1
|
Targeting the Sphingolipid Rheostat in Gliomas. Int J Mol Sci 2022; 23:ijms23169255. [PMID: 36012521 PMCID: PMC9408832 DOI: 10.3390/ijms23169255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 11/26/2022] Open
Abstract
Gliomas are highly aggressive cancer types that are in urgent need of novel drugs and targeted therapies. Treatment protocols have not improved in over a decade, and glioma patient survival remains among the worst of all cancer types. As a result, cancer metabolism research has served as an innovative approach to identifying novel glioma targets and improving our understanding of brain tumors. Recent research has uncovered a unique metabolic vulnerability in the sphingolipid pathways of gliomas that possess the IDH1 mutation. Sphingolipids are a family of lipid signaling molecules that play a variety of second messenger functions in cellular regulation. The two primary metabolites, sphingosine-1-phosphate (S1P) and ceramide, maintain a rheostat balance and play opposing roles in cell survival and proliferation. Altering the rheostat such that the pro-apoptotic signaling of the ceramides outweighs the pro-survival S1P signaling in glioma cells diminishes the hallmarks of cancer and enhances tumor cell death. Throughout this review, we discuss the sphingolipid pathway and identify the enzymes that can be most effectively targeted to alter the sphingolipid rheostat and enhance apoptosis in gliomas. We discuss each pathway’s steps based on their site of occurrence in the organelles and postulate novel targets that can effectively exploit this vulnerability.
Collapse
|
2
|
Abstract
Ceramides, important players in signal transduction, interact with multiple cellular pathways, including p53 pathways. However, the relationship between ceramide and p53 is very complex, and mechanisms underlying their coregulation are diverse and not fully characterized. The role of p53, an important cellular regulator and a transcription factor, is linked to its tumor suppressor function. Ceramides are involved in the regulation of fundamental processes in cancer cells including cell death, proliferation, autophagy, and drug resistance. This regulation, however, can be pro-death or pro-survival depending on cancer type, the balance between ceramide species, the rate of their synthesis and utilization, and the availability of a specific array of downstream targets. This chapter highlights the central role of ceramide in sphingolipid metabolism, its role in cancer, specific effectors in ceramide pathways controlled by p53, and coregulation of ceramide and p53 signaling. We discuss the recent studies, which underscore the function of p53 in the regulation of ceramide pathways and the reciprocal regulation of p53 by ceramide. This complex relationship is based on several molecular mechanisms including the p53-dependent transcriptional regulation of enzymes in sphingolipid pathways, the activation of mutant p53 through ceramide-mediated alternative splicing, as well as modulation of the p53 function through direct and indirect effects on p53 coregulators and downstream targets. Further insight into the connections between ceramide and p53 will allow simultaneous targeting of the two pathways with a potential to yield more efficient anticancer therapeutics.
Collapse
Affiliation(s)
- Kristen A Jeffries
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC, United States
| | - Natalia I Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC, United States; Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Stephan M, Edelmann B, Winoto-Morbach S, Janssen O, Bertsch U, Perrotta C, Schütze S, Fritsch J. Role of caspases in CD95-induced biphasic activation of acid sphingomyelinase. Oncotarget 2017; 8:20067-20085. [PMID: 28223543 PMCID: PMC5386744 DOI: 10.18632/oncotarget.15379] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/24/2017] [Indexed: 12/04/2022] Open
Abstract
Acid sphingomyelinase (A-SMase) plays an important role in the initiation of CD95 signaling by forming ceramide-enriched membrane domains that enable clustering and activation of the death receptors. In TNF-R1 and TRAIL-R1/R2 signaling, A-SMase also contributes to the lysosomal apoptosis pathway triggered by receptor internalization. Here, we investigated the molecular mechanism of CD95-mediated A-SMase activation, demonstrating that A-SMase is located in internalized CD95-receptosomes and is activated by the CD95/CD95L complex in a biphasic manner.Since several caspases have been described to be involved in the activation of A-SMase, we evaluated expression levels of caspase-8, caspase-7 and caspase-3 in CD95-receptosomes. The occurrence of cleaved caspase-8 correlated with the first peak of A-SMase activity and translocation of the A-SMase to the cell surface which could be blocked by the caspase-8 inhibitor IETD.Inhibition of CD95-internalization selectively reduced the second phase of A-SMase activity, suggesting a fusion between internalized CD95-receptosomes and an intracellular vesicular pool of A-SMase. Further analysis demonstrated that caspase-7 activity correlates with the second phase of the A-SMase activity, whereas active caspase-3 is present at early and late internalization time points. Blocking caspases-7/ -3 by DEVD reduced the second phase of A-SMase activation in CD95-receptosomes suggesting the potential role of caspase-7 or -3 for late A-SMase activation.In summary, we describe a biphasic A-SMase activation in CD95-receptosomes indicating (I.) a caspase-8 dependent translocation of A-SMase to plasma membrane and (II.) a caspase-7 and/or -3 dependent fusion of internalized CD95-receptosomes with intracellular A-SMase-containing vesicles.
Collapse
Affiliation(s)
- Mario Stephan
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Bärbel Edelmann
- Department of Hematology and Oncology, University Hospital Magdeburg, Magdeburg, Germany
| | | | - Ottmar Janssen
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Uwe Bertsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milano, Italy
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jürgen Fritsch
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
4
|
Kuzmenko DI, Klimentyeva TK. Role of Ceramide in Apoptosis and Development of Insulin Resistance. BIOCHEMISTRY (MOSCOW) 2017; 81:913-27. [PMID: 27682164 DOI: 10.1134/s0006297916090017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review presents data on the functional biochemistry of ceramide, one of the key sphingolipids with properties of a secondary messenger. Molecular mechanisms of the involvement of ceramide in apoptosis in pancreatic β-cells and its role in the formation of insulin resistance in pathogenesis of type 2 diabetes are reviewed. One of the main predispositions for the development of insulin resistance and diabetes is obesity, which is associated with ectopic fat deposition and significant increase in intracellular concentrations of cytotoxic ceramides. A possible approach to the restoration of tissue sensitivity to insulin in type 2 diabetes based on selective reduction of the content of cytotoxic ceramides is discussed.
Collapse
Affiliation(s)
- D I Kuzmenko
- Siberian State Medical University, Ministry of Healthcare of the Russian Federation, Tomsk, 634050, Russia.
| | | |
Collapse
|
5
|
Abstract
Sphingosine-1-phosphate (S1P), a simple, bioactive sphingolipid metabolite, plays a key role, both intracellularly and extracellularly, in various cellular processes such as proliferation, survival, migration, inflammation, angiogenesis, and endothelial barrier integrity. The cellular S1P level is low and is tightly regulated by its synthesis and degradation. Sphingosine Kinases (SphKs) 1 and 2, catalyze the ATP-dependent phosphorylation of sphingosine to S1P, while the degradation is mediated by the reversible dephosphorylation catalyzed by the S1P phosphatases and lipid phosphate phosphatases and the irreversible degradation to hexadecenal and ethanolamine phosphate by sphingosine-1-phosphate lyase (S1PL). As a ligand for specific G-protein-coupled receptors, S1P1-5, which are differentially expressed in different cell types, S1P generates downstream signals that play crucial role in developmental and disease related pathologies. In addition to acting extracellularly on receptors located on the plasma membrane, S1P can also act intracellularly, independently of S1P1-5, affecting calcium homeostasis and cell proliferation. The SphKs /S1P /S1PL metabolic pathway is implicated in numerous human pathologies including respiratory disorders, thereby raising the possibility that manipulating intracellular S1P levels could offer therapeutic potential in ameliorating lung diseases. This review focuses on the prospects of targeting S1P signaling and S1P metabolizing enzymes using small molecule inhibitors, receptor agonists, and antagonists in the treatment of lung diseases.
Collapse
Affiliation(s)
- David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois at Chicago, IL, USA
| | - Viswanathan Natarajan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, IL, USA; Department of Pharmacology, University of Illinois at Chicago, IL, USA; Department of Medicine, University of Illinois at Chicago, IL, USA; Department of Bioengineering, University of Illinois at Chicago, IL, USA.
| |
Collapse
|
6
|
The involvement of sphingolipids in chronic obstructive pulmonary diseases. Handb Exp Pharmacol 2013:247-64. [PMID: 23563660 DOI: 10.1007/978-3-7091-1511-4_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) includes a spectrum of conditions that have in common varying degrees of airflow obstruction, such as chronic bronchitis and emphysema. There is an increasing evidence of involvement of sphingolipids as key molecular mediators or biomarkers of disease in emphysema, chronic bronchitis, and more recently in asthma, another disease characterized by (reversible) airflow obstruction. Given the recognized central role of oxidative stress and inflammatory stimuli along with involvement of immune responses, apoptosis, and tissue remodeling in the development of chronic obstructive lung diseases, it is not surprising that sphingolipids have been shown to play important role in their pathobiology. In particular the pro-apoptotic effects of ceramide were suspected as events in the lung destruction that occurs as a result of apoptotic loss of structural cells comprising the alveolar walls, such as microvascular endothelial cells and alveolar epithelial cells. In addition, the role of ceramide was investigated in models of larger airway epithelial cell stress responses to cigarette smoke, in the context of ensuing airway remodeling and inflammation. This chapter discusses current evidence of sphingolipid perturbations in experimental models of COPD and relevant links to human disease based on translational and epidemiological data.
Collapse
|
7
|
Yun SH, Park ES, Shin SW, Na YW, Han JY, Jeong JS, Shastina VV, Stonik VA, Park JI, Kwak JY. Stichoposide C induces apoptosis through the generation of ceramide in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin Cancer Res 2013; 18:5934-48. [PMID: 23132899 DOI: 10.1158/1078-0432.ccr-12-0655] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Marine triterpene glycosides that are physiologically active natural compounds isolated from sea cucumbers (holothurians) and sponges have antifungal, cytotoxic, and antitumor activities, whose specific molecular mechanisms remain to be elucidated. In this study, we examined if and through which mechanisms stichoposide C (STC) from Thelenota anax (family Stichopodidae) induces apoptosis in leukemia and colorectal cancer cells. EXPERIMENTAL DESIGN We examined STC-induced apoptosis in human leukemia and colorectal cancer cells in the context of mitochondrial injury and signaling pathway disturbances, and investigated the antitumor effect of STC in mouse CT-26 subcutaneous tumor and HL-60 leukemia xenograft models. RESULTS We found that STC induces apoptosis in these cells in a dose-dependent manner and leads to the activation of Fas and caspase-8, cleavage of Bid, mitochondrial damage, and activation of caspase-3. STC activates acid sphingomyelinase (SMase) and neutral SMase, which resulted in the generation of ceramide. Specific inhibition of acid SMase or neutral SMase and siRNA knockdown experiments partially blocked STC-induced apoptosis. Moreover, STC markedly reduced tumor growth of HL-60 xenograft and CT-26 subcutaneous tumors and increased ceramide generation in vivo. CONCLUSIONS Ceramide generation by STC, through activation of acid and neutral SMase, may in part contribute to STC-induced apoptosis and antitumor activity. Thus, STC may have therapeutic relevance for human leukemia and colorectal cancer.
Collapse
Affiliation(s)
- Seong-Hoon Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Heffernan-Stroud LA, Obeid LM. p53 and regulation of bioactive sphingolipids. ACTA ACUST UNITED AC 2010; 51:219-28. [PMID: 21035490 DOI: 10.1016/j.advenzreg.2010.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 12/19/2022]
Abstract
Both the sphingolipid and p53 pathways are important regulators- and apparent collaborators-of cell-fate decisions. Whereas some investigations have suggested that ceramide and more complex sphingolipids function upstream of p53 or in a p53-independent manner, other studies propose that p53-dependent alterations in these sphingolipids can also contribute to apoptosis. Further studies focusing on sphingolipid metabolizing enzymes have revealed that they function similarly both upstream and downstream of p53 activation. However, whereas various components of the sphingolipid and p53 pathways may simultaneously function to elicit apoptosis and/or growth inhibition, SMase and SK1 may undergo explicit regulation by p53 that could contribute to ceramide-induced senescence in cells. Thus, we propose that regulation of bioactive sphingolipid signaling molecules could be of therapeutic benefit in the treatment of p53-dependent cancers.
Collapse
|
9
|
van Breukelen F, Krumschnabel G, Podrabsky JE. Vertebrate cell death in energy-limited conditions and how to avoid it: what we might learn from mammalian hibernators and other stress-tolerant vertebrates. Apoptosis 2010; 15:386-99. [DOI: 10.1007/s10495-010-0467-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Smith EL, Schuchman EH. The unexpected role of acid sphingomyelinase in cell death and the pathophysiology of common diseases. FASEB J 2008; 22:3419-31. [PMID: 18567738 DOI: 10.1096/fj.08-108043] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acid sphingomyelinase (ASM; E.C. 3.1.4.12) is best known for its involvement in the lysosomal storage disorder Niemann-Pick disease (NPD). Through studies that began by investigating this rare disease, recent findings have uncovered the important role of this enzyme in the initiation of ceramide-mediated signal transduction. This unique function involves translocation of the enzyme from intracellular compartments to the outer leaflet of the cell membrane, where hydrolysis of sphingomyelin into ceramide initiates membrane reorganization and facilitates the formation and coalescence of lipid microdomains. These microdomains are sites of protein-protein interactions that lead to downstream signaling, and perturbation of microdomain formation influences the pathophysiology of many common diseases. The initial observations implicating ASM in this process have come from studies using cells from patients with NPD or from ASM knockout (ASMKO) mice, where the genetic deficiency of this enzymatic activity has been shown to protect these cells and animals from stress-induced and developmental apoptosis. This review will discuss the complex biology of this enzyme in the context of these new findings and its recently reported importance in common human diseases, including cancer, sepsis, cardiovascular, pulmonary, liver, and neurological diseases as well as the potential for using ASM (or ASM inhibitors) as therapeutic agents.
Collapse
Affiliation(s)
- Eric L Smith
- Department of Genetics and Genomic Sciences, Mt. Sinai School of Medicine, 1425 Madison Ave., New York, NY 10029, USA
| | | |
Collapse
|
11
|
Petrache I, Medler TR, Richter AT, Kamocki K, Chukwueke U, Zhen L, Gu Y, Adamowicz J, Schweitzer KS, Hubbard WC, Berdyshev EV, Lungarella G, Tuder RM. Superoxide dismutase protects against apoptosis and alveolar enlargement induced by ceramide. Am J Physiol Lung Cell Mol Physiol 2008; 295:L44-53. [PMID: 18441093 DOI: 10.1152/ajplung.00448.2007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The molecular events leading to emphysema development include generation of oxidative stress and alveolar cell apoptosis. Oxidative stress upregulates ceramides, proapoptotic signaling sphingolipids that trigger further oxidative stress and alveolar space enlargement, as shown in an experimental model of emphysema due to VEGF blockade. As alveolar cell apoptosis and oxidative stress mutually interact to mediate alveolar destruction, we hypothesized that the oxidative stress generated by ceramide is required for its pathogenic effect on lung alveoli. To model the direct lung effects of ceramide, mice received ceramide intratracheally (Cer(12:0) or Cer(8:0); 1 mg/kg) or vehicle. Apoptosis was inhibited with a general caspase inhibitor. Ceramide augmentation shown to mimic levels found in human emphysema lungs increased oxidative stress, and decreased, independently of caspase activation, the lung superoxide dismutase activity at 48 h. In contrast to their wild-type littermates, transgenic mice overexpressing human Cu/Zn SOD were significantly protected from ceramide-induced superoxide production, apoptosis, and air space enlargement. Activation of lung acid sphingomyelinase in response to ceramide treatment was abolished in the Cu/Zn SOD transgenic mice. Since cigarette smoke-induced emphysema in mice is similarly ameliorated by the Cu/Zn SOD overexpression, we hypothesized that cigarette smoke may induce ceramides in the mouse lung. Utilizing tandem mass spectrometry, we documented increased lung ceramides in adult mice exposed to cigarette smoke for 4 wk. In conclusion, ceramide-induced superoxide accumulation in the lung may be a critical step in ceramide's proapoptotic effect in the lung. This work implicates excessive lung ceramides as amplifiers of lung injury through redox-dependent mechanisms.
Collapse
Affiliation(s)
- Irina Petrache
- Division of Pulmonary, Allergy, Critical Care, and Occupational Medicine, Indiana University, Indianapolis, Indiana 46202-5120, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Reinehr R, Sommerfeld A, Keitel V, Grether-Beck S, Häussinger D. Amplification of CD95 Activation by Caspase 8-induced Endosomal Acidification in Rat Hepatocytes. J Biol Chem 2008; 283:2211-22. [DOI: 10.1074/jbc.m706853200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Grassmé H, Riethmüller J, Gulbins E. Biological aspects of ceramide-enriched membrane domains. Prog Lipid Res 2007; 46:161-70. [PMID: 17490747 DOI: 10.1016/j.plipres.2007.03.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Revised: 03/14/2007] [Accepted: 03/23/2007] [Indexed: 01/23/2023]
Abstract
Ceramide has been shown to be critically involved in many aspects of cellular responses to receptor-dependent and -independent stimuli. For instance, ceramide was demonstrated to be a central component of the signaling cascades mediating apoptosis after death receptor stimulation, treatment with chemotherapy or exposure to gamma-irradiation or UV-A light. Further studies indicated the importance of ceramide for the infection of mammalian cells with bacterial, viral and parasitic pathogens. Ceramide is released by the activity of acid, neutral or alkaline sphingomyelinases or de novo synthesized. A concept unifying the diverse biological functions of ceramide indicates that ceramide forms distinct membrane domains, named ceramide-enriched membrane domains or platforms. These domains serve the clustering of receptor molecules, the re-organization of signaling proteins, the exclusion of inhibitory signals and, thus, initiate and greatly amplify a primary signal. In addition, ceramide directly interacts with and stimulates intracellular enzymes that may act together with signals initiated in ceramide-enriched membrane domains to transmit signals into a cell.
Collapse
Affiliation(s)
- Heike Grassmé
- Institute of Molecular Biology, University of Duisburg-Essen, 45122 Essen, Germany
| | | | | |
Collapse
|
14
|
Dyatlovitskaya EV, Kandyba AG. Role of biologically active sphingolipids in tumor growth. BIOCHEMISTRY (MOSCOW) 2006; 71:10-7. [PMID: 16457613 DOI: 10.1134/s0006297906010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review highlights the literature on the effects of biologically active sphingolipids (sphingosine, ceramide, sphingomyelin, glucosylceramide, gangliosides GM1, GM2, GM3, GD3, etc.) on proliferation, apoptosis, metastases, and invasiveness of tumor cells and the putative role of sphingolipids in chemotherapy of malignant tumors.
Collapse
Affiliation(s)
- E V Dyatlovitskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | |
Collapse
|
15
|
Tardy C, Codogno P, Autefage H, Levade T, Andrieu-Abadie N. Lysosomes and lysosomal proteins in cancer cell death (new players of an old struggle). Biochim Biophys Acta Rev Cancer 2005; 1765:101-25. [PMID: 16412578 DOI: 10.1016/j.bbcan.2005.11.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 11/21/2005] [Accepted: 11/28/2005] [Indexed: 12/19/2022]
Abstract
Death of cancer cells influences tumor development and progression, as well as the response to anticancer therapies. This can occur through different cell death programmes which have recently been shown to implicate components of the acidic organelles, lysosomes. The role of lysosomes and lysosomal enzymes, including cathepsins and some lipid hydrolases, in programmed cell death associated with apoptotic or autophagic phenotypes is presented, as evidenced from observations on cultured cells and living animals. The possible molecular mechanisms that underlie the action of lysosomes during cell death are also described. Finally, the contribution of lysosomal proteins and lysosomes to tumor initiation and progression is discussed. Elucidation of this role and the underlying mechanisms will shed a new light on these 'old' organelles and hopefully pave the way for the development of novel anticancer strategies.
Collapse
Affiliation(s)
- Claudine Tardy
- INSERM U466, Laboratoire de Biochimie, Institut Louis Bugnard, Centre Hospitalier Universitaire de Rangueil, BP 84225, 31432 Toulouse, France
| | | | | | | | | |
Collapse
|
16
|
Bollinger CR, Teichgräber V, Gulbins E. Ceramide-enriched membrane domains. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:284-94. [PMID: 16226325 DOI: 10.1016/j.bbamcr.2005.09.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2005] [Revised: 09/05/2005] [Accepted: 09/06/2005] [Indexed: 01/05/2023]
Abstract
Cellular activation involves the re-organization of receptor molecules and the intracellular signalosom in the cell membrane. Recent studies indicate that specialized domains of the cell membrane, termed rafts, are central for the spatial organization of receptors and signaling molecules. Rafts are converted into larger membrane platforms by activity of the acid sphingomyelinase, which hydrolyses raft-sphingomyelin to ceramide. Ceramide molecules spontaneously associate to form ceramide-enriched microdomains, which fuse to large ceramide-enriched membrane platforms. The acid sphingomyelinase is activated by multiple stimuli including CD95, CD40, DR5/TRAIL, CD20, FcgammaRII, CD5, LFA-1, CD28, TNF, the Interleukin-1 receptor, the PAF-receptor, CD14, infection with P. aeruginosa, S. aureus, N. gonorrhoeae, Sindbis-Virus, Rhinovirus, treatment with gamma-irradiation, UV-light, doxorubicin, cisplatin, disruption of integrin-signaling and under some conditions of developmental death. Ceramide-enriched membrane platforms serve the clustering of receptors, the recruitment of intracellular signaling molecules and the exclusion of inhibitory signaling factors and, thus, facilitate signal transduction initiated by the specific stimulus.
Collapse
Affiliation(s)
- Claudia R Bollinger
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | |
Collapse
|
17
|
Wu J, Cheng Y, Jönsson BAG, Nilsson A, Duan RD. Acid sphingomyelinase is induced by butyrate but does not initiate the anticancer effect of butyrate in HT29 and HepG2 cells. J Lipid Res 2005; 46:1944-52. [PMID: 15961787 DOI: 10.1194/jlr.m500118-jlr200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Butyric acid and sphingomyelin (SM) affect colonic tumorigenesis. We examined the potential link between butyrate stimulation and SM metabolism in colonic and hepatic cancer cell lines. After incubating HT29 and HepG2 cells with butyrate and other short-chain fatty acids, we found that butyrate increased acid but not neutral or alkaline sphingomyelinase (SMase) activity by 10- to 20-fold. The effects occurred after 16 h of incubation and were associated with reduced SM and phosphatidylcholine contents and increased ceramide levels. Northern blotting showed increased acid SMase mRNA levels in these cells after butyrate stimulation. Propionate was less potent, and acetate had no effect. No similar changes of acid phosphatase could be identified. At concentrations that increased acid SMase expression, butyrate inhibited cell proliferation, activated caspase 3, and induced apoptosis. However, the antiproliferative and apoptotic effects of butyrate preceded the changes of acid SMase and were not affected by knocking down acid SMase expression by small, interfering RNA. In addition, butyrate-induced acid SMase expression was not affected by blocking the caspase pathway. In conclusion, butyrate regulates SM metabolism by stimulating acid SMase expression in colon and liver cancer cells, but the increased acid SMase is not a critical mechanism for initiating the anticancer effects of butyrate.
Collapse
Affiliation(s)
- Jun Wu
- Gastroenterology Laboratory, Biomedical Center B11, Lund University, S-221 84 Lund, Sweden
| | | | | | | | | |
Collapse
|
18
|
Erdreich-Epstein A, Tran LB, Cox OT, Huang EY, Laug WE, Shimada H, Millard M. Endothelial apoptosis induced by inhibition of integrins alphavbeta3 and alphavbeta5 involves ceramide metabolic pathways. Blood 2005; 105:4353-61. [PMID: 15705795 PMCID: PMC1895032 DOI: 10.1182/blood-2004-08-3098] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Matrix ligation of integrins alphavbeta3/alphavbeta5 is critical for endothelial survival and angiogenesis. We have previously shown that ceramide, a proapoptotic lipid second messenger, increases during endothelial anoikis (detachment-induced apoptosis). We now show that RGDfV, an integrin alphavbeta3/alphavbeta5 cyclic function-blocking peptide, increased ceramide and decreased sphingomyelin in human brain microvascular endothelial cells (HBMECs) plated on vitronectin, suggesting that sphingomyelin hydrolysis contributes to RGDfV-induced ceramide increase. Desipramine and imipramine, inhibitors of acid sphingomyelinase (ASMase), suppressed RGDfV-induced ceramide increase. Importantly, desipramine, imipramine, and a third ASMase inhibitor, SR33557, but not inhibitors of neutral sphingomyelinase, suppressed RGDfV-induced apoptosis, suggesting that ASMase was required for integrin-mediated apoptosis. Myriocin, an inhibitor of de novo ceramide synthesis, had no effect on RGDfV-induced HBMEC apoptosis. Interestingly, ASMase inhibitors also suppressed the RGDfV-induced loss of spreading on vitronectin. RGDfV induced a similar increase in ceramide and apoptosis in HBMECs on poly-l-lysine or vitronectin, although cells detached only from vitronectin, indicating that cell detachment was not required for RGDfV-induced apoptosis. Our results suggest involvement of ASMase and ceramide in endothelial apoptosis induced by inhibition of integrins alphavbeta3/alphavbeta5, and propose a novel molecular mechanism for the antiangiogenic effect of RGDfV.
Collapse
Affiliation(s)
- Anat Erdreich-Epstein
- Division of Hematology-Oncology, Department of Pediatrics, The Saban Research Institute at Childrens Hospital Los Angeles, 4650 Sunset Blvd, Mailstop No. 57, Los Angeles, CA 90027, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Hara S, Nakashima S, Kiyono T, Sawada M, Yoshimura S, Iwama T, Banno Y, Shinoda J, Sakai N. p53-Independent ceramide formation in human glioma cells during gamma-radiation-induced apoptosis. Cell Death Differ 2005; 11:853-61. [PMID: 15088070 DOI: 10.1038/sj.cdd.4401428] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although the p53 tumor-suppressor gene product plays a critical role in apoptotic cell death induced by DNA-damaging chemotherapeutic agents, human glioma cells with functional p53 were more resistant to gamma-radiation than those with mutant p53. U-87 MG cells with wild-type p53 were resistant to gamma-radiation. U87-W E6 cells that lost functional p53, by the expression of type 16 human papillomavirus E6 oncoprotein, became susceptible to radiation-induced apoptosis. The formation of ceramide by acid sphingomyelinase (A-SMase), but not by neutral sphingomyelinase, was associated with p53-independent apoptosis. SR33557 (2-isopropyl-1-(4-[3-N-methyl-N-(3,4-dimethoxybphenethyl)amino]propyloxy)benzene-sulfonyl) indolizine, an inhibitor of A-SMase, suppressed radiation-induced apoptotic cell death. In contrast, radiation-induced A-SMase activation was blocked in glioma cells with endogenous functional p53. The expression of acid ceramidase was induced by gamma-radiation, and was more evident in cells with functional p53. N-oleoylethanolamine, which is known to inhibit ceramidase activity, unexpectedly downregulated acid ceramidase and accelerated radiation-induced apoptosis in U87-W E6 cells. Moreover, cells with functional p53 could be sensitized to gamma-radiation by N-oleoylethanolamine, which suppressed radiation-induced acid ceramidase expression and then enhanced ceramide formation. Sensitization to gamma-radiation was also observed in U87-MG cells depleted of functional p53 by retroviral expression of small interfering RNA. These results indicate that ceramide may function as a mediator of p53-independent apoptosis in human glioma cells in response to gamma-radiation, and suggest that p53-dependent expression of acid ceramidase and blockage of A-SMase activation play pivotal roles in protection from gamma-radiation of cells with endogenous functional p53.
Collapse
Affiliation(s)
- S Hara
- Department of Neurosurgery, Gifu University School of Medicine, Tsukasamachi-40, Gifu 500-8705, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Marchesini N, Hannun YA. Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 2004; 82:27-44. [PMID: 15052326 DOI: 10.1139/o03-091] [Citation(s) in RCA: 259] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ceramide, an emerging bioactive lipid and second messenger, is mainly generated by hydrolysis of sphingomyelin through the action of sphingomyelinases. At least two sphingomyelinases, neutral and acid sphingomyelinases, are activated in response to many extracellular stimuli. Despite extensive studies, the precise cellular function of each of these sphingomyelinases in sphingomyelin turnover and in the regulation of ceramide-mediated responses is not well understood. Therefore, it is essential to elucidate the factors and mechanisms that control the activation of acid and neutral sphingomyelinases to understand their the roles in cell regulation. This review will focus on the molecular mechanisms that regulate these enzymes in vivo and in vitro, especially the roles of oxidants (glutathione, peroxide, nitric oxide), proteins (saposin, caveolin 1, caspases), and lipids (diacylglycerol, arachidonic acid, and ceramide).
Collapse
Affiliation(s)
- Norma Marchesini
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, 29425, USA
| | | |
Collapse
|
21
|
Colombaioni L, Garcia-Gil M. Sphingolipid metabolites in neural signalling and function. ACTA ACUST UNITED AC 2004; 46:328-55. [PMID: 15571774 DOI: 10.1016/j.brainresrev.2004.07.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/20/2022]
Abstract
Sphingolipid metabolites, such as ceramide, sphingosine, sphingosine-1-phosphate (S1P) and complex sphingolipids (gangliosides), are recognized as molecules capable of regulating a variety of cellular processes. The role of sphingolipid metabolites has been studied mainly in non-neuronal tissues. These studies have underscored their importance as signals transducers, involved in control of proliferation, survival, differentiation and apoptosis. In this review, we will focus on studies performed over the last years in the nervous system, discussing the recent developments and the current perspectives in sphingolipid metabolism and functions.
Collapse
|
22
|
Lagadic-Gossmann D, Huc L, Lecureur V. Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 2004; 11:953-61. [PMID: 15195071 DOI: 10.1038/sj.cdd.4401466] [Citation(s) in RCA: 379] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intracellular pH (pHi) has an important role in the maintenance of normal cell function, and hence this parameter has to be tightly controlled within a narrow range, largely through the activity of transporters located at the plasma membrane. These transporters can be modulated by endogenous or exogenous molecules as well as, in some pathological situations, leading to pHi changes that have been implicated in both cell proliferation and cell death. Whereas intracellular alkalinization seems to be a common feature of proliferative processes, the precise role of pHi in apoptosis is still unclear. The present review gathers the most recent advances along with previous data on both the origin and the role of pHi alterations in apoptosis and highlights the major concerns that merit further research in the future. Special attention is given to the possible role played by pHi-regulating transporters.
Collapse
Affiliation(s)
- D Lagadic-Gossmann
- INSERM UMR 620, Faculté des Sciences Pharmaceutiques et Biologiques, Université Rennes I, 2 av Pr Léon Bernard, 35 043 Rennes cedex, France.
| | | | | |
Collapse
|
23
|
Marí M, Colell A, Morales A, Pañeda C, Varela-Nieto I, García-Ruiz C, Fernández-Checa JC. Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest 2004; 113:895-904. [PMID: 15067322 PMCID: PMC362116 DOI: 10.1172/jci19852] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 01/13/2004] [Indexed: 12/23/2022] Open
Abstract
S-adenosyl-L-methionine (SAM) is synthesized by methionine adenosyltransferases (MATs). Ablation of the liver-specific MAT1A gene results in liver neoplasia and sensitivity to oxidant injury. Here we show that acidic sphingomyelinase (ASMase) mediates the downregulation of MAT1A by TNF-alpha. The levels of MAT1A mRNA as well as MAT I/III protein decreased in cultured rat hepatocytes by in situ generation of ceramide from exogenous human placenta ASMase. Hepatocytes lacking the ASMase gene (ASMase-/-) were insensitive to TNF-alpha but were responsive to exogenous ASMase-induced downregulation of MAT1A. In an in vivo model of lethal hepatitis by TNF-alpha, depletion of SAM preceded activation of caspases 8 and 3, massive liver damage, and death of the mice. In contrast, minimal hepatic SAM depletion, caspase activation, and liver damage were seen in ASMase-/- mice. Moreover, therapeutic treatment with SAM abrogated caspase activation and liver injury, thus rescuing ASMase+/+ mice from TNF-alpha-induced lethality. Thus, we have demonstrated a new role for ASMase in TNF-alpha-induced liver failure through downregulation of MAT1A, and maintenance of SAM may be useful in the treatment of acute and chronic liver diseases.
Collapse
Affiliation(s)
- Montserrat Marí
- Liver Unit, Institut de Malalties Digestives, Hospital Clínic i Provincial, Instituto Investigaciones Biomédicas August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
24
|
Marí M, Colell A, Morales A, Pañeda C, Varela-Nieto I, García-Ruiz C, Fernández-Checa JC. Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor–induced lethal hepatitis. J Clin Invest 2004. [DOI: 10.1172/jci200419852] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
25
|
Phillips DC, Griffiths HR. Ceramide induces a loss in cytosolic peroxide levels in mononuclear cells. Biochem J 2003; 375:567-79. [PMID: 12877656 PMCID: PMC1223707 DOI: 10.1042/bj20030693] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2003] [Revised: 06/20/2003] [Accepted: 07/23/2003] [Indexed: 01/26/2023]
Abstract
Ceramide (a sphingolipid) and reactive oxygen species are each partly responsible for intracellular signal transduction in response to a variety of agents. It has been reported that ceramide and reactive oxygen species are intimately linked and show reciprocal regulation [Liu, Andreieu-Abadie, Levade, Zhang, Obeid and Hannun (1998) J. Biol. Chem. 273, 11313-11320]. Utilizing synthetic, short-chain ceramide to mimic the cellular responses to fluctuations in natural endogenous ceramide formation or using stimulation of CD95 to induce ceramide formation, we found that the principal redox-altering property of ceramide is to lower the [peroxide](cyt) (cytosolic peroxide concentration). Apoptosis of Jurkat T-cells, primary resting and phytohaemagglutinin-activated human peripheral blood T-lymphocytes was preceded by a loss in [peroxide](cyt), as measured by the peroxide-sensitive probe 2',7'-dichlorofluorescein diacetate (also reflected in a lower rate of superoxide dismutase-inhibitable cytochrome c reduction), and this was not associated with a loss of membrane integrity. Where growth arrest of U937 monocytes was observed without a loss of membrane integrity, the decrease in [peroxide](cyt) was of a lower magnitude when compared with that preceding the onset of apoptosis in T-cells. Furthermore, decreasing the cytosolic peroxide level in U937 monocytes before the application of synthetic ceramide by pretreatment with either of the antioxidants N -acetyl cysteine or glutathione conferred apoptosis. However, N -acetyl cysteine or glutathione did not affect the kinetics or magnitude of ceramide-induced apoptosis of Jurkat T-cells. Therefore the primary redox effect of cellular ceramide accumulation is to lower the [peroxide](cyt) of both primary and immortalized cells, the magnitude of which dictates the cellular response.
Collapse
Affiliation(s)
- Darren C Phillips
- Molecular Biosciences Group, School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | | |
Collapse
|
26
|
Grassmé H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 2003; 22:5457-70. [PMID: 12934106 DOI: 10.1038/sj.onc.1206540] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early events required for induction of apoptosis by CD95 are preassociation of CD95, the formation of the death-inducing signaling complex (DISC) and clustering of CD95 in distinct membrane domains. Here, we identify the molecular ordering of these events and show that the acid sphingomyelinase (ASM) functions upstream of the DISC to mediate CD95 clustering in ceramide-enriched membrane platforms, an event that is required for DISC formation. Experiments in ASM-deficient cells revealed that CD95 ligation, in the absence of ceramide generation, triggers <1% of full caspase 8 activation at the receptor. This event, however, is both necessary and sufficient to trigger translocation of ASM onto the outer leaflet of the plasma membrane, ASM activation and ceramide release, but insufficient for apoptosis induction. Ceramide-mediated CD95 clustering then amplifies the primary CD95 signaling and drives the second step of CD95 signaling, that is, formation of the DISC yielding 100% caspase activity and apoptosis. These studies suggest that the most parsimonious interpretation of the molecular ordering of the earliest events in CD95 signaling, at least in some cells, is: CD95 ligation-->1% of maximum caspase 8 activation-->ASM translocation-->ceramide generation-->CD95 clustering-->DISC formation-->100% of maximum caspase 8 activation-->apoptosis.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
27
|
Scheel-Toellner D, Wang K, Singh R, Majeed S, Raza K, Curnow SJ, Salmon M, Lord JM. The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun 2002; 297:876-9. [PMID: 12359234 DOI: 10.1016/s0006-291x(02)02311-2] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane microdomains known as lipid rafts have been shown recently to be involved in Fas signalling and apoptosis in T and B cell lines. Here, we have investigated further the role of lipid rafts in Fas-induced apoptosis in non-transformed human CD4 T cells. We show that Fas-induced apoptosis in CD4 T cells was inhibited by the lipid raft disrupter methyl-beta-cyclodextrin. When lipid rafts were isolated from control and Fas ligand treated cells, we found that a small proportion of Fas was present in the raft fraction in untreated cells and that this was greatly increased upon Fas ligation. The other components of the Death Inducing Signalling Complex (DISC), FADD, and procaspase 8, were also present at higher levels in the raft fraction isolated from Fas ligand treated cells. We conclude that formation of the DISC occurs in lipid rafts and that these membrane microdomains are required for efficient Fas signalling and apoptosis.
Collapse
Affiliation(s)
- D Scheel-Toellner
- MRC Centre for Immune Regulation, Birmingham University Medical School, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Levade T, Malagarie-Cazenave S, Gouazé V, Ségui B, Tardy C, Betito S, Andrieu-Abadie N, Cuvillier O. Ceramide in apoptosis: a revisited role. Neurochem Res 2002; 27:601-7. [PMID: 12374195 DOI: 10.1023/a:1020215815013] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sphingolipid ceramide has recently emerged as a new transducer or modulator of apoptotic cell death. This function, however, has recently been challenged. Here, in the light of recent observations, the role of ceramide in apoptosis signaling is discussed.
Collapse
Affiliation(s)
- Thierry Levade
- INSERM U.466, Laboratoire de Biochimie, CHU Rangueil, Toulouse, France.
| | | | | | | | | | | | | | | |
Collapse
|