsuzaki F. Lunatic fringe potentiates Notch signaling in the developing brain. Mol Cell Neurosci 2010; 45:12-25. [DOI: 10.1016/j.mcn.2010.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 04/20/2010] [Accepted: 05/14/2010] [Indexed: 12/15/2022] Open
|
39
|
Meliou E, Kerezoudis N, Tosios K, Kiaris H. Notch 1 Receptor, Delta 1 Ligand and HES 1 Transcription Factor are Expressed in the Lining Epithelium of Periapical Cysts (Preliminary Study). Open Dent J 2010; 4:153-8. [PMID: 21116324 PMCID: PMC2948147 DOI: 10.2174/1874210601004010153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/24/2010] [Accepted: 03/03/2010] [Indexed: 11/22/2022] Open
Abstract
Periapical cyst is a chronic inflammatory disorder of periradicular tissues. The precise pathological mechanisms involved in periapical cyst enlargement remain unclear. Notch signaling is an evolutionarily conserved pathway with a regulatory role in cell fate decisions during development and in carcinogenesis. To date, there are no published data available on the expression of Notch signaling components in periapical cysts or any other jaw cyst. In this immunohistochemical study we have examined the expression of the receptor Notch 1, the ligand Delta 1 and the transcription factor HES 1 in the epithelium of well defined periapical cysts. Immunostaining reaction of Notch 1, Delta 1 and HES 1 was observed in the cytoplasm and/or the cytoplasmic membrane and occasionally in the nucleus in the majority of epithelial cells of all periapical cysts. The present observations indicate that Notch pathway is active in the epithelium of periapical cysts. It can be speculated that activation of epithelial cells of periapical cysts is associated with activation of Notch pathway and imply involvement of this pathway in periapical cyst growth and expansion.
Collapse
Affiliation(s)
- E Meliou
- Dept. of Endodontology, Dental School, University of Athens, Greece
| | | | | | | |
Collapse
|
40
|
New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 2010; 116:2385-94. [PMID: 20558614 DOI: 10.1182/blood-2009-08-239228] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Notch signaling is an evolutionary conserved pathway that is mediated by cell-cell contact. It is involved in a variety of developmental processes and has an essential role in vascular development and angiogenesis. Delta-like 4 (Dll4) is a Notch ligand that is up-regulated during angiogenesis. It is expressed in endothelial cells and regulates the differentiation between tip cells and stalk cells of neovasculature. Here, we present evidence that Dll4 is incorporated into endothelial exosomes. It can also be incorporated into the exosomes of tumor cells that overexpress Dll4. These exosomes can transfer the Dll4 protein to other endothelial cells and incorporate it into their cell membrane, which results in an inhibition of Notch signaling and a loss of Notch receptor. Transfer of Dll4 was also shown in vivo from tumor cells to host endothelium. Addition of Dll4 exosomes confers a tip cell phenotype on the endothelial cell, which results in a high Dll4/Notch-receptor ratio, low Notch signaling, and filopodia formation. This was further evidenced by increased branching in a tube-formation assay and in vivo. This reversal in phenotype appears to enhance vessel formation and is a new form of signaling for Notch ligands that expands their signaling potential beyond cell-cell contact.
Collapse
|
41
|
Sugiyama K, Nishide K, Matsuo H, Okigawa S, Okano M, Ishitani T, Matsumoto K, Itoh M. Delta1 family members are involved in filopodial actin formation and neuronal cell migration independent of Notch signaling. Biochem Biophys Res Commun 2010; 398:118-24. [PMID: 20558143 DOI: 10.1016/j.bbrc.2010.06.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/10/2010] [Indexed: 10/19/2022]
Abstract
Delta family proteins are transmembrane molecules that bind Notch receptors and activate downstream signaling events in neighboring cells. In addition to serving as Notch ligands, Notch-independent roles for Delta have been suggested but are not fully understood. Here, we demonstrate a previously unrecognized role for Delta in filopodial actin formation. Delta1 and Delta4, but not Delta3, exhibit filopodial protrusive activity, and this activity is independent of Notch signaling. The filopodial activity of Delta1 does not depend on the PDZ-binding domain at the C-terminus; however, the intracellular membrane-proximal region that is anchored to the plasma membrane plays an important role in filopodial activity. We further identified a Notch-independent role of DeltaD in neuronal cell migration in zebrafish. These findings suggest a possible functional link between Notch-independent filopodial activity of Delta and the control of cell motility.
Collapse
Affiliation(s)
- Kazuya Sugiyama
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Watanabe K, Nagaoka T, Lee JM, Bianco C, Gonzales M, Castro NP, Rangel MC, Sakamoto K, Sun Y, Callahan R, Salomon DS. Enhancement of Notch receptor maturation and signaling sensitivity by Cripto-1. ACTA ACUST UNITED AC 2010; 187:343-53. [PMID: 19948478 PMCID: PMC2779239 DOI: 10.1083/jcb.200905105] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cripto-1 associates with Notch1 in the endoplasmic reticulum and Golgi to enhance Notch1 localization to lipid rafts and its maturation. Nodal and Notch signaling pathways play essential roles in vertebrate development. Through a yeast two-hybrid screening, we identified Notch3 as a candidate binding partner of the Nodal coreceptor Cripto-1. Coimmunoprecipitation analysis confirmed the binding of Cripto-1 with all four mammalian Notch receptors. Deletion analyses revealed that the binding of Cripto-1 and Notch1 is mediated by the Cripto-1/FRL-1/Cryptic domain of Cripto-1 and the C-terminal region of epidermal growth factor–like repeats of Notch1. Binding of Cripto-1 to Notch1 occurred mainly in the endoplasmic reticulum–Golgi network. Cripto-1 expression resulted in the recruitment of Notch1 protein into lipid raft microdomains and enhancement of the furin-like protein convertase-mediated proteolytic maturation of Notch1 (S1 cleavage). Enhanced S1 cleavage resulted in the sensitization to ligand-induced activation of Notch signaling. In addition, knockdown of Cripto-1 expression in human and mouse embryonal carcinoma cells desensitized the ligand-induced Notch signaling activation. These results suggest a novel role of Cripto-1 in facilitating the posttranslational maturation of Notch receptors.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Mammary Biology and Tumorigenesis Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The binding of the receptor tyrosine kinase, c-kit, to its ligand, stem cell factor (SCF), mediates numerous biological functions. Important roles for c-kit in hematopoiesis, melanogenesis, erythropoiesis, spermatogenesis, and carcinogenesis are well documented. Similarly, activation of granulocytes, mast cells, and of eosinophils in particular, by c-kit ligation has long been known to result in degranulation with concomitant release of pro-inflammatory mediators, including cytokines. However, recent work from a number of laboratories, including our own, highlights previously unappreciated functions for c-kit in immunologic processes. These novel findings strongly suggest that signaling through the c-kit-SCF axis could have a significant impact on the pathogenesis of diseases associated with an immunologic component. In our own studies, c-kit upregulation on dendritic cells via T helper (Th)2- and Th17-inducing stimuli led to c-kit activation and immune skewing toward these T helper subsets and away from Th1 responses. Others have shown that dendritic cell treatment with inhibitors of c-kit activation, such as imatinib mesylate (Gleevec), favored breaking of T-cell tolerance, skewing of responses toward production of Th1 cytokines, and activation of natural killer cells. These data all indicate that deeper understanding of, and ability to control, the c-kit-SCF axis could lead to improved treatment modalities aimed at redirecting unwanted and/or deleterious immune responses in a wide variety of conditions.
Collapse
Affiliation(s)
- Prabir Ray
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
44
|
Abstract
Notch signaling induced by canonical Notch ligands is critical for normal embryonic development and tissue homeostasis through the regulation of a variety of cell fate decisions and cellular processes. Activation of Notch signaling is normally tightly controlled by direct interactions with ligand-expressing cells, and dysregulated Notch signaling is associated with developmental abnormalities and cancer. While canonical Notch ligands are responsible for the majority of Notch signaling, a diverse group of structurally unrelated noncanonical ligands has also been identified that activate Notch and likely contribute to the pleiotropic effects of Notch signaling. Soluble forms of both canonical and noncanonical ligands have been isolated, some of which block Notch signaling and could serve as natural inhibitors of this pathway. Ligand activity can also be indirectly regulated by other signaling pathways at the level of ligand expression, serving to spatiotemporally compartmentalize Notch signaling activity and integrate Notch signaling into a molecular network that orchestrates developmental events. Here, we review the molecular mechanisms underlying the dual role of Notch ligands as activators and inhibitors of Notch signaling. Additionally, evidence that Notch ligands function independent of Notch is presented. We also discuss how ligand posttranslational modification, endocytosis, proteolysis, and spatiotemporal expression regulate their signaling activity.
Collapse
Affiliation(s)
- Brendan D'Souza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
45
|
del Alamo D, Schweisguth F. Notch signalling: receptor cis-inhibition to achieve directionality. Curr Biol 2009; 19:R683-4. [PMID: 19706274 DOI: 10.1016/j.cub.2009.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lateral inhibition, by which single cells become distinct from their neighbours, can be mediated by Notch signalling during animal development. Signalling directionality is presumably achieved by downregulation of the Notch ligand in signal-receiving cells. New evidence suggests that cis-inhibition of the receptor in the ligand-sending cell might also provide directionality.
Collapse
Affiliation(s)
- David del Alamo
- Institut Pasteur, CNRS URA2578, 25 rue du Dr. Roux, 75724 Paris CEDEX 15, France.
| | | |
Collapse
|
46
|
Rauen T, Raffetseder U, Frye BC, Djudjaj S, Mühlenberg PJT, Eitner F, Lendahl U, Bernhagen J, Dooley S, Mertens PR. YB-1 acts as a ligand for Notch-3 receptors and modulates receptor activation. J Biol Chem 2009; 284:26928-40. [PMID: 19640841 DOI: 10.1074/jbc.m109.046599] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Y-box (YB) protein-1 is secreted by mesangial and immune cells after cytokine challenge, but extracellular functions are unknown. Here, we demonstrate that extracellular YB-1 associates with outer cell membrane components and interacts with extracellular Notch-3 receptor domains. The interaction appears to be specific for Notch-3, as YB-1-green fluorescent protein binds to the extracellular domains and full-length forms of Notch-3 but not to Notch-1. YB-1-green fluorescent protein and Notch-3 proteins co-localize at cell membranes, and extracellular YB-1 activates Notch-3 signaling, resulting in nuclear translocation of the Notch-3 intracellular domain and up-regulation of Notch target genes. The YB-1/Notch-3 interaction may be of particular relevance for inflammatory mesangioproliferative disease, as both proteins co-localize in an experimental nephritis model and receptor activation temporally and spatially correlates with YB-1 expression.
Collapse
Affiliation(s)
- Thomas Rauen
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Pauwelsstrasse 30, 52057 Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Miller AC, Lyons EL, Herman TG. cis-Inhibition of Notch by endogenous Delta biases the outcome of lateral inhibition. Curr Biol 2009; 19:1378-83. [PMID: 19631544 DOI: 10.1016/j.cub.2009.06.042] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/26/2009] [Accepted: 06/18/2009] [Indexed: 01/17/2023]
Abstract
Lateral inhibition mediated by Delta/Notch (Dl/N) signaling is used throughout development to limit the number of initially equivalent cells that adopt a particular fate. Although adjacent cells express both Dl ligand and N receptor, signaling between them ultimately occurs in only one direction. Classically, this has been explained entirely by feedback: activated N can downregulate Dl, amplifying even slight asymmetries in the Dl or N activities of adjacent cells. Here, however, we present an example of lateral inhibition in which unidirectional signaling depends instead on Dl's ability to inhibit N within the same cell, a phenomenon known as cis-inhibition. By genetically manipulating individual R1/R6/R7 photoreceptor precursors in the Drosophila eye, we show that loss of Dl-mediated cis-inhibition reverses the direction of lateral signaling. Based on our finding that Dl in R1/R6s requires endocytosis to trans-activate but not to cis-inhibit N, we reexamine previously published data from other examples of lateral inhibition. We conclude that cis-inhibition generally influences the direction of Dl/N signaling and should therefore be included in standard models of lateral inhibition.
Collapse
Affiliation(s)
- Adam C Miller
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | | | |
Collapse
|
48
|
The role of Notch in patterning the human vertebral column. Curr Opin Genet Dev 2009; 19:329-37. [PMID: 19608404 DOI: 10.1016/j.gde.2009.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/01/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
The components of the Notch signaling pathway and the mechanics of signal transduction have largely been established in Drosophila. Although essential for many developmental processes in invertebrates and vertebrates, this review focuses on Notch signaling in the vertebrate-specific process of somitogenesis. More specifically it describes that mutations in genes encoding Notch pathway components (DLL3, MESP2, LFNG and HES7) cause severe congenital vertebral defects in humans. Importantly, this review highlights studies demonstrating that Dll3 is unique amongst DSL ligands acting as an inhibitor and not an activator of Notch signaling.
Collapse
|
49
|
Nikolaou N, Watanabe-Asaka T, Gerety S, Distel M, Köster RW, Wilkinson DG. Lunatic fringe promotes the lateral inhibition of neurogenesis. Development 2009; 136:2523-33. [PMID: 19553285 DOI: 10.1242/dev.034736] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Previous studies have identified roles of the modulation of Notch activation by Fringe homologues in boundary formation and in regulating the differentiation of vertebrate thymocytes and Drosophila glial cells. We have investigated the role of Lunatic fringe (Lfng) expression during neurogenesis in the vertebrate neural tube. We find that in the zebrafish hindbrain, Lfng is expressed by progenitors in neurogenic regions and downregulated in cells that have initiated neuronal differentiation. Lfng is required cell autonomously in neural epithelial cells to limit the amount of neurogenesis and to maintain progenitors. By contrast, Lfng is not required for the role of Notch in interneuronal fate choice, which we show is mediated by Notch1a. The expression of Lfng does not require Notch activity, but rather is regulated downstream of proneural genes that are widely expressed by neural progenitors. These findings suggest that Lfng acts in a feedback loop downstream of proneural genes, which, by promoting Notch activation, maintains the sensitivity of progenitors to lateral inhibition and thus limits further proneural upregulation.
Collapse
Affiliation(s)
- Nikolas Nikolaou
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, The Ridgeway, London, UK
| | | | | | | | | | | |
Collapse
|
50
|
|