1
|
Baia-da-Silva DC, Mendes PFS, Silva DCBD, Chemelo VS, Bittencourt LO, Padilha PM, Oriá RB, Aschner M, Lima RR. What does scientometry tell us about mercury toxicology and its biological impairments? Heliyon 2024; 10:e27526. [PMID: 38586377 PMCID: PMC10998116 DOI: 10.1016/j.heliyon.2024.e27526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024] Open
Abstract
Mercury is a toxic pollutant that poses risks to both human and environmental health, making it a pressing public health concern. This study aimed to summarize the knowledge on mercury toxicology and the biological impairments caused by exposure to mercury in experimental studies and/or diagnosis in humans. The research was conducted on the main collection of Web of Science, employing as a methodological tool a bibliometric analysis. The selected articles were analyzed, and extracted data such as publication year, journal, author, title, number of citations, corresponding author's country, keywords, and the knowledge mapping was performed about the type of study, chemical form of mercury, exposure period, origin of exposure, tissue/fluid of exposure measurement, mercury concentration, evaluation period (age), mercury effect, model experiments, dose, exposure pathway, and time of exposure. The selected articles were published between 1965 and 2021, with Clarkson TW being the most cited author who has also published the most articles. A total of 38% of the publications were from the USA. These studies assessed the prenatal and postnatal effects of mercury, emphasizing the impact of methylmercury on neurodevelopment, including motor and cognitive evaluations, the association between mercury and autism, and an evaluation of its protective effects against mercury toxicity. In observational studies, the blood, umbilical cord, and hair were the most frequently used for measuring mercury levels. Our data analysis reveals that mercury neurotoxicology has been extensively explored, but the association among the outcomes evaluated in experimental studies has yet to be strengthened. Providing metric evidence on what is unexplored allows for new studies that may help governmental and non-governmental organizations develop guidelines and policies.
Collapse
Affiliation(s)
- Daiane Claydes Baia-da-Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Paulo Fernando Santos Mendes
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Diane Cleydes Baia da Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Victória Santos Chemelo
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Pedro Magalhães Padilha
- School of Veterinary Medicine and Animal Science, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
2
|
Jang DG, Dou J, Koubek EJ, Teener S, Zhao L, Bakulski KM, Mukherjee B, Batterman SA, Feldman EL, Goutman SA. Metal mixtures associate with higher amyotrophic lateral sclerosis risk and mortality independent of genetic risk and correlate to self-reported exposures: a case-control study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.27.24303143. [PMID: 38464233 PMCID: PMC10925361 DOI: 10.1101/2024.02.27.24303143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background The pathogenesis of amyotrophic lateral sclerosis (ALS) involves both genetic and environmental factors. This study investigates associations between metal measures in plasma and urine, ALS risk and survival, and exposure sources. Methods Participants with and without ALS from Michigan provided plasma and urine samples for metal measurement via inductively coupled plasma mass spectrometry. Odds and hazard ratios for each metal were computed using risk and survival models. Environmental risk scores (ERS) were created to evaluate the association between exposure mixtures and ALS risk and survival and exposure source. ALS (ALS-PGS) and metal (metal-PGS) polygenic risk scores were constructed from an independent genome-wide association study and relevant literature-selected SNPs. Results Plasma and urine samples from 454 ALS and 294 control participants were analyzed. Elevated levels of individual metals, including copper, selenium, and zinc, significantly associated with ALS risk and survival. ERS representing metal mixtures strongly associated with ALS risk (plasma, OR=2.95, CI=2.38-3.62, p<0.001; urine, OR=3.10, CI=2.43-3.97, p<0.001) and poorer ALS survival (plasma, HR=1.42, CI=1.24-1.63, p<0.001; urine, HR=1.52, CI=1.31-1.76, p<0.001). Addition of the ALS-PGS or metal-PGS did not alter the significance of metals with ALS risk and survival. Occupations with high potential of metal exposure associated with elevated ERS. Additionally, occupational and non-occupational metal exposures associated with measured plasma and urine metals. Conclusion Metals in plasma and urine associated with increased ALS risk and reduced survival, independent of genetic risk, and correlated with occupational and non-occupational metal exposures. These data underscore the significance of metal exposure in ALS risk and progression.
Collapse
Affiliation(s)
- Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - John Dou
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Samuel Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Lili Zhao
- Department of Biostatistics, Corewell Health, Royal Oak, MI
| | | | | | - Stuart A. Batterman
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI
| |
Collapse
|
3
|
Lin JJY, Koffman LJ, Tehrani MW, Chen R, Han SG, Sandler DP, Lawrence KG, Jackson WB, Dickerson AS, Ramachandran G, Engel LS, Rule AM. Reliability of low mass toenail samples as biomarkers of chronic metal exposure. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:945-953. [PMID: 37296232 PMCID: PMC10709526 DOI: 10.1038/s41370-023-00560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Toenails are a promising matrix for chronic metal exposure assessment, but there are currently no standard methods for collection and analysis. Questions remain about sample mass requirements and the extent to which metals measured in this matrix are representative of chronic body burden. OBJECTIVE This study proposes a method to maximize sample conservation for toenail metals analysis using inductively coupled plasma mass spectrometry (ICP-MS). We demonstrate the reliability of an ~25 mg toenail sample (typically 1-2 clippings) for metals analysis and evaluate the intra-individual variability of multiple metals in this matrix over time in men from the Gulf Long-term Follow-up (GuLF) Study. METHODS Toenail samples from 123 GuLF Study participants were collected at two visits 3 years apart and analyzed for 18 elements using ICP-MS. Participants with samples exceeding 200 mg at the first visit (n = 29) were selected for triplicate sub-sample analysis. Kendall's coefficient of concordance (W) was used to assess sub-sample reliability and Spearman's correlation coefficients (ρ) were used to evaluate fluctuations in elemental concentrations over time. RESULTS Results were not reported for Cd, Co, Mo, Sb, and V (detected in <60% of the samples). There was strong agreement among triplicate samples (Kendall's W: 0.72 (Cu)-0.90 (Cu)) across all elements evaluated, moderate correlations of elemental concentrations (Spearman's ρ: 0.21-0.42) over 3 years for As, Ca, Cr, Fe, Pb, Mn, and Zn, and strong correlations (>0.50) for Se, Cu, and Hg. IMPACT STATEMENT This toenail reliability study found that a low-mass (~25 mg) toenail sample (1-2 clippings) is suitable for the determination of most elements using ICP-MS and helps to increase the analytical capacity of limited toenail biospecimens collected in cohort studies. The results highlight differences in the suitability of toenails for chronic metal exposure assessment by element and underscore the need to consider intra-person variability, especially when comparing results across studies. We also provide recommendations for analytical standardization and the partitioning of the total collected toenail sample into multiple analytic sub-samples for future studies using toenail biospecimen for multiple assays.
Collapse
Affiliation(s)
- Joyce J Y Lin
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Lily J Koffman
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mina W Tehrani
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Rui Chen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Seok Gyu Han
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Kaitlyn G Lawrence
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | | | - Aisha S Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Gurumurthy Ramachandran
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lawrence S Engel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Ana M Rule
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
4
|
Kao CS, Fan YT, Wang YL, Chen YH, Chao HJ, Lo YC, Jiang CB, Chien LC. Associations between parental and postnatal metal mixture exposure and developmental delays in a Taiwanese longitudinal birth cohort of preschool children. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117360-117372. [PMID: 37867168 DOI: 10.1007/s11356-023-30435-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Studies have evaluated the impact of environmental exposure to neurotoxic metals on developmental delays (DDs). However, comprehensive understanding regarding the associations between parental and postnatal exposure to metal mixtures and the occurrence of DDs in offspring is limited. In this study, we assessed the relationships between parental and postnatal exposure to three metals (arsenic [As], cadmium [Cd], and lead [Pb], levels of which were measured in toenails) and suspected DDs (SDDs) in preschool children within a Taiwanese longitudinal birth cohort. In total between 2017 and 2021, 154 pairs of parents and their children under the age of 6 years were recruited, and 462 toenail samples and 154 completed questionnaires were collected. Metal concentrations in toenails were quantified using inductively coupled plasma-mass spectrometry after acid digestion of the toenails. We applied multivariable logistic regression and Bayesian kernel machine regression to evaluate the overall effect and to identify key components of the metal mixture that were associated with the SDD risk. Higher concentrations of As, Cd, and Pb were found in the toenails of the parents of children with SDDs compared with the toenails of the parents of children without SDDs. Our examination of the combined effects of exposure to the metal mixture revealed that As concentration in the father's toenail and Cd concentration in the mother's toenail were positively correlated with the risk of SDDs in their offspring. Notably, the effect of exposure to the metal mixture on the risk of SDDs was stronger in boys than in girls. Our findings suggest that parents taking measures to minimize their exposure to metals might enhance their children's developmental outcomes.
Collapse
Affiliation(s)
- Chi-Sian Kao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Yen-Tzu Fan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Lin Wang
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Hua Chen
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Hsing-Jasmine Chao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
- Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Ling-Chu Chien
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan.
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
5
|
Antonioni A, Govoni V, Brancaleoni L, Donà A, Granieri E, Bergamini M, Gerdol R, Pugliatti M. Amyotrophic Lateral Sclerosis and Air Pollutants in the Province of Ferrara, Northern Italy: An Ecological Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085591. [PMID: 37107873 PMCID: PMC10138704 DOI: 10.3390/ijerph20085591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/18/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023]
Abstract
The etiopathogenesis of amyotrophic lateral sclerosis (ALS) is still largely unknown, but likely depends on gene-environment interactions. Among the putative sources of environmental exposure are air pollutants and especially heavy metals. We aimed to investigate the relationship between ALS density and the concentration of air pollution heavy metals in Ferrara, northern Italy. An ecological study was designed to correlate the map of ALS distribution and that of air pollutants. All ALS cases diagnosed between 2000 and 2017 (Ferrara University Hospital administrative data) were plotted by residency in 100 sub-areas, and grouped in 4 sectors: urban, rural, northwestern and along the motorway. The concentrations of silver, aluminium, cadmium, chrome, copper, iron, manganese, lead, and selenium in moss and lichens were measured and monitored in 2006 and 2011. Based on 62 ALS patients, a strong and direct correlation of ALS density was observed only with copper concentrations in all sectors and in both sexes (Pearson coefficient (ρ) = 0.758; p = 0.000002). The correlation was higher in the urban sector (ρ = 0.767; p = 0.000128), in women for the overall population (ρ = 0.782, p = 0.000028) and in the urban (ρ = 0.872, p = 0.000047) population, and for the older cohort of diagnosed patients (2000-2009) the assessment correlated with the first assessment of air pollutants in 2006 (ρ = 0.724, p = 0.008). Our data is, in part, consistent with a hypothesis linking copper pollution to ALS.
Collapse
Affiliation(s)
- Annibale Antonioni
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
- Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, 44121 Ferrara, Italy
| | - Vittorio Govoni
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
| | - Lisa Brancaleoni
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alessandro Donà
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
| | - Enrico Granieri
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
| | - Mauro Bergamini
- Preventive Medicine and Risk Assessment, University of Ferrara, 44121 Ferrara, Italy
| | - Renato Gerdol
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maura Pugliatti
- Unit of Clinical Neurology, Department of Neurosciences and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (A.A.); (E.G.)
- Correspondence: ; Tel.: +39-0532-239309
| |
Collapse
|
6
|
Gutiérrez-González E, Fernández-Navarro P, Pastor-Barriuso R, García-Pérez J, Castaño-Vinyals G, Martín-Sánchez V, Amiano P, Gómez-Acebo I, Guevara M, Fernández-Tardón G, Salcedo-Bellido I, Moreno V, Pinto-Carbó M, Alguacil J, Marcos-Gragera R, Gómez-Gómez JH, Gómez-Ariza JL, García-Barrera T, Varea-Jiménez E, Núñez O, Espinosa A, Molina de la Torre AJ, Aizpurua-Atxega A, Alonso-Molero J, Ederra-Sanz M, Belmonte T, Aragonés N, Kogevinas M, Pollán M, Pérez-Gómez B. Toenail zinc as a biomarker: Relationship with sources of environmental exposure and with genetic variability in MCC-Spain study. ENVIRONMENT INTERNATIONAL 2022; 169:107525. [PMID: 36150295 DOI: 10.1016/j.envint.2022.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Toenails are commonly used as biomarkers of exposure to zinc (Zn), but there is scarce information about their relationship with sources of exposure to Zn. OBJECTIVES To investigate the main determinants of toenail Zn, including selected sources of environmental exposure to Zn and individual genetic variability in Zn metabolism. METHODS We determined toenail Zn by inductively coupled plasma mass spectrometry in 3,448 general population controls from the MultiCase-Control study MCC-Spain. We assessed dietary and supplement Zn intake using food frequency questionnaires, residential proximity to Zn-emitting industries and residential topsoil Zn levels through interpolation methods. We constructed a polygenic score of genetic variability based on 81 single nucleotide polymorphisms in genes involved in Zn metabolism. Geometric mean ratios of toenail Zn across categories of each determinant were estimated from multivariate linear regression models on log-transformed toenail Zn. RESULTS Geometric mean toenail Zn was 104.1 µg/g in men and 100.3 µg/g in women. Geometric mean toenail Zn levels were 7 % lower (95 % confidence interval 1-13 %) in men older than 69 years and those in the upper tertile of fibre intake, and 9 % higher (3-16 %) in smoking men. Women residing within 3 km from Zn-emitting industries had 4 % higher geometric mean toenail Zn levels (0-9 %). Dietary Zn intake and polygenic score were unrelated to toenail Zn. Overall, the available determinants only explained 9.3 % of toenail Zn variability in men and 4.8 % in women. DISCUSSION Sociodemographic factors, lifestyle, diet, and environmental exposure explained little of the individual variability of toenail Zn in the study population. The available genetic variants related to Zn metabolism were not associated with toenail Zn.
Collapse
Affiliation(s)
- Enrique Gutiérrez-González
- Spanish Agency for Food Safety and Nutrition, Ministry for Consumer Affairs, Alcala 56 St, 28014 Madrid, Spain
| | - Pablo Fernández-Navarro
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Roberto Pastor-Barriuso
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Javier García-Pérez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Gemma Castaño-Vinyals
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Vicente Martín-Sánchez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Institute of Biomedicine (IBIOMED), University of León, Campus Universitario de Vegazana, 24071 León, Spain
| | - Pilar Amiano
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Sub-Directorate for Public Health and Addictions of Gipuzkoa, Health Department of the Basque Government, Antso Jakituna Hiribidea, 35, 20010 San Sebastian, Spain; Epidemiology and Public Health Area, Biodonostia Health Research Institute, Paseo Dr. Begiristain, 20014 San Sebastian, Spain
| | - Inés Gómez-Acebo
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Department of Medical and Surgical Sciences, Faculty of Medicine, University of Cantabria-IDIVAL, Calle Cardenal Herrera Oria, 39011 Santander, Spain
| | - Marcela Guevara
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Public Health Institute of Navarra, C. Leyre, 15, 31003 Pamplona, Navarra, Spain; V, C. de Irunlarrea, 3, 31008 Pamplona, Navarra, Spain
| | - Guillermo Fernández-Tardón
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Health Research Institute of Asturias (ISPA), University of Oviedo, Av. del Hospital Universitario, 33011 Oviedo, Spain
| | - Inmaculada Salcedo-Bellido
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada, Av. de la Investigación, 11, 18016 Granada, Spain
| | - Victor Moreno
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), Avinguda de la Granvia de l'Hospitalet, 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain; Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), Avinguda de la Granvia de l'Hospitalet, 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Carrer de Casanova, 143, 08036 Barcelona, Spain
| | - Marina Pinto-Carbó
- Cancer and Public Health Area, The Foundation for the Promotion of Health and Biomedical Research of Valencia Region (FISABIO), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Juan Alguacil
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Centre for Health and Environmental Research, Huelva University, s, Campus El Carmen, Avda. Andalucía, 21071 Huelva, Spain
| | - Rafael Marcos-Gragera
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Epidemiology Unit and Girona Cancer Registry, Catalan Institute of Oncology (ICO), IDIBGI, Oncology Coordination Plan, Department of Health Government of Catalonia, Carrer del Dr. Castany, 17190 Girona, Spain; University of Girona, Plaça de Sant Domènec, 3, 17004 Girona, Spain
| | - Jesús Humberto Gómez-Gómez
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Campus de Ciencias de la Salud, Carretera Buenavista, 30120 El Palmar Murcia, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, C/ Menéndez Pelayo, 21002 Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, C/ Menéndez Pelayo, 21002 Huelva, Spain
| | - Elena Varea-Jiménez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain
| | - Olivier Núñez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Ana Espinosa
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain
| | - Antonio J Molina de la Torre
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Institute of Biomedicine (IBIOMED), University of León, Campus Universitario de Vegazana, 24071 León, Spain
| | - Amaia Aizpurua-Atxega
- Sub-Directorate for Public Health and Addictions of Gipuzkoa, Health Department of the Basque Government, Antso Jakituna Hiribidea, 35, 20010 San Sebastian, Spain
| | - Jessica Alonso-Molero
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Cantabria-IDIVAL, Calle Cardenal Herrera Oria, 39011 Santander, Spain
| | - María Ederra-Sanz
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Public Health Institute of Navarra, C. Leyre, 15, 31003 Pamplona, Navarra, Spain; V, C. de Irunlarrea, 3, 31008 Pamplona, Navarra, Spain
| | - Thalia Belmonte
- Public Health Department, University of Oviedo, Av. Julián Clavería, 6, 33006 Oviedo, Spain
| | - Nuria Aragonés
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Epidemiology Section, Division of Public Health, Department of Health, C. San Martín de Porres, 6, 28035 Madrid, Spain
| | - Manolis Kogevinas
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain; Barcelona Institute of Global Health (ISGlobal), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain; University Pompeu Fabra, Plaça de la Mercè, 10-12, 08002 Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Carrer del Dr. Aiguader, 88, 08003 Barcelona, Spain
| | - Marina Pollán
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain
| | - Beatriz Pérez-Gómez
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Institute of Health Carlos III, Monforte de Lemos 5, 28029 Madrid, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Monforte de Lemos 5, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Selenium Intake and its Interaction with Iron Intake Are Associated with Cognitive Functions in Chinese Adults: A Longitudinal Study. Nutrients 2022; 14:nu14153005. [PMID: 35893861 PMCID: PMC9332607 DOI: 10.3390/nu14153005] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Studies on the relation between selenium intake and cognitive function are inconclusive. This study aimed to examine the associations between dietary selenium intake and cognitive function among Chinese adults and tested the interaction effect of selenium intake and iron intake on cognition. Data from 4852 adults aged 55 years and above who attended the 1991–2006 China Health and Nutrition Survey (CHNS) were used. Cognitive function was assessed through face-to-face interviews in 1997, 2000, 2004, and 2006. A 3-day, 24-hour recall was used to collect dietary selenium intake. Multivariable mixed linear regression and logistic regression were used in the analyses. In fully adjusted regression models, the regression coefficients (95% confidence interval) were 0.00, 0.29 (−0.12–0.70), 0.26 (−0.18–0.70), and 0.50 (0.02–0.97) across the quartiles of selenium intake. In the subgroup analysis, the positive association between selenium intake and cognitive function was only observed in the participants who live in the southern region but not those in the northern region. The selenium-intake-to-iron-intake ratio was inversely associated with low global cognition scores. Furthermore, only those with a normal BMI had a positive association between selenium and cognition. In conclusion, high selenium intake was linked to better cognitive function and a lower risk of cognition decline in Chinese adults among those with low iron intake. A substantial interaction was found between selenium intake and BMI or region.
Collapse
|
8
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
9
|
Comparative assessment of blood Metal/metalloid levels, clinical heterogeneity, and disease severity in amyotrophic lateral sclerosis patients. Neurotoxicology 2022; 89:12-19. [PMID: 35007622 DOI: 10.1016/j.neuro.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis is an unremitting neurodegenerative (ND) disease characterized by progressive and fatal loss of motor neuron function. While underlying mechanisms for ALS susceptibility are complex, current understanding suggests that interactions between age, genetic, and environmental factors may be the key. Environmental exposure to metal/metalloids has been implicated in various ND diseases including ALS, Alzheimer's Disease (AD), and Parkinson's Disease (PD). However, most of currently available population-based ALS studies in relation to metal exposure are based on individuals from European ancestry, while East Asian populations, especially cohorts from China, are less well-characterized. This study aims to examine the association between metal/metalloid levels and ALS onset by evaluating blood cadmium (Cd), lead (Pb), Cu, Zn, calcium (Ca), magnesium (Mg), and iron (Fe) levels in controls and sporadic ALS patients from North Western China. We report that Cu and Fe levels are found at higher levels in ALS patients compared to the controls. Spinal and bulbar onset patients show significant difference in Ca levels. Moreover, Cd, Pb, Cu, and Ca levels are positively correlated with high disease severity. Results from this study may provide new insights for understanding not only the role of metal/metalloids in ALS susceptibility, but also progression and forms of onset.
Collapse
|
10
|
Violi F, Solovyev N, Vinceti M, Mandrioli J, Lucio M, Michalke B. The study of levels from redox-active elements in cerebrospinal fluid of amyotrophic lateral sclerosis patients carrying disease-related gene mutations shows potential copper dyshomeostasis. Metallomics 2021; 12:668-681. [PMID: 32373852 DOI: 10.1039/d0mt00051e] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis is a progressive neurodegenerative disease characterized by a loss of function of motor neurons. The etiology of this disorder is still largely unknown. Gene-environment interaction arises as a possible key factor in the development of amyotrophic lateral sclerosis. We assessed the levels of trace metals, copper (Cu), iron (Fe), and manganese (Mn), of 9 amyotrophic lateral sclerosis cases and 40 controls by measuring their content in cerebrospinal fluid. The following trace element species were quantified using ion chromatography-inductively coupled plasma mass spectrometry: univalent copper (Cu-I), divalent Cu (Cu-II), divalent Fe (Fe-II), trivalent Fe (Fe-III), divalent Mn (Mn-II), trivalent Mn (Mn-III), and also unidentified Mn species (Mn-unknown) were present in some samples. When computing the relative risks for amyotrophic lateral sclerosis through an unconditional logistic regression model, we observed a weak and imprecise positive association for iron (Fe III, adjusted odds ratio 1.48, 95% CI 0.46-4.76) and manganese (total-Mn and Mn-II; adjusted odds ratio 1.11, 95% CI 0.74-1.67, and 1.13, 95% CI 0.79-1.61, respectively). Increased risk for copper was found both in the crude analysis (odds ratio 1.14, 95% CI 0.99-1.31) and in multivariable analysis after adjusting for sex, age, and year of storage (1.09, 95% CI 0.90-1.32). Our results suggest a possible positive association between Cu and genetic amyotrophic lateral sclerosis, while they give little indication of involvement of Fe and Mn in disease, though some correlations found also for these elements deserve further investigation.
Collapse
Affiliation(s)
- Federica Violi
- CREAGEN Research Center of Environmental, Genetic and Nutritional Epidemiology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Salcedo-Bellido I, Gutiérrez-González E, García-Esquinas E, Fernández de Larrea-Baz N, Navas-Acien A, Téllez-Plaza M, Pastor-Barriuso R, Lope V, Gómez-Ariza JL, García-Barrera T, Pollán M, Jiménez Moleón JJ, Pérez-Gómez B. Toxic metals in toenails as biomarkers of exposure: A review. ENVIRONMENTAL RESEARCH 2021; 197:111028. [PMID: 33753073 DOI: 10.1016/j.envres.2021.111028] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 05/04/2023]
Abstract
Toenails have been used as biomarkers of exposure to toxic metals, but their validity for this purpose is not yet clear and might differ depending on the specific agent. To evaluate this issue, we reviewed the literature on: a) the time-window of exposure reflected by toenails; b) the reproducibility of toenail toxic-metal levels in repeated measures over time; c) their relationship with other biomarkers of exposure, and; d) their association with potential determinants (i.e. sociodemographic, anthropometric, or lifestyle characteristics) or with sources of exposure like diet or environmental pollution. Thus, we performed a systematic review, searching for articles that provided original data for levels of any of the following toxic metals in toenails: aluminum, beryllium, cadmium, chromium, mercury, nickel, lead, thallium and uranium. We identified 88 articles, reporting data from 67 different research projects, which were quite heterogeneous with regard to population profile, sample size and analytical technique. The most commonly studied metal was mercury. Concerning the time-window of exposure explored by toenails, some reports indicate that toenail cadmium, nickel and lead may reflect exposures that occurred 7-12 months before sampling. For repeated samples obtained 1-6 years apart, the range of intraindividual correlation coefficients of aluminum, chromium and mercury was 0.33-0.56. The correlation of toxic metal concentrations between toenails and other matrices was higher for hair and fingernails than for urine or blood. Mercury levels were consistently associated with fish intake, while other toxic metals were occasionally associated with specific sources (e.g. drinking water, place of residence, environmental pollution, and occupation). The most frequently evaluated health endpoints were cardiovascular diseases, cancer, and central nervous system diseases. Available data suggest that toenail mercury levels reflected long-term exposures and showed positive associations with fish intake. The lack of standardization in sample collection, quality control, analytical techniques and procedures - along with the heterogeneity and conflicting results among studies - mean it is still difficult to conclude that toenails are a good biomarker of exposure to toxic metals. Further studies are needed to draw solid conclusions about the suitability of toenails as biomarkers of exposure to toxic metals.
Collapse
Affiliation(s)
- Inmaculada Salcedo-Bellido
- Department of Preventive Medicine and Public Health, University of Granada, Av. de La Investigación, 11, 18016, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain.
| | - Enrique Gutiérrez-González
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Public Health & Preventive Medicine Teaching Unit, National School of Public Health, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain; Spanish Agency of Food Safety and Nutrition, Ministry of Consumer Affairs, Alcalá, 56, 28014, Madrid, Spain
| | - Esther García-Esquinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Nerea Fernández de Larrea-Baz
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY, 10032, USA
| | - María Téllez-Plaza
- Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Roberto Pastor-Barriuso
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Virginia Lope
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas, Ave., 21007, Huelva, Spain; Research Center for Natural Resources, Health and the Environment, University of Huelva, Spain
| | - Tamara García-Barrera
- Department of Chemistry, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Fuerzas Armadas, Ave., 21007, Huelva, Spain; Research Center for Natural Resources, Health and the Environment, University of Huelva, Spain
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - José Juan Jiménez Moleón
- Department of Preventive Medicine and Public Health, University of Granada, Av. de La Investigación, 11, 18016, Granada, Spain; Instituto de Investigación Biosanitaria ibs. GRANADA, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain
| | - Beatriz Pérez-Gómez
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Public Health & Preventive Medicine Teaching Unit, National School of Public Health, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain.
| |
Collapse
|
12
|
Bovio F, Sciandrone B, Urani C, Fusi P, Forcella M, Regonesi ME. Superoxide dismutase 1 (SOD1) and cadmium: A three models approach to the comprehension of its neurotoxic effects. Neurotoxicology 2021; 84:125-135. [PMID: 33774064 DOI: 10.1016/j.neuro.2021.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a widespread toxic environmental contaminant, released by anthropogenic activities. It interferes with essential metal ions homeostasis and affects protein structures and functions by substituting zinc, copper and iron. In this study, the effect of cadmium on SOD1, a CuZn metalloenzyme catalyzing superoxide conversion into hydrogen peroxide, has been investigated in three different biological models. We first evaluated the effects of cadmium combined with copper and/or zinc on the recombinant GST-SOD1, expressed in E. coli BL21. The enzyme activity and expression were investigated in the presence of fixed copper and/or zinc doses with different cadmium concentrations, in the cellular medium. Cadmium caused a dose-dependent reduction in SOD1 activity, while the expression remains constant. Similar results were obtained in the cellular model represented by the human SH-SY5Y neuronal cell line. After cadmium treatment for 24 and 48 h, SOD1 enzymatic activity decreased in a dose- and time-dependent way, while the protein expression remained constant. Finally, a 16 h cadmium treatment caused a 25 % reduction of CuZn-SOD activity without affecting the protein expression in the Caenorhabditis elegans model. Taken together our results show an inhibitory effect of cadmium on SOD1 enzymatic activity, without affecting the protein expression, in all the biological models used, suggesting that cadmium can displace zinc from the enzyme catalytic site.
Collapse
Affiliation(s)
- Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Barbara Sciandrone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL), Interuniversity Research Center, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, (MISTRAL), Interuniversity Research Center, Italy.
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy.
| | - Maria Elena Regonesi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, 20126, Milan, Italy; Milan Center of Neuroscience (NeuroMI), 20126, Milan, Italy
| |
Collapse
|
13
|
Das B, Dolai M, Dhara A, Ghosh A, Mabhai S, Misra A, Dey S, Jana A. Solvent-Regulated Fluorimetric Differentiation of Al 3+ and Zn 2+ Using an AIE-Active Single Sensor. J Phys Chem A 2021; 125:1490-1504. [PMID: 33565874 DOI: 10.1021/acs.jpca.0c10518] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The absence of d-orbital electrons or presence of full-filled d-orbital electrons in metal ions is a well-known Achilles' heel problem for the detection of these metal ions by a simple UV-visible study. For this reason, detection of metal ions such as Al3+ with no d-orbital electrons or Zn2+ with filled d-orbital electrons is a challenging task. Herein, we report a 2-naphthol-based fluorescent probe [1-((E)-((E)-(5-bromo-2-hydroxybenzylidene)hydrazono)methyl)naphthalen-2-ol] (H2L) that has been used to sense and discriminate Al3+ and Zn2+ via solvent regulation. The probe exhibits excellent selectivity and swift sensitivity toward Al3+ in MeOH-water (9:1, v/v) and toward Zn2+ in dimethyl sulfoxide (DMSO)-water (9:1, v/v) among various metal ions. The respective detection limit is found to be 9.78 and 3.65 μM. The sensing mechanism is attributed to multiple processes, viz., the inhibition of photo-induced electron transfer (PET) along with the introduction of chelation-enhanced emission (CHEF) and excited-state intramolecular proton transfer (ESIPT) inhibition, which are experimentally well verified by UV-vis absorption spectroscopy, emission spectroscopy, and NMR spectroscopy. The probe shows aggregation-induced emissive (AIE) response in ≥70% aqueous media as well as in the solid state. The experimental results are well corroborated by time-resolved photoluminescence (TRPL) and density functional theory (DFT) calculations. An advanced-level OR-AND-NOT logic gate has been constructed from a different chemical combinational input and emission output. The reversible recognition of both Al3+ in MeOH-water (9:1, v/v) and Zn2+ in DMSO-water (9:1, v/v) is also ascertained in the presence of Na2EDTA, enabling the construction of a molecular memory device. The probe H2L also detects intracellular Al3+/Zn2+ ions in Hela cells. Altogether, our fundamental findings will pave the way for designing and synthesis of unique chemosensors that could be used for cell imaging studies as well as constructing molecular logic gates.
Collapse
Affiliation(s)
- Bhriguram Das
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.,Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur 721636, India
| | - Malay Dolai
- Department of Chemistry, Prabhat Kumar College, Contai, Purba Medinipur, West Bengal 721404, India
| | - Anamika Dhara
- Department of Chemistry, Jadavpur University, Raja S. C. Mallick Road, Kolkata 700032, India
| | - Avijit Ghosh
- Centre for Research in Nanoscience & Nanotechnology, (CRNN), University of Calcutta, Technology Campus, Salt Lake, Kolkata 700098, India
| | - Subhabrata Mabhai
- Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur 721636, India.,Department of Chemistry, Mahisadal Raj College, Purba Medinipur 721628, India
| | - Ajay Misra
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India
| | - Satyajit Dey
- Department of Chemistry, Tamralipta Mahavidyalaya, Purba Medinipur 721636, India
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| |
Collapse
|
14
|
Bechtold P, Gatti MG, Quattrini G, Ferrari A, Barbieri G, Iacuzio L, Carrozzi G, Righi E. Trace elements in toenails in a population living near a modern municipal solid waste incinerator in Modena (Italy). CHEMOSPHERE 2021; 263:128292. [PMID: 33297234 DOI: 10.1016/j.chemosphere.2020.128292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVES A cross-sectional biomonitoring study was performed in Modena (Italy) to assess trace element levels in toenails in a population living near a municipal solid waste incinerator (SWI), and investigate potential differences in their concentrations according to SWI emission exposure and other environmental and behavioral factors. METHODS During the winter 2013/14 eligible subjects, aged 18-69 yrs, living within 4 km from SWI, were randomly selected from the population register. Toxic and essential element concentrations (As, Cd, Cr, Cu, Mn, Ni, Pb, Se, Zn) were analyzed in 489 toenail samples. Individual exposure to SWI emissions was estimated by using, as a tracer, fall-out maps of emitted particulate matter. Information on anthropometric parameters, lifestyles, diet, and road traffic, residential and work exposures were collected by questionnaires and objective measurements. Multivariate logistic regression analyses were carried out, separately for females and males. RESULTS Excluding As, toxic elements were found, usually at low levels, in many samples, while essential elements, especially Cu and Zn, showed higher levels. Overall, no clear relationships between element levels and SWI exposure were observed, whereas associations with other environmental and lifestyle factors were found, including local food consumption, smoking and occupation. CONCLUSIONS The low pollutant concentrations measured in SWI emissions could explain the absence of clear patterns in toenail levels across SWI exposure levels. The associations observed with other factors suggest that, at least in this specific population, other environmental exposures and personal behaviors could act as more important predictors of trace element uptake.
Collapse
Affiliation(s)
- Petra Bechtold
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Maria Giulia Gatti
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Giulia Quattrini
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Angela Ferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy
| | - Giovanna Barbieri
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Laura Iacuzio
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Giuliano Carrozzi
- Epidemiology and Risk Communication Unit, Department of Public Health, Local Health Unit, Strada Martiniana, 21, 41126, Modena, Italy
| | - Elena Righi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi, 287, 41125, Modena, Italy.
| |
Collapse
|
15
|
Oggiano R, Pisano A, Sabalic A, Farace C, Fenu G, Lintas S, Forte G, Bocca B, Madeddu R. An overview on amyotrophic lateral sclerosis and cadmium. Neurol Sci 2020; 42:531-537. [PMID: 33280067 PMCID: PMC7843544 DOI: 10.1007/s10072-020-04957-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
The present review represents an update about the knowledge of the possible role of Cadmium (Cd) in amyotrophic lateral sclerosis (ALS) initiation and its progression. ALS is a neurodegenerative disease that occurs in adulthood; its etiology is unknown and leads to death within a few years from its appearance. Among the various possible causes that can favor the development of the disease, heavy metals cannot be excluded. Cadmium is a heavy metal that does not play a biological role, but its neurotoxicity is well known. Numerous in vitro studies on cell and animal models confirm the toxicity of the metal on the nervous system, but these data are not accompanied by an epidemiological evidence, and, thus, an unclear correlation between Cd and the onset of the disease can be pointed out. On the other hand, a possible multifactorial and synergic mechanism in which Cd may have a role can explain the ALS onset. More efforts in new clinical, biochemical, and epidemiological studies are necessary to better elucidate the involvement of Cd in this lethal disease.
Collapse
Affiliation(s)
- Riccardo Oggiano
- Department of Biomedical Science - Histology, University of Sassari, Sassari, Italy
| | - Andrea Pisano
- Department of Biomedical Science - Histology, University of Sassari, Sassari, Italy
| | - Angela Sabalic
- Department of Biomedical Science - Histology, University of Sassari, Sassari, Italy
| | - Cristiano Farace
- Department of Biomedical Science - Histology, University of Sassari, Sassari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Grazia Fenu
- Department of Biomedical Science - Histology, University of Sassari, Sassari, Italy
| | - Simone Lintas
- Department of Biomedical Science - Histology, University of Sassari, Sassari, Italy
| | - Giovanni Forte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Roberto Madeddu
- Department of Biomedical Science - Histology, University of Sassari, Sassari, Italy. .,National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
16
|
Hasan Z, Rolle-McFarland D, Liu Y, Zhou J, Mostafaei F, Li Y, Fan Q, Zhou Y, Zheng W, Nie LH, Wells EM. Characterization of bone aluminum, a potential biomarker of cumulative exposure, within an occupational population from Zunyi, China. J Trace Elem Med Biol 2020; 59:126469. [PMID: 31982817 PMCID: PMC7112220 DOI: 10.1016/j.jtemb.2020.126469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/04/2019] [Accepted: 01/13/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Aluminum (Al) is a neurotoxicant; however, efforts to understand Al toxicity are limited by the lack of a quantitative biomarker of cumulative exposure. Bone Al measurements may address this need. Here, we describe and compare non-invasive bone Al measurements with fingernail Al and Al cumulative exposure indices (CEIs). METHODS We completed a cross-sectional study of 43 factory workers in Zunyi, China. Bone Al measurements were taken with a compact in-vivo neutron activation analysis system (IVNAA). Fingernail samples were analyzed using inductively coupled plasma mass spectrometry. CEIs, based on self-reported work history and prior literature, were calculated for the prior 5, 10, 15, 20 years and lifetime work history. Linear regressions adjusted for age and education compared fingernail Al and Al CEIs with bone Al. RESULTS Median (interquartile range (IQR)) Al measurements were: 15 μg/g dry bone (IQR = 28) for bone Al; 34.9 μg/g (43.3) for fingernail; and 24 (20) for lifetime CEI. In adjusted regression models, an increase in 15-year CEI was significantly associated with increased bone Al (β = 0.91, 95% confidence interval (CI): 0.16, 1.66). Associations of bone Al with 10- and 20-year CEI were approaching statistical significance (β = 0.98, 95% CI: -0.14, 2.1; β = 0.59, 95% CI: -0.01, 1.18, respectively). Other models were not statistically significant. CONCLUSIONS Bone Al was significantly associated with 15-year Al CEI, but not other Al CEIs or fingernail Al. Bone Al may be a useful measure of cumulative, rather than short-term, Al exposure. Additional refinement of this method is ongoing.
Collapse
Affiliation(s)
- Zainab Hasan
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Danelle Rolle-McFarland
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yingzi Liu
- Department of Radiation Oncology, Emory University, Atlanta, GA, USA
| | - Jieqiong Zhou
- School of Public Health, Yale University, New Haven, CT, USA
| | - Farshad Mostafaei
- Department of Radiation Oncology, University of Arizona, Tucson, AZ, USA
| | - Yan Li
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiyuan Fan
- Zunyi Medical and Pharmaceutical College, Zunyi, Guizhou, China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Wei Zheng
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda H Nie
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Ellen M Wells
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
17
|
Andrew AS, O’Brien KM, Jackson BP, Sandler DP, Kaye WE, Wagner L, Stommel EW, Horton DK, Mehta P, Weinberg CR. Keratinous biomarker of mercury exposure associated with amyotrophic lateral sclerosis risk in a nationwide U.S. study. Amyotroph Lateral Scler Frontotemporal Degener 2020; 21:420-427. [DOI: 10.1080/21678421.2020.1753777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Katie M. O’Brien
- National Institute of Environmental Health Sciences, Durham, NC, USA,
| | - Brian P. Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA,
| | - Dale P. Sandler
- National Institute of Environmental Health Sciences, Durham, NC, USA,
| | | | | | | | - D. Kevin Horton
- Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | - Paul Mehta
- Centers for Disease Control and Prevention (CDC), Agency for Toxic Substances and Disease Registry (ATSDR), Atlanta, GA, USA
| | | |
Collapse
|
18
|
Gutiérrez-González E, García-Esquinas E, de Larrea-Baz NF, Salcedo-Bellido I, Navas-Acien A, Lope V, Gómez-Ariza JL, Pastor R, Pollán M, Pérez-Gómez B. Toenails as biomarker of exposure to essential trace metals: A review. ENVIRONMENTAL RESEARCH 2019; 179:108787. [PMID: 31610392 PMCID: PMC8164381 DOI: 10.1016/j.envres.2019.108787] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 05/19/2023]
Abstract
Health problems associated with essential trace metals can result from both inadequate (i.e., low intake) and excessive exposures (i.e., from environmental and/or occupational source). Thus, measuring the exposure level is a real challenge for epidemiologists. Among non-invasive biomarkers that intend to measure long-term exposure to essential trace metals, the toenail is probably the biological matrix with the greatest potential. This systematic review collects the current evidence regarding the validity of toenail clippings as exposure biomarker for trace metals such as boron, cobalt, copper, iron, manganese, molybdenum, selenium, silicon, vanadium and zinc. Special attention was paid to the time-window of exposure reflected by the toenail, the intraindividual variability in exposure levels over time in this matrix, and the relationship of toenail with other biomarkers, personal characteristics and environmental sources. Our search identified 139 papers, with selenium and zinc being the most studied elements. The variability among studies suggests that toenail levels may reflect different degrees of exposure and probably correspond to exposures occurred 3-12 months before sampling (i.e., for manganese/selenium). Few studies assessed the reproducibility of results over time and, for samples obtained 1-6 years apart, the correlation coefficient were between 0.26 and 0.66. Trace metal levels in toenails did not correlate well with those in the blood and urine and showed low-moderate correlation with those in the hair and fingernails. Available data suggests that for some elements (Se, Mn, Zn) toenail concentrations reflect long-term external exposures in fairly reproducible levels, while for other metals, this association has not yet been assessed. Among dietary factors, only toenail selenium showed clear associations with the intake of supplements or specific foods. The toenail levels could also represent occupational exposure, for instance, Mn exposure in welders. The scarcity of information on other essential trace elements, together with the great heterogeneity among studies makes the validation of the usage of toenails as biomarkers of exposure to these elements difficult. Standardization of sample collection, quality control, analytical techniques and reporting procedures might facilitate further research focused on the clear understanding of the significance of essential levels in this promising matrix and would enhance its utility in epidemiological research.
Collapse
Affiliation(s)
- Enrique Gutiérrez-González
- Public Health & Preventive Medicine Teaching Unit, National School of Public Health, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain.
| | - Esther García-Esquinas
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Nerea Fernández de Larrea-Baz
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Inmaculada Salcedo-Bellido
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Granada & Instituto de Investigación Biosanitaria de Granada, Av. de La Investigación, 11, 18016, Granada, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY, 10032, USA
| | - Virginia Lope
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - José Luis Gómez-Ariza
- Department of Chemistry, Faculty of Experimental Sciences, University of Huelva, Campus de El Carmen, Research Center on Health and Environment (RENSMA), C/ Menéndez Pelayo, 21002, Huelva, Spain
| | - Roberto Pastor
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Marina Pollán
- Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain
| | - Beatriz Pérez-Gómez
- Public Health & Preventive Medicine Teaching Unit, National School of Public Health, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Monforte de Lemos 5, 28029, Madrid, Spain; Department of Epidemiology of Chronic Diseases, National Centre for Epidemiology, Carlos III Institute of Health, Monforte de Lemos 5, 28029, Madrid, Spain.
| |
Collapse
|
19
|
Nicoletti A, Cicero CE, Mostile G, Giuliano L, Luca A, Zappia M. Comment to: Trace elements in ALS patients and their relationships with clinical severity, by Oggiano R. et al. CHEMOSPHERE 2019; 233:986-987. [PMID: 30824159 DOI: 10.1016/j.chemosphere.2019.02.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Alessandra Nicoletti
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy.
| | - Calogero Edoardo Cicero
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Giovanni Mostile
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Loretta Giuliano
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Antonina Luca
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| | - Mario Zappia
- Dipartimento di Scienze Mediche, Chirurgiche e Tecnologie Avanzate "G.F. Ingrassia", Università degli Studi di Catania, Catania, Italy
| |
Collapse
|
20
|
Filippini T, Michalke B, Mandrioli J, Tsatsakis AM, Weuve J, Vinceti M. Selenium Neurotoxicity and Amyotrophic Lateral Sclerosis: An Epidemiologic Perspective. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-95390-8_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Association of Copper Status with Lipid Profile and Functional Status in Patients with Amyotrophic Lateral Sclerosis. J Nutr Metab 2018; 2018:5678698. [PMID: 30116640 PMCID: PMC6079445 DOI: 10.1155/2018/5678698] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/14/2018] [Indexed: 02/08/2023] Open
Abstract
Oxidative stress is one of the main mechanisms associated with the pathogenesis of amyotrophic lateral sclerosis (ALS). Copper can affect cellular oxidation and lipid metabolism. The aim of this study was to evaluate the association of copper status with lipid profile and functional status in patients with ALS. A cross-sectional study was carried out including 27 patients with ALS (case group) and 26 healthy individuals (control group). Copper status was evaluated by habitual dietary copper intake, plasma copper, and serum ceruloplasmin concentrations. The lipid profile included analysis of serum total cholesterol (TC), LDL-cholesterol (LDL-c), HDL-cholesterol (HDL-c), and triglycerides (TGL). The functional status of patients with ALS was assessed by the ALS Functional Rating Scale-Revised (ALSFRS-R). In the case group, plasma copper was lower compared with the control group (133.9 versus 164.1 μg/dL, p=0.0001) and was positively correlated with HDL-c (rs=0.398, p=0.044). In the control group, plasma copper was positively correlated with serum ceruloplasmin (rs=0.646, p < 0.001), TC (rs=0.446, p=0.025), LDL-c (rs=0.445, p=0.029), and HDL-c (rs=0.479, p=0.015), and serum ceruloplasmin was positively correlated only with LDL-c (rs=0.407, p=0.043). In the case group, dietary copper intake (B=−0.373, p < 0.001), plasma copper (B=−0.005, p=0.033), and TC (B=−0.312, p=0.001) were inversely associated with the functional status of patients with ALS. In contrast, serum ceruloplasmin (B=0.016, p=0.044), LDL-c (B=0.314, p=0.001), HDL-c (B=0.308, p=0.001), and TGL (B=0.062; p=0.001) were positively associated with their functional status. In conclusion, this study suggests a disturbance of copper status and its connection with the lipid profile in patients with ALS. Furthermore, copper status and lipid profile may influence the functional status of patients with ALS, standing out as potential biomarkers of disease severity.
Collapse
|
22
|
Oggiano R, Solinas G, Forte G, Bocca B, Farace C, Pisano A, Sotgiu MA, Clemente S, Malaguarnera M, Fois AG, Pirina P, Montella A, Madeddu R. Trace elements in ALS patients and their relationships with clinical severity. CHEMOSPHERE 2018; 197:457-466. [PMID: 29366958 DOI: 10.1016/j.chemosphere.2018.01.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/06/2018] [Accepted: 01/15/2018] [Indexed: 06/07/2023]
Abstract
An exploratory study of trace elements in ALS and their relationships with clinical severity was detected. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that causes irreversible damage in humans, with the consequent loss of function of motoneurons (MNs), with a prognosis up to 5 years after diagnosis. Except to genetic rare cases it is not known the etiology of the disorder. Aim of our research is to investigate the possible role of heavy metals in the severity of the disease. In this study, by the use of plasma mass (ICP-MS), we have analyzed the content of essential and heavy metals such: Pb, Cd, Al, Hg, Mn, Fe, Cu, Zn, Se, Mg, and Ca, in blood, urine and hair of ALS patients and controls; moreover we divided the patients in two groups for disease severity and analyzed the difference among the groups, in order to study a possible involvement of metals in the severity of the damage. Our results suggest a protective role of Selenium, involved in protective antioxidant mechanisms, and a risk factor in the case of presence of Lead in blood. The levels of the other metals are not easy to interpret, because these may be due to life style and for essential metals a consequence of the disease condition, not a cause.
Collapse
Affiliation(s)
- Riccardo Oggiano
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | - Giuliana Solinas
- Department of Biomedical Sciences - Hygiene, University of Sassari, Sassari, Italy
| | - Giovanni Forte
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiano Farace
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | - Andrea Pisano
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy
| | | | | | - Michele Malaguarnera
- Department of Medical and Pediatric Science, Research Centre "The Great Senescence", University of Catania, Catania, Italy
| | - Alessandro Giuseppe Fois
- Department of Clinical and Experimental Medicine - Institute of Respiratory Diseases, University of Sassari, Sassari, Italy
| | - Pietro Pirina
- Department of Clinical and Experimental Medicine - Institute of Respiratory Diseases, University of Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences- Human Anatomy, University of Sassari, Sassari, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences - Histology, University of Sassari, Sassari, Italy; National Institute of Biostructures and Biosystems, Rome, Italy.
| |
Collapse
|
23
|
Sheykhansari S, Kozielski K, Bill J, Sitti M, Gemmati D, Zamboni P, Singh AV. Redox metals homeostasis in multiple sclerosis and amyotrophic lateral sclerosis: a review. Cell Death Dis 2018; 9:348. [PMID: 29497049 PMCID: PMC5832817 DOI: 10.1038/s41419-018-0379-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/12/2022]
Abstract
The effect of redox metals such as iron and copper on multiple sclerosis and amyotrophic lateral sclerosis has been intensively studied. However, the origin of these disorders remains uncertain. This review article critically describes the physiology of redox metals that produce oxidative stress, which in turn leads to cascades of immunomodulatory alteration of neurons in multiple sclerosis and amyotrophic lateral sclerosis. Iron and copper overload has been well established in motor neurons of these diseases’ lesions. On the other hand, the role of other metals like cadmium participating indirectly in the redox cascade of neurobiological mechanism is less studied. In the second part of this review, we focus on this less conspicuous correlation between cadmium as an inactive-redox metal and multiple sclerosis and amyotrophic lateral sclerosis, providing novel treatment modalities and approaches as future prospects.
Collapse
Affiliation(s)
- Sahar Sheykhansari
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Kristen Kozielski
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Metin Sitti
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany
| | - Donato Gemmati
- Hemostasis & Thrombosis Center - Azienda Ospedaliera-Universitaria di Ferrara, Ferrara, Italy
| | - Paolo Zamboni
- Translational Surgery Unit, Azienda Ospedaliera Universitaria di Ferrara, via Aldo Moro 8, 44124, Ferrara, Italy.
| | - Ajay Vikram Singh
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, Stuttgart, 70569, Germany.
| |
Collapse
|
24
|
Andrew AS, Chen CY, Caller TA, Tandan R, Henegan PL, Jackson BP, Hall BP, Bradley WG, Stommel EW. Toenail mercury Levels are associated with amyotrophic lateral sclerosis risk. Muscle Nerve 2018; 58:10.1002/mus.26055. [PMID: 29314106 PMCID: PMC6034986 DOI: 10.1002/mus.26055] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Mercury is a neurotoxic metal that is potentially a risk factor for amyotrophic lateral sclerosis (ALS). Consumption of methylmercury contaminated fish is the primary source of US population exposure to mercury. METHODS We used inductively coupled plasma mass spectrometry to measure levels of mercury in toenail samples from patients with ALS (n = 46) and from controls (n = 66) as a biomarker of mercury exposure. RESULTS Patients with ALS had higher toenail mercury levels (odds ratio 2.49, 95% confidence interval 1.18-5.80, P = 0.024) compared with controls, adjusted for age and sex. We also estimated the amount of mercury consumed from finfish and shellfish and found toenail mercury levels elevated overall among patients with ALS and controls in the top quartile for consumption (P = 0.018). DISCUSSION Biomarker data show that ALS is associated with increased with mercury levels, which were related to estimated methylmercury intake via fish. Replication of these associations in additional populations is warranted. Muscle Nerve, 2018.
Collapse
Affiliation(s)
- Angeline S. Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Celia Y. Chen
- Departments of Biological Sciences, Earth Science, Dartmouth College, Hanover, NH
| | - Tracie A. Caller
- Cheyenne Regional Medical Center, Medical Specialty Clinic, Cheyenne, WY
| | - Rup Tandan
- Department of Neurological Sciences, University of Vermont Medical Center, Burlington, VT
| | - Patricia L. Henegan
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Brian P. Jackson
- Departments of Biological Sciences, Earth Science, Dartmouth College, Hanover, NH
| | - Brenda P. Hall
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Walter G. Bradley
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH
| |
Collapse
|
25
|
Niu Q. Overview of the Relationship Between Aluminum Exposure and Health of Human Being. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:1-31. [PMID: 30315446 DOI: 10.1007/978-981-13-1370-7_1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aluminum is a type of ubiquitously existing naturally and widely used metal in our world. It is combined with other elements and forms different compounds. In different pH and due to other conditions, it can be released into ions of different valence states. Our century is an "aluminum age"; aluminum is used in many fields of our daily life, such as vaccine adjuvant, antacids, food additives, skin care products, cosmetics, and cooking wares, and may be as elements or contaminants appeared in a lot of foods, including infant formulae, milk products, juice, wine, sea foods, and tea. It also appears in drinking water due to the water treatment process, or naturally coming from weathering rocks and soils, or released from rocks and soils caused by pollution-induced acid rain. Due to good physical and chemical property, aluminum is being tremendously utilized in many industries. In a lot of production and process procedures, aluminum particulates are seriously exposed by workers. Many factors, such as silicon, citrate, iron, calcium, fluoride, etc., can affect absorption of aluminum in human body. Human being ingests aluminum through the respiratory and digestive system and skin. Aluminum can affect our health, especially impair central nervous system. The important damage is cognitive impairment in Al-exposed peoples, Alzheimer's disease and other neurodegenerative disorders have been related with aluminum exposure, and aluminum has been proposed as etiology.
Collapse
Affiliation(s)
- Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
26
|
Cicero CE, Mostile G, Vasta R, Rapisarda V, Signorelli SS, Ferrante M, Zappia M, Nicoletti A. Metals and neurodegenerative diseases. A systematic review. ENVIRONMENTAL RESEARCH 2017; 159:82-94. [PMID: 28777965 DOI: 10.1016/j.envres.2017.07.048] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 05/28/2023]
Abstract
Neurodegenerative processes encompass a large variety of diseases with different pathological patterns and clinical presentation such as Amyotrophic Lateral Sclerosis (ALS), Alzheimer Disease (AD) and Parkinson's disease (PD). Genetic mutations have a known causative role, but the majority of cases are likely to be probably caused by a complex gene-environment interaction. Exposure to metals has been hypothesized to increase oxidative stress in brain cells leading to cell death and neurodegeneration. Neurotoxicity of metals has been demonstrated by several in vitro and in vivo experimental studies and it is likely that each metal could be toxic through specific pathways. The possible pathogenic role of different metals has been supported by some epidemiological evidences coming from occupational and ecological studies. In order to assess the possible association between metals and neurodegenerative disorders, several case-control studies have also been carried out evaluating the metals concentration in different biological specimens such as blood/serum/plasma, cerebrospinal fluid (CSF), nail and hair, often reporting conflicting results. This review provides an overview of our current knowledge on the possible association between metals and ALS, AD and PD as main neurodegenerative disorders.
Collapse
Affiliation(s)
- Calogero Edoardo Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy
| | - Giovanni Mostile
- Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy
| | - Rosario Vasta
- Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy
| | - Venerando Rapisarda
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Margherita Ferrante
- Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy.
| |
Collapse
|
27
|
Sureda A, Bibiloni MDM, Julibert A, Aparicio-Ugarriza R, Palacios-Le Blé G, Pons A, Gonzalez-Gross M, Tur JA. Trace element contents in toenails are related to regular physical activity in older adults. PLoS One 2017; 12:e0185318. [PMID: 28985222 PMCID: PMC5630118 DOI: 10.1371/journal.pone.0185318] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022] Open
Abstract
The aim was to assess the trace element contents in toenails of older adults and its association with regular physical activity. Cross-sectional multicentre study in Spain, collecting data from a random sample of 380 participants (54% female) aged 55–80 years (men) and 60–80 years (women) with no previously documented cardiovascular disease. Physical activity performed was measured using the Minnesota Leisure-time Physical Activity Questionnaire. The 25 most inactive and 25 most active individuals for each sex were selected for this study (final sample n = 100). Anthropometric measurements were performed and toenail samples collected for calcium (Ca), chromium (Cr), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), selenium (Se) and mercury (Hg) analysis. Significant differences between sexes were reported in Ca concentrations, women having lower concentrations than men. No differences were reported in trace element contents between active and inactive men. Active women showed higher Ca, Cr, Fe, Co, and Zn and lower Hg contents than their inactive peers (all p<0.05). Inactive women showed lower Ca and Co levels (735.0 mg/kg and 4.5 μg/kg, respectively) than inactive men (1170.0 mg/kg and 7.9 μg/kg, respectively). Active women had lower Ca and higher levels of Cr (936.0 mg/kg and 1230.0 μg/kg, respectively) than active men (1070.0 mg/kg and 522.0 μg/kg, respectively). The present data added new information on the element contents in toenails of healthy Spanish older adults. The concentration of trace elements was similar in both sexes except for Ca which were lower in women. The trace element contents in women’s toenails, but not in men, were markedly influenced by physical activity, with higher levels of Ca and Fe and lower Hg among active females.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria del Mar Bibiloni
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Alicia Julibert
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Aparicio-Ugarriza
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Technical University of Madrid, Madrid, Spain
| | - Gonzalo Palacios-Le Blé
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Technical University of Madrid, Madrid, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| | - Marcela Gonzalez-Gross
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Sciences (INEF), Technical University of Madrid, Madrid, Spain
| | - Josep A. Tur
- Research Group on Community Nutrition and Oxidative Stress, University of the Balearic Islands, Palma de Mallorca, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
28
|
Vinceti M, Filippini T, Mandrioli J, Violi F, Bargellini A, Weuve J, Fini N, Grill P, Michalke B. Lead, cadmium and mercury in cerebrospinal fluid and risk of amyotrophic lateral sclerosis: A case-control study. J Trace Elem Med Biol 2017; 43:121-125. [PMID: 28089071 PMCID: PMC5495626 DOI: 10.1016/j.jtemb.2016.12.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022]
Abstract
Exposure to neurotoxic chemicals such as pesticides, selenium, and heavy metals have been suggested to play a role in the etiology of amyotrophic lateral sclerosis (ALS). We assessed exposure to lead, cadmium, and mercury in 38 ALS patients (16 men and 22 females) and 38 hospital-admitted controls by using their cerebrospinal fluid (CSF) content as biomarker. We determined CSF heavy metal levels with inductively coupled plasma sector field mass spectrometry, according to a methodology specifically developed for this biological matrix. ALS patients had higher median values for Pb (155 vs. 132ng/L) but lower levels for Cd (36 vs. 72ng/L) and Hg (196 vs. 217ng/L). In the highest tertile of exposure, ALS odds ratio was 1.39 (95% CI 0.48-4.25) for Pb, 0.29 (0.08-1.04) for Cd and 3.03 (0.52-17.55) for Hg; however, no dose-response relation emerged. Results were substantially confirmed after conducting various sensitivity analyses, and after stratification for age and sex. Though interpretation of these results is limited by the statistical imprecision of the estimates, and by the possibility that CSF heavy metal content may not reflect long-term antecedent exposure, they do not lend support to a role of the heavy metals cadmium, lead and mercury in ALS etiology.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia Medical School, Modena, Italy; Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| | - Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Jessica Mandrioli
- Department of Neurology, Sant'Agostino-Estense Hospital, National Health Service, Local Health Unit of Modena, Modena, Italy
| | - Federica Violi
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Annalisa Bargellini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), University of Modena and Reggio Emilia Medical School, Modena, Italy
| | - Jennifer Weuve
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Nicola Fini
- Department of Neurology, Sant'Agostino-Estense Hospital, National Health Service, Local Health Unit of Modena, Modena, Italy
| | - Peter Grill
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Research Unit Analytical BioGeoChemistry, Neuherberg, Germany
| |
Collapse
|
29
|
Filippini T, Ferrari A, Michalke B, Grill P, Vescovi L, Salvia C, Malagoli C, Malavolti M, Sieri S, Krogh V, Bargellini A, Martino A, Ferrante M, Vinceti M. Toenail selenium as an indicator of environmental exposure: A cross-sectional study. Mol Med Rep 2017; 15:3405-3412. [DOI: 10.3892/mmr.2017.6388] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/09/2017] [Indexed: 11/06/2022] Open
|
30
|
Peters TL, Beard JD, Umbach DM, Allen K, Keller J, Mariosa D, Sandler DP, Schmidt S, Fang F, Ye W, Kamel F. Blood levels of trace metals and amyotrophic lateral sclerosis. Neurotoxicology 2016; 54:119-126. [PMID: 27085208 DOI: 10.1016/j.neuro.2016.03.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 02/04/2023]
Abstract
Some trace metals may increase risk of amyotrophic lateral sclerosis (ALS), whereas others may be beneficial. Our goal was to examine associations of ALS with blood levels of selenium (Se), zinc (Zn), copper (Cu), and manganese (Mn). We conducted a case-control study of 163 neurologist confirmed patients from the National Registry of Veterans with ALS and 229 frequency-matched veteran controls. We measured metal levels in blood using inductively coupled plasma mass spectrometry and estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between ALS and a doubling of metal levels using unconditional logistic regression, adjusting for age, gender, and race/ethnicity. ALS was inversely associated with both Se (OR=0.4, 95% CI: 0.2-0.8) and Zn (OR=0.4, 95% CI: 0.2-0.8). Inverse associations with Se were stronger in patients with bulbar compared to spinal onset, worse function, longer diagnostic delay, and longer collection delay; inverse associations with Zn were stronger for those with worse function and longer collection delay. In contrast, ALS was positively associated with Cu (OR=3.4, 95% CI: 1.5-7.9). For Mn, no linear trend was evident (OR=0.9, 95% CI: 0.6-1.3, Ptrend=0.51). Associations of Se, Zn, Cu, and Mn with ALS were independent of one another. Adjustment for lead levels attenuated the positive association of ALS with Cu but did not change associations with Se, Zn, or Mn. In conclusion, Se and Zn were inversely associated with ALS, particularly among those with worse function, suggesting that supplementation with these metals may benefit such patients, while Cu was positively associated with ALS. Deficiencies of Se and Zn and excess Cu may have a role in ALS etiology.
Collapse
Affiliation(s)
- Tracy L Peters
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - John D Beard
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA
| | - Kelli Allen
- Center for Health Services Research in Primary Care, Durham VA Medical Center, Durham, NC, USA; Department of Medicine and Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | | | - Daniela Mariosa
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA
| | - Silke Schmidt
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Fang Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA.
| |
Collapse
|
31
|
Nicoletti A, Vasta R, Venti V, Mostile G, Lo Fermo S, Patti F, Scillieri R, De Cicco D, Volanti P, Marziolo R, Maimone D, Fiore M, Ferrante M, Zappia M. The epidemiology of amyotrophic lateral sclerosis in the Mount Etna region: a possible pathogenic role of volcanogenic metals. Eur J Neurol 2016; 23:964-72. [PMID: 26924209 DOI: 10.1111/ene.12973] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 01/18/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Trace elements (TEs) may play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS) and volcanic degassing is the major natural source of TEs. Mount Etna, in the province of Catania, is the largest active volcano in Europe. Our aim was to assess the incidence of ALS in the province of Catania during 2005-2010 and its spatial distribution with respect to volcanic gas deposition. METHODS Cases from all neurological centres of the province of Catania and of the boundary provinces were retrospectively collected. Patients who had onset during 2005-2010 and fulfilled the El Escorial revised diagnostic criteria were included. The incidence of ALS was estimated for the entire province and separately for the population living on the eastern and western flank of Mount Etna, respectively, the most and least exposed areas to volcanogenic TEs, considered as a possible risk factor for ALS. RESULTS One hundred and twenty-six (57 men) ALS patients were enrolled. The mean annual crude incidence rate was 2.0/100 000 person-years (95% confidence interval 1.7-2.4). A higher incidence rate was found in the population living on the eastern flank compared to the western flank (2.4/100 000 and 0.9/100 000 respectively) with a relative risk of 2.75 (95% confidence interval 1.64-4.89; P < 0.001). CONCLUSIONS The incidence of ALS in the province of Catania is close to those reported worldwide. The incidence was higher amongst the population living on the eastern flank of Mount Etna, which could be interpreted as a possible role of volcanogenic TEs. Further research on TEs and genetic factors is necessary to support this assumption.
Collapse
Affiliation(s)
- A Nicoletti
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| | - R Vasta
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| | - V Venti
- Department of Pediatrics, University of Catania, Catania, Italy
| | - G Mostile
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| | - S Lo Fermo
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| | - F Patti
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| | - R Scillieri
- Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - D De Cicco
- Intensive Neurorehabilitation Unit, ALS Centre, IRCCS 'Salvatore Maugeri' Foundation, Mistretta, Italy
| | - P Volanti
- Intensive Neurorehabilitation Unit, ALS Centre, IRCCS 'Salvatore Maugeri' Foundation, Mistretta, Italy
| | - R Marziolo
- Neurology Unit, Cannizzaro Hospital, Catania, Italy
| | - D Maimone
- Department of Neurology, Garibaldi Hospital, Catania, Italy
| | - M Fiore
- Environmental and Food Hygiene Laboratory - LIAA, Department GF Ingrassia, University of Catania, Catania, Italy
| | - M Ferrante
- Environmental and Food Hygiene Laboratory - LIAA, Department GF Ingrassia, University of Catania, Catania, Italy
| | - M Zappia
- Section of Neurosciences, Department GF Ingrassia, University of Catania, Catania, Italy
| |
Collapse
|
32
|
Sun ZG, Li Z, Yuan DD, Gao JF, Lin L, Lin J, Zhu ML, Makawana JA, Qian Y, Zhu HL. A Quinoline-Based Ratiometric and Reversible Fluorescent Probe for Cadmium Imaging in Living Cells. Chem Pharm Bull (Tokyo) 2016; 64:27-33. [DOI: 10.1248/cpb.c15-00579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhi-Gang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| | - Zhen Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| | - Dan-dan Yuan
- School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computional Chemistry, Nanjing University
| | | | - Lin Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| | - Jie Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| | - Ming-li Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| | - Jigar A. Makawana
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| | - Yong Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University
- Yishui Central Hospital
| |
Collapse
|
33
|
Level of neurotoxic metals in amyotrophic lateral sclerosis: A population-based case–control study. J Neurol Sci 2015; 359:11-7. [DOI: 10.1016/j.jns.2015.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/18/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022]
|
34
|
Blood lead, manganese, and aluminum levels in a regional Italian cohort of ALS patients: does aluminum have an influence? J Occup Environ Med 2015; 56:1062-6. [PMID: 25285828 DOI: 10.1097/jom.0000000000000266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To study aluminum (Al), manganese (Mn), and lead (Pb) influence on amyotrophic lateral sclerosis (ALS) development. METHODS A total of 34 patients (10% of the regional ALS population) and 25 controls of an Italian region were enrolled. Metal concentrations were determined by atomic absorption spectroscopy. RESULTS Serum Al concentrations in patients and controls were similar and lower than those provided by the Italian Society of Reference Values. No differences were observed in serum Mn concentrations, while, as expected, blood Pb levels were significantly higher in patients with ALS than those in controls. CONCLUSIONS Results confirmed the association between high Pb blood levels and ALS; on the contrary, Al and Mn did not differ significantly in patients and controls, suggesting that Mn and especially Al may play a less important role in the ALS pathogenesis.
Collapse
|
35
|
Vinceti M, Grioni S, Alber D, Consonni D, Malagoli C, Agnoli C, Malavolti M, Pala V, Krogh V, Sieri S. Toenail selenium and risk of type 2 diabetes: the ORDET cohort study. J Trace Elem Med Biol 2015; 29:145-50. [PMID: 25169979 DOI: 10.1016/j.jtemb.2014.07.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/16/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
Abstract
Epidemiologic studies, particularly randomized controlled trials, have shown a direct relation between dietary and environmental exposure to the metalloid selenium and risk of type 2 diabetes. We investigated the association between baseline toenail selenium levels and diabetes occurrence in a case-control study nested in ORDET, a population-based female cohort in Northern Italy. After a median follow-up of 16 years, we identified 226 cases of type 2 diabetes cases and 395 age-matched control women with available toenail samples at baseline. The multivariate odds ratios of diabetes in increasing a priori defined categories of toenail selenium exposure were 1.09 (95% confidence interval 0.61, 1.96), 0.71 (0.38, 1.34) and 1.14 (0.46, 2.80) compared with the lowest category. The results were not substantially altered when quartile distribution of toenail selenium in controls was used to define exposure categories. Spline regression analysis did not show homogeneous risk trends. Overall, we did not find an association between toenail selenium and subsequent development of diabetes. Since the diabetogenic activity of selenium is strongly supported by experimental studies and some observational investigations, our null results might be explained by the limitations of overall selenium toenail content to assess environmental exposure to selenium species of etiologic relevance in the study population.
Collapse
Affiliation(s)
- Marco Vinceti
- Centro di Ricerca in Epidemiologia Ambientale, Genetica e Nutrizionale (CREAGEN), University of Modena and Reggio Emilia, Modena, Via Campi, 287, 41125 Modena, Italy.
| | - Sara Grioni
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Dorothea Alber
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via San Barnaba, 8, 20122 Milan, Italy
| | - Carlotta Malagoli
- Centro di Ricerca in Epidemiologia Ambientale, Genetica e Nutrizionale (CREAGEN), University of Modena and Reggio Emilia, Modena, Via Campi, 287, 41125 Modena, Italy
| | - Claudia Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Marcella Malavolti
- Centro di Ricerca in Epidemiologia Ambientale, Genetica e Nutrizionale (CREAGEN), University of Modena and Reggio Emilia, Modena, Via Campi, 287, 41125 Modena, Italy
| | - Valeria Pala
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy
| |
Collapse
|
36
|
Yu Y, Su FC, Callaghan BC, Goutman SA, Batterman SA, Feldman EL. Environmental risk factors and amyotrophic lateral sclerosis (ALS): a case-control study of ALS in Michigan. PLoS One 2014; 9:e101186. [PMID: 24979055 PMCID: PMC4076303 DOI: 10.1371/journal.pone.0101186] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 11/18/2022] Open
Abstract
An interim report of a case-control study was conducted to explore the role of environmental factors in the development of amyotrophic lateral sclerosis (ALS). Sixty-six cases and 66 age- and gender-matched controls were recruited. Detailed information regarding residence history, occupational history, smoking, physical activity, and other factors was obtained using questionnaires. The association of ALS with potential risk factors, including smoking, physical activity and chemical exposure, was investigated using conditional logistic regression models. As compared to controls, a greater number of our randomly selected ALS patients reported exposure to fertilizers to treat private yards and gardens and occupational exposure to pesticides in the last 30 years than our randomly selected control cases. Smoking, occupational exposures to metals, dust/fibers/fumes/gas and radiation, and physical activity were not associated with ALS when comparing the randomly selected ALS patients to the control subjects. To further explore and confirm results, exposures over several time frames, including 0-10 and 10-30 years earlier, were considered, and analyses were stratified by age and gender. Pesticide and fertilizer exposure were both significantly associated with ALS in the randomly selected ALS patients. While study results need to be interpreted cautiously given the small sample size and the lack of direct exposure measures, these results suggest that environmental and particularly residential exposure factors warrant close attention in studies examining risk factors of ALS.
Collapse
Affiliation(s)
- Yu Yu
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Feng-Chiao Su
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Brian C. Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stuart A. Batterman
- Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ELF); (SAB)
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ELF); (SAB)
| |
Collapse
|
37
|
The disease intersection of susceptibility and exposure: Chemical exposures and neurodegenerative disease risk. Alzheimers Dement 2014; 10:S213-25. [DOI: 10.1016/j.jalz.2014.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
38
|
D’Amico E, Factor-Litvak P, Santella RM, Mitsumoto H. Clinical perspective on oxidative stress in sporadic amyotrophic lateral sclerosis. Free Radic Biol Med 2013; 65:509-527. [PMID: 23797033 PMCID: PMC3859834 DOI: 10.1016/j.freeradbiomed.2013.06.029] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 06/14/2013] [Accepted: 06/14/2013] [Indexed: 12/12/2022]
Abstract
Sporadic amyotrophic lateral sclerosis (ALS) is one of the most devastating neurological diseases; most patients die within 3 to 4 years after symptom onset. Oxidative stress is a disturbance in the pro-oxidative/antioxidative balance favoring the pro-oxidative state. Autopsy and laboratory studies in ALS indicate that oxidative stress plays a major role in motor neuron degeneration and astrocyte dysfunction. Oxidative stress biomarkers in cerebrospinal fluid, plasma, and urine are elevated, suggesting that abnormal oxidative stress is generated outside of the central nervous system. Our review indicates that agricultural chemicals, heavy metals, military service, professional sports, excessive physical exertion, chronic head trauma, and certain foods might be modestly associated with ALS risk, with a stronger association between risk and smoking. At the cellular level, these factors are all involved in generating oxidative stress. Experimental studies indicate that a combination of insults that induce modest oxidative stress can exert additive deleterious effects on motor neurons, suggesting that multiple exposures in real-world environments are important. As the disease progresses, nutritional deficiency, cachexia, psychological stress, and impending respiratory failure may further increase oxidative stress. Moreover, accumulating evidence suggests that ALS is possibly a systemic disease. Laboratory, pathologic, and epidemiologic evidence clearly supports the hypothesis that oxidative stress is central in the pathogenic process, particularly in genetically susceptive individuals. If we are to improve ALS treatment, well-designed biochemical and genetic epidemiological studies, combined with a multidisciplinary research approach, are needed and will provide knowledge crucial to our understanding of ALS etiology, pathophysiology, and prognosis.
Collapse
Affiliation(s)
- Emanuele D’Amico
- Eleanor and Lou Gehrig MDA/ALS Research Center, The Neurological Institute of New York, Columbia University Medical Center, 710 West 168th Street (NI-9), New York, NY 10032, ;
| | - Pam Factor-Litvak
- Department of Epidemiology, Mailman School of Public Health, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032,
| | - Regina M. Santella
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University Medical Center, 722 West 168th Street, New York, NY 10032,
| | - Hiroshi Mitsumoto
- Eleanor and Lou Gehrig MDA/ALS Research Center, The Neurological Institute of New York, Columbia University Medical Center, 710 West 168th Street (NI-9), New York, NY 10032
| |
Collapse
|
39
|
Vinceti M, Mandrioli J, Borella P, Michalke B, Tsatsakis A, Finkelstein Y. Selenium neurotoxicity in humans: bridging laboratory and epidemiologic studies. Toxicol Lett 2013; 230:295-303. [PMID: 24269718 DOI: 10.1016/j.toxlet.2013.11.016] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 11/06/2013] [Accepted: 11/14/2013] [Indexed: 12/14/2022]
Abstract
Selenium is a metalloid of considerable interest in the human from both a toxicological and a nutritional perspective, with a very narrow safe range of intake. Acute selenium intoxication is followed by adverse effects on the nervous system with special clinical relevance, while the neurotoxicity of long-term overexposure is less characterized and recognized. We aimed to address this issue from a public health perspective, focusing on both laboratory studies and the few epidemiologic human studies available, with emphasis on their methodological strengths and limitations. The frequently overlooked differences in toxicity and biological activity of selenium compounds are also outlined. In addition to lethargy, dizziness, motor weakness and paresthesias, an excess risk of amyotrophic lateral sclerosis is the effect on the nervous system which has been more consistently associated with chronic low-level selenium overexposure, particularly to its inorganic compounds. Additional research efforts are needed to better elucidate the neurotoxic effects exerted by selenium overexposure.
Collapse
Affiliation(s)
- Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; Trace Element Institute for Unesco Satellite Center, Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | - Jessica Mandrioli
- Department of Neuroscience, University of Modena and Reggio Emilia and Local Health Unit of Modena, Modena, Italy
| | - Paola Borella
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy; Trace Element Institute for Unesco Satellite Center, Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München - German Research Center for Environmental Health GmbH, Munich, Germany
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, University of Crete, Heraklion, Greece
| | - Yoram Finkelstein
- Neurology and Toxicology Service and Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
40
|
Trojsi F, Monsurrò MR, Tedeschi G. Exposure to environmental toxicants and pathogenesis of amyotrophic lateral sclerosis: state of the art and research perspectives. Int J Mol Sci 2013; 14:15286-311. [PMID: 23887652 PMCID: PMC3759860 DOI: 10.3390/ijms140815286] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022] Open
Abstract
There is a broad scientific consensus that amyotrophic lateral sclerosis (ALS), a fatal neuromuscular disease, is caused by gene--environment interactions. In fact, given that only about 10% of all ALS diagnosis has a genetic basis, gene-environmental interaction may give account for the remaining percentage of cases. However, relatively little attention has been paid to environmental and lifestyle factors that may trigger the cascade of motor neuron degeneration leading to ALS, although exposure to chemicals--including lead and pesticides-agricultural environments, smoking, intense physical activity, trauma and electromagnetic fields have been associated with an increased risk of ALS. This review provides an overview of our current knowledge of potential toxic etiologies of ALS with emphasis on the role of cyanobacteria, heavy metals and pesticides as potential risk factors for developing ALS. We will summarize the most recent evidence from epidemiological studies and experimental findings from animal and cellular models, revealing that potential causal links between environmental toxicants and ALS pathogenesis have not been fully ascertained, thus justifying the need for further research.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia 2, Naples 80138, Italy; E-Mails: (M.R.M.); (G.T.)
- Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”, Via Cupa delle Tozzole 2, Naples 80131, Italy
| | - Maria Rosaria Monsurrò
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia 2, Naples 80138, Italy; E-Mails: (M.R.M.); (G.T.)
- Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”, Via Cupa delle Tozzole 2, Naples 80131, Italy
| | - Gioacchino Tedeschi
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, Second University of Naples, Piazza Miraglia 2, Naples 80138, Italy; E-Mails: (M.R.M.); (G.T.)
- Neurological Institute for Diagnosis and Care “Hermitage Capodimonte”, Via Cupa delle Tozzole 2, Naples 80131, Italy
| |
Collapse
|
41
|
Vinceti M, Solovyev N, Mandrioli J, Crespi CM, Bonvicini F, Arcolin E, Georgoulopoulou E, Michalke B. Cerebrospinal fluid of newly diagnosed amyotrophic lateral sclerosis patients exhibits abnormal levels of selenium species including elevated selenite. Neurotoxicology 2013; 38:25-32. [PMID: 23732511 DOI: 10.1016/j.neuro.2013.05.016] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022]
Abstract
Exposure to selenium, and particularly to its inorganic forms, has been hypothesized as a risk factor for amyotrophic lateral sclerosis (ALS), a fast progressing motor neuron disease with poorly understood etiology. However, no information is known about levels of inorganic and some organic selenium species in the central nervous system of ALS patients, and recent observations suggest that peripheral biomarkers of exposure are unable to predict these levels for several Se species including the inorganic forms. Using a hospital-referred case-control series and advanced selenium speciation methods, we compared the chemical species of selenium in cerebrospinal fluid from 38 ALS patients to those of 38 reference neurological patients matched on age and gender. We found that higher concentrations of inorganic selenium in the form of selenite and of human serum albumin-bound selenium were associated with increased ALS risk (relative risks 3.9 (95% confidence interval 1.2-11.0) and 1.7 (1.0-2.9) for 0.1μg/L increase). Conversely, lower concentrations of selenoprotein P-bound selenium were associated with increased risk (relative risk 0.2 for 1μg/L increase, 95% confidence interval 0.04-0.8). The associations were stronger among cases age 50 years or older, who are postulated to have lower rates of genetic disease origin. These results suggest that excess selenite and human serum albumin bound-selenium and low levels of selenoprotein P-bound selenium in the central nervous system, which may be related, may play a role in ALS etiology.
Collapse
Affiliation(s)
- Marco Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, Department of Diagnostic, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
44
|
Emmanuelle B, Virginie M, Fabienne S, Isabelle I, Martine PG, Bernard L, Sylvie R. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: results of a French integrated exposure assessment survey. ENVIRONMENT INTERNATIONAL 2012; 40:155-161. [PMID: 21824658 DOI: 10.1016/j.envint.2011.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/06/2011] [Accepted: 07/10/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Selenium is an essential element which can be toxic if ingested in excessive quantities. The main human exposure is food. In addition, intake may be boosted by consumption drinking water containing unusual high selenium concentration. OBJECTIVE We measured the individual selenium level of people exposed to selenium concentration in drinking water greater than the maximum recommended limit which is 10 μg/L. METHODS We carried out a prospective cohort study on 80 adults (40 exposed subjects i.e. living in the involved area and 40 non-exposed ones i.e. living elsewhere) in western France. We used three different approaches: (1) direct measurement of ingested selenium by the duplicate portion method, (2) dietary reconstitution with a food frequency questionnaire (FFQ) and (3) evaluation of the individual selenium status by measuring the selenium content in toenail clippings. Analyses were performed by inductively coupled plasma-mass spectrometry. The association between toenail selenium concentration and area of residence was analyzed using linear regression with repeated measurements. RESULTS We estimated selenium intake from FFQ at 64±14 μg/day for exposed subjects as opposed to 52±14 μg/day for the non-exposed ones. On the basis of 305 duplicate diet samples, average intake was estimated at 64±26 μg/day for exposed subjects. Area of residence (p=0.0030) and smoking (p=0.0054) were independently associated with toenail selenium concentration. CONCLUSION Whatever method used for estimating selenium intake, the selenium level in this studied area with high selenium concentrated drinking water is much lower than in seleniferous areas.
Collapse
Affiliation(s)
- Barron Emmanuelle
- Université de Poitiers, Laboratoire de Chimie et Microbiologie de l'Eau, UMR CNRS 6008, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France.
| | - Migeot Virginie
- Université de Poitiers, Laboratoire de Chimie et Microbiologie de l'Eau, UMR CNRS 6008, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France; Université de Poitiers, Faculté de Médecine et Pharmacie, 6 rue de la Milétrie, 86034 Poitiers Cedex, France.
| | - Séby Fabienne
- Ultra Traces Analyses Aquitaine, Hélioparc Pau Pyrénées, 2 avenue du Président Angot, 64053 Pau Cedex 9, France
| | - Ingrand Isabelle
- Université de Poitiers, Faculté de Médecine et Pharmacie, 6 rue de la Milétrie, 86034 Poitiers Cedex, France
| | - Potin-Gautier Martine
- Université de Pau et de l'Adour, Equipe de Chimie Analytique Bio-Inorganique et Environnement, UMR CNRS/UPPA 5254, avenue de l'Université, 64000 Pau, France
| | - Legube Bernard
- Université de Poitiers, Laboratoire de Chimie et Microbiologie de l'Eau, UMR CNRS 6008, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | - Rabouan Sylvie
- Université de Poitiers, Laboratoire de Chimie et Microbiologie de l'Eau, UMR CNRS 6008, 40, avenue du Recteur Pineau, 86022 Poitiers Cedex, France; Université de Poitiers, Faculté de Médecine et Pharmacie, 6 rue de la Milétrie, 86034 Poitiers Cedex, France
| |
Collapse
|
45
|
Study of heavy metal levels among farmers of Muda Agricultural Development Authority, Malaysia. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2012; 2012:758349. [PMID: 22536276 PMCID: PMC3321457 DOI: 10.1155/2012/758349] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/12/2012] [Accepted: 02/03/2012] [Indexed: 11/17/2022]
Abstract
Heavy metals, particularly cadmium, lead, and arsenic, constitute a significant potential threat to human health. This study was conducted to determine the levels of cadmium, lead, and arsenic in nail samples from farmers at Muda Agricultural Development Authority (MADA), Kedah, Malaysia, and evaluate factors that can contribute to their accumulations. A total of 116 farmers participated in this study. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze concentration of heavy metals in the nail samples and questionnaires were given to participants to get demographic, health status, and their agricultural activities data. In this paper, the level of heavy metals was within the normal range and varies according to demographic factors. We found that there were significant correlations between working period with level of lead and arsenic (r = 0.315 and r = 0.242, resp., P < 0.01) and age with lead level (r = 0.175, P < 0.05). Our findings suggested that agricultural activities could contribute to the accumulation of heavy metals in farmers. Hence, the control of environmental levels of and human exposure to these metals to prevent adverse health effects is still an important public health issue.
Collapse
|
46
|
|
47
|
Romarís EMG, Cervantes II, López JMG, Marcén JFE. Concentration of calcium and magnesium and trace elements (zinc, copper, iron and manganese) in cerebrospinal fluid: a try of a pathophysiological classification. J Trace Elem Med Biol 2011; 25 Suppl 1:S45-9. [PMID: 21146970 DOI: 10.1016/j.jtemb.2010.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/26/2010] [Indexed: 11/30/2022]
Abstract
The aim of this study is to analyze the variation of the elements (Ca, Mg, Cu, Fe, Zn and Mn) in normal and pathological CSF and develop a classification basing on the increases in cells and proteins and taking into account these variations. A total of 173 cerebrospinal fluids were analyzed. Of these, 37 fulfilled the criteria of normality and, after clinical exploration, were considered to be healthy (control group). The remaining 136 CSFs (pathological group) belonged to people for whom some neurological pathology had been observed in the clinical exploration and whose CSF analysis presented some abnormality. CSF was extracted by puncture in the lumbar cistern. The analysis of metals was performed by atomic absorption spectrophotometry. The statistical values (mean±standard deviation) obtained for each element analyzed in control group were as follows: Ca (mg/dL): 4.95±0.70; Mg (mg/dL): 2.74±0.10; Cu (μg/dL): 15.70±13.50; Fe (μg/dL): 13.10±3.60; Zn (μg/dL): 17.40±9.50 and Mn (μg/dL): 2.50±0.70. In the pathological CSFs, significant increases were found (p<0.050) in relation to the control group for Ca, Cu, Fe, Zn and Mn in groups with an increase of both cells and proteins. A significant decrease of Mg (p<0.050) was found in the groups with cell and protein increases. Given the results obtained in the different subgroups of the proposed classification, we conclude that it is necessary to further categorize the patients' diagnostics in the different subgroups. This would help to validate the classification.
Collapse
|
48
|
George JL, Mok S, Moses D, Wilkins S, Bush AI, Cherny RA, Finkelstein DI. Targeting the progression of Parkinson's disease. Curr Neuropharmacol 2010; 7:9-36. [PMID: 19721815 PMCID: PMC2724666 DOI: 10.2174/157015909787602814] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 08/15/2008] [Accepted: 09/09/2008] [Indexed: 02/07/2023] Open
Abstract
By the time a patient first presents with symptoms of Parkinson's disease at the clinic, a significant proportion (50-70%) of the cells in the substantia nigra (SN) has already been destroyed. This degeneration progresses until, within a few years, most of the cells have died. Except for rare cases of familial PD, the initial trigger for cell loss is unknown. However, we do have some clues as to why the damage, once initiated, progresses unabated. It would represent a major advance in therapy to arrest cell loss at the stage when the patient first presents at the clinic. Current therapies for Parkinson's disease focus on relieving the motor symptoms of the disease, these unfortunately lose their effectiveness as the neurodegeneration and symptoms progress. Many experimental approaches are currently being investigated attempting to alter the progression of the disease. These range from replacement of the lost neurons to neuroprotective therapies; each of these will be briefly discussed in this review. The main thrust of this review is to explore the interactions between dopamine, alpha synuclein and redox-active metals. There is abundant evidence suggesting that destruction of SN cells occurs as a result of a self-propagating series of reactions involving dopamine, alpha synuclein and redox-active metals. A potent reducing agent, the neurotransmitter dopamine has a central role in this scheme, acting through redox metallo-chemistry to catalyze the formation of toxic oligomers of alpha-synuclein and neurotoxic metabolites including 6-hydroxydopamine. It has been hypothesized that these feed the cycle of neurodegeneration by generating further oxidative stress. The goal of dissecting and understanding the observed pathological changes is to identify therapeutic targets to mitigate the progression of this debilitating disease.
Collapse
Affiliation(s)
- J L George
- The Mental Health Research Institute of Victoria , 155 Oak Street, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
49
|
Trunova VA, Brenner NV, Zvereva VV. Investigation of the content and of the distribution of chemical elements in human nails by SRXRF. Toxicol Mech Methods 2010; 19:1-18. [PMID: 19778227 DOI: 10.1080/15376510801891310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The purpose of this investigation is to analyze 20 nails in individuals (and several persons) for the definition of how chemical elements distribute from nail to nail. The aim was to determine whether it will be rightful to take only one nail for the elemental analysis for the diagnostic of human state in future or not? Another purpose of the research is to analyze the elemental content of nails in temporal dynamic (in several persons). Analytical determinations of 20 nails of nine donors (healthy persons), nails of both hands and both feet were carried out. The analysis was performed by SRXRF. Symmetry of the elemental distribution in nails of right and left hands and right and left feet was found. The analysis of the distribution of chemical elements on the total area of a nail (55 points) was performed. The nail cutaway reflects adequately the distribution of several chemical elements over the nail plate area. In this study the elemental concentrations in nails of three donors in a 6-month period was determined. This study found the content of the chemical elements in donors' nails changes with time, individually.
Collapse
Affiliation(s)
- V A Trunova
- A.V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch--Russian Academy of Science (SB RAS), 630090, Novosibirsk, Russia.
| | | | | |
Collapse
|
50
|
Yu X, Robinson JF, Sidhu JS, Hong S, Faustman EM. A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium and methylmercury in mouse embryonic fibroblast. Toxicol Sci 2010; 114:356-77. [PMID: 20061341 PMCID: PMC2840217 DOI: 10.1093/toxsci/kfq003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/28/2009] [Indexed: 01/28/2023] Open
Abstract
Environmental and occupational exposures to heavy metals such as methylmercury (MeHg) and cadmium (Cd) pose significant health risks to humans, including neurotoxicity. The underlying mechanisms of their toxicity, however, remain to be fully characterized. Our previous studies with Cd and MeHg have demonstrated that the perturbation of the ubiquitin-proteasome system (UPS) was associated with metal-induced cytotoxicity and apoptosis. We conducted a microarray-based gene expression analysis to compare metal-altered gene expression patterns with a classical proteasome inhibitor, MG132 (0.5 microM), to determine whether the disruption of the UPS is a critical mechanism of metal-induced toxicity. We treated mouse embryonic fibroblast cells at doses of MeHg (2.5 microM) and Cd (5.0 microM) for 24 h. The doses selected were based on the neutral red-based cell viability assay where initial statistically significant decreases in variability were detected. Following normalization of the array data, we employed multilevel analysis tools to explore the data, including group comparisons, cluster analysis, gene annotations analysis (gene ontology analysis), and pathway analysis using GenMAPP and Ingenuity Pathway Analysis (IPA). Using these integrated approaches, we identified significant gene expression changes across treatments within the UPS (Uchl1 and Ube2c), antioxidant and phase II enzymes (Gsta2, Gsta4, and Noq1), and genes involved in cell cycle regulation pathways (ccnb1, cdc2a, and cdc25c). Furthermore, pathway analysis revealed significant alterations in genes implicated in Parkinson's disease pathogenesis following metal exposure. This study suggests that these pathways play a critical role in the development of adverse effects associated with metal exposures.
Collapse
Affiliation(s)
| | | | | | | | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, 98105
| |
Collapse
|