1
|
Liu M, He Q, Yuan Z, Chen N, Ren S, Du Q, Wang Y, Han S, Xu C, Lu L, Sun Z, Guan Y, Xie J, Guan Y, Ye L. HDAC3 promotes Sertoli cell maturation and maintains the blood-testis barrier dynamics. FASEB J 2024; 38:e23526. [PMID: 38430456 DOI: 10.1096/fj.202301349rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Germ cell development depends on the capacity of somatic Sertoli cells to undergo differentiation into a mature state and establish a germ cell-specific blood-testis barrier (BTB). The BTB structure confers an immunological barrier for meiotic and postmeiotic germ cells, and its dynamic permeability facilitates a transient movement of preleptotene spermatocytes through BTB to enter meiosis. However, the regulatory factors involved in Sertoli cell maturation and how BTB dynamics coordinate germ cell development remain unclear. Here, we found a histone deacetylase HDAC3 abundantly expresses in Sertoli cells and localizes in both cytoplasm and nucleus. Sertoli cell-specific Hdac3 knockout in mice causes infertility with compromised integrity of blood-testis barrier, leading to germ cells unable to traverse through BTB and an accumulation of preleptotene spermatocytes in juvenile testis. Mechanistically, nuclear HDAC3 regulates the expression program of Sertoli cell maturation genes, and cytoplasmic HDAC3 forms a complex with the gap junction protein Connexin 43 to modulate the BTB integrity and dynamics through regulating the distribution of tight junction proteins. Our findings identify HDAC3 as a critical regulator in promoting Sertoli cell maturation and maintaining the homeostasis of the blood-testis barrier.
Collapse
Affiliation(s)
- Mengrou Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qing He
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Niuniu Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Qian Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Chen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Luyang Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yongjuan Guan
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
2
|
León-Fuentes IM, Salgado-Gil MG, Novoa MS, Retamal MA. Connexins in Cancer, the Possible Role of Connexin46 as a Cancer Stem Cell-Determining Protein. Biomolecules 2023; 13:1460. [PMID: 37892142 PMCID: PMC10604234 DOI: 10.3390/biom13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Cancer is a widespread and incurable disease caused by genetic mutations, leading to uncontrolled cell proliferation and metastasis. Connexins (Cx) are transmembrane proteins that facilitate intercellular communication via hemichannels and gap junction channels. Among them, Cx46 is found mostly in the eye lens. However, in pathological conditions, Cx46 has been observed in various types of cancers, such as glioblastoma, melanoma, and breast cancer. It has been demonstrated that elevated Cx46 levels in breast cancer contribute to cellular resistance to hypoxia, and it is an enhancer of cancer aggressiveness supporting a pro-tumoral role. Accordingly, Cx46 is associated with an increase in cancer stem cell phenotype. These cells display radio- and chemoresistance, high proliferative abilities, self-renewal, and differentiation capacities. This review aims to consolidate the knowledge of the relationship between Cx46, its role in forming hemichannels and gap junctions, and its connection with cancer and cancer stem cells.
Collapse
Affiliation(s)
| | | | | | - Mauricio A. Retamal
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, República de Honduras 12740, Las Condes, Santiago 7610496, Chile; (I.M.L.-F.); (M.G.S.-G.); (M.S.N.)
| |
Collapse
|
3
|
Oliveira MC, Cordeiro RM, Bogaerts A. Effect of lipid oxidation on the channel properties of Cx26 hemichannels: A molecular dynamics study. Arch Biochem Biophys 2023; 746:109741. [PMID: 37689256 DOI: 10.1016/j.abb.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
Intercellular communication plays a crucial role in cancer, as well as other diseases, such as inflammation, tissue degeneration, and neurological disorders. One of the proteins responsible for this, are connexins (Cxs), which come together to form a hemichannel. When two hemichannels of opposite cells interact with each other, they form a gap junction (GJ) channel, connecting the intracellular space of these cells. They allow the passage of ions, reactive oxygen and nitrogen species (RONS), and signaling molecules from the interior of one cell to another cell, thus playing an essential role in cell growth, differentiation, and homeostasis. The importance of GJs for disease induction and therapy development is becoming more appreciated, especially in the context of oncology. Studies have shown that one of the mechanisms to control the formation and disruption of GJs is mediated by lipid oxidation pathways, but the underlying mechanisms are not well understood. In this study, we performed atomistic molecular dynamics simulations to evaluate how lipid oxidation influences the channel properties of Cx26 hemichannels, such as channel gating and permeability. Our results demonstrate that the Cx26 hemichannel is more compact in the presence of oxidized lipids, decreasing its pore diameter at the extracellular side and increasing it at the amino terminus domains, respectively. The permeability of the Cx26 hemichannel for water and RONS molecules is higher in the presence of oxidized lipids. The latter may facilitate the intracellular accumulation of RONS, possibly increasing oxidative stress in cells. A better understanding of this process will help to enhance the efficacy of oxidative stress-based cancer treatments.
Collapse
Affiliation(s)
- Maria C Oliveira
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium.
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
4
|
Jones JC, Bodenstine TM. Connexins and Glucose Metabolism in Cancer. Int J Mol Sci 2022; 23:ijms231710172. [PMID: 36077565 PMCID: PMC9455984 DOI: 10.3390/ijms231710172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Connexins are a family of transmembrane proteins that regulate diverse cellular functions. Originally characterized for their ability to mediate direct intercellular communication through the formation of highly regulated membrane channels, their functions have been extended to the exchange of molecules with the extracellular environment, and the ability to modulate numerous channel-independent effects on processes such as motility and survival. Notably, connexins have been implicated in cancer biology for their context-dependent roles that can both promote or suppress cancer cell function. Moreover, connexins are able to mediate many aspects of cellular metabolism including the intercellular coupling of nutrients and signaling molecules. During cancer progression, changes to substrate utilization occur to support energy production and biomass accumulation. This results in metabolic plasticity that promotes cell survival and proliferation, and can impact therapeutic resistance. Significant progress has been made in our understanding of connexin and cancer biology, however, delineating the roles these multi-faceted proteins play in metabolic adaptation of cancer cells is just beginning. Glucose represents a major carbon substrate for energy production, nucleotide synthesis, carbohydrate modifications and generation of biosynthetic intermediates. While cancer cells often exhibit a dependence on glycolytic metabolism for survival, cellular reprogramming of metabolic pathways is common when blood perfusion is limited in growing tumors. These metabolic changes drive aggressive phenotypes through the acquisition of functional traits. Connections between glucose metabolism and connexin function in cancer cells and the surrounding stroma are now apparent, however much remains to be discovered regarding these relationships. This review discusses the existing evidence in this area and highlights directions for continued investigation.
Collapse
|
5
|
Zhou Z, Chai W, Liu Y, Zhou M, Zhang X. Connexins and angiogenesis: Functional aspects, pathogenesis, and emerging therapies (Review). Int J Mol Med 2022; 50:110. [PMID: 35762312 PMCID: PMC9256078 DOI: 10.3892/ijmm.2022.5166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022] Open
Abstract
Connexins (Cxs) play key roles in cellular communication. By facilitating metabolite exchange or interfering with distinct signaling pathways, Cxs affect cell homeostasis, proliferation, and differentiation. Variations in the activity and expression of Cxs have been linked to numerous clinical conditions including carcinomas, cardiac disorders, and wound healing. Recent discoveries on the association between Cxs and angiogenesis have sparked interest in Cx-mediated angiogenesis due to its essential functions in tissue formation, wound repair, tumor growth, and metastasis. It is now widely recognized that understanding the association between Cxs and angiogenesis may aid in the development of new targeted therapies for angiogenic diseases. The aim of the present review was to provide a comprehensive overview of Cxs and Cx-mediated angiogenesis, with a focus on therapeutic implications.
Collapse
Affiliation(s)
- Zizi Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Wenxiang Chai
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Liu
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Meng Zhou
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| | - Xiaoming Zhang
- Department of Cardio‑Thoracic Surgery, Shenzhen University General Hospital, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
6
|
Gap Junction-Dependent and -Independent Functions of Connexin43 in Biology. BIOLOGY 2022; 11:biology11020283. [PMID: 35205149 PMCID: PMC8869330 DOI: 10.3390/biology11020283] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
Abstract
For the first time in animal evolution, the emergence of gap junctions allowed direct exchanges of cellular substances for communication between two cells. Innexin proteins constituted primordial gap junctions until the connexin protein emerged in deuterostomes and took over the gap junction function. After hundreds of millions of years of gene duplication, the connexin gene family now comprises 21 members in the human genome. Notably, GJA1, which encodes the Connexin43 protein, is one of the most widely expressed and commonly studied connexin genes. The loss of Gja1 in mice leads to swelling and a blockage of the right ventricular outflow tract and death of the embryos at birth, suggesting a vital role of Connexin43 gap junction in heart development. Since then, the importance of Connexin43-mediated gap junction function has been constantly expanded to other types of cells. Other than forming gap junctions, Connexin43 can also form hemichannels to release or uptake small molecules from the environment or even mediate many physiological processes in a gap junction-independent manner on plasma membranes. Surprisingly, Connexin43 also localizes to mitochondria in the cell, playing important roles in mitochondrial potassium import and respiration. At the molecular level, Connexin43 mRNA and protein are processed with very distinct mechanisms to yield carboxyl-terminal fragments with different sizes, which have their unique subcellular localization and distinct biological activities. Due to many exciting advancements in Connexin43 research, this review aims to start with a brief introduction of Connexin43 and then focuses on updating our knowledge of its gap junction-independent functions.
Collapse
|
7
|
Cx43 Promotes Endothelial Cell Migration and Angiogenesis via the Tyrosine Phosphatase SHP-2. Int J Mol Sci 2021; 23:ijms23010294. [PMID: 35008716 PMCID: PMC8745637 DOI: 10.3390/ijms23010294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
The gap junction protein connexin 43 (Cx43) is associated with increased cell migration and to related changes of the actin cytoskeleton, which is mediated via its C-terminal cytoplasmic tail and is independent of its channel function. Cx43 has been shown to possess an angiogenic potential, however, the role of Cx43 in endothelial cell migration has not yet been investigated. Here, we found that the knock-down of Cx43 by siRNA in human microvascular endothelial cells (HMEC) reduces migration, as assessed by a wound assay in vitro and impaired aortic vessel sprouting ex vivo. Immunoprecipitation of Cx43 revealed an interaction with the tyrosine phosphatase SHP-2, which enhanced its phosphatase activity, as observed in Cx43 expressing HeLa cells compared to cells treated with an empty vector. Interestingly, the expression of a dominant negative substrate trapping mutant SHP-2 (CS) in HMEC, via lentiviral transduction, also impaired endothelial migration to a similar extent as Cx43 siRNA compared to SHP-2 WT. Moreover, the reduction in endothelial migration upon Cx43 siRNA could not be rescued by the introduction of a constitutively active SHP-2 construct (EA). Our data demonstrate that Cx43 and SHP-2 mediate endothelial cell migration, revealing a novel interaction between Cx43 and SHP-2, which is essential for this process.
Collapse
|
8
|
Dieterle MP, Husari A, Rolauffs B, Steinberg T, Tomakidi P. Integrins, cadherins and channels in cartilage mechanotransduction: perspectives for future regeneration strategies. Expert Rev Mol Med 2021; 23:e14. [PMID: 34702419 PMCID: PMC8724267 DOI: 10.1017/erm.2021.16] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
Articular cartilage consists of hyaline cartilage, is a major constituent of the human musculoskeletal system and has critical functions in frictionless joint movement and articular homoeostasis. Osteoarthritis (OA) is an inflammatory disease of articular cartilage, which promotes joint degeneration. Although it affects millions of people, there are no satisfying therapies that address this disease at the molecular level. Therefore, tissue regeneration approaches aim at modifying chondrocyte biology to mitigate the consequences of OA. This requires appropriate biochemical and biophysical stimulation of cells. Regarding the latter, mechanotransduction of chondrocytes and their precursor cells has become increasingly important over the last few decades. Mechanotransduction is the transformation of external biophysical stimuli into intracellular biochemical signals, involving sensor molecules at the cell surface and intracellular signalling molecules, so-called mechano-sensors and -transducers. These signalling events determine cell behaviour. Mechanotransducing ion channels and gap junctions additionally govern chondrocyte physiology. It is of great scientific and medical interest to induce a specific cell behaviour by controlling these mechanotransduction pathways and to translate this knowledge into regenerative clinical therapies. This review therefore focuses on the mechanotransduction properties of integrins, cadherins and ion channels in cartilaginous tissues to provide perspectives for cartilage regeneration.
Collapse
Affiliation(s)
- Martin Philipp Dieterle
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
- Department of Orthodontics, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Bernd Rolauffs
- Department of Orthopedics and Trauma Surgery, G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Medical Center – Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79085Freiburg im Breisgau, Germany
| | - Thorsten Steinberg
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106Freiburg, Germany
| |
Collapse
|
9
|
SEN HALICIOGLU B, SAADAT KASM, TUGLU MI. The relationship of 4-vinylcyclohexene diepoxide toxicity with cell death, oxidative stress, and gap junctions in female rat ovaries. Reprod Med Biol 2021; 20:543-553. [PMID: 34646083 PMCID: PMC8499605 DOI: 10.1002/rmb2.12398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Accepted: 06/03/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE It was aimed to investigate the damage caused by VCD toxicity in the ovary, which women working in the industrial field are frequently exposed to, and to show the relationship between gap junction protein, oxidative stress, and apoptosis, which is thought to be effective in the emergence of this damage. METHODS Rats were divided into three groups as control, sham, and VCD. Histological stainings were performed for histopathological evaluations in ovary. Serum AMH level was measured with the ELISA. Then, iNOS, caspase 3, connexin 43 protein, and mRNA expression levels were analyzed by immunohistochemistry and RT-qPCR methods. RESULTS As a result of the analyses, different amounts of degenerations such as hemorrhage, vacuolization, and fibrosis were observed in the ovary. VCD group AMH level decreased compared to control. In VCD group, iNOS and caspase 3 expressions increased, while connexin 43 expression decreased. CONCLUSIONS It was shown that VCD caused damage to all ovarian tissue. Also, it was revealed for the first time that VCD triggered apoptosis by increasing oxidative stress in the ovary and suppressed connexin 43 which was also effective in the survival of granulosa cells. The devastating effect of exposure to occupational chemicals such as VCD on fertility was demonstrated in this study.
Collapse
Affiliation(s)
- Busra SEN HALICIOGLU
- Faculty of MedicineDepartment of Histology and EmbryologyGaziantep UniversityGaziantepTurkey
- Faculty of MedicineDepartment of Histology and EmbryologyManisa Celal Bayar UniversityManisaTurkey
| | | | - Mehmet Ibrahim TUGLU
- Faculty of MedicineDepartment of Histology and EmbryologyManisa Celal Bayar UniversityManisaTurkey
| |
Collapse
|
10
|
Jindal S, Chockalingam S, Ghosh SS, Packirisamy G. Connexin and gap junctions: perspectives from biology to nanotechnology based therapeutics. Transl Res 2021; 235:144-167. [PMID: 33582245 DOI: 10.1016/j.trsl.2021.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/10/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC. Inadequacies in strategies that target specific connexin protein in the affected tissue, with minimal or no collateral damage, are the primary reason for the lack of development of efficient therapeutic models. Herein, nanotechnology has a role to play, giving plenty of scope to circumvent these problems and develop more efficient connexin based therapeutics. AsODN, antisense oligodeoxynucleotides; BMPs, bone morphogenetic proteins; BMSCs, bone marrow stem cells; BG, bioglass; Cx, Connexin; CxRE, connexin-responsive elements; CoCr NPs, cobalt-chromium nanoparticles; cGAMP, cyclic guanosine monophosphate-adenosine monophosphate; cAMP, cyclic adenosine monophosphate; ERK1/2, extracellular signal-regulated kinase 1/2; EMT, epithelial-mesenchymal transition; EPA, eicosapentaenoic acids; FGFR1, fibroblast growth factor receptor 1; FRAP, fluorescence recovery after photobleaching; 5-FU, 5-fluorouracil; GJ, gap junction; GJIC, gap junctional intercellular communication; HGPRTase, hypoxanthine phosphoribosyltransferase; HSV-TK, herpes virus thymidine kinase; HSA, human serum albumin; HA, hyaluronic acid; HDAC, histone deacetylase; IRI, ischemia reperfusion injury; IL-6, interleukin-6; IL-8, interleukin-8; IONPs, iron-oxide nanoparticles; JNK, c-Jun N-terminal kinase; LAMP, local activation of molecular fluorescent probe; MSCs, mesenchymal stem cells; MMP, matrix metalloproteinase; MI, myocardial infarction; MAPK, mitogen-activated protein kinase; NF-κB, nuclear factor kappa B; NO, nitric oxide; PKC, protein kinase C; QDs, quantum dots; ROI, region of interest; RGO, reduced graphene oxide; siRNA, small interfering RNA; TGF-β1, transforming growth factor-β1; TNF-α, tumor necrosis factor-α; UCN, upconversion nanoparticles; VEGF, vascular endothelial growth factor. In this review, we discuss briefly the role of connexins and gap junctions in various physiological and pathological processes, with special emphasis on cancer. We further discuss the application of nanotechnology and tissue engineering in developing treatments for various connexin based disorders.
Collapse
Affiliation(s)
- Shlok Jindal
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - S Chockalingam
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Gopinath Packirisamy
- Nanobiotechnology Laboratory, Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
11
|
Orellana VP, Tittarelli A, Retamal MA. Connexins in melanoma: Potential role of Cx46 in its aggressiveness. Pigment Cell Melanoma Res 2021; 34:853-868. [PMID: 33140904 DOI: 10.1111/pcmr.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
Melanoma is the most aggressive skin cancer, and in metastatic advanced states, it is completely refractory to chemotherapy. Therefore, it is relevant to understand the molecular bases that rule their aggressiveness. Connexins (Cxs) are proteins that under normal physiological conditions participate in intercellular communication, via the exchange of signaling molecules between the cytoplasm and extracellular milieu and the exchange of ions/second messengers between the cytoplasm of contacting cells. These proteins have shown important roles in cancer progression, chemo- and radiotherapy resistance, and metastasis. Accordingly, Cx26 and Cx43 seem to play important roles in melanoma progression and metastasis. On the other hand, Cx46 is typically expressed in the eye lens, where it seems to be associated with oxidative stress protection in fiber lens cells. However, in the last decade, Cx46 expression has been associated with breast and brain cancers, due to its role in potentiation of both extracellular vesicle release and cancer stem cell-like properties. In this review, we analyzed a potential role of Cx46 as a new biomarker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Viviana P Orellana
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile
| | - Mauricio A Retamal
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| |
Collapse
|
12
|
Koepple C, Zhou Z, Huber L, Schulte M, Schmidt K, Gloe T, Kneser U, Schmidt VJ, de Wit C. Expression of Connexin43 Stimulates Endothelial Angiogenesis Independently of Gap Junctional Communication In Vitro. Int J Mol Sci 2021; 22:ijms22147400. [PMID: 34299018 PMCID: PMC8306600 DOI: 10.3390/ijms22147400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022] Open
Abstract
Connexins (Cx) form gap junctions (GJ) and allow for intercellular communication. However, these proteins also modulate gene expression, growth, and cell migration. The downregulation of Cx43 impairs endothelial cell migration and angiogenetic potential. Conversely, endothelial Cx43 expression is upregulated in an in vivo angiogenesis model relying on hemodynamic forces. We studied the effects of Cx43 expression on tube formation and proliferation in HUVECs and examined its dependency on GJ communication. Expectedly, intercellular communication assessed by dye transfer was linked to Cx43 expression levels in HUVECs and was sensitive to a GJ blockade by the Cx43 mimetic peptide Gap27. The proliferation of HUVECs was not affected by Cx43 overexpression using Cx43 cDNA transfection, siRNA-mediated knockdown of Cx43, or the inhibition of GJ compared to the controls (transfection of an empty vector, scrambled siRNA, and the solvent). In contrast, endothelial tube and sprout formation in HUVECs was minimized after Cx43 knockdown and significantly enhanced after Cx43 overexpression. This was not affected by a GJ blockade (Gap27). We conclude that Cx43 expression positively modulates the angiogenic potential of endothelial cells independent of GJ communication. Since proliferation remained unaffected, we suggest that Cx43 protein may modulate endothelial cell migration, thereby supporting angiogenesis. The modulation of Cx43 expression may represent an exploitable principle for angiogenesis induction in clinical therapy.
Collapse
Affiliation(s)
- Christoph Koepple
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Zizi Zhou
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Lena Huber
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Matthias Schulte
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Kjestine Schmidt
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
| | - Torsten Gloe
- Physiology, Institute of Theoretical Medicine, Universität Augsburg, 86159 Augsburg, Germany;
| | - Ulrich Kneser
- Department for Hand Surgery, Plastic Surgery and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Heidelberg University, 67071 Ludwigshafen, Germany; (Z.Z.); (L.H.); (M.S.); (U.K.)
| | - Volker Jürgen Schmidt
- Department for Plastic Surgery and Breast Surgery, Zealand University Hospital (SUH) Roskilde, Copenhagen University, 4000 Roskilde, Denmark
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany;
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK) e.V. (German Center for Cardiovascular Research), 23562 Lübeck, Germany
- Correspondence: (C.K.); (V.J.S.); (C.d.W.)
| |
Collapse
|
13
|
Connexins in the Heart: Regulation, Function and Involvement in Cardiac Disease. Int J Mol Sci 2021; 22:ijms22094413. [PMID: 33922534 PMCID: PMC8122935 DOI: 10.3390/ijms22094413] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Connexins are a family of transmembrane proteins that play a key role in cardiac physiology. Gap junctional channels put into contact the cytoplasms of connected cardiomyocytes, allowing the existence of electrical coupling. However, in addition to this fundamental role, connexins are also involved in cardiomyocyte death and survival. Thus, chemical coupling through gap junctions plays a key role in the spreading of injury between connected cells. Moreover, in addition to their involvement in cell-to-cell communication, mounting evidence indicates that connexins have additional gap junction-independent functions. Opening of unopposed hemichannels, located at the lateral surface of cardiomyocytes, may compromise cell homeostasis and may be involved in ischemia/reperfusion injury. In addition, connexins located at non-canonical cell structures, including mitochondria and the nucleus, have been demonstrated to be involved in cardioprotection and in regulation of cell growth and differentiation. In this review, we will provide, first, an overview on connexin biology, including their synthesis and degradation, their regulation and their interactions. Then, we will conduct an in-depth examination of the role of connexins in cardiac pathophysiology, including new findings regarding their involvement in myocardial ischemia/reperfusion injury, cardiac fibrosis, gene transcription or signaling regulation.
Collapse
|
14
|
Mulkearns-Hubert EE, Reizes O, Lathia JD. Connexins in Cancer: Jekyll or Hyde? Biomolecules 2020; 10:E1654. [PMID: 33321749 PMCID: PMC7764653 DOI: 10.3390/biom10121654] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/16/2022] Open
Abstract
The expression, localization, and function of connexins, the protein subunits that comprise gap junctions, are often altered in cancer. In addition to cell-cell coupling through gap junction channels, connexins also form hemichannels that allow communication between the cell and the extracellular space and perform non-junctional intracellular activities. Historically, connexins have been considered tumor suppressors; however, they can also serve tumor-promoting functions in some contexts. Here, we review the literature surrounding connexins in cancer cells in terms of specific connexin functions and propose that connexins function upstream of most, if not all, of the hallmarks of cancer. The development of advanced connexin targeting approaches remains an opportunity for the field to further interrogate the role of connexins in cancer phenotypes, particularly through the use of in vivo models. More specific modulators of connexin function will both help elucidate the functions of connexins in cancer and advance connexin-specific therapies in the clinic.
Collapse
Affiliation(s)
- Erin E. Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
| | - Ofer Reizes
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Justin D. Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (O.R.); (J.D.L.)
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College, Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
15
|
Dynamic UTR Usage Regulates Alternative Translation to Modulate Gap Junction Formation during Stress and Aging. Cell Rep 2020; 27:2737-2747.e5. [PMID: 31141695 PMCID: PMC6857847 DOI: 10.1016/j.celrep.2019.04.114] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022] Open
Abstract
Connexin43 (Cx43; gene name GJA1) is the most ubiquitously expressed gap junction protein, and understanding of its regulation largely falls under transcription and post-translational modification. In addition to Cx43, Gja1 mRNA encodes internally translated isoforms regulating gap junction formation, whose expression is modulated by TGF-β. Here, using RLM-RACE, we identify distinct Gja1 transcripts differing only in 5′ UTR length, of which two are upregulated during TGF-β exposure and hypoxia. Introduction of these transcripts into Gja1−/− cells phenocopies the response of Gja1 to TGF-β with reduced internal translation initiation. Inhibiting pathways downstream of TGF-β selectively regulates levels of Gja1 transcript isoforms and translation products. Reporter assays reveal enhanced translation of full-length Cx43 from shorter Gja1 5′ UTR isoforms. We also observe a correlation among UTR selection, translation, and reduced gap junction formation in aged heart tissue. These data elucidate a relationship between transcript isoform expression and translation initiation regulating intercellular communication. Connexin43 gap junctions enable direct intercellular communication facilitating action potential propagation. Internal translation of connexin43 mRNA generates the truncated isoform GJA1–20k, which promotes gap junction formation. During aging, Zeitz et al. find that activation of stress-response pathways shortens connexin43 mRNA UTRs to limit GJA1–20k translation coincident with gap junction loss.
Collapse
|
16
|
Van Campenhout R, Cooreman A, Leroy K, Rusiecka OM, Van Brantegem P, Annaert P, Muyldermans S, Devoogdt N, Cogliati B, Kwak BR, Vinken M. Non-canonical roles of connexins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:35-41. [PMID: 32220599 DOI: 10.1016/j.pbiomolbio.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022]
Abstract
Gap junctions mediate cellular communication and homeostasis by controlling the intercellular exchange of small and hydrophilic molecules and ions. Gap junction channels are formed by the docking of 2 hemichannels of adjacent cells, which in turn are composed of 6 connexin subunits. Connexin proteins as such can also control the cellular life cycle independent of their channel activities. This has been most demonstrated in the context of cell growth and cell death. Different mechanisms are involved mainly related to direct interaction with cell growth or cell death regulators, but also implying effects on the expression of cell growth and cell death regulators. The present paper focuses on these atypical roles of connexin proteins.
Collapse
Affiliation(s)
- Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Olga M Rusiecka
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Pieter Van Brantegem
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Pieter Annaert
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
17
|
Epifantseva I, Xiao S, Baum RE, Kléber AG, Hong T, Shaw RM. An Alternatively Translated Connexin 43 Isoform, GJA1-11k, Localizes to the Nucleus and Can Inhibit Cell Cycle Progression. Biomolecules 2020; 10:biom10030473. [PMID: 32244859 PMCID: PMC7175147 DOI: 10.3390/biom10030473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
Connexin 43 (Cx43) is a gap junction protein that assembles at the cell border to form intercellular gap junction (GJ) channels which allow for cell-cell communication by facilitating the rapid transmission of ions and other small molecules between adjacent cells. Non-canonical roles of Cx43, and specifically its C-terminal domain, have been identified in the regulation of Cx43 trafficking, mitochondrial preconditioning, cell proliferation, and tumor formation, yet the mechanisms are still being explored. It was recently identified that up to six truncated isoforms of Cx43 are endogenously produced via alternative translation from internal start codons in addition to full length Cx43, all from the same mRNA produced by the gene GJA1. GJA1-11k, the 11kDa alternatively translated isoform of Cx43, does not have a known role in the formation of gap junction channels, and little is known about its function. Here, we report that over expressed GJA1-11k, unlike the other five truncated isoforms, preferentially localizes to the nucleus in HEK293FT cells and suppresses cell growth by limiting cell cycle progression from the G0/G1 phase to the S phase. Furthermore, these functions are independent of the channel-forming full-length Cx43 isoform. Understanding the apparently unique role of GJA1-11k and its generation in cell cycle regulation may uncover a new target for affecting cell growth in multiple disease models.
Collapse
Affiliation(s)
- Irina Epifantseva
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
| | - Shaohua Xiao
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
| | - Rachel E. Baum
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - André G. Kléber
- Department of Pathology, Beth Israel & Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - TingTing Hong
- Smidt Heart Institute, Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (I.E.); (S.X.); (R.E.B.); (T.H.)
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90048, USA
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: ; Tel.: +(801)-587-5845
| |
Collapse
|
18
|
Wang J, Yang ZY, Guo YF, Kuang JY, Bian XW, Yu SC. Targeting different domains of gap junction protein to control malignant glioma. Neuro Oncol 2019; 20:885-896. [PMID: 29106645 DOI: 10.1093/neuonc/nox207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A rational treatment strategy for glioma, the most common primary central nervous system tumor, should focus on early invasive growth and resistance to current therapeutics. Connexin 43 (Cx43), a gap junction protein, plays important roles not only in the development of the central nervous system and but also in the progression of glioma. The different structural domains of Cx43, including extracellular loops, transmembrane domains, and an intracellular carboxyl terminal, have distinct functions in the invasion and proliferation of gliomas. Targeting these domains of Cx43, which is expressed in distinct patterns in the heterogeneous glioma cell population, can inhibit tumor cell invasion and new tumor formation. Thus, this review summarizes the structural characteristics of Cx43, the effects of regulating different Cx43 domains on the biological characteristics of glioma cells, intervention strategies targeting different domains of Cx43, and future research directions.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Ze-Yu Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Yu-Feng Guo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Jing-Ya Kuang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, The Third Military Medical University, Chongqing, China.,Key Laboratory of Tumor Immunology and Pathology of the Ministry of Education, Chongqing, China
| |
Collapse
|
19
|
Pro-Apoptotic Effect of Grape Seed Extract on MCF-7 Involves Transient Increase of Gap Junction Intercellular Communication and Cx43 Up-Regulation: A Mechanism of Chemoprevention. Int J Mol Sci 2019; 20:ijms20133244. [PMID: 31269652 PMCID: PMC6651466 DOI: 10.3390/ijms20133244] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Growing evidence suggests dietary antioxidants reduce the risk of several cancers. Grape seeds extracts (GSE) are a rich source of polyphenols known to have antioxidant, chemopreventive and anticancer properties. Herein, we investigated the in vitro effects and putative action mechanisms of a grape seed extract (GSE) on human breast cancer cells (MCF-7). The effects of GSE were evaluated on cell proliferation, apoptosis and gap-junction-mediated cell-cell communications (GJIC), as basal mechanism involved in the promotion stage of carcinogenesis. GSE (0.05-100 μg/mL) caused a significant dose- and time-dependent inhibition of MCF-7 viability and induced apoptotic cell death, as detected by Annexin-V/Propidium Iodide. Concurrently, GSE induced transient but significant enhancement of GJIC in non-communicating MCF-7 cells, as demonstrated by the scrape-loading/dye-transfer (SL/DT) assay and an early and dose-dependent re-localization of the connexin-43 (Cx43) proteins on plasma membranes, as assayed by immunocytochemistry. Finally, real-time-PCR has evidenced a significant increase in cx43 mRNA expression. The results support the hypothesis that the proliferation inhibition and pro-apoptotic effect of GSE against this breast cancer cell model are mediated by the GJIC improvement via re-localization of Cx43 proteins and up-regulation of cx43 gene, and provide further insight into the action mechanisms underlying the health-promoting action of dietary components.
Collapse
|
20
|
ZHU Z, TAN J, DENG H. [Nucleus translocation of membrane/cytoplasm proteins in tumor cells]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:318-325. [PMID: 31496165 PMCID: PMC8800772 DOI: 10.3785/j.issn.1008-9292.2019.06.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/30/2019] [Indexed: 06/10/2023]
Abstract
Proteins are the physical basis of life and perform all kinds of life activities. Proteins have different orientations and function in different tissues. The same protein, located in different subcellular regions, can perform different and even opposite functions. Both functional and structural proteins are capable of undergoing re-localization which can directly or indirectly participate in signal transduction. Due to abnormal transduction of signals during carcinogenesis, the proteins originally expressed in the cytoplasm are translocated into the nucleus and lead to functional changes in the tumor tissue. The changes of protein localization are affected by many factors, including the interaction between proteins, expression level of proteins and the cleaved intracellular domain of transmembrane protein.
Collapse
Affiliation(s)
| | | | - Hong DENG
- 邓红(1964-), 女, 博士, 副教授, 硕士生导师, 主要从事肿瘤分子病理学研究; E-mail:
;
https://orcid.org/0000-0002-6815-9144
| |
Collapse
|
21
|
Dispelling myths about connexins, pannexins and P2X7 in hypoxic-ischemic central nervous system. Neurosci Lett 2019; 695:76-85. [PMID: 29195910 DOI: 10.1016/j.neulet.2017.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 10/07/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
Abstract
In membrane physiology, as in other fields, myths or speculations may be repeated so often and so widely that they are perceived as facts. To some extent, this has occurred with regard to gap junctions, hemichannels, pannexin channels and P2X7 (ionotropic receptors), especially concerning the interpretation of the individual role of these channels in hypoxic-ischemic CNS since these channels may be closed by the same pharmacological blockers. Significance of existing controversial data are highlighted and contradictory views from different groups are critically discussed herein.
Collapse
|
22
|
Zhang Q, Jia GJ, Zhang GB, Wang L, Wu Z, Jia W, Hao SY, Ni M, Li D, Wang K, Zhang JT. A Logistic Regression Model for Detecting the Presence of Malignant Progression in Atypical Meningiomas. World Neurosurg 2019; 126:e392-e401. [PMID: 30822595 DOI: 10.1016/j.wneu.2019.02.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To develop a method to distinguish atypical meningiomas (AMs) with malignant progression (MP) from primary AMs without a clinical history. METHODS The clinical, radiologic, and pathologic data of 33 previously Simpson grade I resected (if any) as well as no radiotherapy treated intracranial AMs between January 2008 and December 2015 were reviewed. Immunohistochemical staining for connexin 43 (Cx43) and Ki-67 was performed. Descriptive analysis and univariate and multivariate logistic regression analyses were used to explore independent predictors of MP. A multivariable logistic model was developed to estimate the risk of MP, and its diagnostic value was determined from a receiver operating characteristic curve. RESULTS There were 11 AMs (33.3%) with histopathologically confirmed MP from benign meningiomas. The other 22 (66.7%) were initially diagnosed AMs with no histopathologically confirmed MP during a median 60.5 months (range, 42-126 months) of follow-up. Univariate and multivariate logistic analyses showed that irregular tumor shape (P = 0.010) and low Cx43 expression (P = 0.010) were independent predictors of the presence of MP, and the predicted probability was calculated by the following formula: P = 1/[1+exp.{1.218-(3.202×Shape)+(3.814×Cx43)}]. P > 0.5 for an irregularly shaped (score 1) AM with low Cx43 expression (score 0) indicated a high probability of MP. The sensitivity, specificity, positive predictive value, negative predictive value, and overall predictive accuracy were 63.6, 95.6, 87.5, 84.0, and 84.8%, respectively. CONCLUSIONS Low Cx43 expression and irregular tumor shape were independent predictors of the presence of MP. The relevant logistic regression model was found to be effective in distinguishing MP-AMs from primary AMs.
Collapse
Affiliation(s)
- Qing Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Gui-Jun Jia
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Guo-Bin Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Liang Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Shu-Yu Hao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Ming Ni
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Da Li
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China
| | - Jun-Ting Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, Beijing, People's Republic of China; China National Clinical Research Center for Neurological Diseases, Beijing, People's Republic of China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, People's Republic of China; Beijing Key Laboratory of Brain Tumor, Beijing, People's Republic of China.
| |
Collapse
|
23
|
Denis JF, Diagbouga MR, Molica F, Hautefort A, Linnerz T, Watanabe M, Lemeille S, Bertrand JY, Kwak BR. KLF4-Induced Connexin40 Expression Contributes to Arterial Endothelial Quiescence. Front Physiol 2019; 10:80. [PMID: 30809154 PMCID: PMC6379456 DOI: 10.3389/fphys.2019.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Shear stress, a blood flow-induced frictional force, is essential in the control of endothelial cell (EC) homeostasis. High laminar shear stress (HLSS), as observed in straight parts of arteries, assures a quiescent non-activated endothelium through the induction of Krüppel-like transcription factors (KLFs). Connexin40 (Cx40)-mediated gap junctional communication is known to contribute to a healthy endothelium by propagating anti-inflammatory signals between ECs, however, the molecular basis of the transcriptional regulation of Cx40 as well as its downstream effectors remain poorly understood. Here, we show that flow-induced KLF4 regulated Cx40 expression in a mouse EC line. Chromatin immunoprecipitation in ECs revealed that KLF4 bound to three predicted KLF consensus binding sites in the Cx40 promoter. HLSS-dependent induction of Cx40 expression was confirmed in primary human ECs. The downstream effects of Cx40 modulation in ECs exposed to HLSS were elucidated by an unbiased transcriptomics approach. Cell cycle progression was identified as an important downstream target of Cx40 under HLSS. In agreement, an increase in the proportion of proliferating cell nuclear antigen (PCNA)-positive ECs and a decrease in the proportion of ECs in the G0/G1 phase were observed under HLSS after Cx40 silencing. Transfection of communication-incompetent HeLa cells with Cx40 demonstrated that the regulation of proliferation by Cx40 was not limited to ECs. Using a zebrafish model, we finally showed faster intersegmental vessel growth and branching into the dorsal longitudinal anastomotic vessel in embryos knock-out for the Cx40 orthologs Cx41.8 and Cx45.6. Most significant effects were observed in embryos with a mutant Cx41.8 encoding for a channel with reduced gap junctional function. Faster intersegmental vessel growth in Cx41.8 mutant embryos was associated with increased EC proliferation as assessed by PH3 immunostaining. Our data shows a novel evolutionary-conserved role of flow-driven KLF4-dependent Cx40 expression in endothelial quiescence that may be relevant for the control of atherosclerosis and diseases involving sprouting angiogenesis.
Collapse
Affiliation(s)
- Jean-François Denis
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Filippo Molica
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Aurélie Hautefort
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Tanja Linnerz
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | | | - Sylvain Lemeille
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Julien Y Bertrand
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Brenda R Kwak
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Department of Medical Specializations - Cardiology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
24
|
Kameritsch P, Kiemer F, Mannell H, Beck H, Pohl U, Pogoda K. PKA negatively modulates the migration enhancing effect of Connexin 43. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:828-838. [PMID: 30769008 DOI: 10.1016/j.bbamcr.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
Connexin 43 (Cx43) expression is associated with an increased cell migration and related changes of the actin cytoskeleton (enhanced filopodia formation). These effects are mediated by the C-terminal cytoplasmic part of Cx43 in a channel-independent manner. Since this part has been shown to interact with a variety of proteins and has multiple phosphorylation sites we analyzed here a potential role of the protein kinase A (PKA) for the Cx43 mediated increase in cell migration. Mutation of the PKA-phosphorylation site (substitution of three serines by alanine or glycine) resulted in a further increase in cell motility compared to wild-type Cx43, but with a loss of directionality. Likewise, cell motility was enhanced by PKA inhibition only in Cx43 expressing cells, while reduced in the presence of the PKA activator forskolin. In contrast, cell motility remained unaffected by stimulation with forskolin in cells expressing Cx43 with the mutated PKA phosphorylation site (Cx43-PKA) as well as in Cx-deficient cells. Moreover, PKA activation resulted in increased binding of PKA and VASP to Cx43 associated with an enhanced phosphorylation of VASP, an important regulatory protein of cell polarity and directed migration. Functionally, we could confirm these results in endothelial cells endogenously expressing Cx43. A Tat-Cx43 peptide containing the PKA phosphorylation site abolished the PKA dependent reduction in endothelial cell migration. Our results indicate that PKA dependent phosphorylation of Cx43 modulates cell motility and plays a pivotal role in regulating directed cell migration.
Collapse
Affiliation(s)
- Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| | - Felizitas Kiemer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Hanna Mannell
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany.
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 München, Germany.
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Großhaderner Str. 9, 82152 Planegg, Martinsried, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| |
Collapse
|
25
|
PI3k and Stat3: Oncogenes that are Required for Gap Junctional, Intercellular Communication. Cancers (Basel) 2019; 11:cancers11020167. [PMID: 30717267 PMCID: PMC6406562 DOI: 10.3390/cancers11020167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 12/12/2022] Open
Abstract
Gap junctional, intercellular communication (GJIC) is interrupted in cells transformed by oncogenes such as activated Src. The Src effector, Ras, is required for this effect, so that Ras inhibition restores GJIC in Src-transformed cells. Interestingly, the inhibition of the Src effector phosphatidyl-inositol-3 kinase (PI3k) or Signal Transducer and Activator of Transcription-3 (Stat3) pathways does not restore GJIC. In the contrary, inhibition of PI3k or Stat3 in non-transformed rodent fibroblasts or epithelial cells or certain human lung carcinoma lines with extensive GJIC inhibits communication, while mutational activation of PI3k or Stat3 increases GJIC. Therefore, it appears that oncogenes such as activated Src have a dual role upon GJIC; acting as inhibitors of communication through the Ras pathway, and as activators through activation of PI3k or Stat3. In the presence of high Src activity the inhibitory functions prevail so that the net effect is gap junction closure. PI3k and Stat3 constitute potent survival signals, so that their inhibition in non-transformed cells triggers apoptosis which, in turn, has been independently demonstrated to suppress GJIC. The interruption of gap junctional communication would confine the apoptotic event to single cells and this might be essential for the maintenance of tissue integrity. We hypothesize that the GJIC activation by PI3k or Stat3 may be linked to their survival function.
Collapse
|
26
|
Sinyuk M, Mulkearns-Hubert EE, Reizes O, Lathia J. Cancer Connectors: Connexins, Gap Junctions, and Communication. Front Oncol 2018; 8:646. [PMID: 30622930 PMCID: PMC6308394 DOI: 10.3389/fonc.2018.00646] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022] Open
Abstract
Despite concerted clinical and research efforts, cancer is a leading cause of death worldwide. Surgery, radiation, and chemotherapy have remained the most common standard-of-care strategies against cancer for decades. However, the side effects of these therapies demonstrate the need to investigate adjuvant novel treatment modalities that minimize the harm caused to healthy cells and tissues. Normal and cancerous cells require communication amongst themselves and with their surroundings to proliferate and drive tumor growth. It is vital to understand how intercellular and external communication impacts tumor cell malignancy. To survive and grow, tumor cells, and their normal counterparts utilize cell junction molecules including gap junctions (GJs), tight junctions, and adherens junctions to provide contact points between neighboring cells and the extracellular matrix. GJs are specialized structures composed of a family of connexin proteins that allow the free diffusion of small molecules and ions directly from the cytoplasm of adjacent cells, without encountering the extracellular milieu, which enables rapid, and coordinated cellular responses to internal and external stimuli. Importantly, connexins perform three main cellular functions. They enable direct gap junction intercellular communication (GJIC) between cells, form hemichannels to allow cell communication with the extracellular environment, and serve as a site for protein-protein interactions to regulate signaling pathways. Connexins themselves have been found to promote tumor cell growth and invasiveness, contributing to the overall tumorigenicity and have emerged as attractive anti-tumor targets due to their functional diversity. However, connexins can also serve as tumor suppressors, and therefore, a complete understanding of the roles of the connexins and GJs in physiological and pathophysiological conditions is needed before connexin targeting strategies are applied. Here, we discuss how the three aspects of connexin function, namely GJIC, hemichannel formation, and connexin-protein interactions, function in normal cells, and contribute to tumor cell growth, proliferation, and death. Finally, we discuss the current state of anti-connexin therapies and speculate which role may be most amenable for the development of targeting strategies.
Collapse
Affiliation(s)
- Maksim Sinyuk
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Erin E. Mulkearns-Hubert
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Ofer Reizes
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
| | - Justin Lathia
- Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH, United States
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western University, Cleveland, OH, United States
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
27
|
López C, Aguilar R, Nardocci G, Cereceda K, Vander Stelt K, Slebe JC, Montecino M, Concha II. Wnt/β-catenin signaling enhances transcription of the CX43 gene in murine Sertoli cells. J Cell Biochem 2018; 120:6753-6762. [PMID: 30417410 DOI: 10.1002/jcb.27973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 10/02/2018] [Indexed: 01/12/2023]
Abstract
Sertoli cells provide the nutritional and metabolic support for germ cells. Wnt/β-catenin signaling is important for the development of the seminiferous epithelium during embryonic age, although after birth this pathway is downregulated. Cx43 gene codes for a protein that is critical during testicular development. The Cx43 promoter contains TCF/β-catenin binding elements (TBEs) that contribute CX43 expression in different cell types and which may also be regulating the expression of this gene in Sertoli cells. In this study, we demonstrate that 42GPA9 Sertoli cells respond to treatments that result in accumulation of β-catenin within the nucleus and in upregulation of CX43 gene transcription. β-Catenin binds to TBEs located both upstream and downstream of the transcriptional start site (TSS). Luciferase reporter experiments revealed that TBEs located upstream of the TSS are necessary for β-catenin-mediated upregulation. Our results also indicate that the Wnt/β-catenin-dependent upregulation of the Cx43 gene in Sertoli cells is accompanied by changes in epigenetic parameters that may be directly contributing to generating a chromatin environment that facilitates the establishment of the transcriptional machinery at this promoter.
Collapse
Affiliation(s)
- Camila López
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Rodrigo Aguilar
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Gino Nardocci
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Karina Cereceda
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Karen Vander Stelt
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Juan Carlos Slebe
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Martin Montecino
- Center for Biomedical Research and FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Ilona I Concha
- Instituto de Bioquimíca y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
28
|
Abrams CK, Peinado A, Mahmoud R, Bocarsly M, Zhang H, Chang P, Botello-Smith WM, Freidin MM, Luo Y. Alterations at Arg 76 of human connexin 46, a residue associated with cataract formation, cause loss of gap junction formation but preserve hemichannel function. Am J Physiol Cell Physiol 2018; 315:C623-C635. [PMID: 30044662 DOI: 10.1152/ajpcell.00157.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The connexins are members of a family of integral membrane proteins that form gap junction channels between apposed cells and/or hemichannels across the plasma membranes. The importance of the arginine at position 76 (Arg76) in the structure and/or function of connexin 46 (Cx46) is highlighted by its conservation across the entire connexin family and the occurrence of pathogenic mutations at this (or the corresponding homologous) residue in a number of human diseases. Two mutations at Arg76 in Cx46 are associated with cataracts in humans, highlighting the importance of this residue. We examined the expression levels and macroscopic and single-channel properties of human Cx46 and compared them with those for two pathogenic mutants, namely R76H and R76G. To gain further insight into the role of charge at this position, we generated two additional nonnaturally occurring mutants, R76K (charge conserving) and R76E (charge inverting). We found that, when expressed exogenously in Neuro2a cells, all four mutants formed membrane hemichannels, inducing membrane permeability at levels comparable to those recorded in cells expressing the wild-type Cx46. In contrast, the number of gap-junction plaques and the magnitude of junctional coupling were reduced by all four mutations. To gain further insight into the role of Arg76 in the function of Cx46, we performed homology modeling of Cx46 and in silico mutagenesis of Arg76 to Gly, His, or Glu. Our studies suggest that the loss of interprotomeric interactions has a significant effect on the extracellular domain conformation and dynamics, thus affecting the hemichannel docking required for formation of cell-cell channels.
Collapse
Affiliation(s)
- Charles K Abrams
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine , Chicago, Illinois
- Department of Neurology State University of New York Downstate Medical Center , Brooklyn New York
| | - Alejandro Peinado
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine , Chicago, Illinois
| | - Rola Mahmoud
- Department of Neurology State University of New York Downstate Medical Center , Brooklyn New York
| | - Matan Bocarsly
- Department of Neurology State University of New York Downstate Medical Center , Brooklyn New York
| | - Han Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences , Pomona, California
| | - Paul Chang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences , Pomona, California
| | - Wesley M Botello-Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences , Pomona, California
| | - Mona M Freidin
- Department of Neurology and Rehabilitation, University of Illinois at Chicago College of Medicine , Chicago, Illinois
- Department of Neurology State University of New York Downstate Medical Center , Brooklyn New York
| | - Yun Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences , Pomona, California
| |
Collapse
|
29
|
Connexins and Pannexins: Important Players in Tumorigenesis, Metastasis and Potential Therapeutics. Int J Mol Sci 2018; 19:ijms19061645. [PMID: 29865195 PMCID: PMC6032133 DOI: 10.3390/ijms19061645] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Since their characterization more than five decades ago, gap junctions and their structural proteins-the connexins-have been associated with cancer cell growth. During that period, the accumulation of data and molecular knowledge about this association revealed an apparent contradictory relationship between them and cancer. It appeared that if gap junctions or connexins can down regulate cancer cell growth they can be also implied in the migration, invasion and metastatic dissemination of cancer cells. Interestingly, in all these situations, connexins seem to be involved through various mechanisms in which they can act either as gap-junctional intercellular communication mediators, modulators of signalling pathways through their interactome, or as hemichannels, which mediate autocrine/paracrine communication. This complex involvement of connexins in cancer progression is even more complicated by the fact that their hemichannel function may overlap with other gap junction-related proteins, the pannexins. Despite this complexity, the possible involvements of connexins and pannexins in cancer progression and the elucidation of the mechanisms they control may lead to use them as new targets to control cancer progression. In this review, the involvements of connexins and pannexins in these different topics (cancer cell growth, invasion/metastasis process, possible cancer therapeutic targets) are discussed.
Collapse
|
30
|
Abstract
Purpose of Review Considerable progress has been made in the field of stem cell research; nonetheless, the use of stem cells for regenerative medicine therapies, for either endogenous tissue repair or cellular grafts post injury, remains a challenge. To better understand how to maintain stem cell potential in vivo and promote differentiation ex vivo, it is fundamentally important to elucidate the interactions between stem cells and their surrounding partners within their distinct niches. Recent Findings Among the vast array of proteins depicted as mediators for cell-to-cell interactions, connexin-comprised gap junctions play pivotal roles in the regulation of stem cell fate both in vivo and in vitro. Summary This review summarizes and illustrates the current knowledge regarding the multifaceted roles of Cx43, specifically, in various stem cell niches.
Collapse
Affiliation(s)
- Nafiisha Genet
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Neha Bhatt
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Antonin Bourdieu
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| | - Karen K Hirschi
- Department of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology Therapeutics Program, New Haven, USA.,2Yale Stem Cell Center Yale University School of Medicine, 300 George St, New Haven, CT 06511 USA
| |
Collapse
|
31
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
32
|
Yeh ES, Williams CJ, Williams CB, Bonilla IV, Klauber-DeMore N, Phillips SL. Dysregulated connexin 43 in HER2-positive drug resistant breast cancer cells enhances proliferation and migration. Oncotarget 2017; 8:109358-109369. [PMID: 29312613 PMCID: PMC5752526 DOI: 10.18632/oncotarget.22678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/01/2017] [Indexed: 12/16/2022] Open
Abstract
Connexin 43 (Cx43) is a gap junction protein whose function in the development of breast cancer and in breast cancer progression remains unclear. Evidence suggests that Cx43 (GJA1) mRNA and protein expression is altered in breast tumors. However, reports indicate both increased and decreased Cx43 levels in human breast cancer samples. Studies also suggest that loss of Cx43 regulated gap junction intercellular communication is a common feature of breast malignancies that potentially correlates with histological stage. Further evidence suggests that Cx43 (GJA1) mRNA expression is negatively correlated with HER2 positivity but a relationship between Cx43 and HER2 in breast cancer is not well defined. Therefore, in this study, we sought to evaluate the relationship between Cx43 activity, HER2, and drug resistance. Using HER2+ breast cancer cell lines that are sensitive or resistant to HER2 inhibitor, we evaluated Cx43 gap junction function. We found that Cx43 gap junction activity is completely lost in drug resistant HER2-positive (HER2+) breast cancer cells, whereas Cx43 gap junction activity can be restored by Cx43 overexpression in drug sensitive HER2+ cells. Moreover, the dysregulation of Cx43 resulted in increased tumorigenic and migratory capacity of the HER2+ drug resistant breast cancer cells.
Collapse
Affiliation(s)
- Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Christina J Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Ingrid V Bonilla
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Nancy Klauber-DeMore
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
| | - Stephanie L Phillips
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
33
|
Phillips SL, Williams CB, Zambrano JN, Williams CJ, Yeh ES. Connexin 43 in the development and progression of breast cancer: What's the connection? (Review). Int J Oncol 2017; 51:1005-1013. [PMID: 28902343 PMCID: PMC5592860 DOI: 10.3892/ijo.2017.4114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Connexin 43 is a prominent gap junction protein within normal human breast tissue. Thus far, there have been a number of research studies performed to determine the function of connexin 43 in breast tumor formation and progression. Within primary tumors, research suggests that the level of connexin 43 expression in breast tumors is altered when compared to normal human breast tissue. While some reports indicate that connexin 43 levels decrease, other evidence suggests that connexin 43 levels are increased and protein localization shifts from the plasma membrane to the cytoplasm. In either case, the prevailing theory is that breast tumor cells have reduced gap junction intercellular communication within primary tumors. The current consensus appears to be that the loss of connexin 43 gap junction intercellular communication is an early event in malignancy, with the possibility of gap junction restoration in the event of metastasis. However, additional evidence is needed to support the latter claim. The purpose of this report is to review the connexin 43 literature that describes studies using human tissue samples, in order to evaluate the function of connexin 43 protein in normal human breast tissue as well as the role of connexin 43 in human breast tumor formation and metastatic progression.
Collapse
Affiliation(s)
- Stephanie L Phillips
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Carly Bess Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Joelle N Zambrano
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Christina J Williams
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| | - Elizabeth S Yeh
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
34
|
Raza A, Ghoshal A, Chockalingam S, Ghosh SS. Connexin-43 enhances tumor suppressing activity of artesunate via gap junction-dependent as well as independent pathways in human breast cancer cells. Sci Rep 2017; 7:7580. [PMID: 28790385 PMCID: PMC5548912 DOI: 10.1038/s41598-017-08058-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/26/2017] [Indexed: 12/02/2022] Open
Abstract
The gap junction (GJ) protein connexin-43 (Cx43) is considered as a tumour suppressor protein for its role in reversing the phenotype of the cancer cells. In this study, we exploited the antitumor property of Cx43 in conjunction with the artesunate (ART), a plant-based active anti-malarial compound. The reactive oxygen species (ROS) generated by ART resulted in DNA damage, which in turn led to DNA damage response by activation of DNA damage repair proteins. GJ deficient MCF-7 cells transfected with Cx43 gene showed an increased sensitivity towards dose-dependent ART treatment and required a significantly lower dose of ART to attain its IC50, as compared to parental cells. This would ultimately result in reduced dose-dependent side effects of ART. The Co-culture experiments involving GJ intercellular communication (GJIC) deficient and GJIC enabled cells, established the transfer of ROS to the neighbouring cancer cells not exposed to ART. The ROS accumulated in the ART-treated cells induced the oxidative damage in neighbouring cells, leading to bystander cell death and inhibition of bystander cell proliferation. Thus, our study revealed that expression of Cx43 helped in reducing the dose-dependent cytotoxicity of ART as well as enhanced the bystander apoptosis of the neighbouring cells.
Collapse
Affiliation(s)
- Asif Raza
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | - Archita Ghoshal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | - S Chockalingam
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India
| | - Siddhartha Sankar Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati-39, Assam, India.
| |
Collapse
|
35
|
Multiple and complex influences of connexins and pannexins on cell death. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017. [PMID: 28625689 DOI: 10.1016/j.bbamem.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell death is a fundamental process for organogenesis, immunity and cell renewal. During the last decades a broad range of molecular tools were identified as important players for several different cell death pathways (apoptosis, pyroptosis, necrosis, autosis…). Aside from these direct regulators of cell death programs, several lines of evidence proposed connexins and pannexins as potent effectors of cell death. In the present review we discussed the potential roles played by connexins, pannexins and innexins in the different cell death programs at different scales from gap junction intercellular communication to protein-protein interactions. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
|
36
|
Roy S, Jiang JX, Li AF, Kim D. Connexin channel and its role in diabetic retinopathy. Prog Retin Eye Res 2017; 61:35-59. [PMID: 28602949 DOI: 10.1016/j.preteyeres.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 12/18/2022]
Abstract
Diabetic retinopathy is the leading cause of blindness in the working age population. Unfortunately, there is no cure for this devastating ocular complication. The early stage of diabetic retinopathy is characterized by the loss of various cell types in the retina, namely endothelial cells and pericytes. As the disease progresses, vascular leakage, a clinical hallmark of diabetic retinopathy, becomes evident and may eventually lead to diabetic macular edema, the most common cause of vision loss in diabetic retinopathy. Substantial evidence indicates that the disruption of connexin-mediated cellular communication plays a critical role in the pathogenesis of diabetic retinopathy. Yet, it is unclear how altered communication via connexin channel mediated cell-to-cell and cell-to-extracellular microenvironment is linked to the development of diabetic retinopathy. Recent observations suggest the possibility that connexin hemichannels may play a role in the pathogenesis of diabetic retinopathy by allowing communication between cells and the microenvironment. Interestingly, recent studies suggest that connexin channels may be involved in regulating retinal vascular permeability. These cellular events are coordinated at least in part via connexin-mediated intercellular communication and the maintenance of retinal vascular homeostasis. This review highlights the effect of high glucose and diabetic condition on connexin channels and their impact on the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Sayon Roy
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States.
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
| | - An-Fei Li
- Department of Ophthalmology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan
| | - Dongjoon Kim
- Departments of Medicine and Ophthalmology, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
37
|
Leithe E, Mesnil M, Aasen T. The connexin 43 C-terminus: A tail of many tales. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1860:48-64. [PMID: 28526583 DOI: 10.1016/j.bbamem.2017.05.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 10/19/2022]
Abstract
Connexins are chordate gap junction channel proteins that, by enabling direct communication between the cytosols of adjacent cells, create a unique cell signalling network. Gap junctional intercellular communication (GJIC) has important roles in controlling cell growth and differentiation and in tissue development and homeostasis. Moreover, several non-canonical connexin functions unrelated to GJIC have been discovered. Of the 21 members of the human connexin family, connexin 43 (Cx43) is the most widely expressed and studied. The long cytosolic C-terminus (CT) of Cx43 is subject to extensive post-translational modifications that modulate its intracellular trafficking and gap junction channel gating. Moreover, the Cx43 CT contains multiple domains involved in protein interactions that permit crosstalk between Cx43 and cytoskeletal and regulatory proteins. These domains endow Cx43 with the capacity to affect cell growth and differentiation independently of GJIC. Here, we review the current understanding of the regulation and unique functions of the Cx43 CT, both as an essential component of full-length Cx43 and as an independent signalling hub. We highlight the complex regulatory and signalling networks controlled by the Cx43 CT, including the extensive protein interactome that underlies both gap junction channel-dependent and -independent functions. We discuss these data in relation to the recent discovery of the direct translation of specific truncated forms of Cx43. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve.
Collapse
Affiliation(s)
- Edward Leithe
- Department of Molecular Oncology, Institute for Cancer Research, University of Oslo, NO-0424 Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, NO-0424 Oslo, Norway
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences Fondamentales et Appliquées, Université de Poitiers, Poitiers 86073, France
| | - Trond Aasen
- Translational Molecular Pathology, Vall d'Hebron Institute of Research (VHIR), Autonomous University of Barcelona, CIBERONC, 08035 Barcelona, Spain.
| |
Collapse
|
38
|
Wojciechowska A, Mlynarczuk J, Kotwica J. Disorders in barrier protein mRNA expression and placenta secretory activity under the influence of polychlorinated biphenyls in vitro. Theriogenology 2017; 89:9-19. [DOI: 10.1016/j.theriogenology.2016.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/19/2022]
|
39
|
Changes in the mRNA expression of structural proteins, hormone synthesis and secretion from bovine placentome sections after DDT and DDE treatment. Toxicology 2017; 375:1-9. [DOI: 10.1016/j.tox.2016.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/14/2016] [Accepted: 11/25/2016] [Indexed: 01/27/2023]
|
40
|
Abstract
Fifty years ago, tumour cells were found to lack electrical coupling, leading to the hypothesis that loss of direct intercellular communication is commonly associated with cancer onset and progression. Subsequent studies linked this phenomenon to gap junctions composed of connexin proteins. Although many studies support the notion that connexins are tumour suppressors, recent evidence suggests that, in some tumour types, they may facilitate specific stages of tumour progression through both junctional and non-junctional signalling pathways. This Timeline article highlights the milestones connecting gap junctions to cancer, and underscores important unanswered questions, controversies and therapeutic opportunities in the field.
Collapse
Affiliation(s)
- Trond Aasen
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| | - Marc Mesnil
- STIM Laboratory ERL 7368 CNRS - Faculté des Sciences
Fondamentales et Appliquées, Université de Poitiers, Poitiers,
France
| | - Christian C. Naus
- Department of Cellular and Physiological Sciences, The Life
Sciences Institute, University of British Columbia, Vancouver, British
Columbia, Canada
| | - Paul D. Lampe
- Translational Research Program, Fred Hutchinson Cancer Research
Center, Seattle, United States
| | - Dale W. Laird
- (Co-corresponding authors) Correspondence to
T.A. () and D.W.L.
()
| |
Collapse
|
41
|
Kim YJ, Kim J, Kim YS, Shin B, Choo OS, Lee JJ, Choung YH. Connexin 43 Acts as a Proapoptotic Modulator in Cisplatin-Induced Auditory Cell Death. Antioxid Redox Signal 2016; 25:623-636. [PMID: 27122099 DOI: 10.1089/ars.2015.6412] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Gap junction coupling is known to play a role in intercellular communication by the Good Samaritan effect or bystander effect. Nonjunctional connexins (Cxs) may also play certain gap junction-independent roles in cell death or survival. The purpose of the present study was to investigate the role of junctional and nonjunctional Cxs in ototoxic drug-induced auditory cell death by focusing on Cx43 in the cochlea. RESULTS Nonjunctional Cx43 conditions were prepared by low confluence culture (5 × 103/cm2) or a trafficking inhibitor, brefeldin A (BFA), in auditory cells, and short lengthened Cx43s with amino-terminal (NT; amino acids 1-256) or carboxy-terminal (CT; amino acids 257-382) were transfected into Cx-deficient HeLa cells to avoid gap junction formation. Knockdown of nonchannel Cx43 (small interfering RNA [siRNA]) inhibited Cis-diamminedichloroplatinum (cisplatin)-induced cell death regardless of gap junction formation; however, a gap junction blocker, 18 alpha-glycyrrhetinic acid (18α-GA), showed inhibitory effect only under the junctional condition. BFA did not show any additive influence on the inhibitory effect of siRNA Cx43. Shortened Cx43-transfected HeLa cells also resulted in a significant increase in cell death under cisplatin. In the animal studies with cisplatin-treated rats, hearing thresholds of auditory brainstem response were significantly preserved by a gap junction blocker, carbenoxolone, showing much more preserved stereocilia of hair cells in scanning electron microscopic findings. Innovation and Conclusion: Cx43 plays a proapoptotic role in cisplatin-induced auditory cell death in both junctional and nonjunctional conditions. Targeting the Cx-mediated signaling control may be helpful in designing new therapeutic strategies for drug-induced ototoxicity. Antioxid. Redox Signal. 25, 623-636.
Collapse
Affiliation(s)
- Yeon Ju Kim
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Jangho Kim
- 2 Department of Rural and Biosystems Engineering, Chonnam National University , Gwangju, Republic of Korea
| | - Young Sun Kim
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Beomyong Shin
- 3 Department of Medical Sciences, The Graduate School, Ajou University , Suwon, Republic of Korea
| | - Oak-Sung Choo
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Jong Joo Lee
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea
| | - Yun-Hoon Choung
- 1 Department of Otolaryngology, Ajou University School of Medicine , Suwon, Republic of Korea.,3 Department of Medical Sciences, The Graduate School, Ajou University , Suwon, Republic of Korea
| |
Collapse
|
42
|
Ek Vitorín JF, Pontifex TK, Burt JM. Determinants of Cx43 Channel Gating and Permeation: The Amino Terminus. Biophys J 2016; 110:127-40. [PMID: 26745416 DOI: 10.1016/j.bpj.2015.10.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 10/11/2015] [Accepted: 10/30/2015] [Indexed: 11/30/2022] Open
Abstract
Separate connexin domains partake in proposed gating mechanisms of gap junction channels. The amino-terminus (NT) domains, which contribute to voltage sensing, may line the channel's cytoplasmic-facing funnel surface, stabilize the channel's overall structure through interactions with the transmembrane domains and each other, and integrate to form a compound particle to gate the channel closed. Interactions of the carboxyl-terminus (CT) and cytoplasmic loop (CL) domains underlie voltage- and low pH-triggered channel closure. To elucidate potential cooperation of these gating mechanisms, we replaced the Cx43NT with the Cx37NT (chimera Cx43(∗)NT37), leaving the remainder of the Cx43 sequence, including the CT and CL, unchanged. Compared to wild-type Cx43 (Cx43WT), Cx43(∗)NT37 junctions exhibited several functional alterations: extreme resistance to halothane- and acidification-induced uncoupling, absence of voltage-dependent fast inactivation, longer channel open times, larger unitary channel conductances, low junctional dye permeability/permselectivity, and an overall cation selectivity more typical of Cx37WT than Cx43WT junctions. Together, these results suggest a cohesive model of channel function wherein: 1) channel conductance and size selectivity are largely determined by pore diameter, whereas charge selectivity results from the NT domains, and 2) transition between fully open and (multiple) closed states involves global changes in structure of the pore-forming domains transduced by interactions of the pore-forming domains with either the NT, CT, or both, with the NT domains forming the gate of the completely closed channel.
Collapse
Affiliation(s)
| | - Tasha K Pontifex
- Department of Physiology, University of Arizona, Tucson, Arizona
| | - Janis M Burt
- Department of Physiology, University of Arizona, Tucson, Arizona
| |
Collapse
|
43
|
Abstract
Communication among cells via direct cell-cell contact by connexin gap junctions, or between cell and extracellular environment via pannexin channels or connexin hemichannels, is a key factor in cell function and tissue homeostasis. Upon malignant transformation in different cancer types, the dysregulation of these connexin and pannexin channels and their effect in cellular communication, can either enhance or suppress tumorigenesis and metastasis. In this review, we will highlight the latest reports on the role of the well characterized connexin family and its ability to form gap junctions and hemichannels in cancer. We will also introduce the more recently discovered family of pannexin channels and our current knowledge about their involvement in cancer progression.
Collapse
Affiliation(s)
- Jean X Jiang
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, N6A5C1, Canada.
| |
Collapse
|
44
|
Abstract
Connexins and pannexins share very similar structures and functions; they also exhibit overlapping expression in many stages of neuronal development. Here, we review evidence implicating connexin- and pannexin-mediated communication in the regulation of the birth and development of neurons, specifically Cx26, Cx30, Cx32, Cx36, Cx43, Cx45, Panx1, and Panx2. We begin by dissecting the involvement of these proteins in the generation and development of new neurons in the embryonic, postnatal, and adult brain. Next we briefly outline common mechanisms employed by both pannexins and connexins in these roles, including modulation of purinergic receptor signalling and signalling nexus functions. Throughout this review we highlight developing themes as well as important gaps in knowledge to be bridged.
Collapse
Affiliation(s)
- Leigh Anne Swayne
- />Division of Medical Sciences, University of Victoria, Medical Sciences Building Rm 224, 3800 Finnerty Rd, Victoria, BC V8P5C2 Canada
| | - Steffany A. L. Bennett
- />Department of Biochemistry, Microbiology and Immunology, Neural Regeneration Laboratory, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
45
|
Shishido SN, Nguyen TA. Induction of Apoptosis by PQ1, a Gap Junction Enhancer that Upregulates Connexin 43 and Activates the MAPK Signaling Pathway in Mammary Carcinoma Cells. Int J Mol Sci 2016; 17:ijms17020178. [PMID: 26840298 PMCID: PMC4783912 DOI: 10.3390/ijms17020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/07/2015] [Accepted: 01/22/2016] [Indexed: 11/24/2022] Open
Abstract
The mechanism of gap junction enhancer (PQ1) induced cytotoxicity is thought to be attributed to the change in connexin 43 (Cx43) expression; therefore, the effects of Cx43 modulation in cell survival were investigated in mammary carcinoma cells (FMC2u) derived from a malignant neoplasm of a female FVB/N-Tg(MMTV-PyVT)634Mul/J (PyVT) transgenic mouse. PQ1 was determined to have an IC50 of 6.5 µM in FMC2u cells, while inducing an upregulation in Cx43 expression. The effects of Cx43 modulation in FMC2u cell survival was determined through transfection experiments with Cx43 cDNA, which induced an elevated level of protein expression similar to that seen with PQ1 exposure, or siRNA to silence Cx43 protein expression. Overexpression or silencing of Cx43 led to a reduction or an increase in cell viability, respectively. The mitogen-activated protein kinase (MAPK) family has been implicated in the regulation of cell survival and cell death; therefore, the gap junctional intercellular communication (GJIC)-independent function of PQ1 and Cx43 in the Raf/Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase (Raf-MEK-ERK) cascade of cellular survival and p38 MAPK-dependent pathway of apoptosis were explored. PQ1 treatment activated p44/42 MAPK, while the overexpression of Cx43 resulted in a reduced expression. This suggests that PQ1 affects the Raf-MEK-ERK cascade independent of Cx43 upregulation. Both overexpression of Cx43 and PQ1 treatment stimulated an increase in the phosphorylated form of p38-MAPK, reduced levels of the anti-apoptotic protein Bcl-2, and increased the cleavage of pro-caspase-3. Silencing of Cx43 protein expression led to a reduction in the phosphorylation of p38-MAPK and an increase in Bcl-2 expression. The mechanism behind PQ1-induced cytotoxicity in FMC2u mammary carcinoma cells is thought to be attributed to the change in Cx43 expression. Furthermore, PQ1-induced apoptosis through the upregulation of Cx43 may depend on p38 MAPK, highlighting that the effect of PQ1 on gap junctions as well as cellular survival via a MAPK-dependent pathway.
Collapse
Affiliation(s)
- Stephanie N Shishido
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| | - Thu A Nguyen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
46
|
Basheer W, Shaw R. The "tail" of Connexin43: An unexpected journey from alternative translation to trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1848-56. [PMID: 26526689 DOI: 10.1016/j.bbamcr.2015.10.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/13/2015] [Accepted: 10/20/2015] [Indexed: 12/23/2022]
Abstract
With each heartbeat, Connexin43 (Cx43) cell-cell communication gap junctions are needed to rapidly spread and coordinate excitation signals for an effective heart contraction. The correct formation and delivery of channels to their respective membrane subdomain is referred to as protein trafficking. Altered Cx43 trafficking is a dangerous complication of diseased myocardium which contributes to the arrhythmias of sudden cardiac death. Cx43 has also been found to regulate many other cellular processes that cannot be explained by cell-cell communication. We recently identified the existence of up to six endogenous internally translated Cx43 N-terminal truncated isoforms from the same full-length mRNA molecule. This is the first evidence that alternative translation is possible for human ion channels and in human heart. Interestingly, we found that these internally translated isoforms, more specifically the 20 kDa isoform (GJA1-20k), is important for delivery of Cx43 to its respective membrane subdomain. This review covers recent advances in Cx43 trafficking and potential importance of alternatively translated Cx43 truncated isoforms. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Wassim Basheer
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robin Shaw
- Heart Institute and Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
47
|
Interaction of Cx43 with Hsc70 regulates G1/S transition through CDK inhibitor p27. Sci Rep 2015; 5:15365. [PMID: 26481195 PMCID: PMC4612729 DOI: 10.1038/srep15365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 09/22/2015] [Indexed: 01/26/2023] Open
Abstract
Connexin 43 (Cx43) functions as a cell growth suppressor. We have demonstrated that Cx43 interacts with heat shock cognate protein 70 (Hsc70) for regulating cell proliferation. Hsc70 interacts with CDK inhibitor p27, which regulates the assembly and subcellular localization of cyclin D1-CDK4-p27 complex. However, the involvement of p27 with Cx43-mediated cell cycle suppression is still poorly understood. Here, we report that nuclear accumulation of p27 is reduced by overexpression of Cx43, and that this reduction is restored by co-overexpression with Hsc70. We found that Cx43 competes with p27 for binding to Hsc70, and as a result, decreases the level of Hsc70 in cyclin D1-CDK4-p27 complex, leading to prevention of the nuclear translocation of the complex and the G1/S transition. Collectively, our findings suggest that, in Cx43 up-regulation, which is most likely an emergency measure, Cx43-Hsc70 interaction regulates cell cycle G1/S progression through a novel mechanism by which Cx43-Hsc70 interaction prevents the nuclear accumulation of p27 through controlling the nuclear translocation of cyclin D1-CDK4-p27 complex.
Collapse
|
48
|
Maqbool R, Rashid R, Ismail R, Niaz S, Chowdri NA, Hussain MU. The carboxy-terminal domain of connexin 43 (CT-Cx43) modulates the expression of p53 by altering miR-125b expression in low-grade human breast cancers. Cell Oncol (Dordr) 2015; 38:443-51. [PMID: 26335100 DOI: 10.1007/s13402-015-0240-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2015] [Indexed: 01/06/2023] Open
Abstract
PURPOSE Connexin 43 (Cx43) is a widely expressed gap junction protein. It can also regulate various gap-junction independent processes, including cellular proliferation. The latter regulatory functions have been attributed to its carboxy-terminal domain, CT-Cx43. CT-Cx43 has been found to be expressed independent of full-length Cx43 in various cell types. Its nuclear localization has additionally raised the possibility that it may regulate the expression of particular genes, including miRNAs, known play a role in the regulation of cellular proliferation. Here, we set out to uncover the molecular mechanism(s) underlying CT-Cx43 mediated gene (de-)regulation in human breast cancer. METHODS Western blotting and quantitative real time PCR were carried to assess the expression of CT-Cx43 and miR-125b in a panel of 60 primary human breast cancer tissues and its paired normal adjacent tissues. In addition, CT-Cx43 was exogenously expressed in the breast cancer-derived cell line MCF-7 and its effect on the expression of miR-125b and its downstream target p53 were evaluated, as well as its effect on cellular proliferation and death using MTT and LDH assays, respectively. RESULTS We found that CT-Cx43, but not full-length Cx43, was down-regulated in low grade human breast cancers. In addition, we found that the tumor suppressor protein p53 exhibited a decreased expression in the CT-Cx43 down-regulated samples. Interestingly, we found that miR-125b, a negative regulator of p53, exhibited an inverse expression relationship with CT-Cx43 in the breast cancer samples tested. This inverse relationship was confirmed by exogenous expression of CT-Cx43 in MCF-7 cells. In addition, we found that CT-Cx43 up-regulation and subsequent miR-125b down-regulation resulted in a decreased proliferation of MCF-7 cells. CONCLUSIONS Our data suggest a mechanism by which CT-Cx43 may regulate cell proliferation. Targeting of CT-Cx43 and/or miR-125b may be instrumental for therapeutic intervention in human breast cancer.
Collapse
Affiliation(s)
- Raihana Maqbool
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Rabiya Rashid
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Rehana Ismail
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Saif Niaz
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India
| | - Nisar Ahmad Chowdri
- Department of General and Minimal Invasive Surgery, SKIMS, Srinagar, Soura, India
| | - Mahboob Ul Hussain
- Department of Biotechnology, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
49
|
Intracellular Cleavage of the Cx43 C-Terminal Domain by Matrix-Metalloproteases: A Novel Contributor to Inflammation? Mediators Inflamm 2015; 2015:257471. [PMID: 26424967 PMCID: PMC4573893 DOI: 10.1155/2015/257471] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023] Open
Abstract
The coordination of tissue function is mediated by gap junctions (GJs) that enable direct cell-cell transfer of metabolic and electric signals. GJs are formed by connexin (Cx) proteins of which Cx43 is most widespread in the human body. Beyond its role in direct intercellular communication, Cx43 also forms nonjunctional hemichannels (HCs) in the plasma membrane that mediate the release of paracrine signaling molecules in the extracellular environment. Both HC and GJ channel function are regulated by protein-protein interactions and posttranslational modifications that predominantly take place in the C-terminal domain of Cx43. Matrix metalloproteases (MMPs) are a major group of zinc-dependent proteases, known to regulate not only extracellular matrix remodeling, but also processing of intracellular proteins. Together with Cx43 channels, both GJs and HCs, MMPs contribute to acute inflammation and a small number of studies reports on an MMP-Cx43 link. Here, we build further on these reports and present a novel hypothesis that describes proteolytic cleavage of the Cx43 C-terminal domain by MMPs and explores possibilities of how such cleavage events may affect Cx43 channel function. Finally, we set out how aberrant channel function resulting from cleavage can contribute to the acute inflammatory response during tissue injury.
Collapse
|
50
|
Kameritsch P, Kiemer F, Beck H, Pohl U, Pogoda K. Cx43 increases serum induced filopodia formation via activation of p21-activated protein kinase 1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2907-17. [PMID: 26255026 DOI: 10.1016/j.bbamcr.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/13/2015] [Accepted: 08/04/2015] [Indexed: 01/02/2023]
Abstract
In a previous study we could show that connexin 43 (Cx43) expression increased the migration of cells in a channel-independent manner involving the MAPK p38. We analyzed here the mechanism by which Cx43 enhanced p38 activation and migration related changes of the actin cytoskeleton. HeLa cells were used as a model system for the controlled expression of Cx43 and truncated Cx43 proteins. The expression of Cx43 altered the actin cytoskeleton organization in response to serum stimulation. Cx43 expressing HeLa cells had significantly more filopodial protrusions per cell than empty-vector transfected control cells. The expression of the channel incompetent carboxyl tail of Cx43 was sufficient to enhance the filopodia formation whereas the N-terminal, channel-building part, had no such effect. The enhanced filopodia formation was p38 dependent since the p38 blocker SB203580 significantly diminished it. Immunoprecipitation revealed an interaction of the upstream regulator of p38, p21-activated protein kinase 1 (PAK1), with Cx43 resulting in an enhanced phosphorylation of PAK1. Moreover, p38 activation, filopodia formation and cell migration were significantly reduced by blocking the PAK1 activity with its pharmacological inhibitor, IPA-3. The p38 target Hsp27, which favors the actin polymerization in its phosphorylated form, was significantly more phosphorylated characterizing it as a potential candidate molecule to enhance the serum-induced actin polymerization in Cx43 expressing cells. Our results provide a novel mechanism by which Cx43 can modify actin cytoskeletal dynamics and may thereby enhance cell migration.
Collapse
Affiliation(s)
- Petra Kameritsch
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| | - Felizitas Kiemer
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany.
| | - Heike Beck
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany.
| | - Ulrich Pohl
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 München, Germany.
| | - Kristin Pogoda
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München and Munich University Hospital, Marchioninistr. 27, 81377 München, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Biedersteiner Str. 29, 80802 München, Germany.
| |
Collapse
|