1
|
Czaja AJ. Cellular senescence and its pathogenic and therapeutic implications in autoimmune hepatitis. Expert Rev Gastroenterol Hepatol 2024; 18:725-743. [PMID: 39575891 DOI: 10.1080/17474124.2024.2432480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024]
Abstract
INTRODUCTION Senescent cells are characterized by replicative arrest and phenotypes that produce diverse pro-inflammatory and pro-oxidant mediators. The senescence of diverse hepatic cell types could constitute an unrecognized pathogenic mechanism and prognostic determinant in autoimmune hepatitis. The impact of cellular senescence in autoimmune hepatitis is unknown, and it may suggest adjunctive management strategies. AREAS COVERED This review describes the molecular mechanisms of cellular senescence, indicates its diagnostic features, suggests its consequences, presents possible therapeutic interventions, and encourages investigations of its pathogenic role and management in autoimmune hepatitis. Treatment prospects include elimination or reversal of senescent cells, generation of ectopic telomerase, reactivation of dormant telomerase, neutralization of specific pro-inflammatory secretory products, and mitigation of the effects of mitochondrial dysfunction. EXPERT OPINION The occurrence, nature, and consequences of cellular senescence in autoimmune hepatitis must be determined. The senescence of diverse hepatic cell types could affect the outcome of autoimmune hepatitis by impairing hepatic regeneration, intensifying liver inflammation, and worsening hepatic fibrosis. Cellular senescence could contribute to suboptimal responses during conventional glucocorticoid-based therapy. Interventions that target specific pro-inflammatory products of the senescent phenotype or selectively promote apoptosis of senescent cells may be preferred adjunctive treatments for autoimmune hepatitis depending on the cancer risk.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic, Department of Medicine, Division of Gastroenterology and Hepatology, Rochester, MN, USA
| |
Collapse
|
2
|
Pan T, Yang B, Yao S, Wang R, Zhu Y. Exploring the multifaceted role of adenosine nucleotide translocase 2 in cellular and disease processes: A comprehensive review. Life Sci 2024; 351:122802. [PMID: 38857656 DOI: 10.1016/j.lfs.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
Adenosine nucleotide translocases (ANTs) are a family of proteins abundant in the inner mitochondrial membrane, primarily responsible for shuttling ADP and ATP across the mitochondrial membrane. Additionally, ANTs are key players in balancing mitochondrial energy metabolism and regulating cell death. ANT2 isoform, highly expressed in undifferentiated and proliferating cells, is implicated in the development and drug resistance of various tumors. We conduct a detailed analysis of the potential mechanisms by which ANT2 may influence tumorigenesis and drug resistance. Notably, the significance of ANT2 extends beyond oncology, with roles in non-tumor cell processes including blood cell development, gastrointestinal motility, airway hydration, nonalcoholic fatty liver disease, obesity, chronic kidney disease, and myocardial development, making it a promising therapeutic target for multiple pathologies. To better understand the molecular mechanisms of ANT2, this review summarizes the structural properties, expression patterns, and basic functions of the ANT2 protein. In particular, we review and analyze the controversy surrounding ANT2, focusing on its role in transporting ADP/ATP across the inner mitochondrial membrane, its involvement in the composition of the mitochondrial permeability transition pore, and its participation in apoptosis.
Collapse
Affiliation(s)
- Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Bin Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Sheng Yao
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Rui Wang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, PR China.
| |
Collapse
|
3
|
Li QZ, Zuo ZW, Liu Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit Rev Food Sci Nutr 2023; 63:12043-12056. [PMID: 35821660 DOI: 10.1080/10408398.2022.2098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesamum indicum is a major and important oilseed crop that is believed to promote human health in many countries, especially in China. Sesame seeds contain two types of lignans: lipid-soluble lignans and water-soluble glucosylated lignans. The major glucosylated lignans are sesaminol glucosides (SGs). So far, four sesaminol isomers and four SGs are identified. During the naturally occurring process of SGs production, sesaminol is generated first from two molecules of E-coniferyl alcohol, and then the sugar is added to the sesaminol one by one, leading to production of SGs. Sesaminol can be prepared from SGs, from sesamolin, and through artificial synthesis. SGs are metabolized in the liver and intestine and are then transported to other tissues. They exhibit several biological activities, most of which are based on their antioxidant and anti-inflammatory activities. In this paper, we present an overview of the current status of research on sesaminol and SGs. We have also discussed their synthesis, preparation, metabolism, and biological activities. It has been suggested that sesaminol and SGs are important biological substances with strong antioxidant properties in vitro and in vivo and are widely used in the food industry, medicine, and cosmetic products. The recovery and utilization of SGs from sesame seed cake after oil processing will generate massive economic benefits.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
4
|
Flierl A, Schriner SE, Hancock S, Coskun PE, Wallace DC. The mitochondrial adenine nucleotide transporters in myogenesis. Free Radic Biol Med 2022; 188:312-327. [PMID: 35714845 DOI: 10.1016/j.freeradbiomed.2022.05.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 01/06/2023]
Abstract
Adenine Nucleotide Translocator isoforms (ANTs) exchange ADP/ATP across the inner mitochondrial membrane, are also voltage-activated proton channels and regulate mitophagy and apoptosis. The ANT1 isoform predominates in heart and muscle while ANT2 is systemic. Here, we report the creation of Ant mutant mouse myoblast cell lines with normal Ant1 and Ant2 genes, deficient in either Ant1 or Ant2, and deficient in both the Ant1 and Ant2 genes. These cell lines are immortal under permissive conditions (IFN-γ + serum at 32 °C) permitting expansion but return to normal myoblasts that can be differentiated into myotubes at 37 °C. With this system we were able to complement our Ant1 mutant studies by demonstrating that ANT2 is important for myoblast to myotube differentiation and myotube mitochondrial respiration. ANT2 is also important in the regulation of mitochondrial biogenesis and antioxidant defenses. ANT2 is also associated with increased oxidative stress response and modulation for Ca++ sequestration and activation of the mitochondrial permeability transition (mtPTP) pore during cell differentiation.
Collapse
Affiliation(s)
- Adrian Flierl
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Samuel E Schriner
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Saege Hancock
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA
| | - Pinar E Coskun
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA
| | - Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and the Department of Biological Chemistry, University of California, Irvine, CA, USA; Center for Mitochondrial and Epigenomic Medicine, Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia and The Perelman School of Medicine, University of Pennsylvania, PA, USA.
| |
Collapse
|
5
|
Zhang H, Chen N, Deng Z, Mai Y, Deng L, Chen G, Li Y, Pan B, Zhong W. Suppression of ANT2 by miR-137 Inhibits Prostate Tumorigenesis. Front Genet 2021; 12:687236. [PMID: 34539732 PMCID: PMC8448070 DOI: 10.3389/fgene.2021.687236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a serious disease that affects men’s health. To date, no effective and long-lasting treatment option for this condition is available in clinical practice. ANT2 is highly expressed in a variety of hormone-related cancers, but its relationship and regulatory mechanism with PCa are unclear. In this study, we found that ANT2 expression was significantly upregulated in PCa tissues relative to control samples. Genetic knockdown of ANT2 effectively inhibited, while overexpression promoted, proliferation, migration, and invasion of PCa cells. In addition, miR-137 expression was reduced in prostate cancer tissues relative to control tissues. We identified a regulatory site for miR-137 in the 3′-UTR of ANT2 mRNA; luciferase reporter assays indicated that ANT2 is a direct target gene for miR-137. Transfecting cells with miR-137 mimics and/or an ANT2-encoding plasmid revealed that ANT2 promotes proliferation, migration, and invasion of PCa, whereas co-expression of miR-137 mimics inhibited these behaviors. These observations suggest that miR-137 mimics inhibit development of PCa by antagonizing expression of ANT2. Furthermore, tumorigenic assays in nude mice showed that miR-137 inhibitors abolished the inhibitory effect of ANT2 knockdown on PCa tumor growth. Collectively, our findings suggest that ANT2, a target gene of miR-137, is intimately involved in development of PCa, providing new evidence for the mechanism underlying pathogenesis of PCa as well as new options for targeted therapy.
Collapse
Affiliation(s)
- Heyuan Zhang
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Nanhui Chen
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Zhihai Deng
- Department of Urology, Gaozhou People's Hospital, Gaozhou, China
| | - Yang Mai
- Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou, China
| | - Limin Deng
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China
| | - Guo Chen
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yutong Li
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Pan
- Department of Urology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Weifeng Zhong
- Department of Urology, Meizhou People's Hospital (Huangtang Hospital), Meizhou, China.,Department of Urology, Guangzhou Twelfth People's Hospital, Guangzhou, China
| |
Collapse
|
6
|
A Walk in the Memory, from the First Functional Approach up to Its Regulatory Role of Mitochondrial Bioenergetic Flow in Health and Disease: Focus on the Adenine Nucleotide Translocator. Int J Mol Sci 2021; 22:ijms22084164. [PMID: 33920595 PMCID: PMC8073645 DOI: 10.3390/ijms22084164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial adenine nucleotide translocator (ANT) plays the fundamental role of gatekeeper of cellular energy flow, carrying out the reversible exchange of ADP for ATP across the inner mitochondrial membrane. ADP enters the mitochondria where, through the oxidative phosphorylation process, it is the substrate of Fo-F1 ATP synthase, producing ATP that is dispatched from the mitochondrion to the cytoplasm of the host cell, where it can be used as energy currency for the metabolic needs of the cell that require energy. Long ago, we performed a method that allowed us to monitor the activity of ANT by continuously detecting the ATP gradually produced inside the mitochondria and exported in the extramitochondrial phase in exchange with externally added ADP, under conditions quite close to a physiological state, i.e., when oxidative phosphorylation takes place. More than 30 years after the development of the method, here we aim to put the spotlight on it and to emphasize its versatile applicability in the most varied pathophysiological conditions, reviewing all the studies, in which we were able to observe what really happened in the cell thanks to the use of the "ATP detecting system" allowing the functional activity of the ANT-mediated ADP/ATP exchange to be measured.
Collapse
|
7
|
Rabdosianone I, a Bitter Diterpene from an Oriental Herb, Suppresses Thymidylate Synthase Expression by Directly Binding to ANT2 and PHB2. Cancers (Basel) 2021; 13:cancers13050982. [PMID: 33652782 PMCID: PMC7956614 DOI: 10.3390/cancers13050982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In the present study, we found the novel pleiotropic regulation of the oncogene product thymidylate synthase (TS) by a chemical biology approach to identify rabdosianone I-binding proteins. Rabdosianone I, which is extracted from a traditional Asian herb Isodon japonicus Hara for longevity, suppressed TS expression at mRNA and protein levels. We immobilized rabdosianone I onto nano-magnetic beads and identified two mitochondrial proteins, adenine nucleotide translocase 2 (ANT2) and prohibitin 2 (PHB2), as the direct targets of rabdosianone I in cancer cells. Mechanistically, the knockdown of ANT2 or PHB2 promoted proteasomal degradation of the TS protein. In addition, PHB2 reduced TS mRNA levels. Thus, we provide previously unknown mechanisms of TS regulation by ANT2 and PHB2 and propose the possibility of rabdosianone I as a promising lead compound for the discovery of a novel TS suppressor. Abstract Natural products have numerous bioactivities and are expected to be a resource for potent drugs. However, their direct targets in cells often remain unclear. We found that rabdosianone I, which is a bitter diterpene from an oriental herb for longevity, Isodon japonicus Hara, markedly inhibited the growth of human colorectal cancer cells by downregulating the expression of thymidylate synthase (TS). Next, using rabdosianone I-immobilized nano-magnetic beads, we identified two mitochondrial inner membrane proteins, adenine nucleotide translocase 2 (ANT2) and prohibitin 2 (PHB2), as direct targets of rabdosianone I. Consistent with the action of rabdosianone I, the depletion of ANT2 or PHB2 reduced TS expression in a different manner. The knockdown of ANT2 or PHB2 promoted proteasomal degradation of TS protein, whereas that of not ANT2 but PHB2 reduced TS mRNA levels. Thus, our study reveals the ANT2- and PHB2-mediated pleiotropic regulation of TS expression and demonstrates the possibility of rabdosianone I as a lead compound of TS suppressor.
Collapse
|
8
|
Li T, Li Y, Liu T, Hu B, Li J, Liu C, Liu T, Li F. Mitochondrial PAK6 inhibits prostate cancer cell apoptosis via the PAK6-SIRT4-ANT2 complex. Theranostics 2020; 10:2571-2586. [PMID: 32194820 PMCID: PMC7052886 DOI: 10.7150/thno.42874] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/11/2020] [Indexed: 12/18/2022] Open
Abstract
Rationale: P21-activated kinase 6 (PAK6) is a member of the class II PAKs family, which is a conserved family of serine/threonine kinases. Although the effects of PAK6 on many malignancies, especially in prostate cancer, have been studied for a long time, the role of PAK6 in mitochondria remains unknown. Methods: The expression of PAK6, SIRT4 and ANT2 in prostate cancer and adjacent non-tumor tissues was detected by immunohistochemistry. Immunofuorescence and immunoelectron microscopy were used to determine the subcellular localization of PAK6. Immunoprecipitation, immunofuorescence and ubiquitination assays were performed to determine how PAK6 regulates SIRT4, how SIRT4 regulates ANT2, and how PAK6 regulates ANT2. Flow cytometry detection and xenograft models were used to evaluate the impact of ANT2 mutant expression on the prostate cancer cell cycle and apoptosis regulation. Results: The present study revealed that the PAK6-SIRT4-ANT2 complex is involved in mitochondrial apoptosis in prostate cancer cells. It was found that PAK6 is mainly located in the mitochondrial inner membrane, in which PAK6 promotes SIRT4 ubiquitin-mediated proteolysis. Furthermore, SIRT4 deprives the ANT2 acetylation at K105 to promote its ubiquitination degradation. Hence, PAK6 adjusts the acetylation level of ANT2 through the PAK6-SIRT4-ANT2 pathway, in order to regulate the stability of ANT2. Meanwhile, PAK6 directly phosphorylates ANT2 atT107 to inhibit the apoptosis of prostate cancer cells. Therefore, the phosphorylation and deacetylation modifications of ANT2 are mutually regulated, leading to tumor growth in vivo. Consistently, these clinical prostate cancer tissue evaluations reveal that PAK6 is positively correlated with ANT2 expression, but negatively correlated with SIRT4. Conclusion: These present findings suggest the pivotal role of the PAK6-SIRT4-ANT2 complex in the apoptosis of prostate cancer. This complex could be a potential biomarker for the treatment and prognosis of prostate cancer.
Collapse
Affiliation(s)
- Tingting Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Yang Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Tong Liu
- Medical Research Center, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Bingtao Hu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Jiabin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Chen Liu
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| | - Tao Liu
- Department of Urology, the First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology, National Health Commission of the PRC, and Key Laboratory of Medical Cell Biology, Ministry of Education of the PRC, Shenyang 110122, Liaoning, China
| |
Collapse
|
9
|
Hubackova S, Magalhaes Novais S, Davidova E, Neuzil J, Rohlena J. Mitochondria-driven elimination of cancer and senescent cells. Biol Chem 2019; 400:141-148. [PMID: 30281511 DOI: 10.1515/hsz-2018-0256] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 01/07/2023]
Abstract
Mitochondria and oxidative phosphorylation (OXPHOS) are emerging as intriguing targets for the efficient elimination of cancer cells. The specificity of this approach is aided by the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition. Recently we discovered that mitochondrial targeting can also be employed to eliminate senescent cells, where it breaks the interplay between OXPHOS and ATP transporters that appear important for the maintenance of mitochondrial morphology and viability in the senescent setting. Hence, mitochondria/OXPHOS directed pharmacological interventions show promise in several clinically-relevant scenarios that call for selective removal of cancer and senescent cells.
Collapse
Affiliation(s)
- Sona Hubackova
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Silvia Magalhaes Novais
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Eliska Davidova
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| | - Jiri Neuzil
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport 4222, Qld, Australia
| | - Jakub Rohlena
- Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Vestec, Prague-West, Czech Republic
| |
Collapse
|
10
|
Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ 2018; 26:276-290. [PMID: 29786070 PMCID: PMC6329828 DOI: 10.1038/s41418-018-0118-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/16/2018] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Cellular senescence is a form of cell cycle arrest that limits the proliferative potential of cells, including tumour cells. However, inability of immune cells to subsequently eliminate senescent cells from the organism may lead to tissue damage, inflammation, enhanced carcinogenesis and development of age-related diseases. We found that the anticancer agent mitochondria-targeted tamoxifen (MitoTam), unlike conventional anticancer agents, kills cancer cells without inducing senescence in vitro and in vivo. Surprisingly, it also selectively eliminates both malignant and non-cancerous senescent cells. In naturally aged mice treated with MitoTam for 4 weeks, we observed a significant decrease of senescence markers in all tested organs compared to non-treated animals. Mechanistically, we found that the susceptibility of senescent cells to MitoTam is linked to a very low expression level of adenine nucleotide translocase-2 (ANT2), inherent to the senescent phenotype. Restoration of ANT2 in senescent cells resulted in resistance to MitoTam, while its downregulation in non-senescent cells promoted their MitoTam-triggered elimination. Our study documents a novel, translationally intriguing role for an anticancer agent targeting mitochondria, that may result in a new strategy for the treatment of age-related diseases and senescence-associated pathologies.
Collapse
|
11
|
Gavaldà-Navarro A, Mampel T, Viñas O. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status. Open Biol 2016; 6:150108. [PMID: 26842067 PMCID: PMC4772803 DOI: 10.1098/rsob.150108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Human cells express four mitochondrial adenine nucleotide translocase (hANT) isoforms that are tissue-specific and developmentally regulated. hANT1 is mainly expressed in terminally differentiated muscle cells; hANT2 is growth-regulated and is upregulated in highly glycolytic and proliferative cells; and hANT3 is considered to be ubiquitous and non-specifically regulated. Here, we studied how the expression of hANT isoforms is regulated by proliferation and in response to metabolic stimuli, and examined the metabolic consequences of their silencing and overexpression. In HeLa and HepG2 cells, expression of hANT3 was upregulated by shifting metabolism towards oxidation or by slowed growth associated with contact inhibition or growth-factor deprivation, indicating that hANT3 expression is highly regulated. Under these conditions, changes in hANT2 mRNA expression were not observed in either HeLa or HepG2 cells, whereas in SGBS preadipocytes (which, unlike HeLa and HepG2 cells, are growth-arrest-sensitive cells), hANT2 mRNA levels decreased. Additionally, overexpression of hANT2 promoted cell growth and glycolysis, whereas silencing of hANT3 decreased cellular ATP levels, limited cell growth and induced a stress-like response. Thus, cancer cells require both hANT2 and hANT3, depending on their proliferation status: hANT2 when proliferation rates are high, and hANT3 when proliferation slows.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Teresa Mampel
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| | - Octavi Viñas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, Barcelona, Spain
| |
Collapse
|
12
|
Maldonado EN, DeHart DN, Patnaik J, Klatt SC, Gooz MB, Lemasters JJ. ATP/ADP Turnover and Import of Glycolytic ATP into Mitochondria in Cancer Cells Is Independent of the Adenine Nucleotide Translocator. J Biol Chem 2016; 291:19642-50. [PMID: 27458020 DOI: 10.1074/jbc.m116.734814] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Indexed: 11/06/2022] Open
Abstract
Non-proliferating cells oxidize respiratory substrates in mitochondria to generate a protonmotive force (Δp) that drives ATP synthesis. The mitochondrial membrane potential (ΔΨ), a component of Δp, drives release of mitochondrial ATP(4-) in exchange for cytosolic ADP(3-) via the electrogenic adenine nucleotide translocator (ANT) located in the mitochondrial inner membrane, which leads to a high cytosolic ATP/ADP ratio up to >100-fold greater than matrix ATP/ADP. In rat hepatocytes, ANT inhibitors, bongkrekic acid (BA), and carboxyatractyloside (CAT), and the F1FO-ATP synthase inhibitor, oligomycin (OLIG), inhibited ureagenesis-induced respiration. However, in several cancer cell lines, OLIG but not BA and CAT inhibited respiration. In hepatocytes, respiratory inhibition did not collapse ΔΨ until OLIG, BA, or CAT was added. Similarly, in cancer cells OLIG and 2-deoxyglucose, a glycolytic inhibitor, depolarized mitochondria after respiratory inhibition, which showed that mitochondrial hydrolysis of glycolytic ATP maintained ΔΨ in the absence of respiration in all cell types studied. However in cancer cells, BA, CAT, and knockdown of the major ANT isoforms, ANT2 and ANT3, did not collapse ΔΨ after respiratory inhibition. These findings indicated that ANT was not mediating mitochondrial ATP/ADP exchange in cancer cells [corrected]. We propose that suppression of ANT contributes to low cytosolic ATP/ADP, activation of glycolysis, and a Warburg metabolic phenotype in proliferating cells.
Collapse
Affiliation(s)
- Eduardo N Maldonado
- From the Center for Cell Death, Injury, and Regeneration, Departments of Drug Discovery and Biomedical Sciences and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - David N DeHart
- Departments of Drug Discovery and Biomedical Sciences and
| | - Jyoti Patnaik
- Departments of Drug Discovery and Biomedical Sciences and
| | - Sandra C Klatt
- Departments of Drug Discovery and Biomedical Sciences and
| | | | - John J Lemasters
- From the Center for Cell Death, Injury, and Regeneration, Departments of Drug Discovery and Biomedical Sciences and the Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina 29425 and Biochemistry and Molecular Biology, and the Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russian Federation 142290
| |
Collapse
|
13
|
Human cytomegalovirus miR-UL36-5p inhibits apoptosis via downregulation of adenine nucleotide translocator 3 in cultured cells. Arch Virol 2015. [PMID: 26212361 DOI: 10.1007/s00705-015-2498-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Human cytomegalovirus (HCMV) encodes at least 26 microRNAs (miRNA). These miRNAs are utilized by HCMV to regulate its own genes as well as the genes of the host cell during infection. It has been reported that a cellular gene, solute carrier family 25, member 6 (SLC25A6), which is also designated adenine nucleotide translocator 3 (ANT3), was identified as a candidate target of hcmv-miR-UL36-5p by hybrid PCR. In this study, ANT3 was further demonstrated to be a direct target of hcmv-miR-UL36-5p by luciferase reporter assays. The expression level of ANT3 protein was confirmed, by western blotting, to be directly downregulated by overexpression of hcmv-miR-UL36-5p in HEK293 cells, U373 cells and HELF cells. Moreover, HCMV-infected cells showed a decrease in the ANT3 protein level. Using ANT3-specific small interfering RNA (siRNA) and an inhibitor for hcmv-miR-UL36-5p, it was shown that inhibition of apoptosis by hcmv-miR-UL36-5p in these cells specifically occurred via inhibition of ANT3 expression. These results imply that hcmv-miR-UL36-5 may play the same role during actual HCMV infection in order to establish a balance between the host cell and the virus.
Collapse
|
14
|
Hubackova S, Kucerova A, Michlits G, Kyjacova L, Reinis M, Korolov O, Bartek J, Hodny Z. IFNγ induces oxidative stress, DNA damage and tumor cell senescence via TGFβ/SMAD signaling-dependent induction of Nox4 and suppression of ANT2. Oncogene 2015; 35:1236-49. [PMID: 25982278 DOI: 10.1038/onc.2015.162] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Cellular senescence provides a biological barrier against tumor progression, often associated with oncogene-induced replication and/or oxidative stress, cytokine production and DNA damage response (DDR), leading to persistent cell-cycle arrest. While cytokines such as tumor necrosis factor-alpha (TNFα) and interferon gamma (IFNγ) are important components of senescence-associated secretome and induce senescence in, for example, mouse pancreatic β-cancer cell model, their downstream signaling pathway(s) and links with oxidative stress and DDR are mechanistically unclear. Using human and mouse normal and cancer cell models, we now show that TNFα and IFNγ induce NADPH oxidases Nox4 and Nox1, reactive oxygen species (ROS), DDR signaling and premature senescence. Unlike mouse tumor cells that required concomitant presence of IFNγ and TNFα, short exposure to IFNγ alone was sufficient to induce Nox4, Nox1 and DDR in human cells. siRNA-mediated knockdown of Nox4 but not Nox1 decreased IFNγ-induced DDR. The expression of Nox4/Nox1 required Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signaling and the effect was mediated by downstream activation of transforming growth factor-beta (TGFβ) secretion and consequent autocrine/paracrine activation of the TGFβ/Smad pathway. Furthermore, the expression of adenine nucleotide translocase 2 (ANT2) was suppressed by IFNγ contributing to elevation of ROS and DNA damage. In contrast to mouse B16 cells, inability of TC-1 cells to respond to IFNγ/TNFα by DDR and senescence correlated with the lack of TGFβ and Nox4 response, supporting the role of ROS induced by NADPH oxidases in cytokine-induced senescence. Overall, our data reveal differences between cytokine effects in mouse and human cells, and mechanistically implicate the TGFβ/SMAD pathway, via induction of NADPH oxidases and suppression of ANT2, as key mediators of IFNγ/TNFα-evoked genotoxicity and cellular senescence.
Collapse
Affiliation(s)
- S Hubackova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - A Kucerova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - G Michlits
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - L Kyjacova
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Reinis
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - O Korolov
- Department of Tumour Immunology, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - J Bartek
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic.,Genome Integrity Unit, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Z Hodny
- Department of Genome Integrity, Institute of Molecular Genetics, v.v.i., Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
15
|
Gavaldà-Navarro A, Domingo P, Viñas O, Mampel T. Expression of human and mouse adenine nucleotide translocase (ANT) isoform genes in adipogenesis. Int J Biochem Cell Biol 2015; 64:34-44. [PMID: 25817039 DOI: 10.1016/j.biocel.2015.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/04/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022]
Abstract
Adenine nucleotide translocases (ANTs) are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in cytosol. There are four ANT isoforms in humans (hANT1-4) and three in mice (mANT1, mANT2 and mANT4), all encoded by distinct genes. The aim of this study was to quantify expression of ANT isoform genes during the adipogenesis of mouse 3T3-L1 and human Simpson-Golabi-Behmel syndrome (SGBS)-derived preadipocytes. We also studied the effects of the adipogenesis regulators, insulin and rosiglitazone, on ANT isoform expression in differentiated adipocytes and examined the expression of ANT isoforms in subcutaneous and visceral white adipose tissue (WAT) from mice and humans. We found that adipogenesis was associated with an increase in the expression of ANT isoforms, specifically mANT2 in mouse 3T3-L1 cells and hANT3 in human SGBS cells. These changes could be involved in the increases in oxidative metabolism and decreases in lactate production observed during differentiation. Insulin and rosiglitazone induced mANT2 gene expression in mature 3T3-L1 cells and hANT2 and hANT3 gene expression in SGBS adipocytes. Furthermore, human WAT expressed greater amounts of hANT3 than hANT2, and the expression of both of these isoforms was greater in subcutaneous WAT than in visceral WAT. Finally, inhibition of ANT activity by atractyloside or bongkrekic acid impaired proper adipocyte differentiation. These results suggest that changes in the expression of ANT isoforms may be involved in adipogenesis in both human and mouse WAT.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, E-08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Pere Domingo
- Department of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Octavi Viñas
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, E-08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain
| | - Teresa Mampel
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, E-08028 Barcelona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Spain.
| |
Collapse
|
16
|
Sugahara R, Jouraku A, Nakakura T, Kusakabe T, Yamamoto T, Shinohara Y, Miyoshi H, Shiotsuki T. Two adenine nucleotide translocase paralogues involved in cell proliferation and spermatogenesis in the silkworm Bombyx mori. PLoS One 2015; 10:e0119429. [PMID: 25742135 PMCID: PMC4351007 DOI: 10.1371/journal.pone.0119429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/13/2015] [Indexed: 01/25/2023] Open
Abstract
Mitochondrial adenine nucleotide translocase (ANT) specifically acts in ADP/ATP exchange through the mitochondrial inner membrane. This transporter protein thereby plays a significant role in energy metabolism in eukaryotic cells. Most mammals have four paralogous ANT genes (ANT1-4) and utilize these paralogues in different types of cells. The fourth paralogue of ANT (ANT4) is present only in mammals and reptiles and is exclusively expressed in testicular germ cells where it is required for meiotic progression in the spermatocytes. Here, we report that silkworms harbor two ANT paralogues, the homeostatic paralogue (BmANTI1) and the testis-specific paralogue (BmANTI2). The BmANTI2 protein has an N-terminal extension in which the positions of lysine residues in the amino acid sequence are distributed as in human ANT4. An expression analysis showed that BmANTI2 transcripts were restricted to the testis, suggesting the protein has a role in the progression of spermatogenesis. By contrast, BmANTI1 was expressed in all tissues tested, suggesting it has an important role in homeostasis. We also observed that cultured silkworm cells required BmANTI1 for proliferation. The ANTI1 protein of the lepidopteran Plutella xylostella (PxANTI1), but not those of other insect species (or PxANTI2), restored cell proliferation in BmANTI1-knockdown cells suggesting that ANTI1 has similar energy metabolism functions across the Lepidoptera. Our results suggest that BmANTI2 is evolutionarily divergent from BmANTI1 and has developed a specific role in spermatogenesis similar to that of mammalian ANT4.
Collapse
Affiliation(s)
- Ryohei Sugahara
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Akiya Jouraku
- Insect Genome Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takayo Nakakura
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Takahiro Kusakabe
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Takenori Yamamoto
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, University of Tokushima, Tokushima, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiro Shiotsuki
- Insect Growth Regulation Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
17
|
Kretova M, Sabova L, Hodny Z, Bartek J, Kollarovic G, Nelson BD, Hubackova S, Luciakova K. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence. Cell Signal 2014; 26:2903-11. [DOI: 10.1016/j.cellsig.2014.08.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/15/2014] [Indexed: 01/15/2023]
|
18
|
Gavaldà-Navarro A, Villena JA, Planavila A, Viñas O, Mampel T. Expression of adenine nucleotide translocase (ANT) isoform genes is controlled by PGC-1α through different transcription factors. J Cell Physiol 2014; 229:2126-36. [PMID: 24819348 DOI: 10.1002/jcp.24671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/26/2014] [Accepted: 05/09/2014] [Indexed: 12/16/2023]
Abstract
Adenine nucleotide translocase (ANT) isoforms are mitochondrial proteins encoded by nuclear DNA that catalyze the exchange of ATP generated in the mitochondria for ADP produced in the cytosol. The aim of this study was to determine the role of the transcriptional coactivator PGC-1α (peroxisome proliferator-activated receptor-γ [PPAR-γ] coactivator 1α), a master regulator of mitochondrial oxidative metabolism, in the regulation of the expression of ANT isoform genes and to identify the transcription factors involved. We found that PGC-1α overexpression induced the expression of all ANT human and mouse isoforms but to different degrees. The transcription factor ERRα was involved in PGC-1α-induced expression of all human ANT isoforms (hANT1-3) in HeLa cells as well as in the regulation of mouse isoforms (mANT1-2) in C2C12 myotubes and 3T3-L1 adipocytes, even though ANT isoforms have important physiological differences and are regulated in a tissue-specific manner. In addition to ERRα, PPARδ and mTOR pathways were involved in the induction of mANT1-2 by PGC-1α in C2C12 myotubes, while PPARγ was involved in PGC-1α-regulation of mANT1-2 in 3T3-L1 adipocytes. Furthermore, the regulation of mANT genes by PGC-1α was also observed in vivo in knockout mouse models lacking PGC-1α. In summary, our results show that the regulation of genes encoding ANT isoforms is controlled by PGC-1α through different transcription factors depending on cell type.
Collapse
Affiliation(s)
- Aleix Gavaldà-Navarro
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona and CIBER Fisiopatología de la Obesidad y Nutrición, E-08028, Barcelona, Spain
| | | | | | | | | |
Collapse
|
19
|
Maldonado EN, Lemasters JJ. ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect. Mitochondrion 2014; 19 Pt A:78-84. [PMID: 25229666 DOI: 10.1016/j.mito.2014.09.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 02/06/2023]
Abstract
Non-proliferating cells generate the bulk of cellular ATP by fully oxidizing respiratory substrates in mitochondria. Respiratory substrates cross the mitochondrial outer membrane through only one channel, the voltage dependent anion channel (VDAC). Once in the matrix, respiratory substrates are oxidized in the tricarboxylic acid cycle to generate mostly NADH that is further oxidized in the respiratory chain to generate a proton motive force comprised mainly of membrane potential (ΔΨ) to synthesize ATP. Mitochondrial ΔΨ then drives the release of ATP(4-) from the matrix in exchange for ADP(3-) in the cytosol via the adenine nucleotide translocator (ANT) located in the mitochondrial inner membrane. Thus, mitochondrial function in non-proliferating cells drives a high cytosolic ATP/ADP ratio, essential to inhibit glycolysis. By contrast, the bioenergetics of the Warburg phenotype of proliferating cells is characterized by enhanced aerobic glycolysis and the suppression of mitochondrial metabolism. Suppressed mitochondrial function leads to lower production of mitochondrial ATP and hence lower cytosolic ATP/ADP ratios that favor enhanced glycolysis. Thus, the cytosolic ATP/ADP ratio is a key feature that determines if cell metabolism is predominantly oxidative or glycolytic. Here, we describe two novel mechanisms to explain the suppression of mitochondrial metabolism in cancer cells: the relative closure of VDAC by free tubulin and the inactivation of ANT. Both mechanisms contribute to low ATP/ADP ratios that activate glycolysis.
Collapse
Affiliation(s)
- Eduardo N Maldonado
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States
| | - John J Lemasters
- Center for Cell Death, Injury & Regeneration, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, United States; Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Russia.
| |
Collapse
|
20
|
Allouche M, Pertuiset C, Robert JL, Martel C, Veneziano R, Henry C, dein OSE, Saint N, Brenner C, Chopineau J. ANT-VDAC1 interaction is direct and depends on ANT isoform conformation in vitro. Biochem Biophys Res Commun 2012; 429:12-7. [PMID: 23131554 DOI: 10.1016/j.bbrc.2012.10.108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
The voltage-dependent anion channel (VDAC) and the adenine nucleotide translocase (ANT) have central roles in mitochondrial functions such as nucleotides transport and cell death. The interaction between VDAC, an outer mitochondrial membrane protein and ANT, an inner membrane protein, was studied in isolated mitochondria and in vitro. Both proteins were isolated from various mitochondrial sources and reconstituted in vitro using a biomimetic system composed of recombinant human VDAC isoform 1 (rhVDAC1) immobilized on a surface plasmon resonance (SPR) sensor chip surface. Two enriched-preparations of (H)ANT (ANT from heart, mainly ANT1) and (L)ANT (ANT from liver, mainly ANT2) isoforms interacted differently with rhVDAC1. Moreover, the pharmacological ANT inhibitors atractyloside and bongkrekic acid modulated this interaction. Thus, ANT-VDAC interaction depends both on ANT isoform identity and on the conformation of ANT.
Collapse
|
21
|
Dupont PY, Guttin A, Issartel JP, Stepien G. Computational identification of transcriptionally co-regulated genes, validation with the four ANT isoform genes. BMC Genomics 2012; 13:482. [PMID: 22978616 PMCID: PMC3477019 DOI: 10.1186/1471-2164-13-482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 08/16/2012] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The analysis of gene promoters is essential to understand the mechanisms of transcriptional regulation required under the effects of physiological processes, nutritional intake or pathologies. In higher eukaryotes, transcriptional regulation implies the recruitment of a set of regulatory proteins that bind on combinations of nucleotide motifs. We developed a computational analysis of promoter nucleotide sequences, to identify co-regulated genes by combining several programs that allowed us to build regulatory models and perform a crossed analysis on several databases. This strategy was tested on a set of four human genes encoding isoforms 1 to 4 of the mitochondrial ADP/ATP carrier ANT. Each isoform has a specific tissue expression profile linked to its role in cellular bioenergetics. RESULTS From their promoter sequence and from the phylogenetic evolution of these ANT genes in mammals, we constructed combinations of specific regulatory elements. These models were screened using the full human genome and databases of promoter sequences from human and several other mammalian species. For each of transcriptionally regulated ANT1, 2 and 4 genes, a set of co-regulated genes was identified and their over-expression was verified in microarray databases. CONCLUSIONS Most of the identified genes encode proteins with a cellular function and specificity in agreement with those of the corresponding ANT isoform. Our in silico study shows that the tissue specific gene expression is mainly driven by promoter regulatory sequences located up to about a thousand base pairs upstream the transcription start site. Moreover, this computational strategy on the study of regulatory pathways should provide, along with transcriptomics and metabolomics, data to construct cellular metabolic networks.
Collapse
Affiliation(s)
- Pierre-Yves Dupont
- INRA, UMR 1019, Unité de Nutrition Humaine, 63122, St Genès-Champanelle, France
- Université d'Auvergne, Unité de Nutrition Humaine, Clermont Université, BP 10448, 63000, Clermont-Ferrand, France
| | - Audrey Guttin
- Institut des Neurosciences, Equipe Nanomédecine et Cerveau, Inserm U836, 38700, La Tronche, France
- Université Joseph Fourier 1, Grenoble, 38041, France
- Plate-forme Transcriptome et Protéome Cliniques, Institut de Biologie et Pathologie, CHU Grenoble, 38043, Grenoble, France
| | - Jean-Paul Issartel
- Institut des Neurosciences, Equipe Nanomédecine et Cerveau, Inserm U836, 38700, La Tronche, France
- Université Joseph Fourier 1, Grenoble, 38041, France
- Plate-forme Transcriptome et Protéome Cliniques, Institut de Biologie et Pathologie, CHU Grenoble, 38043, Grenoble, France
- CNRS, 38042, Grenoble, France
| | - Georges Stepien
- INRA, UMR 1019, Unité de Nutrition Humaine, 63122, St Genès-Champanelle, France
- Université d'Auvergne, Unité de Nutrition Humaine, Clermont Université, BP 10448, 63000, Clermont-Ferrand, France
| |
Collapse
|
22
|
Rodriguez N, Yang J, Hasselblatt K, Liu S, Zhou Y, Rauh-Hain JA, Ng SK, Choi PW, Fong WP, Agar NYR, Welch WR, Berkowitz RS, Ng SW. Casein kinase I epsilon interacts with mitochondrial proteins for the growth and survival of human ovarian cancer cells. EMBO Mol Med 2012; 4:952-63. [PMID: 22707389 PMCID: PMC3491827 DOI: 10.1002/emmm.201101094] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 01/04/2023] Open
Abstract
Epithelial ovarian cancer is the leading cause of death among gynaecologic cancers in Western countries. Our studies have shown that casein kinase I-epsilon (CKIε), a Wnt pathway protein, is significantly overexpressed in ovarian cancer tissues and is associated with poor survival. Ectopic expression of CKIε in normal human ovarian surface epithelial cells and inhibition of CKIε in ovarian cancer cells and in xenografts demonstrated the importance of CKIε in regulating cell proliferation and migration. Interestingly, CKIε function did not seem to involve β-catenin activity. Instead, CKIε was found to interact with several mitochondrial proteins including adenine nucleotide translocase 2 (ANT2). Inhibition of CKIε in ovarian cancer cells resulted in suppression of ANT2, downregulation of cellular ATP and the resulting cancer cells were more susceptible to chemotherapy. Our studies indicate that, in the context of ovarian cancer, the interaction between CKIε and ANT2 mediates pathogenic signalling that is distinct from the canonical Wnt/β-catenin pathway and is essential for cell proliferation and is clinically associated with poor survival.
Collapse
Affiliation(s)
- Noah Rodriguez
- Department of Obstetrics/Gynecology and Reproductive Biology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dupont PY, Stepien G. Computational analysis of the transcriptional regulation of the adenine nucleotide translocator isoform 4 gene and its role in spermatozoid glycolytic metabolism. Gene 2011; 487:38-45. [PMID: 21827840 DOI: 10.1016/j.gene.2011.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/08/2011] [Accepted: 07/14/2011] [Indexed: 01/01/2023]
Abstract
Computational phylogenetic analysis coupled to promoter sequence alignment was used to understand mechanisms of transcriptional regulation and to identify potentially coregulated genes. Our strategy was validated on the human ANT4 gene which encodes the fourth isoform of the mitochondrial adenine nucleotide translocator specifically expressed during spermatogenesis. The movement of sperm flagella is driven mainly by ATP generated by glycolytic pathways, and the specific induction of the mitochondrial ANT4 protein presented an interesting puzzle. We analysed the sequences of the promoters, introns and exons of 30 mammalian ANT4 genes and constructed regulatory models. The whole human genome and promoter database were screened for genes that were potentially regulated by the generated models. 80% of the identified co-regulated genes encoded proteins with specific roles in spermatogenesis and with functions linked to male reproduction. Our in silico study enabled us to precise the specific role of the ANT4 isoform in spermatozoid bioenergetics.
Collapse
|
24
|
Luciakova K, Kollarovic G, Kretova M, Sabova L, Nelson BD. TGF-β signals the formation of a unique NF1/Smad4-dependent transcription repressor-complex in human diploid fibroblasts. Biochem Biophys Res Commun 2011; 411:648-53. [PMID: 21782795 DOI: 10.1016/j.bbrc.2011.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
We earlier reported the formation of a unique nuclear NF1/Smad complex in serum-restricted fibroblasts that acts as an NF1-dependent repressor of the human adenine nucleotide translocase-2 gene (ANT2) [K. Luciakova, G. Kollarovic, P. Barath, B.D. Nelson, Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex, Biochem. J. 412 (2008) 123-130]. In the present study, we show that TGF-β, like serum-restriction: (a) induces the formation of NF1/Smad repressor complexes, (b) increases binding of the complexes to the repressor elements (Go elements) in the ANT2 promoter, and (c) inhibits ANT2 expression. Repression of ANT2 by TGF-β is eliminated by mutating the NF1 binding sites in the Go repressor elements. All of the above responses to TGF-β are prevented by inhibitors of TGF-β RI and MAPK p38. These inhibitors also prevent NF1/Smad4 repressor complex formation and repression of ANT2 expression in serum-restricted cells, suggesting that similar signaling pathways are initiated by TGF-β and serum-restriction. The present finding that NF1/Smad4 repressor complexes are formed through TGF-β signaling pathways suggests a new, but much broader, role for these complexes in the initiation or maintenance of the growth-inhibited state.
Collapse
Affiliation(s)
- Katarina Luciakova
- Cancer Research Institute, Slovak Academy of Sciences, Bratislava, Vlarska 7, 833 91 Bratislava, Slovak Republic.
| | | | | | | | | |
Collapse
|
25
|
Küppers M, Ittrich C, Faust D, Dietrich C. The transcriptional programme of contact-inhibition. J Cell Biochem 2010; 110:1234-43. [PMID: 20564218 DOI: 10.1002/jcb.22638] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Proliferation of non-transformed cells is regulated by cell-cell contacts, which are referred to as contact-inhibition. Vice versa, transformed cells are characterised by a loss of contact-inhibition. Despite its generally accepted importance for cell-cycle control, little is known about the intracellular signalling pathways involved in contact-inhibition. Unravelling the molecular mechanisms of contact-inhibition and its loss during tumourigenesis will be an important step towards the identification of novel target genes in tumour diagnosis and treatment. To better understand the underlying molecular mechanisms we identified the transcriptional programme of contact-inhibition in NIH3T3 fibroblast using high-density microarrays. Setting the cut off: >or=1.5-fold, P <or= 0.05, 853 genes and 73 cDNA sequences were differentially expressed in confluent compared to exponentially growing cultures. Importing these data into GenMAPP software revealed a comprehensive list of cell-cycle regulatory genes mediating G0/G1 arrest, which was confirmed by RT-PCR and Western blot. In a narrow analysis (cut off: >or=2-fold, P <or= 0.002), we found 110 transcripts to be differentially expressed representing 107 genes and 3 cDNA sequences involved, for example, in proliferation, signal transduction, transcriptional regulation, cell adhesion and communication. Interestingly, the majority of genes was upregulated indicating that contact-inhibition is not a passive state, but actively induced. Furthermore, we confirmed differential expression of eight genes by semi-quantitative RT-PCR and identified the potential tumour suppressor transforming growth factor-beta (TGF-beta)-1-induced clone 22 (TSC-22; tgfb1i4) as a novel protein to be induced in contact-inhibited cells.
Collapse
Affiliation(s)
- Monika Küppers
- Institute of Toxicology, Medical Center of the Johannes Gutenberg-University, Obere Zahlbacherstr 67, 55131 Mainz, Germany
| | | | | | | |
Collapse
|
26
|
Chevrollier A, Loiseau D, Reynier P, Stepien G. Adenine nucleotide translocase 2 is a key mitochondrial protein in cancer metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:562-7. [PMID: 20950584 DOI: 10.1016/j.bbabio.2010.10.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/05/2010] [Accepted: 10/05/2010] [Indexed: 12/12/2022]
Abstract
Adenine nucleotide translocase (ANT), a mitochondrial protein that facilitates the exchange of ADP and ATP across the mitochondrial inner membrane, plays an essential role in cellular energy metabolism. Human ANT presents four isoforms (ANT1-4), each with a specific expression depending on the nature of the tissue, cell type, developmental stage and status of cell proliferation. Thus, ANT1 is specific to muscle and brain tissues; ANT2 occurs mainly in proliferative, undifferentiated cells; ANT3 is ubiquitous; and ANT4 is found in germ cells. ANT1 and ANT3 export the ATP produced by oxidative phosphorylation (OxPhos) from the mitochondria into the cytosol while importing ADP. In contrast, the expression of ANT2, which is linked to the rate of glycolytic metabolism, is an important indicator of carcinogenesis. In fact, cancers are characterized by major metabolic changes that switch cells from the normally dual oxidative and glycolytic metabolisms to an almost exclusively glycolytic metabolism. When OxPhos activity is impaired, ANT2 imports glycolytically produced ATP into the mitochondria. In the mitochondrial matrix, the F1F0-ATPase complex hydrolyzes the ATP, pumping out a proton into the intermembrane space. The reverse operations of ANT2 and F1F0-ATPase under glycolytic conditions contribute to maintaining the mitochondrial membrane potential, ensuring cell survival and proliferation. Unlike the ANT1 and ANT3 isoforms, ANT2 is not pro-apoptotic and may therefore contribute to carcinogenesis. Since the expression of ANT2 is closely linked to the mitochondrial bioenergetics of tumors, it should be taken into account for individualizing cancer treatments and for the development of anticancer strategies.
Collapse
|
27
|
Lena A, Rechichi M, Salvetti A, Vecchio D, Evangelista M, Rainaldi G, Gremigni V, Rossi L. The silencing of adenine nucleotide translocase isoform 1 induces oxidative stress and programmed cell death in ADF human glioblastoma cells. FEBS J 2010; 277:2853-67. [PMID: 20528917 DOI: 10.1111/j.1742-4658.2010.07702.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Adenine nucleotide translocases (ANTs) are multitask proteins involved in several aspects of cell metabolism, as well as in the regulation of cell death/survival processes. We investigated the role played by ANT isoforms 1 and 2 in the growth of a human glioblastoma cell line (ADF cells). The silencing of ANT2 isoform, by small interfering RNA, did not produce significant changes in ADF cell viability. By contrast, the silencing of ANT1 isoform strongly reduced ADF cell viability by inducing a non-apoptotic cell death process resembling paraptosis. We demonstrated that cell death induced by ANT1 depletion cannot be ascribed to the loss of the ATP/ADP exchange function of this protein. By contrast, our findings indicate that ANT1-silenced cells experience oxidative stress, thus allowing us to hypothesize that the effect of ANT1-silencing on ADF is mediated by the loss of the ANT1 uncoupling function. Several studies ascribe a pro-apoptotic role to ANT1 as a result of the observation that ANT1 overexpression sensitizes cells to mitochondrial depolarization or to apoptotic stimuli. In the present study, we demonstrate that, despite its pro-apoptotic function at a high expression level, the reduction of ANT1 density below a physiological baseline impairs fundamental functions of this protein in ADF cells, leading them to undertake a cell death process.
Collapse
Affiliation(s)
- Annalisa Lena
- Dipartimento di Morfologia Umana e Biologia Applicata, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Brower JV, Lim CH, Han C, Hankowski KE, Hamazaki T, Terada N. Differential CpG island methylation of murine adenine nucleotide translocase genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:198-203. [PMID: 19167530 DOI: 10.1016/j.bbagrm.2008.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 12/22/2008] [Accepted: 12/22/2008] [Indexed: 10/21/2022]
Abstract
Adenine nucleotide translocase (Ant) mediates the exchange of ADP and ATP across the inner mitochondrial membrane in eukaryotes. Mice possess three distinct but highly homologous Ant isoforms, encoded by independent genes, whose transcription depends upon tissue type. Ant1 is expressed selectively in heart and skeletal muscles, Ant2 is ubiquitously expressed in most tissues but lower in skeletal muscle and testis, while Ant4 is exclusively expressed in the testis. Of interest, each of these Ant genes contains CpG islands in their proximal promoter regions. We investigated the methylation status of the three Ant genes in various tissues with active and inactive transcription. In contrast to the Ant4 gene in which CpG island methylation is essential for gene repression, the CpG islands of Ant1 and Ant2 are hypomethylated regardless of the gene expression status throughout the tissues of male mice. Despite the tissue specific expression profile of Ant1, CpG methylation is unlikely involved in the regulation of the gene. Consistent with these findings, addition of a CpG-demethylating agent, 5-aza-2'-deoxycitidine, to fibroblasts increased the expression of Ant4 but not Ant1 or Ant2 genes. This study provides insight regarding the differential regulation of Ant isoforms in mammals, whereby both the Ant1 and Ant2 genes are capable of expression, but the Ant4 gene is completely repressed throughout somatic tissues. To the best of our knowledge, this is a first example to clearly demonstrate a differential usage of CpG island methylation within a family of genes.
Collapse
Affiliation(s)
- Jeffrey V Brower
- Department of Pathology, University of Florida College of Medicine, P. O. Box 100275, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|
29
|
Tanaka M, Sata T, Kawaguchi Y. The product of the Herpes simplex virus 1 UL7 gene interacts with a mitochondrial protein, adenine nucleotide translocator 2. Virol J 2008; 5:125. [PMID: 18940012 PMCID: PMC2577096 DOI: 10.1186/1743-422x-5-125] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 10/22/2008] [Indexed: 01/11/2023] Open
Abstract
The herpes simplex virus 1 (HSV-1) UL7 gene is highly conserved among herpesviridae. Since the construction of recombinant HSV-1 with a mutation in the UL7 gene has not been reported, the involvement of HSV-1 UL7 in viral replication has been unclear. In this study, we succeeded in generating a UL7 null HSV-1 mutant virus, MT102, and characterized it. Our results were as follows. (i) In Vero cells, MT102 was replication-competent, but formed smaller plaques and yielded 10- to 100-fold fewer progeny than the wild-type virus, depending on the multiplicity of infection. (ii) Using mass spectrometry-based proteomics technology, we identified a cellular mitochondrial protein, adenine nucleotide translocator 2 (ANT2), as a UL7-interacting partner. (iii) When ANT2 was transiently expressed in COS-7 cells infected with HSV-1, ANT2 was specifically co-precipitated with UL7. (iv) Cell fractionation experiments with HSV-1-infected cells detected the UL7 protein in both the mitochondrial and cytosolic fractions, whereas ANT2 was detected only in the mitochondrial fraction. These results indicate the importance of HSV-1 UL7's involvement in viral replication and demonstrate that it interacts with ANT2 in infected cells. The potential biological significance of the interaction between UL7 and ANT2 is discussed.
Collapse
Affiliation(s)
- Michiko Tanaka
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
| | | | | |
Collapse
|
30
|
Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex. Biochem J 2008; 412:123-30. [DOI: 10.1042/bj20071440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NF1 (nuclear factor 1) binds to two upstream elements of the human ANT2 (adenine nucleotide translocator-2) promoter and actively represses expression of the gene in growth-arrested diploid skin fibroblasts [Luciakova, Barath, Poliakova, Persson and Nelson (2003) J. Biol. Chem. 278, 30624–30633]. ChIP (chromatin immunoprecipitation) and co-immunoprecipitation analyses of nuclear extracts from growth-arrested and growth-activated diploid cells demonstrate that NF1, when acting as a repressor, is part of a multimeric complex that also includes Smad and Sp-family proteins. This complex appears to be anchored to both the upstream NF1-repressor elements and the proximal promoter, Sp1-dependent activation elements in growth-arrested cells. In growth-activated cells, the repressor complex dissociates and NF1 leaves the promoter. As revealed by co-immunoprecipitation experiments, NF1–Smad4–Sp3 complexes are present in nuclear extracts only from growth-inhibited cells, suggesting that the growth-state-dependent formation of these complexes is not an ANT2 promoter-specific event. Consistent with the role of Smad proteins in the repression complex, TGF-β (transforming growth factor-β) can fully repress ANT2 transcription in normally growing fibroblasts. Finally, pull-down experiments of in vitro transcribed/translated NF1 isoforms by GST (glutathione transferase)–Smad and GST–Smad MH fusion proteins indicate direct physical interactions between members of the two families. These findings suggest a possible functional relationship between the NF1 and Smad proteins that has not been previously observed.
Collapse
|
31
|
Schwarz M, Andrade-Navarro MA, Gross A. Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program? Apoptosis 2008; 12:869-76. [PMID: 17453157 DOI: 10.1007/s10495-007-0748-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondria play a pivotal role in the process of apoptosis. Alterations in mitochondrial structure and function during apoptosis are regulated by proteins of the BCL-2 family, however their exact mechanism of action is largely unknown. Mitochondrial carriers and pores play an essential role in maintaining the normal function of mitochondria, and BCL-2 family members were shown to interact with several mitochondrial carriers/pores and to affect their function. This review focuses on the involvement of several of these mitochondrial carriers/pores in the regulation of the mitochondrial death pathway.
Collapse
Affiliation(s)
- Michal Schwarz
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
32
|
Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics 2006; 7:287. [PMID: 17090319 PMCID: PMC1636648 DOI: 10.1186/1471-2164-7-287] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Accepted: 11/07/2006] [Indexed: 11/12/2022] Open
Abstract
Background Rhabdomyosarcoma is a highly malignant soft tissue sarcoma in childhood and arises as a consequence of regulatory disruption of the growth and differentiation pathways of myogenic precursor cells. The pathogenic pathways involved in this tumor are mostly unknown and therefore a better characterization of RMS gene expression profile would represent a considerable advance. The availability of publicly available gene expression datasets have opened up new challenges especially for the integration of data generated by different research groups and different array platforms with the purpose of obtaining new insights on the biological process investigated. Results In this work we performed a meta-analysis on four microarray and two SAGE datasets of gene expression data on RMS in order to evaluate the degree of agreement of the biological results obtained by these different studies and to identify common regulatory pathways that could be responsible of tumor growth. Regulatory pathways and biological processes significantly enriched has been investigated and a list of differentially meta-profiles have been identified as possible candidate of aggressiveness of RMS. Conclusion Our results point to a general down regulation of the energy production pathways, suggesting a hypoxic physiology for RMS cells. This result agrees with the high malignancy of RMS and with its resistance to most of the therapeutic treatments. In this context, different isoforms of the ANT gene have been consistently identified for the first time as differentially expressed in RMS. This gene is involved in anti-apoptotic processes when cells grow in low oxygen conditions. These new insights in the biological processes responsible of RMS growth and development demonstrate the effective advantage of the use of integrated analysis of gene expression studies.
Collapse
|
33
|
Jang JY, Lee CE. IL-4-induced upregulation of adenine nucleotide translocase 3 and its role in Th cell survival from apoptosis. Cell Immunol 2006; 241:14-25. [PMID: 16930576 DOI: 10.1016/j.cellimm.2006.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2006] [Revised: 07/11/2006] [Accepted: 07/11/2006] [Indexed: 12/20/2022]
Abstract
We have identified mitochondrial adenine nucleotide translocase (ANT)3 as a novel target up-regulated by IL-4 in human T cells. The IL-4-induced ANT3 expression is dependent on tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk pathways. In fact, IL-4 induced specific activation of NF-kappaB, Akt, and Erk in Jurkat T cells and partially rescued these cells from dexamethasone-induced apoptosis. The IL-4-mediated T cell survival was blocked by inhibitors of tyrosine kinase, NF-kappaB, PI3K/Akt, and Erk. During the IL-4-induced T cell rescue, there was a concomitant increase in ANT3, nuclear NF-kappaB, and Bcl-2 and a decrease in ANT1, I-kappaB, and mitochondrial Bax-alpha levels. Importantly, overexpression of ANT3 effectively protected T cells from dexamethasone-induced apoptosis, while forced expression of ANT1 caused apoptosis. In contrast, siRNA knock-out of ANT3 expression induced T cell apoptosis and blocked the IL-4-mediated cell survival. Together these results suggest that ANT3 has a potential role in Th cell survival and immune cell homeostasis.
Collapse
Affiliation(s)
- Ji-Young Jang
- Department of Biological Science and Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
34
|
Zamora M, Ortega JA, Alaña L, Viñas O, Mampel T. Apoptotic and anti-proliferative effects of all-trans retinoic acid. Adenine nucleotide translocase sensitizes HeLa cells to all-trans retinoic acid. Exp Cell Res 2006; 312:1813-9. [PMID: 16556444 DOI: 10.1016/j.yexcr.2006.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/08/2006] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
We examined the apoptotic and anti-proliferative effects of all-trans retinoic acid (atRA) in HeLa cells. Our results demonstrated that HeLa cells were more sensitive to the anti-proliferative effects of atRA than to its apoptotic effects. Furthermore, we demonstrated that caspase inhibition attenuates cell death but does not alter the atRA-dependent reduction in cell proliferation, which suggests that atRA-induced apoptosis is independent of the arrest in cell proliferation. To check whether ANT proteins mediated these atRA effects, we transiently transfected cells with expression vectors encoding for individual ANT (adenine nucleotide translocase 1-3). Our results revealed that ANT1 and ANT3 over-expressing HeLa cells increased their atRA sensitivity. Thus, our results not only demonstrate the different functional activities of ANT isoforms, but also contribute to a better understanding of the properties of atRA as an anti-tumoral agent used in cancer therapy.
Collapse
Affiliation(s)
- Mónica Zamora
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona Diagonal 645, E-08028-Barcelona, Spain
| | | | | | | | | |
Collapse
|
35
|
Kwekel JC, Burgoon LD, Burt JW, Harkema JR, Zacharewski TR. A cross-species analysis of the rodent uterotrophic program: elucidation of conserved responses and targets of estrogen signaling. Physiol Genomics 2005; 23:327-42. [PMID: 16174780 DOI: 10.1152/physiolgenomics.00175.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physiological, morphological, and transcriptional alterations elicited by ethynyl estradiol in the uteri of Sprague-Dawley rats and C57BL/6 mice were assessed using comparable study designs, microarray platforms, and analysis methods to identify conserved estrogen signaling networks. Comparative analysis identified 153 orthologous gene pairs that were positively correlated, suggesting conserved transcriptional targets important in uterine proliferation. Functional annotation for these responses were associated with angiogenesis, water and solute transport, cell cycle control, redox control, DNA replication, protein synthesis and transport, xenobiotic metabolism, cell-cell communication, energetics, and cholesterol and fatty acid regulation. The identification of conserved temporal expression patterns of these orthologs provides experimental support for the transfer of functional annotation from mouse orthologs to 44 previously unannotated rat expressed sequence tags based on their homology and co-expression patterns. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates the ability of systematic comparative genomic assessments to elucidate important conserved mechanisms in rodent estrogen signaling during uterine proliferation.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
36
|
Itoi S, Misaki R, Hirayama M, Nakaniwa M, Liang CS, Kondo H, Watabe S. Identification of three isoforms for mitochondrial adenine nucleotide translocator in the pufferfish Takifugu rubripes. Mitochondrion 2005; 5:162-72. [PMID: 16050982 DOI: 10.1016/j.mito.2005.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 12/20/2004] [Accepted: 01/26/2005] [Indexed: 11/21/2022]
Abstract
Three adenine nucleotide translocator (ANT) genes were identified through in silico data mining of the Fugu genome database along with isolation of their corresponding cDNAs in vivo from the pufferfish (Takifugu rubripes). As a result of phylogenetic analysis, the ANT gene on scaffold_254 corresponded to mammalian ANT1, whereas both of those on scaffold_6 and scaffold_598 to mammalian ANT3. The ANT gene encoded by scaffold_6 was expressed ubiquitously in various tissues, whereas the ANT genes encoded by scaffold_254 and scaffold_598 were predominantly expressed in skeletal muscle and heart, respectively.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- Computational Biology
- Conserved Sequence
- DNA, Complementary
- Genome
- Isoenzymes/chemistry
- Isoenzymes/genetics
- Isoenzymes/isolation & purification
- Mitochondria, Heart/enzymology
- Mitochondria, Muscle/enzymology
- Mitochondrial ADP, ATP Translocases/chemistry
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/isolation & purification
- Molecular Sequence Data
- Nucleic Acid Amplification Techniques
- Phylogeny
- Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Takifugu/genetics
- Tissue Distribution
- Transcription, Genetic
Collapse
Affiliation(s)
- Shiro Itoi
- Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Chevrollier A, Loiseau D, Stepien G. [What is the specific role of ANT2 in cancer cells?]. Med Sci (Paris) 2005; 21:156-61. [PMID: 15691486 DOI: 10.1051/medsci/2005212156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the mitochondrial internal membrane, the adenine nucleotide translocator (ANT) carries out the ATP/ADP exchange between cytoplasm and mitochondrial matrix. Three isoforms with different kinetic properties are encoded from three different genes in Human: the muscle specific ANT1 and the ubiquitary ANT3 isoforms export ATP produced by mitochondrial oxidative phosphorylation (OXPHOS). The ANT2 isoform is specifically expressed in proliferative cells with a predominant glycolytic metabolism and is associated with cellular undifferentiation which is a major characteristic in carcinogenesis. Its role would be to import into mitochondria ATP produced by the glycolysis, energy essential to several intramitochondrial functions, particularly to maintenance of the membrane potential (Delta Psi m), conditioning cellular survival and proliferation. The mechanism of regeneration of this Delta Psi m gradient would involve at least three major proteins: the hexokinase II isoform, the ANT2 isoform and the F1 part of the mitochondrial ATP synthase complex. Taking into account this major role of ANT2 in cell proliferation and the very low expression of this isoform in differentiated tissues, this protein or its transcript could be chosen as a target for an anticancer strategy. Furthermore, previous studies showed that molecules of the cisplatin family, used as chemotherapeutic agents, led to the destruction of the mitochondrial membrane potential and thus to cell death. Does the anticancer effect of these molecules result, at least partially, from this mitochondrial aggression? If it is the case, the ANT2 isoform, mainly involved in the generation of this potential by its ATP4-/ADP3- exchange, could be considered as a more specific targeting by an RNA interference approach.
Collapse
Affiliation(s)
- Arnaud Chevrollier
- Laboratoire d'étude des molécules marquées, Inserm U.484, 58, rue Montalembert, 63005 Clermont-Ferrand, France
| | | | | |
Collapse
|
38
|
Barath P, Poliakova D, Luciakova K, Nelson BD. Identification of NF1 as a silencer protein of the human adenine nucleotide translocase-2 gene. ACTA ACUST UNITED AC 2004; 271:1781-8. [PMID: 15096217 DOI: 10.1111/j.1432-1033.2004.04090.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human adenine nucleotide translocase-2 (ANT2) promoter contains a silencer region that confers partial repression on the heterologous herpes simplex virus thymidine kinase (HSVtk) promoter [Barath, P., Albert-Fournier, B., Luciakova, K., Nelson, B.D. (1999) J. Biol. Chem.274, 3378-3384]. Two sequences in the silencer (Site-2 and Site-3) are protected in the DNase I assay in vitro, and one of these is a repeated GTCCTG element previously shown to act as the active repressor element. We have now purified the DNA binding protein, and identified it using MALDI-TOF MS as a 33-kDa member of the nuclear factor 1 (NF1) family of transcription factors. NF1 purified from rat liver and HeLa cell nuclei bind to both silencer Site-2 and Site-3, resulting in a DNase I footprint identical to that obtained with purified recombinant NF1. Furthermore, transient transfection experiments with reporter constructs containing mutated silencer Site-2 and/or Site-3 show that both sites contribute to repression of the HSVtk promoter. Finally, chromatin immunoprecipitation analysis reveals that NF1 is bound to both elements on the endogenous HeLa cell ANT2 promoter. Our data support the belief that NF1 acts as a repressor when bound to silencing Site-2 and Site-3 of the ANT2 gene.
Collapse
Affiliation(s)
- Peter Barath
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, Sweden
| | | | | | | |
Collapse
|
39
|
Jang JY, Lee CE. Mitochondrial adenine nucleotide translocator 3 is regulated by IL-4 and IFN-γ via STAT-dependent pathways. Cell Immunol 2003; 226:11-9. [PMID: 14746803 DOI: 10.1016/j.cellimm.2003.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
IL-4 and IFN-gamma are prototypical Th2 and Th1 cytokines, respectively. They reciprocally regulate a number of genes involved in Th1 vs Th2 immune balance. Using DD-PCR analysis, adenine nucleotide translocase (ANT) 3, an enzyme which exchanges ATP and ADP through mitochondrial membrane, has been identified as a novel target counter-regulated by IL-4 and IFN-gamma. We have observed that IL-4 and IFN-gamma each up-regulates ANT3 in T cells both at mRNA and protein levels, while cotreatment of IL-4 and IFN-gamma counter-regulates ANT3 expression. In contrast, other isoforms of ANT were not affected by IL-4 or IFN-gamma. Emplyoing transfection and overexpression of STAT6 and STAT1 in STAT-deficient cells, we demonstrate that induction of ANT3 by IL-4 and IFN-gamma proceeds via pathways involving STAT6 and STAT1, respectively. Furthermore, regulation of ANT3 expression by IL-4 and IFN-gamma correlated with the modulation T cell survival by these cytokines from dex-induced apoptosis. Considering the critical role of mitochondrial ANTs in energy metabolism and apoptosis, ANT3 regulation by IL-4 and IFN-gamma may have a functional implication in cytokine-mediated T cell survival.
Collapse
Affiliation(s)
- Ji-Young Jang
- Department of Biological Science and Institute for Basic Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | | |
Collapse
|
40
|
Luciakova K, Barath P, Poliakova D, Persson A, Nelson BD. Repression of the human adenine nucleotide translocase-2 gene in growth-arrested human diploid cells: the role of nuclear factor-1. J Biol Chem 2003; 278:30624-33. [PMID: 12777383 DOI: 10.1074/jbc.m303530200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenine nucleotide translocase-2 (ANT2) catalyzes the exchange of ATP for ADP across the mitochondrial membrane, thus playing an important role in maintaining the cytosolic phosphorylation potential required for cell growth. Expression of ANT2 is activated by growth stimulation of quiescent cells and is down-regulated when cells become growth-arrested. In this study, we address the mechanism of growth arrest repression. Using a combination of transfection, in vivo dimethyl sulfate mapping, and in vitro DNase I mapping experiments, we identified two protein-binding elements (Go-1 and Go-2) that are responsible for growth arrest of ANT2 expression in human diploid fibroblasts. Proteins that bound the Go elements were purified and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry as members of the NF1 family of transcription factors. Chromatin immunoprecipitation analysis showed that NF1 was bound to both Go-1 and Go-2 in quiescent human diploid cells in vivo, but not in the same cells stimulated to growth by serum. NF1 binding correlated with the disappearance of ANT2 transcripts in quiescent cells. Furthermore, overexpression of NF1-A, -C, and -X in NIH3T3 cells repressed expression of an ANT2-driven reporter gene construct. Two additional putative repressor elements in the ANT2 promoter, an Sp1 element juxtaposed to the transcription start site and a silencer centered at nucleotide -332, did not appear to contribute to growth arrest repression. Thus, enhanced binding of NF1 is a key step in the growth arrest repression of ANT2 transcription. To our knowledge, this is the first report showing a role for NF1 in growth arrest.
Collapse
Affiliation(s)
- Katarina Luciakova
- Department of Biochemistry and Biophysics, Arrhenius Laboratories, Stockholm University, S-106 91 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
41
|
Hockenbery DM, Giedt CD, O'Neill JW, Manion MK, Banker DE. Mitochondria and apoptosis: new therapeutic targets. Adv Cancer Res 2003; 85:203-42. [PMID: 12374287 DOI: 10.1016/s0065-230x(02)85007-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David M Hockenbery
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
42
|
Brenner C, Le Bras M, Kroemer G. Insights into the mitochondrial signaling pathway: what lessons for chemotherapy? J Clin Immunol 2003; 23:73-80. [PMID: 12757259 DOI: 10.1023/a:1022541009662] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Mitochondria are potent integrators/coordinators of apoptosis signaling pathways. Indeed, under physiological conditions, the initiation of apoptosis leads to the accumulation of second messengers that converge on mitochondria. In response, these organelles undergo a membrane permeabilization, presumably due to the opening of protein channels, culminating in the release of proapoptotic proteins into the cytosol. Under pathological conditions, a failure of mitochondrial membrane permeabilization (MMP) can result in an inhibition of apoptosis and enhanced resistance to chemotherapy. Several non-mutually exclusive mechanisms may account for a defect in the execution or regulation of MMP. These include (i) alterations in gene transcription, (ii) gene mutations resulting in protein inactivation, and (iii) defects of intracellular localization. This may concern structural proteins of the permeability transition pore complex, as well as MMP regulatory proteins, such as Bax/Bcl-2 family members, p53, and cyclophilin D. Analysis of these mechanisms should improve our understanding of the basic function of mitochondria in apoptosis and help elaborate new strategies to correct MMP failure from a therapeutic perspective.
Collapse
Affiliation(s)
- Catherine Brenner
- CNRS UPRESA 8087, Université de Versailles/St Quentin, LGBC Buffon, 45 Avenue des Etats-Unis, 78035 Versailles, France.
| | | | | |
Collapse
|
43
|
Abstract
Alteration of mitochondrial membrane permeability is a central mechanism leading invariably to cell death, which results, at least in part, from the opening of the permeability transition pore complex (PTPC). Indeed, extended PTPC opening is sufficient to trigger an increase in mitochondrial membrane permeability and apoptosis. Among the various PTPC components, the adenine nucleotide translocator (ANT) appears to act as a bi-functional protein which, on the one hand, contributes to a crucial step of aerobic energy metabolism, the ADP/ATP translocation, and on the other hand, can be converted into a pro-apoptotic pore under the control of onco- and anti-oncoproteins from the Bax/Bcl-2 family. In this review, we will discuss recent advances in the cooperation between ANT and Bax/Bcl-2 family members, the multiplicity of agents affecting ANT pore function and the putative role of ANT isoforms in apoptosis control.
Collapse
Affiliation(s)
- Anne-Sophie Belzacq
- Centre national de la recherche scientifique, UMR 6022, université de technologie de Compiègne, Royallieu, BP20529, 60205 Compiègne, France
| | | | | | | |
Collapse
|
44
|
Vieira HL, Haouzi D, El Hamel C, Jacotot E, Belzacq AS, Brenner C, Kroemer G. Permeabilization of the mitochondrial inner membrane during apoptosis: impact of the adenine nucleotide translocator. Cell Death Differ 2000; 7:1146-54. [PMID: 11175251 DOI: 10.1038/sj.cdd.4400778] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial membrane permeabilization can be a rate limiting step of apoptotic as well as necrotic cell death. Permeabilization of the outer mitochondrial membrane (OM) and/or inner membrane (IM) is, at least in part, mediated by the permeability transition pore complex (PTPC). The PTPC is formed in the IM/OM contact site and contains the two most abundant IM and OM proteins, adenine nucleotide translocator (ANT, in the IM) and voltage-dependent anion channel (VDAC, in the OM), the matrix protein cyclophilin D, which can interact with ANT, as well as apoptosis-regulatory proteins from the Bax/Bcl-2 family. Here we discuss that ANT has two opposite functions. On the one hand, ANT is a vital, specific antiporter which accounts for the exchange of ATP and ADP on IM. On the other hand, ANT can form a non-specific pore, as this has been shown by electrophysiological characterization of purified ANT reconstituted into synthetic lipid bilayers or by measuring the permeabilization of proteoliposomes containing ANT. Pore formation by ANT is induced by a variety of different agents (e.g. Ca(2+), atractyloside, thiol oxidation, the pro-apoptotic HIV-1 protein Vpr, etc.) and is enhanced by Bax and inhibited by Bcl-2, as well as by ADP. In isolated mitochondria, pore formation by ANT leads to an increase in IM permeability to solutes up to 1500 Da, swelling of the mitochondrial matrix, and OM permeabilization, presumably due to physical rupture of OM. Although alternative mechanisms of mitochondrial membrane permeabilization may exist, ANT emerges as a major player in the regulation of cell death. Cell Death and Differentiation (2000) 7, 1146 - 1154
Collapse
Affiliation(s)
- H L Vieira
- Centre National de la Recherche Scientifique, UMR1599, Institut Gustave Roussy, 39 rue Camille-Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Levy SE, Chen YS, Graham BH, Wallace DC. Expression and sequence analysis of the mouse adenine nucleotide translocase 1 and 2 genes. Gene 2000; 254:57-66. [PMID: 10974536 DOI: 10.1016/s0378-1119(00)00252-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Only two isoforms of the adenine nucleotide translocase (Ant) protein have been identified in mouse, as opposed to the three in humans. To determine whether the homologous mouse and human proteins share similar patterns of expression, Northern and Western analyses were performed on several mouse tissues. Mouse Ant1 is expressed at high levels in skeletal muscle and heart, similar to human ANT1. Mouse Ant2 is strongly expressed in all tissues but muscle, in marked contrast to human ANT2. To investigate the molecular basis of these differences, we cloned and sequenced the genomic loci of mouse Ant1 and Ant2, and compared them to the three human ANT loci. The mouse and human ANT1 and ANT2 genes showed substantial homology starting about 300 base pairs (bp) 5' to the coding region and continuing through the 3' untranslated region (UTR). Repeats constituted 32% of 15kb of Ant1 sequence and 36% of the 27kb of Ant2 sequence and included SINEs, LINEs and LTR elements. The core promoters of the mouse and human ANT1 and ANT2 genes are very similar. However, the mouse Ant1 gene lacks the upstream OXBOX and REBOX elements found in human ANT1 genes, thought to be important for muscle-specific expression. The mouse Ant2 gene, like human ANT2, has an upstream GRBOX, yet this element is not associated with suppression of transcription, as hypothesized for human ANT2. These discrepancies indicate that additional studies will be required to fully understand the transcriptional regulation of both Ant1 and Ant2.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Blotting, Western
- DNA/chemistry
- DNA/genetics
- Female
- Gene Expression
- Genes/genetics
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Mice
- Mice, Inbred Strains
- Mitochondrial ADP, ATP Translocases/genetics
- Mitochondrial ADP, ATP Translocases/metabolism
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Tissue Distribution
Collapse
Affiliation(s)
- S E Levy
- Emory University School of Medicine, Center for Molecular Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|