1
|
McNeill MC, Wray J, Sala-Newby GB, Hindmarch CCT, Smith SA, Ebrahimighaei R, Newby AC, Bond M. Nuclear actin regulates cell proliferation and migration via inhibition of SRF and TEAD. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118691. [PMID: 32119877 PMCID: PMC7262588 DOI: 10.1016/j.bbamcr.2020.118691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Actin dynamics regulate cell behaviour in response to physiological signals. Here we demonstrate a novel role for nuclear actin in inhibiting cell proliferation and migration. We demonstrate that physiological signals that elevate cAMP, which is anti-mitogenic in vascular smooth muscle cells, increases nuclear actin monomer levels. Expression of a nuclear-targeted polymerisation-defective actin mutant (NLS-ActinR62D) inhibited proliferation and migration. Preventing nuclear actin monomer accumulation by enhancing its nuclear export or polymerisation reversed the anti-mitogenic and anti-migratory effects of cAMP. Transcriptomic analysis identified repression of proliferation and migration associated genes regulated by serum response factor (SRF) and TEA Domain (TEAD) transcription factors. Accordingly, NLS-ActinR62D inhibited SRF and TEAD activity and target gene expression, and these effects were reversed by constitutively-active mutants of the TEAD and SRF co-factors YAP, TAZ and MKL1. In summary, intranuclear actin inhibits proliferation and migration by inhibiting YAP-TEAD and MKL-SRF activity. This mechanism explains the anti-mitogenic and anti-migratory properties of physiological signals that elevate cAMP. SUMMARY: McNeill et al show that increased levels of intranuclear actin monomer inhibit cell proliferation and migration by inhibiting MKL1-SRF and YAP/TAZ-TEAD-dependent gene expression. This mechanism mediates the anti-mitogenic and anti-migratory effects of physiological signals that elevate cyclic-AMP.
Collapse
Affiliation(s)
- Madeleine C McNeill
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Jason Wray
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Graciela B Sala-Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit (QCPU), Translational Institute of Medicine (TIME), Department of Medicine, Queen's University, Kingston, ON K7L3N6, Canada
| | - Sarah A Smith
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Reza Ebrahimighaei
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Andrew C Newby
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | - Mark Bond
- School of Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Research Floor Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| |
Collapse
|
2
|
Smith SA, Newby AC, Bond M. Ending Restenosis: Inhibition of Vascular Smooth Muscle Cell Proliferation by cAMP. Cells 2019; 8:cells8111447. [PMID: 31744111 PMCID: PMC6912325 DOI: 10.3390/cells8111447] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Increased vascular smooth muscle cell (VSMC) proliferation contributes towards restenosis after angioplasty, vein graft intimal thickening and atherogenesis. The second messenger 3′ 5′ cyclic adenosine monophosphate (cAMP) plays an important role in maintaining VSMC quiescence in healthy vessels and repressing VSMC proliferation during resolution of vascular injury. Although the anti-mitogenic properties of cAMP in VSMC have been recognised for many years, it is only recently that we gained a detailed understanding of the underlying signalling mechanisms. Stimuli that elevate cAMP in VSMC inhibit G1-S phase cell cycle progression by inhibiting expression of cyclins and preventing S-Phase Kinase Associated Protein-2 (Skp2-mediated degradation of cyclin-dependent kinase inhibitors. Early studies implicated inhibition of MAPK signalling, although this does not fully explain the anti-mitogenic effects of cAMP. The cAMP effectors, Protein Kinase A (PKA) and Exchange Protein Activated by cAMP (EPAC) act together to inhibit VSMC proliferation by inducing Cyclic-AMP Response Element Binding protein (CREB) activity and inhibiting members of the RhoGTPases, which results in remodelling of the actin cytoskeleton. Cyclic-AMP induced actin remodelling controls proliferation by modulating the activity of Serum Response Factor (SRF) and TEA Domain Transcription Factors (TEAD), which regulate expression of genes required for proliferation. Here we review recent research characterising these mechanisms, highlighting novel drug targets that may allow the anti-mitogenic properties of cAMP to be harnessed therapeutically to limit restenosis.
Collapse
Affiliation(s)
| | | | - Mark Bond
- Correspondence: ; Tel.: +44-117-3423586
| |
Collapse
|
3
|
Jones MC, Zha J, Humphries MJ. Connections between the cell cycle, cell adhesion and the cytoskeleton. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180227. [PMID: 31431178 PMCID: PMC6627016 DOI: 10.1098/rstb.2018.0227] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2018] [Indexed: 12/18/2022] Open
Abstract
Cell division, the purpose of which is to enable cell replication, and in particular to distribute complete, accurate copies of genetic material to daughter cells, is essential for the propagation of life. At a morphological level, division not only necessitates duplication of cellular structures, but it also relies on polar segregation of this material followed by physical scission of the parent cell. For these fundamental changes in cell shape and positioning to be achieved, mechanisms are required to link the cell cycle to the modulation of cytoarchitecture. Outside of mitosis, the three main cytoskeletal networks not only endow cells with a physical cytoplasmic skeleton, but they also provide a mechanism for spatio-temporal sensing via integrin-associated adhesion complexes and site-directed delivery of cargoes. During mitosis, some interphase functions are retained, but the architecture of the cytoskeleton changes dramatically, and there is a need to generate a mitotic spindle for chromosome segregation. An economical solution is to re-use existing cytoskeletal molecules: transcellular actin stress fibres remodel to create a rigid cortex and a cytokinetic furrow, while unipolar radial microtubules become the primary components of the bipolar spindle. This remodelling implies the existence of specific mechanisms that link the cell-cycle machinery to the control of adhesion and the cytoskeleton. In this article, we review the intimate three-way connection between microenvironmental sensing, adhesion signalling and cell proliferation, particularly in the contexts of normal growth control and aberrant tumour progression. As the morphological changes that occur during mitosis are ancient, the mechanisms linking the cell cycle to the cytoskeleton/adhesion signalling network are likely to be primordial in nature and we discuss recent advances that have elucidated elements of this link. A particular focus is the connection between CDK1 and cell adhesion. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
| | | | - Martin J. Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
4
|
A Review on Adducin from Functional to Pathological Mechanisms: Future Direction in Cancer. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3465929. [PMID: 29862265 PMCID: PMC5976920 DOI: 10.1155/2018/3465929] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/14/2022]
Abstract
Adducin (ADD) is a family of membrane skeleton proteins including ADD1, ADD2, and ADD3 that are encoded by distinct genes on different chromosomes. Adducin is primarily responsible for the assembly of spectrin-actin network that provides physical support to the plasma membrane and mediates signal transduction in various cellular physiological processes upon regulation by protein kinase C-dependent and calcium/calmodulin-dependent pathways. Abnormal phosphorylation, genetic variations, and alternative splicing of adducin may contribute to alterations in cellular functions involved in pathogenic processes. These alterations are associated with a wide range of diseases including cancer. This paper begins with a discussion on how adducin partakes in the structural formation of membrane skeleton, its regulation, and related functional characteristics, followed by a review on the pathogenesis of hypertension, biliary atresia, and cancer with respect to increased disease susceptibility mediated by adducin polymorphism and/or dysregulation. Given the functional diversity of adducin in different cellular compartments, we aim to provide a knowledge base whereby its pathophysiological roles can be better understood. More importantly, we aim to provide novel insights that may be of significance in turning the adducin model to clinical application.
Collapse
|
5
|
Park T, Koptyra M, Curran T. Fibroblast Growth Requires CT10 Regulator of Kinase (Crk) and Crk-like (CrkL). J Biol Chem 2016; 291:26273-26290. [PMID: 27807028 DOI: 10.1074/jbc.m116.764613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Indexed: 12/12/2022] Open
Abstract
CT10 regulator of kinase (Crk) and Crk-like (CrkL) are the cellular counterparts of the viral oncogene v-Crk Elevated levels of Crk and CrkL have been observed in many human cancers; inhibition of Crk and CrkL expression reduced the tumor-forming potential of cancer cell lines. Despite a close relationship between the Crk family proteins and tumorigenesis, how Crk and CrkL contribute to cell growth is unclear. We ablated endogenous Crk and CrkL from cultured fibroblasts carrying floxed alleles of Crk and CrkL by transfection with synthetic Cre mRNA (synCre). Loss of Crk and CrkL induced by synCre transfection blocked cell proliferation and caused shrinkage of the cytoplasm and the nucleus, formation of adherens junctions, and reduced cell motility. Ablation of Crk or CrkL alone conferred a much more modest reduction in cell proliferation. Reintroduction of CrkI, CrkII, or CrkL individually rescued cell proliferation in the absence of the endogenous Crk and CrkL, suggesting that Crk and CrkL play overlapping functions in regulating fibroblast growth. Serum and basic FGF induced phosphorylation of Akt, MAP kinases, and S6 kinase and Fos expression in the absence of Crk and CrkL, suggesting that cells lacking Crk and CrkL are capable of initiating major signal transduction pathways in response to extracellular stimuli. Furthermore, cell cycle and cell death analyses demonstrated that fibroblasts lacking Crk and CrkL become arrested at the G1-S transition and undergo a modest apoptosis. Taken together, our results suggest that Crk and CrkL play essential overlapping roles in fibroblast growth.
Collapse
Affiliation(s)
- Taeju Park
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Mateusz Koptyra
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| | - Tom Curran
- From the Children's Research Institute, Children's Mercy Kansas City, Kansas City, Missouri 64108
| |
Collapse
|
6
|
Brock A, Krause S, Ingber DE. Control of cancer formation by intrinsic genetic noise and microenvironmental cues. Nat Rev Cancer 2015; 15:499-509. [PMID: 26156637 DOI: 10.1038/nrc3959] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Differentiation therapies that induce malignant cells to stop growing and revert to normal tissue-specific differentiated cell types are successful in the treatment of a few specific haematological tumours. However, this approach has not been widely applied to solid tumours because their developmental origins are less well understood. Recent advances suggest that understanding tumour cell plasticity and how intrinsic factors (such as genetic noise and microenvironmental signals, including physical cues from the extracellular matrix) govern cell state switches will help in the development of clinically relevant differentiation therapies for solid cancers.
Collapse
Affiliation(s)
- Amy Brock
- 1] Department of Biomedical Engineering, Institute for Cell and Molecular Biology, The University of Texas, Austin, Texas 78712, USA. [2]
| | - Silva Krause
- 1] Momenta Pharmaceuticals, Cambridge, Massachusetts 02142, USA. [2]
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, CLSB 5, Boston, Massachusetts 02115, USA
| |
Collapse
|
7
|
Schevzov G, Kee AJ, Wang B, Sequeira VB, Hook J, Coombes JD, Lucas CA, Stehn JR, Musgrove EA, Cretu A, Assoian R, Fath T, Hanoch T, Seger R, Pleines I, Kile BT, Hardeman EC, Gunning PW. Regulation of cell proliferation by ERK and signal-dependent nuclear translocation of ERK is dependent on Tm5NM1-containing actin filaments. Mol Biol Cell 2015; 26:2475-90. [PMID: 25971798 PMCID: PMC4571302 DOI: 10.1091/mbc.e14-10-1453] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 05/07/2015] [Indexed: 12/27/2022] Open
Abstract
Tropomyosin Tm5NM1 regulates cell proliferation and organ size. It mediates this effect by regulating the interaction of pERK and Imp7, leading to the regulation of pERK nuclear translocation. This demonstrates a role for a specific population of actin filaments in regulating a critical step in the MAPK/ERK signaling pathway. ERK-regulated cell proliferation requires multiple phosphorylation events catalyzed first by MEK and then by casein kinase 2 (CK2), followed by interaction with importin7 and subsequent nuclear translocation of pERK. We report that genetic manipulation of a core component of the actin filaments of cancer cells, the tropomyosin Tm5NM1, regulates the proliferation of normal cells both in vitro and in vivo. Mouse embryo fibroblasts (MEFs) lacking Tm5NM1, which have reduced proliferative capacity, are insensitive to inhibition of ERK by peptide and small-molecule inhibitors, indicating that ERK is unable to regulate proliferation of these knockout (KO) cells. Treatment of wild-type MEFs with a CK2 inhibitor to block phosphorylation of the nuclear translocation signal in pERK resulted in greatly decreased cell proliferation and a significant reduction in the nuclear translocation of pERK. In contrast, Tm5NM1 KO MEFs, which show reduced nuclear translocation of pERK, were unaffected by inhibition of CK2. This suggested that it is nuclear translocation of CK2-phosphorylated pERK that regulates cell proliferation and this capacity is absent in Tm5NM1 KO cells. Proximity ligation assays confirmed a growth factor–stimulated interaction of pERK with Tm5NM1 and that the interaction of pERK with importin7 is greatly reduced in the Tm5NM1 KO cells.
Collapse
Affiliation(s)
- Galina Schevzov
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Anthony J Kee
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Bin Wang
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Vanessa B Sequeira
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jeff Hook
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Jason D Coombes
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Christine A Lucas
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Justine R Stehn
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Elizabeth A Musgrove
- Kinghorn Cancer Centre, Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Alexandra Cretu
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Richard Assoian
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6160
| | - Thomas Fath
- Neurodegeneration and Repair Laboratory, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Tamar Hanoch
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rony Seger
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Irina Pleines
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Benjamin T Kile
- Cancer and Hematology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Edna C Hardeman
- Cellular and Genetic Medicine Unit, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| | - Peter W Gunning
- Oncology Research Unit, School of Medical Sciences, University of New South Wales, Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Chang CY, Leu JD, Lee YJ. The actin depolymerizing factor (ADF)/cofilin signaling pathway and DNA damage responses in cancer. Int J Mol Sci 2015; 16:4095-120. [PMID: 25689427 PMCID: PMC4346946 DOI: 10.3390/ijms16024095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/06/2023] Open
Abstract
The actin depolymerizing factor (ADF)/cofilin protein family is essential for actin dynamics, cell division, chemotaxis and tumor metastasis. Cofilin-1 (CFL-1) is a primary non-muscle isoform of the ADF/cofilin protein family accelerating the actin filamental turnover in vitro and in vivo. In response to environmental stimulation, CFL-1 enters the nucleus to regulate the actin dynamics. Although the purpose of this cytoplasm-nucleus transition remains unclear, it is speculated that the interaction between CFL-1 and DNA may influence various biological responses, including DNA damage repair. In this review, we will discuss the possible involvement of CFL-1 in DNA damage responses (DDR) induced by ionizing radiation (IR), and the implications for cancer radiotherapy.
Collapse
Affiliation(s)
- Chun-Yuan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
| | - Jyh-Der Leu
- Division of Radiation Oncology, Taipei City Hospital RenAi Branch, Taipei 106, Taiwan.
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei 112, Taiwan.
| |
Collapse
|
9
|
Plaimee P, Khamphio M, Weerapreeyakul N, Barusrux S, Johns NP. Immunomodulatory effect of melatonin in SK-LU-1 human lung adenocarcinoma cells co-cultured with peripheral blood mononuclear cells. Cell Prolif 2014; 47:406-15. [PMID: 25053373 DOI: 10.1111/cpr.12119] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/17/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The anti-cancer potential of melatonin has been examined using a variety of experimental approaches. Melatonin immunomodulatory action was evaluated against the lung cancer cell line SK-LU-1, in co-culture with human peripheral blood mononuclear cells (PBMC). MATERIALS AND METHODS Melatonin was tested on the cell line only after 24 h incubation (direct effect), and on the co-culture system of SK-LU-1 and PBMC to investigate any indirect effect. Apoptotic induction of the cancer cells was assessed using annexin V/PI staining with flow cytometric analysis for membrane alteration. Intracellular superoxide anion (O2 (•-) ) and hydrogen peroxide (H2 O2 ) for intracellular oxidative stress and glutathione (GSH) for intracellular anti-oxidation were measured with specific fluorescence probes. DNA fractions were measured employing propidium iodide (PI) fluorescence staining. RESULTS High doses of melatonin were directly toxic to SK-LU-1 cells, while PBMC-mediated indirect effect occurred after moderate doses (1 μm). Under co-culture conditions, increases in apoptotic cell death, increase in oxidative stress by reduction of GSH and cell cycle arrest in G0 /G1 in SK-LU-1 cells, were observed as the immunomodulatory effect of melatonin. CONCLUSION Melatonin had indirect effects on lung cancer cells by enhancement of immunomodulatory effects, but further studies of mechanism(s) involved are needed.
Collapse
Affiliation(s)
- P Plaimee
- Graduate School, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand; Melatonin Research Group, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | | | | | | | | |
Collapse
|
10
|
Abstract
Morphogenesis is the remarkable process by which cells self-assemble into complex tissues and organs that exhibit specialized form and function during embryological development. Many of the genes and chemical cues that mediate tissue and organ formation have been identified; however, these signals alone are not sufficient to explain how tissues and organs are constructed that exhibit their unique material properties and three-dimensional forms. Here, we review work that has revealed the central role that physical forces and extracellular matrix mechanics play in the control of cell fate switching, pattern formation, and tissue development in the embryo and how these same mechanical signals contribute to tissue homeostasis and developmental control throughout adult life.
Collapse
Affiliation(s)
- Tadanori Mammoto
- Vascular Biology Program, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115;
| | | | | |
Collapse
|
11
|
Wozniak MA, Cheng CQ, Shen CJ, Gao L, Olarerin-George AO, Won KJ, Hogenesch JB, Chen CS. Adhesion regulates MAP kinase/ternary complex factor exchange to control a proliferative transcriptional switch. Curr Biol 2012; 22:2017-26. [PMID: 23063436 DOI: 10.1016/j.cub.2012.08.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND The ternary complex factors (TCFs; Elk1, Net, and Sap-1) are growth factor-responsive transcription cofactors of serum response factor (SRF) and are activated by MAP kinase (MAPK) phosphorylation to regulate immediate early gene transcription. Although cell adhesion also can regulate immediate early genes and proliferation, the mechanism for this effect has remained unexplored. RESULTS Restricting adhesion and spreading of G(0)-synchronized cells on substrates with decreasing size of micropatterned islands of fibronectin suppressed serum-induced immediate early gene expression and S phase entry. Knockdown of Sap-1 decreased expression of the immediate early genes egr1 and fos and subsequent proliferation normally present with high adhesion, whereas knockdown of Net rescued egr1 and fos expression and proliferation normally suppressed by low adhesion. Chromatin immunoprecipitation studies showed increased occupancy of egr1 and fos promoters by Sap-1 with high adhesion, whereas low adhesion increased Net occupancy. This switch in TCF promoter binding was regulated by an adhesion-mediated switch in MAPK activity. Increasing adhesion enhanced serum-induced JNK activity while suppressing p38 activity, leading to increased Sap-1 phosphorylation and Net dephosphorylation, and switching Net with Sap-1 at egr1 and fos promoters to support proliferation. Microarray studies confirmed this switch in TCF regulation of proliferative genes and uncovered novel gene targets and functions coregulated by Sap-1 and Net. CONCLUSIONS These data demonstrate a key role for the TCFs in adhesion-induced transcription and proliferation and reveal a novel MAPK/TCF transcriptional switch that controls this process.
Collapse
Affiliation(s)
- Michele A Wozniak
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Margadant C, Cremers L, Sonnenberg A, Boonstra J. MAPK uncouples cell cycle progression from cell spreading and cytoskeletal organization in cycling cells. Cell Mol Life Sci 2012; 70:293-307. [PMID: 22926416 PMCID: PMC3535415 DOI: 10.1007/s00018-012-1130-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 07/19/2012] [Accepted: 07/23/2012] [Indexed: 11/28/2022]
Abstract
Integrin-mediated cytoskeletal tension supports growth-factor-induced proliferation, and disruption of the actin cytoskeleton in growth factor-stimulated cells prevents the re-expression of cyclin D and cell cycle re-entry from quiescence. In contrast to cells that enter the cell cycle from G0, cycling cells continuously express cyclin D, and are subject to major cell shape changes during the cell cycle. Here, we investigated the cell cycle requirements for cytoskeletal tension and cell spreading in cycling mammalian cells that enter G1-phase from mitosis. Disruption of the actin cytoskeleton at progressive time-points in G1-phase induced cell rounding, FA disassembly, and attenuated both integrin signaling and growth factor-induced p44/p42 mitogen-activated protein kinase activation. Although cyclin D expression was reduced, the expression of cyclin A and entry into S-phase were not affected. Moreover, expression of cyclin B1, progression through G2- and M-phase, and commitment to a new cell cycle occurred normally. In contrast, cell cycle progression was strongly prevented by inhibition of MAPK activity in G1-phase, whereas cell spreading, cytoskeletal organization, and integrin signaling were not impaired. MAPK inhibition also prevented cytoskeleton-independent cell cycle progression. Thus, these results uncouple the requirements for cell spreading and cytoskeletal organization from MAPK signaling, and show that cycling mammalian cells can proliferate independently of actin stress fibers, focal adhesions, or cell spreading, as long as a threshold level of MAPK activity is sustained.
Collapse
Affiliation(s)
- Coert Margadant
- Department of Cell Biology, Faculty of Sciences, University of Utrecht, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Filamin a regulates neural progenitor proliferation and cortical size through Wee1-dependent Cdk1 phosphorylation. J Neurosci 2012; 32:7672-84. [PMID: 22649246 DOI: 10.1523/jneurosci.0894-12.2012] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytoskeleton-associated proteins play key roles not only in regulating cell morphology and migration but also in proliferation. Mutations in the cytoskeleton-associated gene filamin A (FlnA) cause the human disorder periventricular heterotopia (PH). PH is a disorder of neural stem cell development that is characterized by disruption of progenitors along the ventricular epithelium and subsequent formation of ectopic neuronal nodules. FlnA-dependent regulation of cytoskeletal dynamics is thought to direct neural progenitor migration and proliferation. Here we show that embryonic FlnA-null mice exhibited a reduction in brain size and decline in neural progenitor numbers over time. The drop in the progenitor population was not attributable to cell death or changes in premature differentiation, but to prolonged cell cycle duration. Suppression of FlnA led to prolongation of the entire cell cycle length, principally in M phase. FlnA loss impaired degradation of cyclin B1-related proteins, thereby delaying the onset and progression through mitosis. We found that the cdk1 kinase Wee1 bound FlnA, demonstrated increased expression levels after loss of FlnA function, and was associated with increased phosphorylation of cdk1. Phosphorylation of cdk1 inhibited activation of the anaphase promoting complex degradation system, which was responsible for cyclin B1 degradation and progression through mitosis. Collectively, our results demonstrate a molecular mechanism whereby FlnA loss impaired G2 to M phase entry, leading to cell cycle prolongation, compromised neural progenitor proliferation, and reduced brain size.
Collapse
|
14
|
Mammoto A, Mammoto T, Ingber DE. Mechanosensitive mechanisms in transcriptional regulation. J Cell Sci 2012; 125:3061-73. [PMID: 22797927 DOI: 10.1242/jcs.093005] [Citation(s) in RCA: 282] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transcriptional regulation contributes to the maintenance of pluripotency, self-renewal and differentiation in embryonic cells and in stem cells. Therefore, control of gene expression at the level of transcription is crucial for embryonic development, as well as for organogenesis, functional adaptation, and regeneration in adult tissues and organs. In the past, most work has focused on how transcriptional regulation results from the complex interplay between chemical cues, adhesion signals, transcription factors and their co-regulators during development. However, chemical signaling alone is not sufficient to explain how three-dimensional (3D) tissues and organs are constructed and maintained through the spatiotemporal control of transcriptional activities. Accumulated evidence indicates that mechanical cues, which include physical forces (e.g. tension, compression or shear stress), alterations in extracellular matrix (ECM) mechanics and changes in cell shape, are transmitted to the nucleus directly or indirectly to orchestrate transcriptional activities that are crucial for embryogenesis and organogenesis. In this Commentary, we review how the mechanical control of gene transcription contributes to the maintenance of pluripotency, determination of cell fate, pattern formation and organogenesis, as well as how it is involved in the control of cell and tissue function throughout embryogenesis and adult life. A deeper understanding of these mechanosensitive transcriptional control mechanisms should lead to new approaches to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
15
|
Tissue deformation spatially modulates VEGF signaling and angiogenesis. Proc Natl Acad Sci U S A 2012; 109:6886-91. [PMID: 22511716 DOI: 10.1073/pnas.1201626109] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Physical forces play a major role in the organization of developing tissues. During vascular development, physical forces originating from a fluid phase or from cells pulling on their environment can alter cellular signaling and the behavior of cells. Here, we observe how tissue deformation spatially modulates angiogenic signals and angiogenesis. Using soft lithographic templates, we assemble three-dimensional, geometric tissues. The tissues contract autonomously, change shape stereotypically and form patterns of vascular structures in regions of high deformations. We show that this emergence correlates with the formation of a long-range gradient of Vascular Endothelial Growth Factor (VEGF) in interstitial cells, the local overexpression of the corresponding receptor VEGF receptor 2 (VEGFR-2) and local differences in endothelial cells proliferation. We suggest that tissue contractility and deformation can induce the formation of gradients of angiogenic microenvironments which could contribute to the long-range patterning of the vascular system.
Collapse
|
16
|
Spencer VA. Actin-towards a deeper understanding of the relationship between tissue context, cellular function and tumorigenesis. Cancers (Basel) 2011; 3:4269-80. [PMID: 24213138 PMCID: PMC3763423 DOI: 10.3390/cancers3044269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/26/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023] Open
Abstract
It is well-established that the actin cytoskeleton plays an important role in tumor development yet the contribution made by nuclear actin is ill-defined. In a recent study, nuclear actin was identified as a key mediator through which laminin type III (LN1) acts to control epithelial cell growth. In the breast, epithelial tumors are surrounded by an environment which lacks LN1. These findings point to actin as a potential mediator of tumor development. Here our current understanding of the roles of cytoplasmic and nuclear actin in normal and tumor cell growth is reviewed, relating these functions to cell phenotype in a tissue context.
Collapse
Affiliation(s)
- Virginia A Spencer
- Cell Culture Essentials, Life Technologies, 7335 Executive Way, Frederick, MD 21703, USA.
| |
Collapse
|
17
|
Abstract
Both growth factor directed and integrin dependent signal transduction were shown to take place directly after completion of mitosis. The local activation of these signal transduction cascades was investigated in early G1 cells. Interestingly, various key signal transduction proteins were found in blebs at the cell membrane within 30 min after mitosis. These membrane blebs appeared in round, mitotic-like cells and disappeared rapidly during spreading of the cells in G1 phase. In addition to tyrosine-phosphorylated proteins, the blebs contained also phosphorylated FAK and phosphorylated MAP kinase. The formation of membrane blebs in round, mitotic cells before cell spreading is not specific for mitotic cells, because similar features were observed in trypsinized cells. Just before cell spreading also these cells exhibited membrane blebs containing active signal transduction proteins. Inhibition of signal transduction did not affect membrane bleb formation, suggesting that the membrane blebs were formed independent of signal transduction.
Collapse
|
18
|
Yang S, Tian YS, Lee YJ, Yu FH, Kim HM. Mechanisms by which the inhibition of specific intracellular signaling pathways increase osteoblast proliferation on apatite surfaces. Biomaterials 2011; 32:2851-61. [PMID: 21288570 DOI: 10.1016/j.biomaterials.2011.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 01/06/2011] [Indexed: 12/30/2022]
Abstract
Osteoblasts proliferate slowly on the surface of calcium phosphate apatite which is widely used as a substrate biomaterial in bone regeneration. Owing to poor adhesion signaling in the cells grown on the calcium phosphate surface, inadequate growth factor signaling is generated to trigger cell cycle progression. The present study investigated an intracellular signal transduction pathway involved in the slow cell proliferation in osteoblasts grown on the calcium phosphate surface. Small GTPase RhoA and phosphatase and tensin homolog (PTEN) were more activated in cells grown on the surface of calcium phosphate apatite than on tissue culture plate. Specific inhibition of RhoA and PTEN induced the cells on calcium phosphate apatite surface to proliferate at a similar rate as cells on tissue culture plate surface. Specific inhibition of ROCK, which is a downstream effector of RhoA and an upstream activator of PTEN also increased proliferation of these osteoblasts. Present results indicate that physical property of calcium phosphate crystals that impede cell proliferation may be surmounted by the inhibition of the RhoA/ROCK/PTEN pathway to rescue delayed proliferation of osteoblasts on the calcium phosphate apatite surface. In addition, specific inhibition of ROCK promoted cell migration and osteoblast differentiation. Inhibition of the RhoA/ROCK/PTEN intracellular signaling pathway is expected to enhance cell activity to promote and accelerate bone regeneration on the calcium phosphate apatite surface.
Collapse
Affiliation(s)
- Seungwon Yang
- Laboratory for the Study of Molecular Biointerfaces, Department of Oral Histology and Developmental Biology, Program of Cell and Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Gjorevski N, Nelson CM. The mechanics of development: Models and methods for tissue morphogenesis. ACTA ACUST UNITED AC 2010; 90:193-202. [PMID: 20860059 DOI: 10.1002/bdrc.20185] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Embryonic development is a physical process during which groups of cells are sculpted into functional organs. The mechanical properties of tissues and the forces exerted on them serve as epigenetic regulators of morphogenesis. Understanding these mechanobiological effects in the embryo requires new experimental approaches. Here we focus on branching of the lung airways and bending of the heart tube to describe examples of mechanical and physical cues that guide cell fate decisions and organogenesis. We highlight recent technological advances to measure tissue elasticity and endogenous mechanical stresses in real time during organ development. We also discuss recent progress in manipulating forces in intact embryos.
Collapse
Affiliation(s)
- Nikolce Gjorevski
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
20
|
Beecken WDC, Ringel EM, Babica J, Oppermann E, Jonas D, Blaheta RA. Plasmin-clipped beta(2)-glycoprotein-I inhibits endothelial cell growth by down-regulating cyclin A, B and D1 and up-regulating p21 and p27. Cancer Lett 2010; 296:160-7. [PMID: 20435405 DOI: 10.1016/j.canlet.2010.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/19/2010] [Accepted: 04/06/2010] [Indexed: 12/14/2022]
Abstract
beta(2)-Glycoprotein-I (beta(2)gpI), an abundant plasma glycoprotein, functions as a regulator of thrombosis. Previously, we demonstrated that plasmin-clipped beta(2)gpI (cbeta(2)gpI) exerts an anti-angiogenic effect on human umbilical vein endothelial cells (HUVEC). The present study was focused on the molecular background responsible for this phenomenon. cbeta(2)gpI strongly reduced HUVEC growth and proliferation as evidenced by the MTT and BrdU assay and delayed cell cycle progression arresting HUVEC in the S-and G2/M-phase. Western blot analysis indicated that cbeta(2)gpI inhibited cyclin A, B and D1, and enhanced p21 and p27 expression. Activity of p38 was down-regulated independently from the cbeta(2)gpI incubation time. Phosphorylation of ERK1/2 was not changed early (30 and 60 min) but became enhanced later (90 min, 4h). JNK activity was reduced rapidly after cbeta(2)gpI treatment but compared to controls, increased thereafter. Annexin II blockade prevented growth inhibition and cell cycle delay evoked by cbeta(2)gpI. We assume that cbeta(2)gpI's effects on HUVEC growth is mediated via cyclin A, B and D1 suppression, up-regulation of p21 and p27 and coupled to modifications of the mitogen-activated protein (MAP) kinase signalling pathway. cbeta(2)gpI may represent a potential endogenous angiogenesis-targeted compound, opening the possibility of a novel tool to treat cancer.
Collapse
|
21
|
Bailey JL, Critser PJ, Whittington C, Kuske JL, Yoder MC, Voytik-Harbin SL. Collagen oligomers modulate physical and biological properties of three-dimensional self-assembled matrices. Biopolymers 2010; 95:77-93. [PMID: 20740490 DOI: 10.1002/bip.21537] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 08/10/2010] [Accepted: 08/11/2010] [Indexed: 01/09/2023]
Abstract
Elucidation of mechanisms underlying collagen fibril assembly and matrix-induced guidance of cell fate will contribute to the design and expanded use of this biopolymer for research and clinical applications. Here, we define how Type I collagen oligomers affect in-vitro polymerization kinetics as well as fibril microstructure and mechanical properties of formed matrices. Monomers and oligomers were fractionated from acid-solubilized pig skin collagen and used to generate formulations varying in monomer/oligomer content or average polymer molecular weight (AMW). Polymerization half-times decreased with increasing collagen AMW and closely paralleled lag times, indicating that oligomers effectively served as nucleation sites. Furthermore, increasing AMW yielded matrices with increased interfibril branching and had no correlative effect on fibril density or diameter. These microstructure changes increased the stiffness of matrices as evidenced by increases in both shear storage and compressive moduli. Finally, the biological relevance of modulating collagen AMW was evidenced by the ability of cultured endothelial colony forming cells to sense associated changes in matrix physical properties and alter vacuole and capillary-like network formation. This work documents the importance of oligomers as another physiologically-relevant design parameter for development and standardization of polymerizable collagen formulations to be used for cell culture, regenerative medicine, and engineered tissue applications.
Collapse
Affiliation(s)
- J L Bailey
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | | | | | |
Collapse
|
22
|
MST kinases monitor actin cytoskeletal integrity and signal via c-Jun N-terminal kinase stress-activated kinase to regulate p21Waf1/Cip1 stability. Mol Cell Biol 2009; 29:6380-90. [PMID: 19822666 DOI: 10.1128/mcb.00116-09] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
As well as providing a structural framework, the actin cytoskeleton plays integral roles in cell death, survival, and proliferation. The disruption of the actin cytoskeleton results in the activation of the c-Jun N-terminal kinase (JNK) stress-activated protein kinase (SAPK) pathway; however, the sensor of actin integrity that couples to the JNK pathway has not been characterized in mammalian cells. We now report that the mammalian Ste20-like (MST) kinases mediate the activation of the JNK pathway in response to the disruption of the actin cytoskeleton. One consequence of actin disruption is the JNK-mediated stabilization of p21(Waf1/Cip1) (p21) via the phosphorylation of Thr57. The expression of MST1 or MST2 was sufficient to stabilize p21 in a JNK- and Thr57-dependent manner, while the stabilization of p21 by actin disruption required MST activity. These data indicate that, in addition to being components of the Salvador-Warts-Hippo tumor suppressor network and binding partners of c-Raf and the RASSF1A tumor suppressor, MST kinases serve to monitor cytoskeletal integrity and couple via the JNK SAPK pathway to the regulation of a key cell cycle regulatory protein.
Collapse
|
23
|
Bond M, Wu YJ, Sala-Newby GB, Newby AC. Rho GTPase, Rac1, regulates Skp2 levels, vascular smooth muscle cell proliferation, and intima formation in vitro and in vivo. Cardiovasc Res 2008; 80:290-8. [PMID: 18599477 DOI: 10.1093/cvr/cvn188] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIMS Vascular smooth muscle cell (VSMC) proliferation contributes to intima formation after angioplasty or venous by-pass grafting, and during atherosclerosis. VSMC proliferation requires degradation of p27(Kip1) promoted by S-phase kinase-associated protein-2 (Skp2), an F-box protein component of the Skp-Cullin-F-box(Skp2) ubiquitin-ligase. We investigated the role of Rac(1) in the regulation of Skp2 in rat VSMC. METHODS AND RESULTS Rat carotid balloon injury increased Rac(1) activity. Rho GTPase inhibition with Clostridium difficile Toxin B or specific Rac(1) inhibition with adenovirus-mediated expression of dominant-negative Rac(1) reduced Skp2 levels, and VSMC proliferation in vitro and intima formation in vivo following carotid balloon injury. Inhibition of Skp2 expression and proliferation by dominant-negative Rac(1) was reversed by exogenous Skp2. Elevation of endogenous adenosine 3',5'-cyclic monophosphate (cAMP) with forskolin-inhibited Rac(1) activity, reduced Skp2, increased p27(Kip1) and inhibited VSMC proliferation, effects that were reversed by constitutively active Rac(1). These effects were independent of Rac(1) Cdc42/Rac interactive binding (CRIB)-domain effector proteins but associated with Rac(1)-dependent actin polymerization. CONCLUSION Rac(1) activity regulates VSMC proliferation by controlling Skp2 levels. Activation of Rac(1) induced by balloon injury in vivo increases Skp2 levels, which promotes VSMC proliferation and intima formation. Inhibition of this novel pathway underlies the negative effects of cAMP on VSMC proliferation.
Collapse
Affiliation(s)
- Mark Bond
- Bristol Heart Institute, University of Bristol, Level 7, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| | | | | | | |
Collapse
|
24
|
Ingber DE. Tensegrity-based mechanosensing from macro to micro. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 97:163-79. [PMID: 18406455 DOI: 10.1016/j.pbiomolbio.2008.02.005] [Citation(s) in RCA: 268] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article is a summary of a lecture on cellular mechanotransduction that was presented at a symposium on "Cardiac Mechano-Electric Feedback and Arrhythmias" that convened at Oxford, England in April 2007. Although critical mechanosensitive molecules and cellular components, such as integrins, stretch-activated ion channels, and cytoskeletal filaments, have been shown to contribute to the response by which cells convert mechanical signals into a biochemical response, little is known about how they function in the structural context of living cells, tissues and organs to produce orchestrated changes in cell behavior in response to stress. Here, studies are reviewed that suggest our bodies use structural hierarchies (systems within systems) composed of interconnected extracellular matrix and cytoskeletal networks that span from the macroscale to the nanoscale to focus stresses on specific mechanotransducer molecules. A key feature of these networks is that they are in a state of isometric tension (i.e., experience a tensile prestress), which ensures that various molecular-scale mechanochemical transduction mechanisms proceed simultaneously and produce a concerted response. These features of living architecture are the same principles that govern tensegrity (tensional integrity) architecture, and mathematical models based on tensegrity are beginning to provide new and useful descriptions of living materials, including mammalian cells. This article reviews how the use of tensegrity at multiple size scales in our bodies guides mechanical force transfer from the macro to the micro, as well as how it facilitates conversion of mechanical signals into changes in ion flux, molecular binding kinetics, signal transduction, gene transcription, cell fate switching and developmental patterning.
Collapse
Affiliation(s)
- Donald E Ingber
- Vascular Biology Program, Department of Surgery, Children's Hospital and Harvard Medical School, Boston, MA 02115-5737, USA.
| |
Collapse
|
25
|
Mammoto A, Sero JE, Mammoto T, Ingber DE. Methods for studying mechanical control of angiogenesis by the cytoskeleton and extracellular matrix. Methods Enzymol 2008; 443:227-59. [PMID: 18772019 DOI: 10.1016/s0076-6879(08)02012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mechanical forces that capillary endothelial cells generate in their cytoskeleton and exert on their extracellular matrix adhesions feed back to modulate cell sensitivity to soluble angiogenic factors, and thereby control vascular development. Here we describe various genetic, biochemical, and engineering methods that can be used to study, manipulate, and probe this physical mechanism of developmental control. These techniques are useful as in vitro angiogenesis models and for analyzing the molecular and biophysical basis of vascular control.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Department of Pathology, Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
26
|
Park SY, Li H, Avraham S. RAFTK/Pyk2 regulates EGF-induced PC12 cell spreading and movement. Cell Signal 2007; 19:289-300. [PMID: 16945503 DOI: 10.1016/j.cellsig.2006.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 06/29/2006] [Accepted: 07/04/2006] [Indexed: 01/13/2023]
Abstract
The protein tyrosine kinase RAFTK, also termed Pyk2, is a member of the focal adhesion kinase (FAK) subfamily. In this report, we show the role of RAFTK in neuroendocrine PC12 cells upon epidermal growth factor (EGF) stimulation. Following EGF treatment, we observed that RAFTK was tyrosine-phosphorylated in a time- and dose-dependent manner, while FAK was constitutively phosphorylated and primarily regulated by cell adhesion. Moreover, we found that RAFTK associated with the phosphorylated EGF receptor (EGFR) upon EGF stimulation. RAFTK phosphorylation was mediated primarily through PLCgamma-IP3-Ca(2+) signaling and partially through PI3-Kinase. Furthermore, overexpression of PRNK, a specific dominant-negative construct of RAFTK, was sufficient to block EGF-induced cell spreading and movement. Paxillin, a key modulator of the actin cytoskeleton and an RAFTK substrate, was also phosphorylated following EGF treatment. EGF induced a dynamic reorganization of RAFTK and paxillin at neuronal adhesion sites, with the specific localization of paxillin at the inner juxtaposition of RAFTK. Additionally, we observed that RAFTK associated with the scaffold protein c-Cbl and mediated its phosphorylation. Our data demonstrate that while FAK mediated cell adhesion, RAFTK was localized at the cytoplasm where it mediated inside-out signaling through intracellular Ca(2+), thus leading to cell spreading and movement upon EGF stimulation.
Collapse
Affiliation(s)
- Shin-Young Park
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Harvard Institutes of Medicine, 4 Blackfan Circle, Boston, MA 02215, USA
| | | | | |
Collapse
|
27
|
Russu WA. Thiazolidinedione anti-cancer activity: Is inhibition of microtubule assembly implicated? Med Hypotheses 2007; 68:343-6. [PMID: 16996226 DOI: 10.1016/j.mehy.2006.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/24/2022]
Abstract
An hypothesis is presented which seeks to explain the anti-cancer activity of thiazolidinediones (TZDs), a class of drugs currently used to treat type 2 diabetes mellitus. Empirical data from the scientific literature is used to support the hypothesis that TZDs are inhibitors of microtubule assembly. The similarities between the affects of TZDs on cellular processes and known inhibitors of tubulin polymerization are identified. Similarities between TZDs and currently used inhibitors of microtubule assembly, such as cell cycle arrest in G1 phase, anti-angiogenesis activity, and inhibition of cell motility, are striking. In addition to the similarities in biological function, certain molecular structure similarities are also identified. The possibility that TZDs inhibit the polymerization of actin is presented as an alternative interpretation of the available data. Finally suggestions for testing the hypothesis, by using commercially available tubulin polymerization assays and fluorescence based binding assays, as well as isothermal titration calorimetry, are given. Considering TZD position as third-line therapy for treatment of type 2 diabetes mellitus and the potential loss of market share to newly introduced inhalable insulin, a better understanding of TZD anti-cancer activity may lead to revival for this drug class in cancer treatment.
Collapse
Affiliation(s)
- Wade A Russu
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA.
| |
Collapse
|
28
|
Margadant C, van Opstal A, Boonstra J. Focal adhesion signaling and actin stress fibers are dispensable for progression through the ongoing cell cycle. J Cell Sci 2006; 120:66-76. [PMID: 17148575 DOI: 10.1242/jcs.03301] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Prevention of cell spreading or disruption of actin filaments inhibits growth factor stimulated cell cycle re-entry from quiescence, mainly because of a failure to induce cyclin D expression. Ectopic cyclin D expression overrules anchorage-dependency, suggesting that cell spreading per se is not required as long as cyclin D is otherwise induced. We investigated whether cyclin D expression in cells exiting mitosis is sufficient to drive morphology-independent cell cycle progression in continuously cycling (i.e. not quiescent) cells. Disruption of post-mitotic actin reorganization did not affect substratum reattachment but abolished the formation of filopodia, lamellipodia and ruffles, as well as stress fiber organization, focal adhesion assembly and cell spreading. Furthermore, integrin-mediated focal adhesion kinase (FAK) autophosphorylation and growth factor stimulated p42/p44 mitogen activated protein kinase (MAPK) activation were inhibited. Despite a progressive loss of cyclin D expression in late G1, cyclin E and cyclin A were normally induced. In addition, cells committed to DNA synthesis and completed their entire cycle. Our results demonstrate that post-mitotic disruption of the actin cytoskeleton allows cell cycle progression independent of focal adhesion signaling, cytoskeletal organization and cell shape, presumably because pre-existing cyclin D levels are sufficient to drive cell cycle progression at the M-G1 border.
Collapse
Affiliation(s)
- Coert Margadant
- Cellular Architecture and Dynamics, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | |
Collapse
|
29
|
Jeon SM, Choi B, Hong KU, Kim E, Seong YS, Bae CD, Park J. A cytoskeleton-associated protein, TMAP/CKAP2, is involved in the proliferation of human foreskin fibroblasts. Biochem Biophys Res Commun 2006; 348:222-8. [PMID: 16876122 DOI: 10.1016/j.bbrc.2006.07.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Accepted: 07/11/2006] [Indexed: 02/05/2023]
Abstract
Previously, we reported the cloning of a cytoskeleton-associated protein, TMAP/CKAP2, which was up-regulated in primary human gastric cancers. Although TMAP/CKAP2 has been found to be expressed in most cancer cell lines examined, the function of CKAP2 is not known. In this study, we found that TMAP/CKAP2 was not expressed in G0/G1 arrested HFFs, but that it was expressed in actively dividing cells. After initiating the cell cycle, TMAP/CKAP2 levels remained low throughout most of the G1 phase, but gradually increased between late G1 and G2/M. Knockdown of TMAP/CKAP2 reduced pRB phosphorylation and increased p27 expression, and consequently reduced HFF proliferation, whereas constitutive TMAP/CKAP2 expression increased pRB phosphorylation and enhanced proliferation. Our results show that this novel cytoskeleton-associated protein is expressed cell cycle dependently and that it is involved in cell proliferation.
Collapse
Affiliation(s)
- Sang-Min Jeon
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
30
|
Coleman ML, Densham RM, Croft DR, Olson MF. Stability of p21Waf1/Cip1 CDK inhibitor protein is responsive to RhoA-mediated regulation of the actin cytoskeleton. Oncogene 2006; 25:2708-16. [PMID: 16407839 DOI: 10.1038/sj.onc.1209322] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The proto-oncogene Ras GTPase stimulates transcription of p21Waf1/Cip1 (p21), which is repressed by the RhoA GTPase. We previously showed that Ras also elevates p21 protein levels by reducing its proteasome-mediated degradation. Therefore, we investigated whether RhoA also influenced p21 protein degradation. Pulse-chase analysis of p21 protein stability revealed that inhibitors of Rho function, which disrupt filamentous actin (F-actin), drastically slowed p21 degradation. Direct F-actin disruption mimicked Rho inhibition to stabilize p21. We found that Rho inhibition, or F-actin disruption, activated the JNK stress-activated protein kinase, and that interfering with JNK signalling, but not p38, abrogated p21 stabilization by Rho inhibition or F-actin-disrupting drugs. In addition, Ras-transformation led to increased constitutive JNK activity that contributed to the elevated p21 protein levels. These data suggest that p21 stability is influenced by a mechanism that monitors F-actin downstream of Rho, and which acts through a pathway involving activation of JNK. These results may have significant implications for therapies that target Rho-signalling pathways to induce p21-mediated cell-cycle arrest.
Collapse
Affiliation(s)
- M L Coleman
- The Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | | | | |
Collapse
|
31
|
LeDuc PP, LeDuc PR, Bellin RR, Bellin RM. Nanoscale intracellular organization and functional architecture mediating cellular behavior. Ann Biomed Eng 2006; 34:102-13. [PMID: 16456640 DOI: 10.1007/s10439-005-9008-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Accepted: 06/30/2005] [Indexed: 10/25/2022]
Abstract
Cells function based on a complex set of interactions that control pathways resulting in ultimate cell fates including proliferation, differentiation, and apoptosis. The inter-workings of this immensely dense network of intracellular molecules are influenced by more than random protein and nucleic acid distribution where their interactions culminate in distinct cellular function. By probing the design of these biological systems from an engineering perspective, researchers can gain great insight that will aid in building and utilizing systems that are on this size scale where traditional large-scale rules may fail to apply. The organized interaction and gradient distribution in intracellular space imply a structural architecture that modulates cellular processes by influencing biochemical interactions including transport and binding-reactions. One significant structure that plays a role in this modulation is the cell cytoskeleton. Here, we discuss the cytoskeleton as a central and integrating functional structure in influencing cell processes and we describe technology useful for probing this structure. We explain the nanometer scale science of cytoskeletal structure with respect to intracellular organization, mechanotransduction, cytoskeletal-associated proteins, and motor molecules, as well as nano- and microtechnologies that are applicable for experimental studies of the cytoskeleton. This biological architecture of the cytoskeleton influences molecular, cellular, and physiological processes through structured multimodular and hierarchical principles centered on these functional filaments. Through investigating these organic systems that have evolved over billions of years, understanding in biology, engineering, and nanometer-scaled science will be advanced.
Collapse
Affiliation(s)
- Philip P LeDuc
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | | | | | |
Collapse
|
32
|
Fortemaison N, Blancquaert S, Dumont JE, Maenhaut C, Aktories K, Roger PP, Dremier S. Differential involvement of the actin cytoskeleton in differentiation and mitogenesis of thyroid cells: inactivation of Rho proteins contributes to cyclic adenosine monophosphate-dependent gene expression but prevents mitogenesis. Endocrinology 2005; 146:5485-95. [PMID: 16123170 DOI: 10.1210/en.2005-0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In thyroid epithelial cells, TSH via cAMP induces a rounding up of the cells associated with actin stress fiber disruption, expression of differentiation genes and cell cycle progression. Here we have evaluated the role of small G proteins of the Rho family and their impact on the actin cytoskeleton in these different processes in primary cultures of canine thyrocytes. TSH and forskolin, but not growth factors, rapidly inactivated RhoA, Rac1, and Cdc42, as assayed by detection of GTP-bound forms. Using toxins that inactivate Rho proteins (toxin B, C3 exoenzyme) or activate them [cytotoxic necrotizing factor 1 (CNF1)], in comparison with disruption of the actin cytoskeleton by dihydrocytochalasin B (DCB) or latrunculin, two unexpected conclusions were reached: 1) inactivation of Rho proteins by cAMP, by disorganizing actin microfilaments and inducing cell retraction, could be necessary and sufficient to mediate at least part of the cAMP-dependent induction of thyroglobulin and thyroid oxidases, but only partly necessary for the induction of Na(+)/I(-) symporter and thyroperoxidase; 2) as indicated by the effect of their inhibition by toxin B and C3, some residual activity of Rho proteins could be required for the induction by cAMP-dependent or -independent mitogenic cascades of DNA synthesis and retinoblastoma protein (pRb) phosphorylation, through mechanisms targeting the activity, but not the stimulated assembly, of cyclin D3-cyclin-dependent kinase 4 complexes. However, at variance with current concepts mostly derived from fibroblast models, DNA synthesis induction and cyclin D3-cyclin-dependent kinase 4 activation were resistant to actin depolymerization by dihydrocytochalasin B in canine thyrocytes, which provides a first such example in a normal adherent cell.
Collapse
|
33
|
Walker JL, Fournier AK, Assoian RK. Regulation of growth factor signaling and cell cycle progression by cell adhesion and adhesion-dependent changes in cellular tension. Cytokine Growth Factor Rev 2005; 16:395-405. [PMID: 15886049 DOI: 10.1016/j.cytogfr.2005.03.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Accepted: 03/07/2005] [Indexed: 12/20/2022]
Abstract
The proliferation of most non-transformed cell types requires cell adhesion and cellular tension as well as exposure to mitogenic growth factors. Integrins and cadherins provide the adhesion signals, which ultimately allow for the cytoskeletal changes that control cellular tension. This review discusses the roles of integrins, cadherins, and the actin cytoskeleton as mediators of the mechanical tension critical for growth factor-dependent signaling and cell cycle progression.
Collapse
Affiliation(s)
- Janice L Walker
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, 19104-6084, USA
| | | | | |
Collapse
|
34
|
van Opstal A, Bijvelt JJM, Margadant C, Boonstra J. Role of signal transduction and actin in G1 phase progression. ACTA ACUST UNITED AC 2005; 45:186-200. [PMID: 16197985 DOI: 10.1016/j.advenzreg.2005.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Progression through the cell cycle of mammalian cells is dependent upon external factors such as growth- and ECM factors. These factors exert their effect predominantly during the G1 phase of the cell cycle. When cells are cultured in suspension or when growth factors are withdrawn from the medium, cells will stop cell cycle progression and enter a quiescent state. Cells will remain in this quiescent state until extracellular conditions change and cells are stimulated to re-enter the cell cycle. This stimulation is mediated by various signal transduction cascades such as the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase (PI3-kinase) pathway. In Chinese hamster ovary cells at least two serum-dependent points exist during G1 phase that lead to diffent cellular responses. The first point is located immediately after mitosis and is suggested to link with apoptosis. The second point is located in late G1 phase and probably corresponds with cellular differentiation. Signal transduction is mutually related to the cytoskeleton, especially the actin microfilament system. The actin microfilament system influences signal transduction and several signal transduction pathways influence the actin structure. Here we describe the role of the MAPK and PI3-kinase activities and of actin microfilaments in progression through the cell cycle and their role in the two G1 checkpoints.
Collapse
Affiliation(s)
- Angélique van Opstal
- Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
35
|
David-Pfeuty T. The flexible evolutionary anchorage-dependent Pardee's restriction point of mammalian cells: how its deregulation may lead to cancer. Biochim Biophys Acta Rev Cancer 2005; 1765:38-66. [PMID: 16219425 DOI: 10.1016/j.bbcan.2005.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 08/24/2005] [Accepted: 08/26/2005] [Indexed: 12/12/2022]
Abstract
Living cells oscillate between the two states of quiescence and division that stand poles apart in terms of energy requirements, macromolecular composition and structural organization and in which they fulfill dichotomous activities. Division is a highly dynamic and energy-consuming process that needs be carefully orchestrated to ensure the faithful transmission of the mother genotype to daughter cells. Quiescence is a low-energy state in which a cell may still have to struggle hard to maintain its homeostasis in the face of adversity while waiting sometimes for long periods before finding a propitious niche to reproduce. Thus, the perpetuation of single cells rests upon their ability to elaborate robust quiescent and dividing states. This led yeast and mammalian cells to evolve rigorous Start [L.H. Hartwell, J. Culotti, J. Pringle, B.J. Reid, Genetic control of the cell division cycle in yeast, Science 183 (1974) 46-51] and restriction (R) points [A.B. Pardee, A restriction point for control of normal animal cell proliferation, Proc. Natl. Acad. Sci. U. S. A. 71 (1974) 1286-1290], respectively, that reduce deadly interferences between the two states by enforcing their temporal insulation though still enabling a rapid transition from one to the other upon an unpredictable change in their environment. The constitutive cells of multi-celled organisms are extremely sensitive in addition to the nature of their adhering support that fluctuates depending on developmental stage and tissue specificity. Metazoan evolution has entailed, therefore, the need for exceedingly flexible anchorage-dependent R points empowered to assist cells in switching between quiescence and division at various times, places and conditions in the same organism. Programmed cell death may have evolved concurrently in specific contexts unfit for the operation of a stringent R point that increase the risk of deadly interferences between the two states (as it happens notably during development). But, because of their innate flexibility, anchorage-dependent R points have also the ability to readily adjust to a changing structural context so as to give mutated cells a chance to reproduce, thereby encouraging tumor genesis. The Rb and p53 proteins, which are regulated by the two products of the Ink4a-Arf locus [C.J. Sherr, The INK4a/ARF network in tumor suppression, Nat. Rev., Mol. Cell Biol. 2 (2001) 731-737], govern separable though interconnected pathways that cooperate to restrain cyclin D- and cyclin E-dependent kinases from precipitating untimely R point transit. The expression levels of the Ink4a and Arf proteins are especially sensitive to changes in cellular shape and adhesion that entirely remodel at the time when cells shift between quiescence and division. The Arf proteins further display an extremely high translational sensitivity and can activate the p53 pathway to delay R point transit, but, only when released from the nucleolus, 'an organelle formed by the act of building a ribosome' [T. Mélèse, Z. Xue, The nucleolus: an organelle formed by the act of building a ribosome, Curr. Opin. Cell Biol. 7 (1995) 319-324]. In this way, the Ink4a/Rb and Arf/p53 pathways emerge as key regulators of anchorage-dependent R point transit in mammalian cells and their deregulation is, indeed, a rule in human cancers. Thus, by selecting the nucleolus to mitigate cell cycle control by the Arf proteins, mammalian cells succeeded in forging a highly flexible R point enabling them to match cell division with a growth rate imposed by factors controlling nucleolar assembling, such as nutrients and adhesion. It is noteworthy that nutrient control of critical size at Start in budding yeast has been shown recently to be governed by a nucleolar protein interaction network [P. Jorgensen, J.L. Nishikawa, B.-J. Breitkreutz, M. Tyers, Systematic identification of pathways that couple cell growth and division in yeast, Science 297 (2002) 395-400].
Collapse
Affiliation(s)
- Thérèse David-Pfeuty
- UMR 146 du CNRS, Institut Curie-Recherche, Bâtiment 110, Centre Universitaire, 91405 Orsay, France.
| |
Collapse
|
36
|
Bellego FL, Fabre S, Pisselet C, Monniaux D. Cytoskeleton reorganization mediates alpha6beta1 integrin-associated actions of laminin on proliferation and survival, but not on steroidogenesis of ovine granulosa cells. Reprod Biol Endocrinol 2005; 3:19. [PMID: 15892896 PMCID: PMC1156948 DOI: 10.1186/1477-7827-3-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 05/16/2005] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Laminin (LN) is one of the most abundant extracellular matrix components of the basal lamina and granulosa cell layers of ovarian follicles. Culture of ovine granulosa cells (GC) on LN substratum induces cell spreading, enhances cell survival and proliferation, and promotes luteinization. Previous investigations have shown that these effects are mostly mediated by the alpha6beta1 integrin, but its signalization pathways have not been investigated. This study aimed to assess the importance of the cytoskeleton in the alpha6beta1 integrin-mediated actions of laminin on survival, proliferation and steroidogenesis of ovine GC. METHODS The relationships between morphology and functions of ovine GC cultured on substrata containing LN or/and RGD peptides were investigated. The effects of (1) cytochalasin D, an actin cytoskeleton-disrupting drug, (2) a specific function-blocking antibody raised against alpha6 integrin subunit (anti-alpha6 IgG), and (3) an inhibitor of the ERK1/2 signalization pathway (PD98059) were assessed for GC shape, pyknosis and proliferation rates, oestradiol and progesterone secretions. RESULTS Cytoskeleton disruption by cytochalasin D induced cell rounding, inhibited proliferation, promoted pyknosis, inhibited progesterone secretion and enhanced oestradiol secretion by GC cultured on LN. When GC were cultured on various substrata containing LN and/or RGD peptides in the presence or absence of anti-alpha6 IgG, both the existence of close correlations between the percentage of round cells, and the GC proliferation rate (r = -0.87) and pyknotic rate (r = 0.76) were established, but no relationship was found between cell shape and steroidogenesis. Inhibition of the ERK1/2 signalization pathway by PD98059 had no effect on GC shape, proliferation or pyknotic rates. However, it dramatically reduced progesterone secretion, expression of cytochrome P450 cholesterol side-chain cleavage and 3beta-hydroxysteroid deshydrogenase enzymes, and enhanced oestradiol secretion, thereby reproducing all the effects of the anti-alpha6 IgG on steroidogenesis of GC cultured on LN. CONCLUSION LN may participate in the paracrine control of follicular development through different mechanisms. It could enhance proliferation and survival of GC through its alpha6beta1 integrin-mediated actions on cytoskeleton. In contrast, its stimulating action on GC luteinization could be partly mediated by the ERK1/2 pathway, irrespective of cell shape.
Collapse
Affiliation(s)
- Frédérique Le Bellego
- Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, INRA 37380 Nouzilly, France
| | - Stéphane Fabre
- Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, INRA 37380 Nouzilly, France
| | - Claudine Pisselet
- Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, INRA 37380 Nouzilly, France
| | - Danielle Monniaux
- Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, INRA 37380 Nouzilly, France
| |
Collapse
|
37
|
Kim HP, Kim TY, Lee MS, Jong HS, Kim TY, Lee JW, Bang YJ. TGF-beta1-mediated activations of c-Src and Rac1 modulate levels of cyclins and p27(Kip1) CDK inhibitor in hepatoma cells replated on fibronectin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1743:151-61. [PMID: 15777850 DOI: 10.1016/j.bbamcr.2004.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Revised: 07/30/2004] [Accepted: 09/16/2004] [Indexed: 01/03/2023]
Abstract
Integrin-mediated cell adhesion transduces signals to regulate actin cytoskeleton and cell proliferation. While understanding how integrin signals cross-talk with the TGF-beta1 pathways, we observed lamellipodia formation and cyclin regulation in Hep3B cells, following TGF-beta1 treatment. To answer if integrin signaling via actin organization might regulate cell cycle progression after TGF-beta1 treatment, we analyzed cross-talk between the two receptor-mediated pathways in hepatoma cells on specific ECMs. We found that basal and TGF-beta1-mediated activation of c-Src and Rac1, expression of cyclins E and A, and suppression of p27Kip1 were significant in cells replated on fibronectin, but not in cells on collagen I, indicating a different integrin-mediated cellular response to TGF-beta1 treatment. Levels of tyrosine phosphorylation and actin-enriched lamellipodia on fibronectin were also more prominent than in cells on collagen I. Studies using pharmacological inhibitors or transient transfections revealed that the preferential TGF-beta1 effects in cells on fibronectin required c-Src family kinase activity. These observations suggest that a specific cross-talk between TGF-beta1 and fibronectin-binding integrin signal pathways leads to the activation of c-Src/Rac1/actin-organization, leading to changes in cell cycle regulator levels in hepatoma cells. Therefore, this study represents another mechanism to regulate cell cycle regulators when integrin signaling is collaborative with TGF-beta1 pathways.
Collapse
Affiliation(s)
- Hwang-Phill Kim
- National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Burch PM, Heintz NH. Redox regulation of cell-cycle re-entry: cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species. Antioxid Redox Signal 2005; 7:741-51. [PMID: 15890020 DOI: 10.1089/ars.2005.7.741] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Reactive oxygen and nitrogen species inhibit or promote cell proliferation by modulating the cell signaling pathways that dictate decisions between cell survival, proliferation, and death. In the growth factor-dependent pathways that regulate mitogenesis, numerous positive and negative effectors of signaling are influenced by physiological fluctuations of oxidants, including receptor tyrosine kinases, small GTPases, mitogen-activated protein kinases, protein phosphatases, and transcription factors. The same mitogenic pathways that are sensitive to oxidant levels also directly regulate the expression of cyclin D1, a labile factor required for progression through the G1 phase on the cell cycle. Because the transition from G0 to G1 is the only phase of the cell cycle that is not regulated by cyclin-dependent kinases, but rather by redox-dependent signaling pathways, expression of cyclin D1 represents a primary regulatory node for the dose-dependent effects of oxidants on the induction of cell growth. We suggest that expression of cyclin D1 represents a useful marker for assessing the integration of proliferative and growth inhibitory effects of oxidants on the redox-dependent signaling events that control reentry into the cell cycle.
Collapse
Affiliation(s)
- Peter M Burch
- Environmental Pathology Program and Vermont Cancer Center, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | |
Collapse
|
39
|
Ko SG, Kim HP, Jin DH, Bae HS, Kim SH, Park CH, Lee JW. Saussurea lappa induces G2-growth arrest and apoptosis in AGS gastric cancer cells. Cancer Lett 2005; 220:11-9. [PMID: 15737683 DOI: 10.1016/j.canlet.2004.06.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2003] [Revised: 06/14/2004] [Accepted: 06/15/2004] [Indexed: 11/25/2022]
Abstract
The molecular effects of Saussurea lappa extracts, a traditional medicine in Eastern Asia, on the fate of gastric carcinoma have not been understood. In this study, its cytostatic effects were examined using gastric AGS cancer cells. Its treatment resulted in apoptosis and G2-arrest in a dose- and time-dependent manner. The effects were attributed to the regulation of cyclins and pro-apoptotic molecules and suppression of anti-apoptotic molecules. Therefore, these results suggest that extracts of S. lappa root may be a candidate to deal with gastric cancers either by traditional herbal therapy or by combinational therapy with conventional chemotherapy.
Collapse
Affiliation(s)
- Seong Gyu Ko
- Cancer Research Institute, Department of Tumor Biology, College of Medicine, Seoul National University, Seoul 110-799, South Korea
| | | | | | | | | | | | | |
Collapse
|
40
|
Felty Q, Roy D. Estrogen, mitochondria, and growth of cancer and non-cancer cells. J Carcinog 2005; 4:1. [PMID: 15651993 PMCID: PMC548143 DOI: 10.1186/1477-3163-4-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 01/15/2005] [Indexed: 02/07/2023] Open
Abstract
In this review, we discuss estrogen actions on mitochondrial function and the possible implications on cell growth. Mitochondria are important targets of estrogen action. Therefore, an in-depth analysis of interaction between estrogen and mitochondria; and mitochondrial signaling to nucleus are pertinent to the development of new therapy strategies for the treatment of estrogen-dependent diseases related to mitochondrial disorders, including cancer.
Collapse
Affiliation(s)
- Quentin Felty
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-0022 USA
| | - Deodutta Roy
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL, 35294-0022 USA
| |
Collapse
|
41
|
Felty Q, Roy D. Mitochondrial signals to nucleus regulate estrogen-induced cell growth. Med Hypotheses 2005; 64:133-41. [PMID: 15533631 DOI: 10.1016/j.mehy.2003.12.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 12/18/2003] [Indexed: 10/26/2022]
Abstract
Classical genomic and non-genomic signaling pathways mediated by nuclear and cell membrane estrogen receptors are considered to contribute to estrogen-induced cell proliferation. Here we propose that mitochondrial signals to the nucleus regulate estrogen-induced progression of the cell cycle. The influence of estrogen on mitochondrial oxidative phosphorylation and mitochondrial gene transcription support the idea that mitochondria are significant targets of estrogen. Mitochondria are the major source of reactive oxygen species (ROS) in epithelial cells. Estrogen redox cycling within mitochondria also generates ROS. Antioxidants inhibit estrogen-induced cell growth. A-Raf, Akt, PKC, MEK, ERK, and transcription factors AP-1, NF-kappaB, and CREB are targets of both estrogen and ROS. We provide four lines of evidence in support of our hypothesis that estrogen-induced mitochondrial ROS stimulate redox sensor kinase A-Raf, Akt or PKC, which, in turn, activate transcription factors NF-kappaB, CREB, or AP-1 via the MEK/ERK pathway. Thus, estrogen-induced mitochondrial ROS leading to the activation of cell cycle genes containing AP-1, NF-kappaB, or CREB response elements are involved in the progression of the cell cycle of the estrogen-dependent cells. Our novel concept will contribute to the development of new targets in the prevention and control of estrogen-induced disease including cancer.
Collapse
Affiliation(s)
- Quentin Felty
- Department of Environmental Health Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA
| | | |
Collapse
|
42
|
Ambesi A, Klein RM, Pumiglia KM, McKeown-Longo PJ. Anastellin, a Fragment of the First Type III Repeat of Fibronectin, Inhibits Extracellular Signal-Regulated Kinase and Causes G1 Arrest in Human Microvessel Endothelial Cells. Cancer Res 2005. [DOI: 10.1158/0008-5472.148.65.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
The formation of a microvascular endothelium plays a critical role in the growth and metastasis of established tumors. The ability of a fragment from the first type III repeat of fibronectin (III1C), anastellin, to suppress tumor growth and metastasis in vivo has been reported to be related to its antiangiogenic properties, however, the mechanism of action of anastellin remains unknown. Utilizing cultures of human dermal microvascular endothelial cells, we provide evidence that anastellin inhibits signaling pathways which regulate the extracellular signal-regulated (ERK) mitogen-activated protein kinase pathway and subsequent expression of cell cycle regulatory proteins. Addition of anastellin to primary microvascular endothelial cells resulted in a complete inhibition of serum-dependent proliferation. Growth inhibition correlated with a decrease in serum-dependent expression of cyclin D1, cyclin A and the cyclin-dependent kinase, cdk4, key regulators of cell cycle progression through G1 phase. Consistent with a block in G1-S transition, anastellin inhibited serum-dependent incorporation of [3H]-thymidine into S-phase nuclei. Addition of anastellin to serum-starved microvessel cells resulted in a time-dependent and dose-dependent decrease in basal levels of phosphorylated MEK/ERK and blocked serum-dependent activation of ERK. Adenoviral infection with Ad.ΔB-Raf:ER, an inducible estrogen receptor-B-Raf fusion protein, restored levels of active ERK in anastellin-treated cells, rescued levels of cyclin D1, cyclin A, and cdk4, and rescued [3H]-thymidine incorporation. These data suggest that the antiangiogenic properties of anastellin observed in mouse models of human cancer may be due to its ability to block endothelial cell proliferation by modulating ERK signaling pathways and down-regulating cell cycle regulatory gene expression required for G1-S phase progression.
Collapse
Affiliation(s)
- Anthony Ambesi
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - R. Matthew Klein
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | - Kevin M. Pumiglia
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York
| | | |
Collapse
|
43
|
Mahmood TA, de Jong R, Riesle J, Langer R, van Blitterswijk CA. Adhesion-mediated signal transduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C. Exp Cell Res 2004; 301:179-88. [PMID: 15530854 DOI: 10.1016/j.yexcr.2004.07.027] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2003] [Revised: 04/22/2004] [Indexed: 10/26/2022]
Abstract
Chondrocyte 'dedifferentiation' involves the switching of the cell phenotype to one that no longer secretes extracellular matrix found in normal cartilage and occurs frequently during chondrocyte expansion in culture. It is also characterized by the differential expression of receptors and intracellular proteins that are involved in signal transduction pathways, including those associated with cell shape and actin microfilament organization. The objective of this study was to examine the modulation of chondrocyte phenotype by cultivation on polymer substrates containing poly(ethylene glycol) (PEG). We observed differential arrangement of actin organization in articular chondrocytes, depending on PEG length. When cultivated on 300 g/mol PEG substrates at day 19, chondrocytes had lost intracellular markers characteristic of the differentiated phenotype, including type II collagen and protein kinase C (PKC). On these surfaces, chondrocytes also expressed focal adhesion and signaling proteins indicative of cell attachment, spreading, and FA turnover, including RhoA, focal adhesion kinase, and vinculin. The switch to a dedifferentiated chondrocyte phenotype correlated with integrin expression. Conversely, the expression of CD44 receptors coincided with chondrogenic characteristics, suggesting that binding via these receptors could play a role in maintaining the differentiated phenotype on such substrates. These effects can be similar to those of compounds that interfere in intracellular signaling pathways and can be utilized to engineer cellular response.
Collapse
Affiliation(s)
- Tahir A Mahmood
- IsoTis SA, Prof. Bronkhorstlaan 10, 3723 MB Bilthoven, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Sund M, Xie L, Kalluri R. The contribution of vascular basement membranes and extracellular matrix to the mechanics of tumor angiogenesis. APMIS 2004; 112:450-62. [PMID: 15563309 DOI: 10.1111/j.1600-0463.2004.t01-1-apm11207-0806.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The goal of this review is to highlight the contribution of extracellular matrix and vascular basement membranes to the regulation of angiogenesis and tumor progression. Here we present a new concept that vascular basement membrane influences endothelial cells and possibly other cell types in a solid state assembled form, and also in a degraded solution state form. Depending on the structural integrity, composition and exposure of cryptic sites, the vascular basement membrane proteome exerts functional influences on proliferating and resting endothelial cells. This review provides the reader with an appreciation of this newly evolved concept in the area of vascular biology.
Collapse
Affiliation(s)
- Malin Sund
- Center for Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
45
|
Burch PM, Yuan Z, Loonen A, Heintz NH. An extracellular signal-regulated kinase 1- and 2-dependent program of chromatin trafficking of c-Fos and Fra-1 is required for cyclin D1 expression during cell cycle reentry. Mol Cell Biol 2004; 24:4696-709. [PMID: 15143165 PMCID: PMC416393 DOI: 10.1128/mcb.24.11.4696-4709.2004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogens activate cell signaling and gene expression cascades that culminate in expression of cyclin D1 during the G(0)-to-G(1) transition of the cell cycle. Using cell cycle arrest in response to oxidative stress, we have delineated a dynamic program of chromatin trafficking of c-Fos and Fra-1 required for cyclin D1 expression during cell cycle reentry. In serum-stimulated lung epithelial cells, c-Fos was expressed, recruited to chromatin, phosphorylated at extracellular signal-regulated kinase 1- and 2 (ERK1,2)-dependent sites, and degraded prior to prolonged recruitment of Fra-1 to chromatin. Immunostaining showed that expression of nuclear c-Fos and that of cyclin D1 are mutually exclusive, whereas nuclear Fra-1 and cyclin D1 are coexpressed as cells traverse G(1). Oxidative stress prolonged the accumulation of phospho-ERK1,2 and phospho-c-Fos on chromatin, inhibited entry of Fra-1 into the nucleus, and blocked cyclin D1 expression. After induction of the immediate-early gene response in the presence of oxidative stress, inhibition of ERK1,2 signaling promoted degradation of c-Fos, recruitment of Fra-1 to chromatin, and expression of cyclin D1. Our data indicate that termination of nuclear ERK1,2 signaling is required for an exchange of Fra-1 for c-Fos on chromatin and initiation of cyclin D1 expression at the G(0)-to-G(1) transition of the cell cycle.
Collapse
Affiliation(s)
- Peter M Burch
- Department of Pathology, Vermont Cancer Center, HSRF 328, University of Vermont College of Medicine, 89 Beaumont Ave., Burlington, VT 05405, USA.
| | | | | | | |
Collapse
|
46
|
Walmod PS, Hartmann-Petersen R, Prag S, Lepekhin EL, Röpke C, Berezin V, Bock E. Cell-cycle-dependent regulation of cell motility and determination of the role of Rac1. Exp Cell Res 2004; 295:407-20. [PMID: 15093740 DOI: 10.1016/j.yexcr.2004.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2003] [Indexed: 11/26/2022]
Abstract
To study cell motility in different phases of the cell cycle, time-lapse recording by computer-assisted microscopy of unsynchronised cells from three mammalian cell lines (L929, BT4Cn, HeLa) was used for the determination of the displacements of individual cells. The displacements were used for calculation of three key parameters describing cell motility: speed, persistence time and rate of diffusion. All investigated cell lines demonstrated a lower cell displacement in the G2 phase than in the G1/S phases. This was caused by a decrease in speed and/or persistence time. The decrease in motility was accompanied by changes in morphology reflecting the larger volume of cells in G2 than in G1. Furthermore, L-cells and HeLa-cells appeared to be less adherent in the G2 phase. Transfection of L-cells with constitutively active Rac1 led to a general increase in the speed and rate of diffusion in G2 to levels comparable to those of control cells in G1. In contrast, transfection with dominant-negative Rac1 reduced cell speed and resulted in cellular displacements, which were identical in G1 and G2. These observations indicate that migration of cultured cells is regulated in a cell-cycle-dependent manner, and that an enhancement of Rac1 activity is sufficient for a delay of the reduced cell displacement otherwise seen in G2.
Collapse
Affiliation(s)
- P S Walmod
- Protein Laboratory, Institute of Molecular Pathology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
47
|
Mammoto A, Huang S, Moore K, Oh P, Ingber DE. Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 2004; 279:26323-30. [PMID: 15096506 DOI: 10.1074/jbc.m402725200] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cell shape-dependent control of cell-cycle progression underlies the spatial differentials of growth that drive tissue morphogenesis, yet little is known about how cell distortion impacts the biochemical signaling machinery that is responsible for growth control. Here we show that the Rho family GTPase, RhoA, conveys the "cell shape signal" to the cell-cycle machinery in human capillary endothelial cells. Cells accumulating p27(kip1) and arrested in mid G(1) phase when spreading were inhibited by restricted extracellular matrix adhesion, whereas constitutively active RhoA increased expression of the F-box protein Skp2 required for ubiquitination-dependent degradation of p27(kip1) and restored G(1) progression in these cells. Studies with dominant-negative and constitutively active forms of mDia1, a downstream effector of RhoA, and with a pharmacological inhibitor of ROCK, another RhoA target, revealed that RhoA promoted G(1) progression by altering the balance of activities between these two downstream effectors. These data indicate that signaling proteins such as mDia1 and ROCK, which are thought to be involved primarily in cytoskeletal remodeling, also mediate cell growth regulation by coupling cell shape to the cell-cycle machinery at the level of signal transduction.
Collapse
Affiliation(s)
- Akiko Mammoto
- Vascular Biology Program, Department of Pathology, Children's Hospital/Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
48
|
Rouzaire-Dubois B, Malo M, Milandri JB, Dubois JM. Cell size-proliferation relationship in rat glioma cells. Glia 2004; 45:249-57. [PMID: 14730698 DOI: 10.1002/glia.10320] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The homeostasis of the central nervous system is highly controlled by glial cells and is dramatically altered in the case of glioma. In this respect, the complex connection between cell size and division is of particular importance and needs clarifying. In order to investigate this connection, cell number and volume were measured in C6 rat glioma cells under different experimental conditions, including continuous cell culture, Cl- channel blockade, and anisotonicity, and in the presence of an inhibitory conditioned medium collected from cell cultures or in a medium containing a low level of fetal calf serum. The rate of cell proliferation changed with cell volume in a bell-shaped manner, so that it is optimal within a cell volume window and appears to be controlled by low and high cell size checkpoints. The cell size-proliferation relationship can be defined by Boltzmann-like equations, which may reflect the effects of macromolecular crowding on proteins controlling the cell cycle progression. Altogether, these observations indicate that glioma cell proliferation is controlled predominantly but not exclusively by cell size-dependent mechanisms.
Collapse
|
49
|
Toy-Miou-Leong M, Cortes CL, Beaudet A, Rostène W, Forgez P. Receptor trafficking via the perinuclear recycling compartment accompanied by cell division is necessary for permanent neurotensin cell sensitization and leads to chronic mitogen-activated protein kinase activation. J Biol Chem 2003; 279:12636-46. [PMID: 14699144 DOI: 10.1074/jbc.m303384200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most G protein-coupled receptors are internalized after interaction with their respective ligand, a process that subsequently contributes to cell desensitization, receptor endocytosis, trafficking, and finally cell resensitization. Although cellular mechanisms leading to cell desensitization have been widely studied, those responsible for cell resensitization are still poorly understood. We examined here the traffic of the high affinity neurotensin receptor (NT1 receptor) following prolonged exposure to high agonist concentration. Fluorescence and confocal microscopy of Chinese hamster ovary, human neuroblastoma (CHP 212), and murine neuroblastoma (N1E-115) cells expressing green fluorescent protein-tagged NT1 receptor revealed that under prolonged treatment with saturating concentrations of neurotensin (NT) agonist, NT1 receptor and NT transiently accumulated in the perinuclear recycling compartment (PNRC). During this cellular event, cell surface receptors remained markedly depleted as detected by both confocal microscopy and (125)I-NT binding assays. In dividing cells, we observed that following prolonged NT agonist stimulation, NT1 receptors were removed from the PNRC, accumulated in dispersed vesicles inside the cytoplasm, and subsequently reappeared at the cell surface. This NT binding recovery allowed for constant cell sensitization and led to a chronic activation of mitogen-activated protein kinases p42 and p44. Under these conditions, the constant activation of NT1 receptor generates an oncogenic regulation. These observations support the potent role for neuropeptides, such as NT, in cancer progression.
Collapse
Affiliation(s)
- Mireille Toy-Miou-Leong
- INSERM Unit 482, Hôpital Saint-Antoine, 184 Rue du Faubourg Saint-Antoine, 75012 Paris, France
| | | | | | | | | |
Collapse
|
50
|
Nelson CM, Chen CS. VE-cadherin simultaneously stimulates and inhibits cell proliferation by altering cytoskeletal structure and tension. J Cell Sci 2003; 116:3571-81. [PMID: 12876221 DOI: 10.1242/jcs.00680] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Engagement of vascular endothelial (VE)-cadherin leads to the cessation of proliferation commonly known as 'contact inhibition'. We show that VE-cadherin inhibits growth by mediating changes in cell adhesion to the extracellular matrix. Increasing cell-cell contact decreased cell spreading and proliferation, which was reversed by blocking engagement of VE-cadherin. Using a new system to prevent the cadherin-induced changes in cell spreading, we revealed that VE-cadherin paradoxically increased proliferation. Treating cells with inhibitors of PKC and MEK abrogated the stimulatory signal at concentrations that disrupted the formation of actin fibers across the cell-cell contact. Directly disrupting actin fibers, blocking actin-myosin-generated tension, or inhibiting signaling through Rho specifically inhibited the cadherin-induced proliferative signal. By progressively altering the degree to which cell-cell contact inhibited cell spreading, we show that cell-cell contact ultimately increased or decreased the overall proliferation rate of the population by differentially shifting the balance between the two opposing proliferative cues. The existence of opposing growth signals induced by VE-cadherin that are both mediated through crosstalk with cytoskeletal structure highlights the complex interplay of mechanical and chemical signals with which cells navigate in their physical microenvironment.
Collapse
Affiliation(s)
- Celeste M Nelson
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | |
Collapse
|