1
|
Tolentino S, Monteiro MM, Saldanha-Araújo F, Cunha-Filho M, Gratieri T, Guerra ENS, Gelfuso GM. Bioadhesive Chitosan Films Loading Curcumin for Safe and Effective Skin Cancer Topical Treatment. Pharmaceutics 2024; 17:18. [PMID: 39861668 PMCID: PMC11768514 DOI: 10.3390/pharmaceutics17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: This study aimed to evaluate the safety and efficacy of chitosan-based bioadhesive films for facilitating the topical delivery of curcumin in skin cancer treatment, addressing the pharmacokinetic limitations associated with oral administration. Methods: The films, which incorporated curcumin, were formulated using varying proportions of chitosan, polyvinyl alcohol, Poloxamer® 407, and propylene glycol. These films were assessed for stability, drug release, in vitro skin permeation, cell viability (with and without radiotherapy), and skin irritation. Results: The films demonstrated physical stability and preserved curcumin content at room temperature for 90 days. Drug release was effectively controlled during the first 8 h, with release rates ranging from 51.6 ± 4.8% to 65.6 ± 13.0%. The films also enhanced drug penetration into the skin compared to a curcumin solution used as a control (stratum corneum: 1.3 ± 0.1 to 1.9 ± 0.8 µg/cm²; deeper skin layers: 1.7 ± 0.1 to 2.7 ± 0.2 µg/cm²). A cytotoxicity test on metastatic melanoma cells showed that curcumin at topical doses exerted activity similar to that delivered via the skin. Furthermore, curcumin alone was more effective in inhibiting tumor cells than radiotherapy alone (p < 0.01), with no additional benefit observed when curcumin was combined with radiotherapy. Finally, irritation tests confirmed that the films were safe for topical application. Conclusion: The developed chitosan-based bioadhesive films represent a promising alternative for the topical treatment of skin tumors using curcumin.
Collapse
Affiliation(s)
- Seila Tolentino
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Mylene M. Monteiro
- Laboratory of Oral Histopathology, University of Brasilia, Brasília 70910-900, Brazil; (M.M.M.); (E.N.S.G.)
| | - Felipe Saldanha-Araújo
- Laboratory of Hematology and Stem Cells (LHCT), School of Health Sciences, University of Brasília, Brasília 70910-900, Brazil;
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| | - Eliete N. Silva Guerra
- Laboratory of Oral Histopathology, University of Brasilia, Brasília 70910-900, Brazil; (M.M.M.); (E.N.S.G.)
| | - Guilherme M. Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, Brasília 70910-900, Brazil; (S.T.); (M.C.-F.); (T.G.)
| |
Collapse
|
2
|
Guo QH, Jian LY, Hu Y, Wang S. A comprehensive and systematic review on Curcumin as a promising candidate for the inhibition of melanoma growth: From pre-clinical evidence to molecular mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156073. [PMID: 39515103 DOI: 10.1016/j.phymed.2024.156073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/02/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Melanoma, a highly malignant skin tumor, can develop systemic metastases during the early stage. Several studies of melanoma animal models indicate that curcumin, a natural plant extract, inhibits melanoma growth through various mechanisms. To evaluate the relationships among different experimental conditions, curcumin itself, its derivatives, and special formulations, it is necessary to conduct a systematic review and meta-analysis. PURPOSE This meta-analysis aims to evaluate the potential of Curcumin as a drug for inhibiting the growth of melanoma and to determine the optimal dosage range and treatment duration for Curcumin administration. METHODS A systematic search of studies published from inception to December 2023 was conducted across six databases (PubMed, Web of Science, Embase, China National Knowledge Infrastructure, Wanfang Data, and VIP). Methodological quality was assessed using SYRCLE's RoB tool. Study heterogeneity was assessed using Cochran's Q test and I2 statistics. Publication bias risk was evaluated using a funnel plot. All analyses were performed using R (version 4.3.3). Additionally, three-dimensional effect analysis and machine learning techniques were utilized to determine the optimal dosage range and treatment duration for Curcumin administration. RESULTS Forty studies involving 989 animals were included. The results demonstrated that, relative to the control group, administration of Curcumin resulted in a significant reduction in tumor volume. [SMD=-3.44; 95 % CI (-4.25, -2.63); P<0.01; I2 = 79 %] and tumor weight [SMD=-1.93; 95 % CI (-2.41, -1.45); P<0.01; I2 = 75 %]. Additionally, Curcumin demonstrated a significant capacity to decrease the number of lung tumor nodules and microangiogenesis, as well as to extend survival time, in animal models. The results from three-dimensional effect analysis and machine learning emphasize that the optimal dosage range for Curcumin is 25-50 mg/kg, with an intervention duration of 10-20 days. CONCLUSION Curcumin can inhibit the growth of melanoma, and the dose-response relationship is not linear. However, further large-scale animal and clinical studies are required to confirm these conclusions.
Collapse
Affiliation(s)
- Qi-Hao Guo
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Ling-Yan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Yihan Hu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| | - Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China.
| |
Collapse
|
3
|
Bhattacharjya D, Sivalingam N. Mechanism of 5-fluorouracil induced resistance and role of piperine and curcumin as chemo-sensitizers in colon cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8445-8475. [PMID: 38878089 DOI: 10.1007/s00210-024-03189-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 10/30/2024]
Abstract
Among cancer-related deaths worldwide, colorectal cancer ranks second, accounting for 1.2% of deaths in those under 50 years and 0.6% of deaths in those between 50 and 54 years. The anticancer drug 5-fluorouracil is widely used to treat colorectal cancer. Due to a better understanding of the drug's mechanism of action, its anticancer activity has been increased through a variety of therapeutic alternatives. Clinical use of 5-FU has been severely restricted due to drug resistance. The chemoresistance mechanism of 5-FU is challenging to overcome because of the existence of several drug efflux transporters, DNA repair enzymes, signaling cascades, classical cellular processes, cancer stem cells, metastasis, and angiogenesis. Curcumin, a potent phytocompound derived from Curcuma longa, functions as a nuclear factor (NF)-κB inhibitor and sensitizer to numerous chemotherapeutic drugs. Piperine, an alkaloid found in Piper longum, inhibits cancer cell growth, causing cell cycle arrest and apoptosis. This review explores the mechanism of 5-FU-induced chemoresistance in colon cancer cells and the role of curcumin and piperine in enhancing the sensitivity of 5-FU-based chemotherapy. CLINICAL TRIAL REGISTRATION: Not applicable.
Collapse
Affiliation(s)
- Dorothy Bhattacharjya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India
| | - Nageswaran Sivalingam
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
4
|
Wan J, Zhang S, Li G, Huang S, Li J, Zhang Z, Liu J. Ceramide Ehux-C22 Targets the miR-199a-3p/mTOR Signaling Pathway to Regulate Melanosomal Autophagy in Mouse B16 Cells. Int J Mol Sci 2024; 25:8061. [PMID: 39125630 PMCID: PMC11312279 DOI: 10.3390/ijms25158061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Melanosomes are specialized membrane-bound organelles where melanin is synthesized and stored. The levels of melanin can be effectively reduced by inhibiting melanin synthesis or promoting melanosome degradation via autophagy. Ceramide, a key component in the metabolism of sphingolipids, is crucial for preserving the skin barrier, keeping it hydrated, and warding off the signs of aging. Our preliminary study indicated that a long-chain C22-ceramide compound (Ehux-C22) isolated from the marine microalga Emiliania huxleyi, reduced melanin levels via melanosomal autophagy in B16 cells. Recently, microRNAs (miRNAs) were shown to act as melanogenesis-regulating molecules in melanocytes. However, whether the ceramide Ehux-C22 can induce melanosome autophagy at the post-transcriptional level, and which potential autophagy-dependent mechanisms are involved, remains unknown. Here, miR-199a-3p was screened and identified as a novel upregulated miRNA in Ehux-C22-treated B16 cells. An in vitro high melanin expression model in cultured mouse melanoma cells (B16 cells) was established by using 0.2 μM alpha-melanocyte-stimulating hormone(α-MSH) and used for subsequent analyses. miR-199a-3p overexpression significantly enhanced melanin degradation, as indicated by a reduction in the melanin level and an increase in melanosome autophagy. Further investigation demonstrated that in B16 cells, Ehux-C22 activated miR-199a-3p and inhibited mammalian target of rapamycin(mTOR) level, thus activating the mTOR-ULK1 signaling pathway by promoting the expression of unc-51-like autophagy activating kinase 1 (ULK1), B-cell lymphoma-2 (Bcl-2), Beclin-1, autophagy-related gene 5 (ATG5), and microtubule-associated protein light chain 3 (LC3-II) and degrading p62. Therefore, the roles of Ehux-C22-regulated miR-199a-3p and the mTOR pathway in melanosomal autophagy were elucidated. This research may provide novel perspectives on the post-translational regulation of melanin metabolism, which involves the coordinated control of melanosomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhengxiao Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jingwen Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
5
|
Sazdova I, Keremidarska-Markova M, Dimitrova D, Mitrokhin V, Kamkin A, Hadzi-Petrushev N, Bogdanov J, Schubert R, Gagov H, Avtanski D, Mladenov M. Anticarcinogenic Potency of EF24: An Overview of Its Pharmacokinetics, Efficacy, Mechanism of Action, and Nanoformulation for Drug Delivery. Cancers (Basel) 2023; 15:5478. [PMID: 38001739 PMCID: PMC10670065 DOI: 10.3390/cancers15225478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
EF24, a synthetic monocarbonyl analog of curcumin, shows significant potential as an anticancer agent with both chemopreventive and chemotherapeutic properties. It exhibits rapid absorption, extensive tissue distribution, and efficient metabolism, ensuring optimal bioavailability and sustained exposure of the target tissues. The ability of EF24 to penetrate biological barriers and accumulate at tumor sites makes it advantageous for effective cancer treatment. Studies have demonstrated EF24's remarkable efficacy against various cancers, including breast, lung, prostate, colon, and pancreatic cancer. The unique mechanism of action of EF24 involves modulation of the nuclear factor-kappa B (NF-κB) and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways, disrupting cancer-promoting inflammation and oxidative stress. EF24 inhibits tumor growth by inducing cell cycle arrest and apoptosis, mainly through inhibiting the NF-κB pathway and by regulating key genes by modulating microRNA (miRNA) expression or the proteasomal pathway. In summary, EF24 is a promising anticancer compound with a unique mechanism of action that makes it effective against various cancers. Its ability to enhance the effects of conventional therapies, coupled with improvements in drug delivery systems, could make it a valuable asset in cancer treatment. However, addressing its solubility and stability challenges will be crucial for its successful clinical application.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Daniela Dimitrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria;
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Andre Kamkin
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Jane Bogdanov
- Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| | - Rudolf Schubert
- Institute of Theoretical Medicine, Faculty of Medicine, University of Augsburg, Universitätsstrasse 2, 86159 Augsburg, Germany;
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University ‘St. Kliment Ohridski’, 1504 Sofia, Bulgaria; (I.S.); (M.K.-M.); (H.G.)
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Mitko Mladenov
- Department of Fundamental and Applied Physiology, Russian States Medical University, 117997 Moscow, Russia; (V.M.); (A.K.)
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia;
| |
Collapse
|
6
|
Baloghová J, Michalková R, Baranová Z, Mojžišová G, Fedáková Z, Mojžiš J. Spice-Derived Phenolic Compounds: Potential for Skin Cancer Prevention and Therapy. Molecules 2023; 28:6251. [PMID: 37687080 PMCID: PMC10489044 DOI: 10.3390/molecules28176251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Skin cancer is a condition characterized by the abnormal growth of skin cells, primarily caused by exposure to ultraviolet (UV) radiation from the sun or artificial sources like tanning beds. Different types of skin cancer include melanoma, basal cell carcinoma, and squamous cell carcinoma. Despite the advancements in targeted therapies, there is still a need for a safer, highly efficient approach to preventing and treating cutaneous malignancies. Spices have a rich history dating back thousands of years and are renowned for their ability to enhance the flavor, taste, and color of food. Derived from various plant parts like seeds, fruits, bark, roots, or flowers, spices are important culinary ingredients. However, their value extends beyond the culinary realm. Some spices contain bioactive compounds, including phenolic compounds, which are known for their significant biological effects. These compounds have attracted attention in scientific research due to their potential health benefits, including their possible role in disease prevention and treatment, such as cancer. This review focuses on examining the potential of spice-derived phenolic compounds as preventive or therapeutic agents for managing skin cancers. By compiling and analyzing the available knowledge, this review aims to provide insights that can guide future research in identifying new anticancer phytochemicals and uncovering additional mechanisms for combating skin cancer.
Collapse
Affiliation(s)
- Janette Baloghová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Baranová
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Gabriela Mojžišová
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| | - Zuzana Fedáková
- Department of Dermatovenerology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (J.B.); (Z.B.); (Z.F.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia;
| |
Collapse
|
7
|
Ratan C, Arian AM, Rajendran R, Jayakumar R, Masson M, Mangalathillam S. Nano-based formulations of curcumin: elucidating the potential benefits and future prospects in skin cancer. Biomed Mater 2023; 18:052008. [PMID: 37582394 DOI: 10.1088/1748-605x/acf0af] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/17/2023]
Abstract
Skin cancer refers to any malignant lesions that occur in the skin and are observed predominantly in populations of European descent. Conventional treatment modalities such as excision biopsy, chemotherapy, radiotherapy, immunotherapy, electrodesiccation, and photodynamic therapy (PDT) induce several unintended side effects which affect a patient's quality of life and physical well-being. Therefore, spice-derived nutraceuticals like curcumin, which are well tolerated, less expensive, and relatively safe, have been considered a promising agent for skin cancer treatment. Curcumin, a chemical constituent extracted from the Indian spice, turmeric, and its analogues has been used in various mammalian cancers including skin cancer. Curcumin has anti-neoplastic activity by triggering the process of apoptosis and preventing the multiplication and infiltration of the cancer cells by inhibiting some signaling pathways and thus subsequently preventing the process of carcinogenesis. Curcumin is also a photosensitizer and has been used in PDT. The major limitations associated with curcumin are poor bioavailability, instability, limited permeation into the skin, and lack of solubility in water. This will constrain the use of curcumin in clinical settings. Hence, developing a proper formulation that can ideally release curcumin to its targeted site is important. So, several nanoformulations based on curcumin have been established such as nanogels, nanoemulsions, nanofibers, nanopatterned films, nanoliposomes and nanoniosomes, nanodisks, and cyclodextrins. The present review mainly focuses on curcumin and its analogues as therapeutic agents for treating different types of skin cancers. The significance of using various nanoformulations as well non-nanoformulations loaded with curcumin as an effective treatment modality for skin cancer is also emphasized.
Collapse
Affiliation(s)
- Chameli Ratan
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Arya Mangalath Arian
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rajalakshmi Rajendran
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| | - Mar Masson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107, Reykjavík, Iceland
| | - Sabitha Mangalathillam
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041 Kerala, India
| |
Collapse
|
8
|
Lis K, Bartuzi Z. Plant Food Dyes with Antioxidant Properties and Allergies-Friend or Enemy? Antioxidants (Basel) 2023; 12:1357. [PMID: 37507897 PMCID: PMC10376437 DOI: 10.3390/antiox12071357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Color is an important food attribute which increases its attractiveness, thus influencing consumer preferences and acceptance of food products. The characteristic color of fresh, raw food is due to natural dyes present in natural food sources. Food loses its natural color during processing or storage. Loss of natural color (e.g., graying) often reduces the appeal of a product to consumers. To increase the aesthetic value of food, natural or synthetic dyes are added to it. Interestingly, the use of food coloring to enhance food attractiveness and appetizing appearance has been practiced since antiquity. Food coloring can also cause certain health effects, both negative and positive. Dyes added to food, both natural and synthetic, are primarily chemical substances that may not be neutral to the body. Some of these substances have strong antioxidant properties. Thanks to this activity, they can also perform important pro-health functions, including antiallergic ones. On the other hand, as foreign substances, they can also cause various adverse food reactions, including allergic reactions of varying severity and anaphylactic shock. This article discusses food dyes of plant origins with antioxidant properties (anthocyanins, betanins, chlorophylls, carotenoids, and curcumin) and their relationship with allergy, both as sensitizing agents and immunomodulatory agents with potential antiallergic properties.
Collapse
Affiliation(s)
- Kinga Lis
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| | - Zbigniew Bartuzi
- Department of Allergology, Clinical Immunology and Internal Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, ul. Ujejskiego 75, 85-168 Bydgoszcz, Poland
| |
Collapse
|
9
|
Becker AL, Indra AK. Oxidative Stress in Melanoma: Beneficial Antioxidant and Pro-Oxidant Therapeutic Strategies. Cancers (Basel) 2023; 15:cancers15113038. [PMID: 37297001 DOI: 10.3390/cancers15113038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Cutaneous melanoma ranks as the fifth most common cancer in the United States and represents one of the deadliest forms of skin cancer. While recent advances in systemic targeted therapies and immunotherapies have positively impacted melanoma survival, the survival rate of stage IV melanoma remains at a meager 32%. Unfortunately, tumor resistance can impede the effectiveness of these treatments. Oxidative stress is a pivotal player in all stages of melanoma progression, with a somewhat paradoxical function that promotes tumor initiation but hinders vertical growth and metastasis in later disease. As melanoma progresses, it employs adaptive mechanisms to lessen oxidative stress in the tumor environment. Redox metabolic rewiring has been implicated in acquired resistance to BRAF/MEK inhibitors. A promising approach to enhance the response to therapy involves boosting intracellular ROS production using active biomolecules or targeting enzymes that regulate oxidative stress. The complex interplay between oxidative stress, redox homeostasis, and melanomagenesis can also be leveraged in a preventive context. The purpose of this review is to provide an overview of oxidative stress in melanoma, and how the antioxidant system may be manipulated in a therapeutic context for improved efficacy and survival.
Collapse
Affiliation(s)
- Alyssa L Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University (OSU), Corvallis, OR 97331, USA
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI 96813, USA
| | - Arup K Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University (OSU), Corvallis, OR 97331, USA
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
- Department of Biochemistry and Biophysics, Oregon State University (OSU), Corvallis, OR 97331, USA
- Linus Pauling Science Center, Oregon State University (OSU), Corvallis, OR 97331, USA
- Department of Dermatology, Oregon Health & Science University (OHSU), Portland, OR 97239, USA
| |
Collapse
|
10
|
Jain R, Paul M, Padaga SG, Dubey SK, Biswas S, Singhvi G. Dual-Drug-Loaded Topical Delivery of Photodynamically Active Lipid-Based Formulation for Combination Therapy of Cutaneous Melanoma. Mol Pharm 2023. [PMID: 37262335 DOI: 10.1021/acs.molpharmaceut.3c00280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Topical administration of anti-cancer drugs along with photodynamically active molecules is a non-invasive approach, which stands to be a promising modality for treating aggressive cutaneous melanomas with the added advantage of high patient compliance. However, the efficiency of delivering drugs topically is limited by several factors, such as penetration of the drug across skin layers at the tumor site and limited light penetrability. In this study, curcumin, an active anti-cancer agent, and chlorin e6, a photoactivable molecule, were encapsulated into lipidic nanoparticles that produced reactive oxygen species (ROS) when activated at 665 nm by near-infrared (NIR) light. The optimized lipidic nanoparticle containing curcumin and chlorin e6 exhibited a particle size of less than 100 nm. The entrapment efficiency for both molecules was found to be 81%. The therapeutic efficacy of the developed formulation was tested on B16F10 and A431 cell lines via cytotoxicity evaluation, combination index, cellular uptake, nuclear staining, DNA fragmentation, ROS generation, apoptosis, and cell cycle assays under NIR irradiation (665 nm). Co-delivering curcumin and chlorin e6 exhibited higher cellular uptake, better cancer growth inhibition, and pronounced apoptotic events compared to the formulation having the free drug alone. The study results depicted that topical application of this ROS-generating dual-drug-loaded lipidic nanoparticles incorporated in SEPINEO gel achieved better permeation (80 ± 2.45%) across the skin, and exhibited the improved skin retention and a synergistic effect as well. The present work introduces photo-triggered ROS-generating dual-drug-based lipidic nanoparticles, which are simple and efficient to develop and exhibit synergistic therapeutic effects against cutaneous melanoma.
Collapse
Affiliation(s)
- Rupesh Jain
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sri Ganga Padaga
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Pilani, Rajasthan 333031, India
| |
Collapse
|
11
|
Ma EZ, Khachemoune A. Flavonoids and their therapeutic applications in skin diseases. Arch Dermatol Res 2023; 315:321-331. [PMID: 36129522 DOI: 10.1007/s00403-022-02395-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/03/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022]
Abstract
Flavonoids are a class of plant polyphenols found in a variety of fruits, vegetables, teas, and flowers. These compounds are present in many common dietary sources, such as green tea, wine, pomegranates, and turmeric, and possess a broad spectrum of biological activity due to their unique chemical structure. Flavonoids exhibit antioxidant, anti-inflammatory, antiviral, and anticarcinogenic properties that have been widely studied as potential therapeutics for diseases ranging from Alzheimer's disease to liver disease. There is currently significant research into therapeutic benefits of flavonoids in various skin conditions as these compounds have been shown to absorb ultraviolet radiation and modulate cancer and inflammation signaling pathways. This review discusses the current research in the application of flavonoids in skin diseases (e.g., prevention of premature photoaging, prevention and treatment of skin cancer, and promotion of skin wound healing) and their proposed mechanisms to provide a basis for future basic and translational research of flavonoids as potential drugs in the prevention and treatment of skin disorders.
Collapse
Affiliation(s)
- Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Brooklyn Campus of the VA NY Harbor Healthcare System, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, SUNY Downstate, 450 Clarkson Ave, Brooklyn, NY, USA.
| |
Collapse
|
12
|
Abstract
Flavonoids are a class of plant polyphenols found in a variety of fruits, vegetables, teas, and flowers. These compounds are present in many common dietary sources, such as green tea, wine, pomegranates, and turmeric, and possess a broad spectrum of biological activity due to their unique chemical structure. Flavonoids exhibit antioxidant, anti-inflammatory, antiviral, and anticarcinogenic properties that have been widely studied as potential therapeutics for diseases ranging from Alzheimer's disease to liver disease. There is currently significant research into therapeutic benefits of flavonoids in various skin conditions as these compounds have been shown to absorb ultraviolet radiation and modulate cancer and inflammation signaling pathways. This review discusses the current research in the application of flavonoids in skin diseases (e.g., prevention of premature photoaging, prevention and treatment of skin cancer, and promotion of skin wound healing) and their proposed mechanisms to provide a basis for future basic and translational research of flavonoids as potential drugs in the prevention and treatment of skin disorders.
Collapse
Affiliation(s)
- Emily Z Ma
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amor Khachemoune
- Brooklyn Campus of the VA NY Harbor Healthcare System, 800 Poly Place, Brooklyn, NY, 11209, USA.
- Department of Dermatology, SUNY Downstate, 450 Clarkson Ave, Brooklyn, NY, USA.
| |
Collapse
|
13
|
Prajapat VM, Mahajan S, Paul PG, Aalhate M, Mehandole A, Madan J, Dua K, Chellappan DK, Singh SK, Singh PK. Nanomedicine: A pragmatic approach for tackling melanoma skin cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
14
|
Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life (Basel) 2023; 13:life13020261. [PMID: 36836619 PMCID: PMC9962739 DOI: 10.3390/life13020261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Plant-derived bioactive compounds are gaining wide attention for their multiple health-promoting activities and in particular for their anti-cancer properties. Several studies have highlighted how they can prevent cancer initiation and progression, improve the effectiveness of chemotherapy, and, in some cases, limit some of the side effects of chemotherapy agents. In this paper, we provide an update of the literature on the anti-cancer effects of three extensively studied plant-derived compounds, namely resveratrol, epigallocatechin gallate, and curcumin, with a special focus on the anti-cancer molecular mechanisms inducing apoptosis in the major types of cancers globally.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-0984-496204
| |
Collapse
|
15
|
The Involvement of Natural Polyphenols in Molecular Mechanisms Inducing Apoptosis in Tumor Cells: A Promising Adjuvant in Cancer Therapy. Int J Mol Sci 2023; 24:ijms24021680. [PMID: 36675194 PMCID: PMC9863215 DOI: 10.3390/ijms24021680] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.
Collapse
|
16
|
Cunha C, Daniel-da-Silva AL, Oliveira H. Drug Delivery Systems and Flavonoids: Current Knowledge in Melanoma Treatment and Future Perspectives. MICROMACHINES 2022; 13:1838. [PMID: 36363859 PMCID: PMC9693869 DOI: 10.3390/mi13111838] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Melanoma is an aggressive form of skin cancer with a high prevalence in the population. An early diagnosis is crucial to cure this disease. Still, when this is not possible, combining potent pharmacological agents and effective drug delivery systems is essential to achieve optimal treatment and improve patients' quality of life. Nanotechnology application in biomedical sciences to encapsulate anticancer drugs, including flavonoids, in order to enhance therapeutic efficacy has attracted particular interest. Flavonoids have shown effectiveness against various types of cancers including in melanoma, but they show low aqueous solubility, low stability and very poor oral bioavailability. The utilization of novel drug delivery systems could increase flavonoid bioavailability, thereby potentiating its antitumor effects in melanoma. This review summarizes the potential of different flavonoids in melanoma treatment and the several nanosystems used to improve their biological activity, considering published information that reported improved biological and pharmacological properties of encapsulated flavonoids.
Collapse
Affiliation(s)
- Catarina Cunha
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L. Daniel-da-Silva
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology, CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Dasatinib enhances curcumin-induced cytotoxicity, apoptosis and protective autophagy in human schwannoma cells HEI-193: The role of Akt/mTOR/p70S6K signalling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2022; 72:403-414. [PMID: 36651538 DOI: 10.2478/acph-2022-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2021] [Indexed: 01/26/2023]
Abstract
The present study was carried out in human schwannoma cells (HEI-193) to determine the combined anti-cancer effect of curcumin and dasatinib. Cells were treated with curcumin only, dasatinib only, or the combination of curcumin and dasatinib for 24 hours. Cellular toxicity, cell proliferation, and cell death were determined by LDH, MTT, and trypan blue dye assays, respectively. ELISA based kit was used to determine apoptotic cell death. Western blotting was used to determine the expression of apoptotic and autophagy-associated protein markers. Similarly, expression levels of Akt/mTOR/p70S6K signalling pathway-related proteins were studied using Western blotting. Cell death and apoptosis were significantly higher in HEI-193 cells treated with curcumin and dasatinib combination compared to individual controls. The combination of curcumin and dasatinib significantly enhances autophagy markers compared to individual controls. Furthermore, the combination of curcumin and dasatinib significantly activates Akt/mTOR/p70S6K signalling pathway compared to individual controls. In conclusion, our results suggest that the combination of curcumin and dasatinib significantly enhances cytotoxicity, apoptosis, and protective autophagy in HEI-193 cells through Akt/mTOR/p70S6K signalling pathway.
Collapse
|
18
|
Yaghoubi F, Motlagh NSH, Naghib SM, Haghiralsadat F, Jaliani HZ, Moradi A. A functionalized graphene oxide with improved cytocompatibility for stimuli-responsive co-delivery of curcumin and doxorubicin in cancer treatment. Sci Rep 2022; 12:1959. [PMID: 35121783 PMCID: PMC8816945 DOI: 10.1038/s41598-022-05793-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/11/2022] [Indexed: 01/08/2023] Open
Abstract
Nowadays, the usage of nanoparticles in various fields such as drug delivery, attracts the attention of many researchers in the treatment of cancers. Graphene oxide (GO) is one of the novel drug delivery systems which is used broadly owing to its unique features. In this survey, doxorubicin (DOX) was accompanied by natural medicine, curcumin (CUR), to diminish its side effects and enhance its efficiency. Cytotoxicity assay in human gastric cancer (AGS), prostate cancer (PC3), and ovarian cancer (A2780), was evaluated. Also, the uptake of DOX and CUR into cells, was assessed using a fluorescence microscope. Moreover, real-time PCR was applied for the evaluation of the expression of RB1 and CDK2 genes, which were involved in the cell cycle. In both separate and simultaneous forms, DOX and CUR were loaded with high efficiency and the release behavior of both drugs was pH-sensitive. The higher release rate was attained at pH 5.5 and 42 °C for DOX (80.23%) and CUR (13.06), respectively. The intensity of fluorescence in the free form of the drugs, was higher than the loaded form. In the same concentration, the free form of CUR and DOX were more toxic than the loaded form in all cell lines. Also, free drugs showed more impact on the expression of RB1 and CDK2 genes. Co-delivery of CUR and DOX into the mentioned cell lines, was more effective than the free form of CUR and DOX due to its lower toxicity to normal cells.
Collapse
Affiliation(s)
- Fatemeh Yaghoubi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Herbal Medicine Research Center, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), P.O. Box 16846-13114, Tehran, Iran
| | - Fateme Haghiralsadat
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Medical Nanotechnology & Tissue Engineering Research Center, Department of Advanced Medical Sciences and Technologies, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Moradi
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
19
|
Rahman MM, Rahaman MS, Islam MR, Rahman F, Mithi FM, Alqahtani T, Almikhlafi MA, Alghamdi SQ, Alruwaili AS, Hossain MS, Ahmed M, Das R, Emran TB, Uddin MS. Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules 2021; 27:233. [PMID: 35011465 PMCID: PMC8746501 DOI: 10.3390/molecules27010233] [Citation(s) in RCA: 284] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 02/02/2023] Open
Abstract
Inflammation is a natural protective mechanism that occurs when the body's tissue homeostatic mechanisms are disrupted by biotic, physical, or chemical agents. The immune response generates pro-inflammatory mediators, but excessive output, such as chronic inflammation, contributes to many persistent diseases. Some phenolic compounds work in tandem with nonsteroidal anti-inflammatory drugs (NSAIDs) to inhibit pro-inflammatory mediators' activity or gene expression, including cyclooxygenase (COX). Various phenolic compounds can also act on transcription factors, such as nuclear factor-κB (NF-κB) or nuclear factor-erythroid factor 2-related factor 2 (Nrf-2), to up-or downregulate elements within the antioxidant response pathways. Phenolic compounds can inhibit enzymes associated with the development of human diseases and have been used to treat various common human ailments, including hypertension, metabolic problems, incendiary infections, and neurodegenerative diseases. The inhibition of the angiotensin-converting enzyme (ACE) by phenolic compounds has been used to treat hypertension. The inhibition of carbohydrate hydrolyzing enzyme represents a type 2 diabetes mellitus therapy, and cholinesterase inhibition has been applied to treat Alzheimer's disease (AD). Phenolic compounds have also demonstrated anti-inflammatory properties to treat skin diseases, rheumatoid arthritis, and inflammatory bowel disease. Plant extracts and phenolic compounds exert protective effects against oxidative stress and inflammation caused by airborne particulate matter, in addition to a range of anti-inflammatory, anticancer, anti-aging, antibacterial, and antiviral activities. Dietary polyphenols have been used to prevent and treat allergy-related diseases. The chemical and biological contributions of phenolic compounds to cardiovascular disease have also been described. This review summarizes the recent progress delineating the multifunctional roles of phenolic compounds, including their anti-inflammatory properties and the molecular pathways through which they exert anti-inflammatory effects on metabolic disorders. This study also discusses current issues and potential prospects for the therapeutic application of phenolic compounds to various human diseases.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Firoza Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Mohannad A. Almikhlafi
- Department of Pharmacology and Toxicology, Taibah University, Madinah 41477, Saudi Arabia;
| | - Samia Qasem Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, Albaha 65527, Saudi Arabia;
| | - Abdullah S Alruwaili
- Department of Clinical Laboratory, College of Applied Medical Science, Northern Border University, P.O. Box 1321, Arar 9280, Saudi Arabia;
| | - Md. Sohel Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (F.R.); (F.M.M.); (M.S.H.); (M.A.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka 1213, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka 1207, Bangladesh
| |
Collapse
|
20
|
Braveboy-Wagner J, Sharoni Y, Lelkes PI. Nutraceuticals Synergistically Promote Osteogenesis in Cultured 7F2 Osteoblasts and Mitigate Inhibition of Differentiation and Maturation in Simulated Microgravity. Int J Mol Sci 2021; 23:136. [PMID: 35008559 PMCID: PMC8745420 DOI: 10.3390/ijms23010136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023] Open
Abstract
Microgravity is known to impact bone health, similar to mechanical unloading on Earth. In the absence of countermeasures, bone formation and mineral deposition are strongly inhibited in Space. There is an unmet need to identify nutritional countermeasures. Curcumin and carnosic acid are phytonutrients with anticancer, anti-inflammatory, and antioxidative effects and may exhibit osteogenic properties. Zinc is a trace element essential for bone formation. We hypothesized that these nutraceuticals could counteract the microgravity-induced inhibition of osteogenic differentiation and function. To test this hypothesis, we cultured 7F2 murine osteoblasts in simulated microgravity (SMG) in a Random Positioning Machine in the presence and absence of curcumin, carnosic acid, and zinc and evaluated cell proliferation, function, and differentiation. SMG enhanced cell proliferation in osteogenic medium. The nutraceuticals partially reversed the inhibitory effects of SMG on alkaline phosphatase (ALP) activity and did not alter the SMG-induced reduction in the expression of osteogenic marker genes in osteogenic medium, while they promoted osteoblast proliferation and ALP activity in the absence of traditional osteogenic media. We further observed a synergistic effect of the intermix of the phytonutrients on ALP activity. Intermixes of phytonutrients may serve as convenient and effective nutritional countermeasures against bone loss in space.
Collapse
Affiliation(s)
- Justin Braveboy-Wagner
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Peter I. Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA;
| |
Collapse
|
21
|
Curcumin induces apoptosis through caspase dependent pathway in human colon carcinoma cells. Mol Biol Rep 2021; 49:1351-1360. [PMID: 34806141 DOI: 10.1007/s11033-021-06965-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND We investigated the apoptotic effects of curcumin in the colon carcinoma cell line SW480. METHODS AND RESULTS Cells were treated with 40-200 μM curcumin for 24, 48, and 72 h, and the IC50 values were determined for each time interval. BrdU, caspase-3, and TUNEL staining results and the gene expression of FADD, CASP8, and CASP3 were evaluated. Curcumin treatments significantly inhibited cell proliferation and significantly induced apoptosis for 24, 48, and 72 h. The proportion of BrdU-stained cells in the control groups were 58%, 57% and 61% and 28%, 27%, and 30% in the curcumin treatment groups at 24, 48, and 72 h, respectively. The proportion of apoptotic cells was 28%, 29%, and 28% in the control groups and 59%, 61%, and 60% in the curcumin treatment groups at 24, 48, and 72 h, respectively. As expected, caspase-3 staining also revealed a higher number of apoptotic cells in curcumin treatment groups at 24, 48, and 72 h compared to controls. The proportion of Caspase-3-stained cells in the control groups were 23%, 25%, and 24% and 59%, 60%, and 62% in the curcumin treatment groups at 24, 48, and 72 h, respectively. To prove caspase-3 staining results, FADD, CASP8, and CASP3 gene expressions were evaluated by real-time qPCR. Unlike the immunohistochemical results, no statistically significant upregulation was found at 24 and 48 h, while relative gene expressions of FADD, CASP8, and CASP3 was significantly upregulated at 72 h. The expression level increase was 0.88-, 1.19-, and 2.11-fold for FADD, 1.25-, 1.29-, and 1.59-fold for CASP8, and 1.33-, 1.46-, and 3.00-fold for CASP3 at 24, 48, and 72 h, respectively. CONCLUSIONS These results suggest that curcumin may be a potential protective or treatment agent against colon cancer; however, further studies on curcumin-rich diets and curcumin bioavailability are required.
Collapse
|
22
|
Pellegrini M, D’Eusebio C, Ponzo V, Tonella L, Finocchiaro C, Fierro MT, Quaglino P, Bo S. Nutritional Interventions for Patients with Melanoma: From Prevention to Therapy-An Update. Nutrients 2021; 13:4018. [PMID: 34836273 PMCID: PMC8624488 DOI: 10.3390/nu13114018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 12/17/2022] Open
Abstract
Melanoma is an aggressive skin cancer, whose incidence rates have increased over the past few decades. Risk factors for melanoma are both intrinsic (genetic and familiar predisposition) and extrinsic (environment, including sun exposure, and lifestyle). The recent advent of targeted and immune-based therapies has revolutionized the treatment of melanoma, and research is focusing on strategies to optimize them. Obesity is an established risk factor for several cancer types, but its possible role in the etiology of melanoma is controversial. Body mass index, body surface area, and height have been related to the risk for cutaneous melanoma, although an 'obesity paradox' has been described too. Increasing evidence suggests the role of nutritional factors in the prevention and management of melanoma. Several studies have demonstrated the impact of dietary attitudes, specific foods, and nutrients both on the risk for melanoma and on the progression of the disease, via the effects on the oncological treatments. The aim of this narrative review was to summarize the main literature results regarding the preventive and therapeutic role of nutritional schemes, specific foods, and nutrients on melanoma incidence and progression.
Collapse
Affiliation(s)
- Marianna Pellegrini
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, 10126 Torino, Italy; (M.P.); (C.D.); (V.P.); (S.B.)
| | - Chiara D’Eusebio
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, 10126 Torino, Italy; (M.P.); (C.D.); (V.P.); (S.B.)
| | - Valentina Ponzo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, 10126 Torino, Italy; (M.P.); (C.D.); (V.P.); (S.B.)
| | - Luca Tonella
- Department of Medical Sciences, Dermatologic Clinic, University of Torino, 10126 Torino, Italy; (L.T.); (M.T.F.)
| | - Concetta Finocchiaro
- Dietetic and Clinical Nutrition Unit, “Città della Salute e della Scienza” Hospital, 10126 Torino, Italy;
| | - Maria Teresa Fierro
- Department of Medical Sciences, Dermatologic Clinic, University of Torino, 10126 Torino, Italy; (L.T.); (M.T.F.)
| | - Pietro Quaglino
- Department of Medical Sciences, Dermatologic Clinic, University of Torino, 10126 Torino, Italy; (L.T.); (M.T.F.)
| | - Simona Bo
- Department of Medical Sciences, Division of Endocrinology, Diabetes and Metabolism, University of Torino, 10126 Torino, Italy; (M.P.); (C.D.); (V.P.); (S.B.)
| |
Collapse
|
23
|
Antitumoral Activities of Curcumin and Recent Advances to ImProve Its Oral Bioavailability. Biomedicines 2021; 9:biomedicines9101476. [PMID: 34680593 PMCID: PMC8533288 DOI: 10.3390/biomedicines9101476] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
Curcumin, a main bioactive component of the Curcuma longa L. rhizome, is a phenolic compound that exerts a wide range of beneficial effects, acting as an antimicrobial, antioxidant, anti-inflammatory and anticancer agent. This review summarizes recent data on curcumin's ability to interfere with the multiple cell signaling pathways involved in cell cycle regulation, apoptosis and the migration of several cancer cell types. However, although curcumin displays anticancer potential, its clinical application is limited by its low absorption, rapid metabolism and poor bioavailability. To overcome these limitations, several curcumin-based derivatives/analogues and different drug delivery approaches have been developed. Here, we also report the anticancer mechanisms and pharmacokinetic characteristics of some derivatives/analogues and the delivery systems used. These strategies, although encouraging, require additional in vivo studies to support curcumin clinical applications.
Collapse
|
24
|
Almatroodi SA, Syed MA, Rahmani AH. Potential Therapeutic Targets of Curcumin, Most Abundant Active Compound of Turmeric Spice: Role in the Management of Various Types of Cancer. Recent Pat Anticancer Drug Discov 2021; 16:3-29. [PMID: 33143616 DOI: 10.2174/1574892815999201102214602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin, an active compound of turmeric spice, is one of the most-studied natural compounds and has been widely recognized as a chemopreventive agent. Several molecular mechanisms have proven that curcumin and its analogs play a role in cancer prevention through modulating various cell signaling pathways as well as in the inhibition of the carcinogenesis process. OBJECTIVE To study the potential role of curcumin in the management of various types of cancer through modulating cell signalling molecules based on available literature and recent patents. METHODS A wide-ranging literature survey was performed based on Scopus, PubMed, PubMed Central, and Google scholar for the implication of curcumin in cancer management, along with a special emphasis on human clinical trials. Moreover, patents were searched through www.google.com/patents, www.freepatentsonline.com, and www.freshpatents.com. RESULT Recent studies based on cancer cells have proven that curcumin has potential effects against cancer cells as it prevents the growth of cancer and acts as a cancer therapeutic agent. Besides, curcumin exerted anti-cancer effects by inducing apoptosis, activating tumor suppressor genes, cell cycle arrest, inhibiting tumor angiogenesis, initiation, promotion, and progression stages of tumor. It was established that co-treatment of curcumin and anti-cancer drugs could induce apoptosis and also play a significant role in the suppression of the invasion and metastasis of cancer cells. CONCLUSION Accumulating evidences suggest that curcumin has the potential to inhibit cancer growth, induce apoptosis, and modulate various cell signaling pathway molecules. Well-designed clinical trials of curcumin based on human subjects are still needed to establish the bioavailability, mechanism of action, efficacy, and safe dose in the management of various cancers.
Collapse
Affiliation(s)
- Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Mansoor Ali Syed
- Department of Biotechnology, Faculty of Natural Sciences, Translational Research Lab, Jamia Millia Islamia, New Delhi 110025, India
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah 52571, Saudi Arabia
| |
Collapse
|
25
|
Xu C, Wang M, Guo W, Sun W, Liu Y. Curcumin in Osteosarcoma Therapy: Combining With Immunotherapy, Chemotherapeutics, Bone Tissue Engineering Materials and Potential Synergism With Photodynamic Therapy. Front Oncol 2021; 11:672490. [PMID: 34094974 PMCID: PMC8172965 DOI: 10.3389/fonc.2021.672490] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/26/2021] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma is a dominating malignant bone tumor with high mortality due to pulmonary metastases. Furthermore, because of the cancer cell erosion and surgery resection, osteosarcoma always causes bone defects, which means dysfunction and disfigurement are seldom inevitable. Although various advanced treatments (e.g. chemotherapy, immunotherapy, radiotherapy) are coming up, the 5-year survival rate for osteosarcoma with metastases is still dismal. In line with this, the more potent treatments for osteosarcoma are in high demand. Curcumin, a perennial herb, has been reportedly applied in the therapy of various types of tumors via different mechanisms. In vitro, it has also been reported that curcumin can inhibit the proliferation of osteosarcoma cell lines and can be used to repair bone defects. This seems curcumin is a promising candidate in osteosarcoma treatment. However, due to its congenital property like hydrophobicity, and low bioavailability, affecting its anticancer effect, clinical applications of curcumin are highly limited. To enhance its performance in cancer therapies, some synergist approaches with curcumin have emerged. The present review presents some prospective ones (i.e. combinations with immunotherapy, chemotherapeutics, bone tissue engineering, and biomaterials) applied in osteosarcoma treatment. Additionally, with the advancements of photodynamic therapy in cancer therapy, this review also prospects the combination of curcumin with photodynamic therapy in osteosarcoma treatment.
Collapse
Affiliation(s)
- Chunfeng Xu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mingjie Wang
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wei Guo
- Department of Oral-Maxillofacial and Head-Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Sun
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, United States.,Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Yuelian Liu
- Section of Restorative and Reconstructive Oral Care, Department of Oral Health Sciences, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
26
|
Harikrishnan A, Khanna S, Veena V. Design of New Improved Curcumin Derivatives to Multi-targets of Cancer and Inflammation. Curr Drug Targets 2021; 22:573-589. [PMID: 32753008 DOI: 10.2174/1389450121666200804113745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Curcumin is a major active principle of Curcuma longa. There are more than 1700 citations in the Medline, reflecting various biological effects of curcumin. Most of these biological activities are associated with the antioxidant, anti-inflammatory and antitumor activity of the molecule. Several reports suggest various targets of natural curcumin that include growth factors, growth factor receptor, cytokines, enzymes and gene regulators of apoptosis. This review focuses on the improved curcumin derivatives that target the cancer and inflammation. METHODOLOGY In this present review, we explored the anticancer drugs with curcumin-based drugs under pre-clinical and clinical studies with critical examination. Based on the strong scientific reports of patentable and non-patented literature survey, we have investigated the mode of the interactions of curcumin-based molecules with the target molecules. RESULTS Advanced studies have added new dimensions of the molecular response of cancer cells to curcumin at the genomic level. However, poor bioavailability of the molecule seems to be the major limitation of the curcumin. Several researchers have been involved to improve the curcumin derivatives to overcome this limitation. Sufficient data of clinical trials to various cancers that include multiple myeloma, pancreatic cancer and colon cancer, have also been discussed. CONCLUSION The detailed analysis of the structure-activity relationship (SAR) and common synthesis of curcumin-based derivatives have been discussed in the review. Utilising the predictions of in silico coupled with validation reports of in vitro and in vivo studies have concluded many targets for curcumin. Among them, cancer-related inflammation genes regulating curcumin-based molecules are a very promising target to overcome hurdles in the multimodality therapy of cancer.
Collapse
Affiliation(s)
- A Harikrishnan
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission Research Foundation-Aarupadai Veedu (VMRF-AV) campus, Paiyanoor, Chennai-603104, Tamil Nadu, India
| | - Sunali Khanna
- Nair Hospital Dental College, Municipal Corporation of Greater Mumbai, Mumbai, 400 008, India
| | - V Veena
- Department of Biotechnology, School of Applied Sciences, REVA University, Rukmini knowledge park, Kattigenahalli, Yelahanka, Bengaluru - 5600 064. Karnataka State, India
| |
Collapse
|
27
|
V RS, C R. Crystal structure determination, hirshfeld surface analysis and quantum computational studies of (3E,5E)-1-ethyl-3,5-bis (naphthalen-1-yl-methylidene) piperidin-4-one: A novel RORc inhibitor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Mohammed ES, El-Beih NM, El-Hussieny EA, EL-Ahwany E, Hassan M, Zoheiry M. Effects of free and nanoparticulate curcumin on chemically induced liver carcinoma in an animal model. Arch Med Sci 2021; 17:218-227. [PMID: 33488874 PMCID: PMC7811328 DOI: 10.5114/aoms.2020.93739] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/19/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Curcumin therapeutic applications are constrained by its prominent metabolic instability as well as inadequate absorption and bioavailability. The current study was designed to enhance the curcumin bioavailability by exploiting nanoparticles. MATERIAL AND METHODS Eleven groups of mice were divided into: normal and nanoparticle control groups, a hepatocellular carcinoma (HCC) group induced by diethylnitrosamine (DEN), 2 groups treated with DEN plus a high dose/low dose of free curcumin, 2 groups treated with a high dose/low dose of free curcumin, 2 groups treated with DEN plus a high dose/low dose of nanoparticulate curcumin, and 2 groups treated with a high dose/low dose of nanoparticulate curcumin. RESULTS DEN administration significantly increased liver enzymes, vascular endothelial growth factor, tumor necrosis factor-α, α-fetoprotein, malondialdehyde, and nucelar factor-κB. Also, it decreased serum albumin and tissue antioxidant activities and caused severe histological changes in hepatic tissue. Oral treatment of DEN-injected mice with either a high dose of free curcumin or the tested doses of nanoparticulate curcumin resulted in a significant improvement of all the tested parameters. CONCLUSIONS Although the two tested doses of nanoparticulate curcumin were much lower than free curcumin, both doses were effective in preventing HCC development while the low dose of free curcumin was hardly effective. Hence, we conclude that nanoparticles enhance the bioavailability of curcumin.
Collapse
Affiliation(s)
| | - Nadia M. El-Beih
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | | - Eman EL-Ahwany
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Marwa Hassan
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mona Zoheiry
- Immunology Department, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
29
|
Bonfim CMD, Monteleoni LF, Calmon MDF, Cândido NM, Provazzi PJS, Lino VDS, Rabachini T, Sichero L, Villa LL, Quintana SM, Melli PPDS, Primo FL, Amantino CF, Tedesco AC, Boccardo E, Rahal P. Antiviral activity of curcumin-nanoemulsion associated with photodynamic therapy in vulvar cell lines transducing different variants of HPV-16. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:515-524. [PMID: 32048523 DOI: 10.1080/21691401.2020.1725023] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Vulvar intraepithelial neoplasia (VIN) is associated with human papillomavirus (HPV) infection. Curcumin is a natural bioactive compound with antineoplastic properties. The use of nanoparticles containing curcumin could allow a better performance of this compound in therapies. So, VIN biopsies were collected and HPV DNA detection was performed by PCR, positive samples were genotyped by Restriction Fragment Length Polymorphism (RFLP) and HPV-16 variants were determined by sequencing. HPV-16 positive vulva carcinoma cells (A431) were transduced with E-P and E-350G HPV-16 E6 variants. The viability of the transduced cells treated with nanoemulsions was determined by MTT assay. Besides, apoptosis was evaluated by enzymatic activity of Caspase-3/7. The cell viability assay showed that both the empty nanoemulsion (NE-V) and the nanoemulsion of curcumin (NE-CUR) had little effect on cell viability as compared to control cells. Additionally, we observed that cells irradiated in the presence of NE-CUR presented 90% of cell death. The apoptosis assay further revealed a significant increase in the activity of caspases 3 and 7 in A431 cells expressing both HPV-16 E6 variants after treatment with NE-CUR. Finally, we submitted the HPV transduced A431 cells to organotypic cultures and observed that the combination of treatments affected tissue architecture with evident signals of tissue damage. We concluded that nanoemulsions attain good biocompatibility, since no cytotoxicity was observed and NE-CUR associated with photoactivation showed promising results, leading to death only in cells subjected to irradiation. This drug delivery system associated with photodynamic therapy may become promising in the treatment of vulva lesions.
Collapse
Affiliation(s)
| | | | | | - Natália Maria Cândido
- Laboratory of Genomic Studies, Sao Paulo State University - UNESP, São Paulo, Brazil
| | | | - Vanesca de Souza Lino
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | | | - Laura Sichero
- ICESP, Center for Translational Research in Oncology- Instituto do Cancer do Estado de Sao Paulo, São Paulo, Brazil
| | - Luisa Lina Villa
- ICESP, Center for Translational Research in Oncology- Instituto do Cancer do Estado de Sao Paulo, São Paulo, Brazil.,Departament of Radiology and Oncology, School of Medicine, Universidade de Sao Paulo - USP, São Paulo, Brazil
| | - Silvana Maria Quintana
- Department of Gynecology and Obstetrics of the Ribeirão Preto Medical School, USP, Ribeirão Preto, São Paulo, Brazil
| | | | - Fernando Lucas Primo
- Department of Bioprocess and Biotechnology, Faculty of Pharmaceutical Sciences of Araraquara, Universidade Estadual Paulista Julio de Mesquita Filho - UNESP, Araraquara, São Paulo, Brazil
| | - Camila Fernanda Amantino
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center for Nanotechnology and Tissue Engineering, Faculty of Philosophy, Sciences and Languages of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, São Paulo, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo - USP, São Paulo, Brazil
| | - Paula Rahal
- Laboratory of Genomic Studies, Sao Paulo State University - UNESP, São Paulo, Brazil
| |
Collapse
|
30
|
Scaria B, Sood S, Raad C, Khanafer J, Jayachandiran R, Pupulin A, Grewal S, Okoko M, Arora M, Miles L, Pandey S. Natural Health Products (NHP's) and Natural Compounds as Therapeutic Agents for the Treatment of Cancer; Mechanisms of Anti-Cancer Activity of Natural Compounds and Overall Trends. Int J Mol Sci 2020; 21:E8480. [PMID: 33187200 PMCID: PMC7697102 DOI: 10.3390/ijms21228480] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most cancer therapeutics, such as tubulin-targeting chemotherapy drugs, cause cytotoxic, non-selective effects. These harmful side-effects drastically reduce the cancer patient's quality of life. Recently, researchers have focused their efforts on studying natural health products (NHP's) which have demonstrated the ability to selectively target cancer cells in cellular and animal models. However, the major hurdle of clinical validation remains. NHP's warrant further clinical investigation as a therapeutic option since they exhibit low toxicity, while retaining a selective effect. Additionally, they can sensitize cancerous cells to chemotherapy, which enhances the efficacy of chemotherapeutic drugs, indicating that they can be utilized as supplemental therapy. An additional area for further research is the investigation of drug-drug interactions between NHP's and chemotherapeutics. The objectives of this review are to report the most recent results from the field of anticancer NHP research, and to highlight the most recent advancements in possible supplemental therapeutic options.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada; (B.S.); (S.S.); (C.R.); (J.K.); (R.J.); (A.P.); (S.G.); (M.O.); (M.A.); (L.M.)
| |
Collapse
|
31
|
Chaves Lamarque GC, Méndez DAC, Matos AA, Dionísio TJ, Machado MAAM, Magalhães AC, Oliveira RC, Cruvinel T. In vitro effect of curcumin-mediated antimicrobial photodynamic therapy on fibroblasts: viability and cell signaling for apoptosis. Lasers Med Sci 2020; 36:1169-1175. [PMID: 32996021 DOI: 10.1007/s10103-020-03150-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/22/2020] [Indexed: 01/08/2023]
Abstract
Although it was demonstrated that curcumin-mediated antimicrobial photodynamic therapy (aPDT) is effective for reducing the viability of microbial cells and the vitality of oral biofilms, the cytotoxicity of this therapeutic approach for host cells has not been yet elucidated. Hence, the aim of this study was to evaluate the cytotoxicity and apoptotic effects of curcumin-mediated aPDT on mouse fibroblasts. Cells were treated with 0.6 or 6 μmol.L-1 curcumin combined with 0.075 or 7.5 J.cm-2 LED at 455 nm. Cytotoxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and crystal violet (CV) assays, while quantitative reverse transcriptase-PCR (qRT-PCR) was used to assess the expression of Bax, Bad, Bcl-2, VDAC-1, cytochrome C, and Fas-L genes for apoptosis. The differences between groups were detected by Kruskal-Wallis and post hoc Dunn's tests for MTT and CV assays and by ANOVA and post hoc Tukey test for qRT-PCR (P < 0.05). The effect of 0.6 μmol.L-1 curcumin plus 0.075 J.cm-2 LED (minimum parameter) did not differ statistically from control group; however, the combination of 0.6 μmol.L-1 curcumin plus 7.5 J.cm-2 LED reduced viable cells in 34%, while the combinations of 6 μmol.L-1 curcumin plus 0.075 and 7.5 J.cm-2 LED reduced viable cells in 47% and 99%, respectively. aPDT increased significantly the relative expression of Bax/Bcl-2, cytochrome C, VDAC-1, and Fas-L genes, without influence on the ratio Bad/Bcl-2. Therefore, curcumin-mediated aPDT activated Bcl-2 apoptosis signaling pathways in mouse fibroblasts regarding present conditions, reducing the viability of cells with the increase of curcumin concentrations and light energies.
Collapse
Affiliation(s)
- Giuliana Campos Chaves Lamarque
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, SP, 17012-901, Brazil
| | - Daniela Alejandra Cusicanqui Méndez
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, SP, 17012-901, Brazil
| | - Adriana Arruda Matos
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thiago José Dionísio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Maria Aparecida Andrade Moreira Machado
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, SP, 17012-901, Brazil
| | - Ana Carolina Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Rodrigo Cardoso Oliveira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Thiago Cruvinel
- Department of Pediatric Dentistry, Orthodontics and Public Health, Bauru School of Dentistry, University of São Paulo, Al. Dr. Octávio Pinheiro Brisolla, 9-75, Vila Universitária, Bauru, SP, 17012-901, Brazil.
| |
Collapse
|
32
|
Roman B, Retajczyk M, Sałaciński Ł, Pełech R. Curcumin - Properties, Applications and Modification of Structure. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190621110247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, the interest in biologically active compounds of natural origin has increased
significantly. Researchers' research focuses on increasing the activity of curcumin by forming
complexes with metals such as vanadium, iron, copper or gallium. Introduction of metal compounds
to curcumin increases the scope of application in pharmacology. The main direction of research
development is the treatment of tumors, among others stomach cancer or leukemia. Curcuminoids
are the main components of turmeric (Curcuma longa L.), a plant from India and South-East
Asia. Due to its intense yellow-orange color and pleasant aroma, the powdered rootstalk is widely
used in the food industry, as natural dye and spice. The chemical compound responsible for the characteristic
color of rhizomes of curcuma is 1,6-heptadien-3,5-dione-1,7-bis(4-hydroxy-3-methoxyphenyl)
- (1E, 6E) called curcumin. This work aims to characterize curcumin in terms of its structure,
therapeutic properties and also as a substrate for the synthesis of valuable derivatives like tetrahydrocurcumin.
Knowledge about this relationship based on literature analysis will enable a better understanding
of the factors responsible for its biological activity.
Collapse
Affiliation(s)
- Barbara Roman
- Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Pulaski 10 St., PL 70-322, Poland
| | - Monika Retajczyk
- Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Pulaski 10 St., PL 70-322, Poland
| | - Łukasz Sałaciński
- Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Pulaski 10 St., PL 70-322, Poland
| | - Robert Pełech
- Institute of Organic Chemical Technology, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology, Szczecin, Pulaski 10 St., PL 70-322, Poland
| |
Collapse
|
33
|
Mardani R, Hamblin MR, Taghizadeh M, Banafshe HR, Nejati M, Mokhtari M, Borran S, Davoodvandi A, Khan H, Jaafari MR, Mirzaei H. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathol Res Pract 2020; 216:153082. [PMID: 32825950 DOI: 10.1016/j.prp.2020.153082] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Curcumin is a natural phytochemical polyphenol with significant anti-cancer effects and negligible side effects. In this study, the therapeutic capacity of nanomicellar-curcumin for treating lung metastasis was evaluated in an immunocompetent mouse model of metastatic melanoma. MARTIALS AND METHODS Two doses of nanomicellar-curcumin (i.e. 10 and 20 μM) were used to induce cytotoxicity in 3 melanoma cell lines. A total of 60 mice were allocated to 20 mice in each of three groups (10 for survival and 10 for assays). Groups were no treatment control, PBS control, nanomicellar-curcumin 20 mg/kg IP 4 times a week, for three weeks). Immunohistochemistry, TUNEL assay, and Western blots were used on lung samples. RESULTS Nanomicellar-curcumin inhibited the in vitro growth of B16 F10 melanoma cells at 20 μM over 72 h. In vivo, 20 mg/kg nanomicellar-curcumin injected IP, delayed tumor cell growth and significantly extended mouse survival rate. Tumor infiltration of regulatory T cells and angiogenesis were reduced, while IFN-γ and CXCL10 were increased. CONCLUSION Nanomicellar-curcumin can inhibit lung metastasis and growing melanoma via activation of apoptosis, activated T cells and inhibition of angiogenesis, tumor growth and regulatory T cells.
Collapse
Affiliation(s)
- Rajab Mardani
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Boston, MA 02114, United States
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Reza Banafshe
- Department of Pharmacology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Majid Nejati
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojgan Mokhtari
- Department of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Paul G. Allen Center for Computer Science &Engineering, University of Washington, United States
| | - Sarina Borran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Davoodvandi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, I.R., Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
34
|
Dittmann J, Haydn T, Metzger P, Ward GA, Boerries M, Vogler M, Fulda S. Next-generation hypomethylating agent SGI-110 primes acute myeloid leukemia cells to IAP antagonist by activating extrinsic and intrinsic apoptosis pathways. Cell Death Differ 2020; 27:1878-1895. [PMID: 31831875 PMCID: PMC7244748 DOI: 10.1038/s41418-019-0465-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/16/2022] Open
Abstract
Therapeutic efficacy of first-generation hypomethylating agents (HMAs) is limited in elderly acute myeloid leukemia (AML) patients. Therefore, combination strategies with targeted therapies are urgently needed. Here, we discover that priming with SGI-110 (guadecitabine), a next-generation HMA, sensitizes AML cells to ASTX660, a novel antagonist of cellular inhibitor of apoptosis protein 1 and 2 (cIAP1/2) and X-linked IAP (XIAP). Importantly, SGI-110 and ASTX660 synergistically induced cell death in a panel of AML cell lines as well as in primary AML samples while largely sparing normal CD34+ human progenitor cells, underlining the translational relevance of this combination. Unbiased transcriptome analysis revealed that SGI-110 alone or in combination with ASTX660 upregulated the expression of key regulators of both extrinsic and intrinsic apoptosis signaling pathways such as TNFRSF10B (DR5), FAS, and BAX. Individual knockdown of the death receptors TNFR1, DR5, and FAS significantly reduced SGI-110/ASTX660-mediated cell death, whereas blocking antibodies for tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) or FAS ligand (FASLG) failed to provide protection. Also, TNFα-blocking antibody Enbrel had little protective effect on SGI-110/ASTX660-induced cell death. Further, SGI-110 and ASTX660 acted in concert to promote cleavage of caspase-8 and BID, thereby providing a link between extrinsic and intrinsic apoptotic pathways. Consistently, sequential treatment with SGI-110 and ASTX660-triggered loss of mitochondrial membrane potential (MMP) and BAX activation which contributes to cell death, as BAX silencing significantly protected from SGI-110/ASTX660-mediated apoptosis. Together, these events culminated in the activation of caspases-3/-7, nuclear fragmentation, and cell death. In conclusion, SGI-110 and ASTX660 cooperatively induced apoptosis in AML cells by engaging extrinsic and intrinsic apoptosis pathways, highlighting the therapeutic potential of this combination for AML.
Collapse
Affiliation(s)
- Jessica Dittmann
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Tinka Haydn
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Patrick Metzger
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University Freiburg, Freiburg im Breisgau, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Albert Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- Faculty of Biology, University Freiburg, Freiburg im Breisgau, Germany
| | | | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University Freiburg, Freiburg im Breisgau, Germany
- Institute of Molecular Medicine and Cell Research (IMMZ), Albert Ludwigs-University Freiburg, Freiburg im Breisgau, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg, Freiburg im Breisgau, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Meike Vogler
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
35
|
Obaidi I, Cassidy H, Ibáñez Gaspar V, McCaul J, Higgins M, Halász M, Reynolds AL, Kennedy BN, McMorrow T. Curcumin Sensitizes Kidney Cancer Cells to TRAIL-Induced Apoptosis via ROS Mediated Activation of JNK-CHOP Pathway and Upregulation of DR4. BIOLOGY 2020; 9:E92. [PMID: 32370057 PMCID: PMC7284747 DOI: 10.3390/biology9050092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 12/14/2022]
Abstract
Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.
Collapse
Affiliation(s)
- Ismael Obaidi
- NIBRT|National Institute for Bioprocessing, Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., A94 X099 Dublin, Ireland
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- College of Pharmacy, University of Babylon, Babylon 51002, Iraq
| | - Hilary Cassidy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Verónica Ibáñez Gaspar
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Jasmin McCaul
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Michael Higgins
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Melinda Halász
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, 4 Dublin, Ireland;
| | - Alison L. Reynolds
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
- UCD School of Veterinary Medicine, Rm 232, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Breandan N. Kennedy
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| | - Tara McMorrow
- UCD Centre for Toxicology, School of Biomedical and Biomolecular Sciences, Conway Institute, University College Dublin, 4 Dublin, Ireland; (H.C.); (V.I.G.); (J.M.); (M.H.); (A.L.R.); (B.N.K.)
| |
Collapse
|
36
|
Ahmad R, Khan MA, Srivastava A, Gupta A, Srivastava A, Jafri TR, Siddiqui Z, Chaubey S, Khan T, Srivastava AK. Anticancer Potential of Dietary Natural Products: A Comprehensive Review. Anticancer Agents Med Chem 2020; 20:122-236. [DOI: 10.2174/1871520619666191015103712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
Nature is a rich source of natural drug-like compounds with minimal side effects. Phytochemicals
better known as “Natural Products” are found abundantly in a number of plants. Since time immemorial, spices
have been widely used in Indian cuisine as flavoring and coloring agents. Most of these spices and condiments
are derived from various biodiversity hotspots in India (which contribute 75% of global spice production) and
form the crux of India’s multidiverse and multicultural cuisine. Apart from their aroma, flavor and taste, these
spices and condiments are known to possess several medicinal properties also. Most of these spices are mentioned
in the Ayurveda, the indigenous system of medicine. The antimicrobial, antioxidant, antiproliferative,
antihypertensive and antidiabetic properties of several of these natural products are well documented in
Ayurveda. These phytoconstituemts are known to act as functional immunoboosters, immunomodulators as well
as anti-inflammatory agents. As anticancer agents, their mechanistic action involves cancer cell death via induction
of apoptosis, necrosis and autophagy. The present review provides a comprehensive and collective update
on the potential of 66 commonly used spices as well as their bioactive constituents as anticancer agents. The
review also provides an in-depth update of all major in vitro, in vivo, clinical and pharmacological studies done
on these spices with special emphasis on the potential of these spices and their bioactive constituents as potential
functional foods for prevention, treatment and management of cancer.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Mohsin A. Khan
- Chancellor, Era University, Sarfarazganj, Hardoi Road, Lucknow-226003, UP, India
| | - A.N. Srivastava
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Anamika Gupta
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Aditi Srivastava
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tanvir R. Jafri
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Zainab Siddiqui
- Department of Pathology, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Sunaina Chaubey
- Department of Biochemistry, Era’s Lucknow Medical College & Hospital, Era University, Sarfarazganj, Lucknow-226003, UP, India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Dasauli, P.O. Bas-ha, Kursi Road, Lucknow 226026, UP, India
| | - Arvind K. Srivastava
- Department of Food and Nutrition, Era University, Sarfarazganj, Lucknow-226003, UP, India
| |
Collapse
|
37
|
Sun Q, Zhang H. Targeted Inference Involving High-Dimensional Data Using Nuisance Penalized Regression. J Am Stat Assoc 2020; 116:1472-1486. [PMID: 34538987 PMCID: PMC8447956 DOI: 10.1080/01621459.2020.1737079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/05/2020] [Accepted: 02/22/2020] [Indexed: 10/24/2022]
Abstract
Analysis of high dimensional data has received considerable and increasing attention in statistics. In practice, we may not be interested in every variable that is observed. Instead, often some of the variables are of particular interest, and the remaining variables are nuisance. To this end, we propose the nuisance penalized regression which does not penalize the parameters of interest. When the coherence between interest parameters and nuisance parameters is negligible, we show that resulting estimator can be directly used for inference without any correction. When the coherence is not negligible, we propose an iteratively procedure to further refine the estimate of interest parameters, based on which we propose a modified profile likelihood based statistic for hypothesis testing. The utilities of our general results are demonstrated in three specific examples. Numerical studies lend further support to our method.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Statistical Sciences, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health, 300 George Street Suite 523, New Haven, CT 06511, USA
| |
Collapse
|
38
|
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A. Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. Int J Mol Sci 2020; 21:E2364. [PMID: 32235371 PMCID: PMC7178200 DOI: 10.3390/ijms21072364] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Curcumin diffuses through cell membranes into the endoplasmic reticulum, mitochondria, and nucleus, where it exerts actions, as an antioxidant property. Therefore, its use has been advocated for chemopreventive, antimetastatic, and anti-angiogenic purposes. We conducted a literature review to summarize studies investigating the relationship between curcumin and colorectal cancer (CRC). In vitro studies, performed on human colon cancer cell lines, showed that curcumin inhibited cellular growth through cycle arrest at the G2/M and G1 phases, as well as stimulated apoptosis by interacting with multiple molecular targets. In vivo studies have been performed in inflammatory and genetic CRC animal models with a chemopreventive effect. To improve curcumin bioavailability, it has been associated with small particles that increase its absorption when orally administered with excellent results on both inflammation and carcinogenesis. Curcumin has been used, moreover, as a component of dietetic formulations for CRC chemoprevention. These combinations showed in vitro and in vivo anticarcinogenetic properties in inflammation-related and genetic CRC. A synergic effect was suggested using an individual constituent dosage, which was lower than that experimentally used "in vivo" for single components. In conclusion, curcumin falls within the category of plant origin substances able to prevent CRC in animals. This property offers promising expectations in humans.
Collapse
Affiliation(s)
- Maria Pricci
- THD S. p.A., 42015 Correggio (RE), Italy; (M.P.); (B.G.); (F.G.)
| | - Bruna Girardi
- THD S. p.A., 42015 Correggio (RE), Italy; (M.P.); (B.G.); (F.G.)
| | - Floriana Giorgio
- THD S. p.A., 42015 Correggio (RE), Italy; (M.P.); (B.G.); (F.G.)
| | - Giuseppe Losurdo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (E.I.)
| | - Enzo Ierardi
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (E.I.)
| | - Alfredo Di Leo
- Gastroenterology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy; (G.L.); (E.I.)
| |
Collapse
|
39
|
Suroowan S, Mahomoodally MF. Herbal Medicine of the 21st Century: A Focus on the Chemistry, Pharmacokinetics and Toxicity of Five Widely Advocated Phytotherapies. Curr Top Med Chem 2020; 19:2718-2738. [PMID: 31721714 DOI: 10.2174/1568026619666191112121330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/25/2022]
Abstract
Widely advocated for their health benefits worldwide, herbal medicines (HMs) have evolved into a billion dollar generating industry. Much is known regarding their wellness inducing properties, prophylactic and therapeutic benefits for the relief of both minor to chronic ailment conditions given their long-standing use among various cultures worldwide. On the other hand, their equally meaningful chemistry, pharmacokinetic profile in humans, interaction and toxicity profile have been poorly researched and documented. Consequently, this review is an attempt to highlight the health benefits, pharmacokinetics, interaction, and toxicity profile of five globally famous HMs. A systematic literature search was conducted by browsing major scientific databases such as Bentham Science, SciFinder, ScienceDirect, PubMed, Google Scholar and EBSCO to include 196 articles. In general, ginsenosides, glycyrrhizin and curcumin demonstrate low bioavailability when orally administered. Ginkgo biloba L. induces both CYP3A4 and CYP2C9 and alters the AUC and Cmax of conventional medications including midazolam, tolbutamide, lopinavir and nifedipine. Ginsenosides Re stimulates CYP2C9, decreasing the anticoagulant activity of warfarin. Camellia sinensis (L.) Kuntze increases the bioavailability of buspirone and is rich in vitamin K thereby inhibiting the activity of anticoagulant agents. Glycyrrhiza glabra L. displaces serum bound cardiovascular drugs such as diltiazem, nifedipine and verapamil. Herbal medicine can directly affect hepatocytes leading to hepatoxicity based on both intrinsic and extrinsic factors. The potentiation of the activity of concurrently administered conventional agents is potentially lethal especially if the drugs bear dangerous side effects and have a low therapeutic window.
Collapse
Affiliation(s)
- S Suroowan
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - M F Mahomoodally
- Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius.,Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
40
|
Pal RS, Pal Y, Saraswat N, Wal P. A Review on the Recent Flavoring Herbal Medicines of Today. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1874220302007010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Herbs are the most trending taste enhancers, carrying multiple benefits. Sprinkling them in minute amounts in pasta, salads, sautéed vegetables, curries, fried rice or adding them in dips and sauces can lead to enhanced flavours. The fresh and dried versions serve the same purpose, especially when the fresh ones are not available.
Objective:
The objective of this article is to explore and review trending flavouring herbs of the present era with reference to the knowledge available from previous texts.
Materials and Methods:
A literature review has been performed on various herbs such as dill, cilantro, parsley, chives, mint, oregano, etc, which can be used as healthy and taste enhancing sprinklers and garnishers for foods.
Results:
There are various herbs present in nature in many forms and patterns, some provide anti-inflammatory benefits, are anti-microbial and most of them are digestive in nature.
Conclusion:
These herbs are very rich in phytoconstituents, having multiple properties like anti-oxidant and carminative effects. They are superior as compared to artificial additives as well.
Collapse
|
41
|
Sarma H, Jahan T, Sharma HK. Progress in Drug and Formulation Development for the Chemoprevention of Oral Squamous Cell Carcinoma: A Review. ACTA ACUST UNITED AC 2020; 13:16-36. [PMID: 30806332 DOI: 10.2174/1872211313666190222182824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cancer is a life-threatening global problem with high incidence rates. Prioritizing the prevention of cancer, chemopreventive agents have drawn much attention from the researchers. OBJECTIVE This review focuses on the discussion of the progress in the development of chemopreventive agents and formulations related to the prevention of oral cancer. METHODS In this perspective, an extensive literature survey was carried out to understand the mechanism, control and chemoprevention of oral cancer. Different patented agents and formulations have also exhibited cancer preventive efficacy in experimental studies. This review summarizes the etiology of oral cancer and developments in prevention strategies. RESULTS The growth of oral cancer is a multistep activity necessitating the accumulation of genetic as well as epigenetic alterations in key regulatory genes. Many risk factors are associated with oral cancer. Genomic technique for sequencing all tumor specimens has been made available to help detect mutations. The recent development of molecular pathway and genetic tools has made the process of diagnosis easier, better forecast and efficient therapeutic management. Different chemical agents have been studied for their efficacy to prevent oral cancer and some of them have shown promising results. CONCLUSION Use of chemopreventive agents, either synthetic or natural origin, to prevent carcinogenesis is a worthy concept in the management of cancers. Preventive measures are helpful in controlling the occurrence or severity of the disease. The demonstrated results of preventive agents have opened an arena for the development of promising chemopreventive agents in the management of oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Himangshu Sarma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Taslima Jahan
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Hemanta K Sharma
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam, India
| |
Collapse
|
42
|
Gupta MK, Vadde R, Sarojamma V. Curcumin - A Novel Therapeutic Agent in the Prevention of Colorectal Cancer. Curr Drug Metab 2020; 20:977-987. [DOI: 10.2174/1389200220666191007153238] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Colorectal cancer is the third important cause of cancer-associated deaths across the world.
Hence, there is an urgent need for understanding the complete mechanism associated with colorectal cancer, which in
turn can be utilized toward early detection as well as the treatment of colorectal cancer in humans. Though colorectal
cancer is a complex process and chemotherapy is the first step toward the treatment of colorectal cancer, recently
several studies suggested that dietary phytochemicals may also aid significantly in reducing colorectal cancer risk in
human. However, only few phytochemicals, specifically curcumin derived from the rhizomes of Curcuma longa,
have better chemotherapeutic property, which might be because of its ability to regulate the activity of key factors
associated with the initiation, promotion, as well as progression of tumors.
Objectives:
In the present review, the authors made an attempt to summarize the physiochemical properties of curcumin,
which in turn prevent colorectal cancer via regulating numerous cell signaling as well as genetic pathways.
Conclusions:
Accumulated evidence suggested that curcumin suppresses tumour/colon cancer in various ways, (a)
restricting cell cycle progression, or stimulating apoptosis, (b) restricting angiogenesis, anti-apoptotic proteins expression,
cell survival signaling pathways & their cross-communication and (c) regulating immune responses. The
information discussed in the present review will be useful in the drug discovery process as well as the treatment and
prevention of colorectal cancer in humans.
Collapse
Affiliation(s)
- Manoj K. Gupta
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, A.P, India
| | - Ramakrishna Vadde
- Department of Biotechnology & Bioinformatics, Yogi Vemana University, Kadapa 516003, A.P, India
| | - Vemula Sarojamma
- Department of Microbiology, Sri Venkateswara Medical College, Tirupathi 517501, A.P, India
| |
Collapse
|
43
|
Yue Y, Liu L, Liu P, Li Y, Lu H, Li Y, Zhang G, Duan X. Cardamonin as a potential treatment for melanoma induces human melanoma cell apoptosis. Oncol Lett 2019; 19:1393-1399. [PMID: 32002030 PMCID: PMC6960385 DOI: 10.3892/ol.2019.11242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 10/22/2019] [Indexed: 12/30/2022] Open
Abstract
2′,4′-dihydroxy-6′-methoxychalcone (cardamonin) is a natural compound with anti-proliferative effects on several cancer types including nasopharyngeal carcinoma. The effects of cardamonin on melanoma cells are unknown. The present study investigated the anti-proliferative effect of cardamonin on human melanoma cell lines (M14 and A375), and the underlying apoptosis inducing mechanisms. MTS assay showed that cardamonin inhibited M14 cells viability, and a reduction of the M14 cell density was also observed. Flow cytometry showed that cardamonin induced M14 cells apoptosis in a dose-dependent manner. Western blot analysis showed protein expression in M14 and A375; the pro-apoptotic protein BAX was upregulated, while the anti-apoptotic protein B-cell lymphoma-2 was downregulated. The protein expression of cleaved caspase-8, −9 and cleaved poly (ADP-ribose) polymerase was increased, whereas P65 was decreased. Furthermore, cardamonin inhibited M14 cell migration. These findings suggest that cardamonin may be a novel anticancer treatment for human melanoma.
Collapse
Affiliation(s)
- Yuyang Yue
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lijuan Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Peipei Liu
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yuting Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Haitao Lu
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| | - Yanjia Li
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Guoqiang Zhang
- Department of Dermatology, First Hospital, Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xinsuo Duan
- Department of Dermatology, The Affiliated Hospital of Chengde Medical College, Chengde, Hebei 067000, P.R. China
| |
Collapse
|
44
|
Vollono L, Falconi M, Gaziano R, Iacovelli F, Dika E, Terracciano C, Bianchi L, Campione E. Potential of Curcumin in Skin Disorders. Nutrients 2019; 11:E2169. [PMID: 31509968 PMCID: PMC6770633 DOI: 10.3390/nu11092169] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/05/2019] [Accepted: 08/15/2019] [Indexed: 12/12/2022] Open
Abstract
Curcumin is a compound isolated from turmeric, a plant known for its medicinal use. Recently, there is a growing interest in the medical community in identifying novel, low-cost, safe molecules that may be used in the treatment of inflammatory and neoplastic diseases. An increasing amount of evidence suggests that curcumin may represent an effective agent in the treatment of several skin conditions. We examined the most relevant in vitro and in vivo studies published to date regarding the use of curcumin in inflammatory, neoplastic, and infectious skin diseases, providing information on its bioavailability and safety profile. Moreover, we performed a computational analysis about curcumin's interaction towards the major enzymatic targets identified in the literature. Our results suggest that curcumin may represent a low-cost, well-tolerated, effective agent in the treatment of skin diseases. However, bypass of limitations of its in vivo use (low oral bioavailability, metabolism) is essential in order to conduct larger clinical trials that could confirm these observations. The possible use of curcumin in combination with traditional drugs and the formulations of novel delivery systems represent a very promising field for future applicative research.
Collapse
Affiliation(s)
- Laura Vollono
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Mattia Falconi
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Roberta Gaziano
- Microbiology Section, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Federico Iacovelli
- Department of Biology, University of Rome "Tor Vergata", Via della Ricerca Scientifica, 1-00133 Rome, Italy
| | - Emi Dika
- Dermatology Unit, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, University of Bologna, Via Massarenti, 1-40138 Bologna, Italy
| | - Chiara Terracciano
- Neurology Unit, Guglielmo de Saliceto Hospital, 29121-29122 Piacenza, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of "Medicina dei Sistemi", University of Rome Tor Vergata, Via Montpellier, 1-00133 Rome, Italy.
| |
Collapse
|
45
|
Unraveling the molecular mechanisms and the potential chemopreventive/therapeutic properties of natural compounds in melanoma. Semin Cancer Biol 2019; 59:266-282. [PMID: 31233829 DOI: 10.1016/j.semcancer.2019.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022]
Abstract
Melanoma is the most fatal form of skin cancer. Current therapeutic approaches include surgical resection, chemotherapy, targeted therapy and immunotherapy. However, these treatment strategies are associated with development of drug resistance and severe side effects. In recent years, natural compounds have also been extensively studied for their anti-melanoma effects, including tumor growth inhibition, apoptosis induction, angiogenesis and metastasis suppression and cancer stem cell elimination. Moreover, a considerable number of studies reported the synergistic activity of phytochemicals and standard anti-melanoma agents, as well as the enhanced effectiveness of their synthetic derivatives and novel formulations. However, clinical data confirming these promising effects in patients are still scanty. This review emphasizes the anti-tumor mechanisms and potential application of the most studied natural products for melanoma prevention and treatment.
Collapse
|
46
|
Kuttikrishnan S, Siveen KS, Prabhu KS, Khan AQ, Ahmed EI, Akhtar S, Ali TA, Merhi M, Dermime S, Steinhoff M, Uddin S. Curcumin Induces Apoptotic Cell Death via Inhibition of PI3-Kinase/AKT Pathway in B-Precursor Acute Lymphoblastic Leukemia. Front Oncol 2019; 9:484. [PMID: 31275848 PMCID: PMC6593070 DOI: 10.3389/fonc.2019.00484] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/22/2019] [Indexed: 12/20/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is a significant cancer of children resulting from the clonal proliferation of lymphoid precursors with arrested maturation. Although chemotherapeutic approaches have been achieving successful remission for the majority of cases of childhood ALL, development of resistance to chemotherapy has been observed. Thus, new therapeutic approaches are required to improve patient's prognosis. Therefore, we investigated the anticancer potential of curcumin in ALL. We tested a panel of B-precursor ALL (B-Pre-ALL) cell lines with various translocations after treatment with different doses of curcumin. Curcumin suppresses the viability in a concentration-dependent manner in 697, REH, SupB15, and RS4;11 cells (doses from 0 to 80 μM). Curcumin induces apoptosis in B-Pre-ALL cell lines via activation of caspase-8 and truncation of BID. Curcumin treatment increased the ratio of Bax/Bcl-2 and resulted in a leaky mitochondrial membrane that led to the discharge of cytochrome c from the mitochondria to the cytoplasm, the activation of caspase 3 and the cleavage of PARP. Curcumin treatment of B-Pre-ALL cell lines induced a dephosphorylation of the constitutive phosphorylated AKT/PKB and a down-regulation of the expression of cIAP1, and XIAP. Moreover, curcumin mediates its anticancer activity by the generation of reactive oxygen species. Finally, the suboptimal doses of curcumin potentiated the anticancer activity of cisplatin. Altogether, these results suggest an important therapeutic role of curcumin, acting as a growth suppressor of B-Pre-ALL by apoptosis via inactivation of AKT/PKB and down-regulation of IAPs and activation of intrinsic apoptotic pathway via generation of Reactive Oxygen Species (ROS). Our interesting findings raise the possibility of considering curcumin as a potential therapeutic agent for the treatment of B-Pre-ALL.
Collapse
Affiliation(s)
- Shilpa Kuttikrishnan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kodappully S Siveen
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Kirti S Prabhu
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Quaiyoom Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Eiman I Ahmed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Tayyiba A Ali
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- National Centre for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.,Department of Dermatology Venereology, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell-Medicine, Doha, Qatar.,Department of Dermatology, Weill Cornell University, New York, NY, United States
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
47
|
Ismail NI, Othman I, Abas F, H Lajis N, Naidu R. Mechanism of Apoptosis Induced by Curcumin in Colorectal Cancer. Int J Mol Sci 2019; 20:E2454. [PMID: 31108984 PMCID: PMC6566943 DOI: 10.3390/ijms20102454] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is among the top three cancer with higher incident and mortality rate worldwide. It is estimated that about over than 1.1 million of death and 2.2 million new cases by the year 2030. The current treatment modalities with the usage of chemo drugs such as FOLFOX and FOLFIRI, surgery and radiotherapy, which are usually accompanied with major side effects, are rarely cured along with poor survival rate and at higher recurrence outcome. This trigger the needs of exploring new natural compounds with anti-cancer properties which possess fewer side effects. Curcumin, a common spice used in ancient medicine was found to induce apoptosis by targeting various molecules and signaling pathways involved in CRC. Disruption of the homeostatic balance between cell proliferation and apoptosis could be one of the promoting factors in colorectal cancer progression. In this review, we describe the current knowledge of apoptosis regulation by curcumin in CRC with regard to molecular targets and associated signaling pathways.
Collapse
Affiliation(s)
- Nor Isnida Ismail
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
- UniKL MESTECH, A1-1 Jalan TKS1, Taman Kajang Sentral, 43000 Kajang, Malaysia.
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia, UPM, 434000 Serdang, Malaysia.
| | - Nordin H Lajis
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia, UPM, 43400 Serdang, Malaysia.
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway Darul Ehsan, Malaysia.
| |
Collapse
|
48
|
Extrinsic or Intrinsic Apoptosis by Curcumin and Light: Still a Mystery. Int J Mol Sci 2019; 20:ijms20040905. [PMID: 30791477 PMCID: PMC6412849 DOI: 10.3390/ijms20040905] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 02/03/2023] Open
Abstract
Curcumin—a rhizomal phytochemical from the plant Curcuma longa—is well known to inhibit cell proliferation and to induce apoptosis in a broad range of cell lines. In previous studies we showed that combining low curcumin concentrations and subsequent ultraviolet A radiation (UVA) or VIS irradiation induced anti-proliferative and pro-apoptotic effects. There is still debate whether curcumin induces apoptosis via the extrinsic or the intrinsic pathway. To address this question, we investigated in three epithelial cell lines (HaCaT, A431, A549) whether the death receptors CD95, tumor necrosis factor (TNF)-receptor I and II are involved in apoptosis induced by light and curcumin. Cells were incubated with 0.25–0.5 µg/mL curcumin followed by irradiation with 1 J/cm2 UVA. This treatment was combined with inhibitors specific for distinct membrane-bound death receptors. After 24 h apoptosis induction was monitored by quantitative determination of cytoplasmic histone-associated-DNA-fragments. Validation of our test system showed that apoptosis induced by CH11 and TNF-α could be completely inhibited by their respective antagonists. Interestingly, apoptosis induced by curcumin/light treatment was reversed by none of the herein examined death receptor antagonists. These results indicate a mechanism of action independent from classical death receptors speaking for intrinsic activation of apoptosis. It could be speculated that a shift in cellular redox balance might prompt the pro-apoptotic processes.
Collapse
|
49
|
Pal K, Roy S, Parida PK, Dutta A, Bardhan S, Das S, Jana K, Karmakar P. Folic acid conjugated curcumin loaded biopolymeric gum acacia microsphere for triple negative breast cancer therapy in invitro and invivo model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 95:204-216. [PMID: 30573243 DOI: 10.1016/j.msec.2018.10.071] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 09/10/2018] [Accepted: 10/20/2018] [Indexed: 12/13/2022]
Abstract
Among the different types of biomaterials, natural excipients gum acacia (GA) is economic and has the potential for controlled drug delivery. We have synthesized GA microspheres by co-precipitation method and characterized them by XRD, FESEM, 1H NMR, FTIR, UV visible spectra and DLS. Despite its potential anti-cancer activity, solubility of curcumin is very low rendering its limit in application. We have used GA microspheres where curcumin can be loaded comfortably and thereby increases its bioavailability. The cytotoxicity of curcumin encapsulated GA microspheres was evaluated on triple negative breast cancer cell lines. They were found to induce apoptosis by perturbing the mitochondrial membrane potential. Folic acid was conjugated to curcumin encapsulated GA microspheres, for delivering it specifically to the cancer cells. The in-vivo study in BALB/C mice model exhibited more tumor regression in case of folic acid targeted curcumin encapsulated GA microsphere. Our results implicates that these microspheres can be an effective therapeutic agent to folate receptors over expressing cancer cells.
Collapse
Affiliation(s)
- Kunal Pal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India; Division of Molecular Medicine and Centre for Translational Research, Bose Institute, Kolkata 700056, India
| | - Shubham Roy
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Pravat Kumar Parida
- Division of Molecular Medicine and Centre for Translational Research, Bose Institute, Kolkata 700056, India
| | - Ananya Dutta
- Division of Molecular Medicine and Centre for Translational Research, Bose Institute, Kolkata 700056, India
| | - Souravi Bardhan
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Sukhen Das
- Department of Physics, Jadavpur University, Kolkata 700032, India
| | - Kuladip Jana
- Division of Molecular Medicine and Centre for Translational Research, Bose Institute, Kolkata 700056, India.
| | - Parimal Karmakar
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India.
| |
Collapse
|
50
|
Mortezaee K, Salehi E, Mirtavoos-Mahyari H, Motevaseli E, Najafi M, Farhood B, Rosengren RJ, Sahebkar A. Mechanisms of apoptosis modulation by curcumin: Implications for cancer therapy. J Cell Physiol 2019; 234:12537-12550. [PMID: 30623450 DOI: 10.1002/jcp.28122] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Cancer incidences are growing and cause millions of deaths worldwide. Cancer therapy is one of the most important challenges in medicine. Improving therapeutic outcomes from cancer therapy is necessary for increasing patients' survival and quality of life. Adjuvant therapy using various types of antibodies or immunomodulatory agents has suggested modulating tumor response. Resistance to apoptosis is the main reason for radioresistance and chemoresistance of most of the cancers, and also one of the pivotal targets for improving cancer therapy is the modulation of apoptosis signaling pathways. Apoptosis can be induced by intrinsic or extrinsic pathways via stimulation of several targets, such as membrane receptors of tumor necrosis factor-α and transforming growth factor-β, and also mitochondria. Curcumin is a naturally derived agent that induces apoptosis in a variety of different tumor cell lines. Curcumin also activates redox reactions within cells inducing reactive oxygen species (ROS) production that leads to the upregulation of apoptosis receptors on the tumor cell membrane. Curcumin can also upregulate the expression and activity of p53 that inhibits tumor cell proliferation and increases apoptosis. Furthermore, curcumin has a potent inhibitory effect on the activity of NF-κB and COX-2, which are involved in the overexpression of antiapoptosis genes such as Bcl-2. It can also attenuate the regulation of antiapoptosis PI3K signaling and increase the expression of MAPKs to induce endogenous production of ROS. In this paper, we aimed to review the molecular mechanisms of curcumin-induced apoptosis in cancer cells. This action of curcumin could be applicable for use as an adjuvant in combination with other modalities of cancer therapy including radiotherapy and chemotherapy.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanifeh Mirtavoos-Mahyari
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Rhonda J Rosengren
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|