1
|
Smith HL, Berglund AK, Robertson JB, Schnabel LV, McMullen RJ, Gilger BC, Oh A. Effect of gentamicin on CD3+ T-lymphocyte proliferation for treatment of equine recurrent uveitis: An in vitro study. Vet Ophthalmol 2023. [PMID: 37116984 DOI: 10.1111/vop.13098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/30/2023]
Abstract
OBJECTIVE The objective of the study was to determine the effect of gentamicin on CD3+ T-lymphocyte proliferation and cell viability using an in vitro cell culture model as a means of investigating the mechanism of action of low-dose intravitreal gentamicin injection. ANIMALS STUDIED Three adult horses with no evidence of ophthalmic or systemic disease. PROCEDURE Peripheral blood lymphocytes were treated with gentamicin at concentrations 37.5 μg/mL, 112.5 μg/mL, 187 μg/mL, 375 μg/mL, or 750 μg/mL then stimulated to proliferate with concanavalin A (ConA). 4',6-diamidino-2-phenylindole (DAPI) and carboxyfluoroscein succinimidyl ester (CSFE) were used as markers of cell viability and cell proliferation, respectively. Following 5-day culture, live cell counts and CSFE fluorescent intensity data were collected via automated cell count and flow cytometry. The experimental design was duplicated using preservative-free gentamicin and a proprietary brand formulation. Statistical analysis was performed using two-way ANOVA with Tukey's multiple comparison test. RESULTS No statistically significant comparisons in CD3+ T-lymphocyte live cell counts and geometric mean fluorescent intensity of CSFE were identified between gentamicin concentrations or formulations. CONCLUSIONS Gentamicin had no effect on equine peripheral blood CD3+ T-lymphocyte cell viability and proliferation in concentrations ranging from "safe" to "retinotoxic" in relation to intravitreal injection volumes. Low-dose intravitreal gentamicin may not suppress the Th1- and Th17-mediated immune response.
Collapse
Affiliation(s)
- Hannah L Smith
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
| | - Alix K Berglund
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
- Comparative Medicine Institute, North Carolina State University, North Carolina, Raleigh, USA
| | - James B Robertson
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
- Office of Research, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
| | - Lauren V Schnabel
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
- Comparative Medicine Institute, North Carolina State University, North Carolina, Raleigh, USA
| | - Richard J McMullen
- JT Vaughan Large Animal Teaching Hospital, College of Veterinary Medicine, Auburn University, Alabama, Auburn, USA
| | - Brian C Gilger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
| | - Annie Oh
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, North Carolina, Raleigh, USA
| |
Collapse
|
2
|
Padjasek M, Qasem B, Cisło-Pakuluk A, Marycz K. Cyclosporine A Delivery Platform for Veterinary Ophthalmology—A New Concept for Advanced Ophthalmology. Biomolecules 2022; 12:biom12101525. [PMID: 36291734 PMCID: PMC9599649 DOI: 10.3390/biom12101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cyclosporine A (CsA) is a selective and reversible immunosuppressant agent that is widely used as a medication for a wide spectrum of diseases in humans such as graft versus host disease, non-infectious uveitis, rheumatoid arthritis, psoriasis, and atopic dermatitis. Furthermore, the CsA is used to treat keratoconjunctivitis sicca, chronic superficial keratitis, immune-mediated keratitis and equine recurrent uveitis in animals. The selective activity of Cyclosporine A (CsA) was demonstrated to be an immunomodulation characteristic of T-lymphocyte proliferation and inhibits cytokine gene expression. Moreover, the lipophilic characteristics with poor bioavailability and low solubility in water, besides the side effects, force the need to develop new formulations and devices that will provide adequate penetration into the anterior and posterior segments of the eye. This review aims to summarize the effectiveness and safety of cyclosporine A delivery platforms in veterinary ophthalmology.
Collapse
|
3
|
Fischer BM, Brehm W, Reese S, McMullen RJ. Equine recurrent uveitis—A review. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Britta M. Fischer
- Department of Clinical Sciences, College of Veterinary Medicine, JT Vaughan Large Animal Teaching Hospital Auburn University Auburn Alabama USA
- Department of Ophthalmology Clinic for Animals Hofheim Germany
| | - Walter Brehm
- Faculty of Veterinary Medicine, Department for Horses University of Leipzig Leipzig Germany
| | - Sven Reese
- Chair of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine LMU Munich Germany
| | - Richard J. McMullen
- Department of Clinical Sciences, College of Veterinary Medicine, JT Vaughan Large Animal Teaching Hospital Auburn University Auburn Alabama USA
| |
Collapse
|
4
|
Kingsley NB, Sandmeyer L, Bellone RR. A review of investigated risk factors for developing equine recurrent uveitis. Vet Ophthalmol 2022; 26:86-100. [PMID: 35691017 DOI: 10.1111/vop.13002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Abstract
Equine recurrent uveitis (ERU) is an ocular inflammatory disease that can be difficult to manage clinically. As such, it is the leading cause of bilateral blindness for horses. ERU is suspected to have a complex autoimmune etiology with both environmental and genetic risk factors contributing to onset and disease progression in some or all cases. Work in recent years has aimed at unraveling the primary triggers, such as infectious agents and inherited breed-specific risk factors, for disease onset, persistence, and progression. This review has aimed at encompassing those factors that have been associated, implicated, or substantiated as contributors to ERU, as well as identifying areas for which additional knowledge is needed to better understand risk for disease onset and progression. A greater understanding of the risk factors for ERU will enable earlier detection and better prognosis through prevention and new therapeutics.
Collapse
Affiliation(s)
- Nicole B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| | - Lynne Sandmeyer
- Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California - Davis, Davis, California, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California - Davis, Davis, California, USA
| |
Collapse
|
5
|
Fingerhut L, Yücel L, Strutzberg-Minder K, von Köckritz-Blickwede M, Ohnesorge B, de Buhr N. Ex Vivo and In Vitro Analysis Identify a Detrimental Impact of Neutrophil Extracellular Traps on Eye Structures in Equine Recurrent Uveitis. Front Immunol 2022; 13:830871. [PMID: 35251020 PMCID: PMC8896353 DOI: 10.3389/fimmu.2022.830871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/21/2023] Open
Abstract
Equine recurrent uveitis (ERU) is a common ocular disease of horses and described as a model for human autoimmune uveitis. This immune-mediated, inflammatory condition progressively destroys the eye, ultimately leading to blindness. Genetic and autoimmune factors, next to infections with Leptospira, are discussed as key factors in the pathogenesis. Furthermore, a release of neutrophil extracellular traps (NETs) by activated neutrophils is involved. NETs are composed of decondensed chromatin and proteins that can immobilize invading pathogens. However, if NETs accumulate, they can contribute to detrimental autoimmune processes. Thus, we aimed to investigate the impact of NETs in ERU patients. Therefore, we quantified several NET-markers (cell-free DNA, nucleosomes, citrullinated histone H3, histone-myeloperoxidase complexes, interleukin-17, equine cathelicidin 1 and DNase I activity) and NET-autoantibodies in sera and vitreous body fluids (VBF) of ERU-diseased horses and correlated the data with the disease status (signalment, ERU scores and Leptospira infection status). NET markers were detected to varying degrees in VBF of diseased horses, and partially correlated to disease severity and the presence of Leptospira spp. Cell-free DNA and nucleosomes as NET markers correlate with ERU severity in total and VBF scores, despite the presence of active DNases. Additionally, a significant correlation between fundus affection in the eye and NET autoantibodies was detectable. Therefore, we further investigated the influence of VBF samples from equine patients and isolated NETs on the blood-retina barrier in a cell culture model. VBF of diseased horses significantly induced cytotoxicity in retinal pigment epithelial cells. Moreover, partially digested NETs also resulted in cytotoxic effects. In the presence of lipopolysaccharide (LPS), the main component of the leptospiral surface, both undigested and completely digested NETs were cytotoxic. Correlations between the ERU-scores and Leptospira were also calculated. Detection of leptospiral DNA, and antibody titers of the serovar Grippotyphosa correlated with disease severity. In addition, a correlation between Leptospira and several NET markers was observed in VBF. Altogether, our findings suggest a positive correlation between NET markers with disease severity and involvement of Leptospira in the VBF of ERU-diseased horses, as well as a cytotoxic effect of NETs in eyes.
Collapse
Affiliation(s)
- Leonie Fingerhut
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Leyla Yücel
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | - Maren von Köckritz-Blickwede
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernhard Ohnesorge
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Nicole de Buhr
- Department of Biochemistry, University of Veterinary Medicine Hannover, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
6
|
Wollanke B, Gerhards H, Ackermann K. Infectious Uveitis in Horses and New Insights in Its Leptospiral Biofilm-Related Pathogenesis. Microorganisms 2022; 10:387. [PMID: 35208842 PMCID: PMC8875353 DOI: 10.3390/microorganisms10020387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/17/2022] Open
Abstract
Uveitis is a sight-threatening eye disease in equids known worldwide that leads to considerable pain and suffering. By far the most common type of uveitis in Germany and neighboring countries is classical equine recurrent uveitis (ERU), which is caused by chronic intraocular leptospiral infection and is the main cause of infectious uveitis in horses. Other infectious causes are extremely rare and are usually clinically distinguishable from ERU. ERU can be treated very effectively by vitreous cavity lavage (vitrectomy). For proper indications of this demanding surgery, it is necessary to differentiate ERU from other types of uveitis in which vitrectomy is not helpful. This can be conducted on the basis of anamnesis in combination with ophthalmologic findings and by aqueous humor examination. During vitrectomy, vitreous material is obtained. These vitreous samples have historically been used for numerous etiologic studies. In this way, a chronic intraocular leptospiral infection has been shown to be the cause of typical ERU and, among other findings, ERU has also been recognized as a biofilm infection, providing new insights into the pathogenesis of ERU and explaining some thus far unexplainable phenomena of ERU. ERU may not only have transmissible aspects to some types of uveitis in humans but may also serve as a model for a spontaneously occurring biofilm infection. Vitreous material obtained during therapeutically indicated vitrectomy can be used for further studies on in vivo biofilm formation, biofilm composition and possible therapeutic approaches.
Collapse
Affiliation(s)
- Bettina Wollanke
- Equine Clinic, Ludwig-Maximilians-University, 80539 Munich, Germany; (H.G.); (K.A.)
| | | | | |
Collapse
|
7
|
Lorenz L, Amann B, Hirmer S, Degroote RL, Hauck SM, Deeg CA. NEU1 is more abundant in uveitic retina with concomitant desialylation of retinal cells. Glycobiology 2021; 31:873-883. [PMID: 33677598 DOI: 10.1093/glycob/cwab014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Desialylation of cell surface glycoproteins carried out by sialidases affects various immunological processes. However, the role of neuraminidase 1 (NEU1), one of four mammalian sialidases, in inflammation and autoimmune disease is not completely unraveled to date. In this study, we analyzed retinal expression of NEU1 in equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis. Mass spectrometry revealed significantly higher abundance of NEU1 in retinal Müller glial cells (RMG) of ERU-diseased horses compared to healthy controls. Immunohistochemistry uncovered NEU1 expression along the whole Müller cell body in healthy and uveitic state and confirmed higher abundance in inflamed retina. Müller glial cells are the principal macroglial cells of the retina and play a crucial role in uveitis pathogenesis. To determine whether higher expression levels of NEU1 in uveitic RMG correlate with desialylation of retinal cells, we performed lectin binding assays with sialic acid-specific lectins. Through these experiments we could demonstrate a profound loss of both α2-3- and α2-6-linked terminal sialic acids in uveitis. Hence, we hypothesize that higher abundance of NEU1 in uveitic RMG plays an important role in the pathogenesis of uveitis by desialylation of retinal cells. As RMG become activated in the course of uveitis and actively promote inflammation, we propose that NEU1 might represent a novel activation marker for inflammatory RMG. Our data provide novel insights in the expression and implication of NEU1 in inflammation and autoimmune disease.
Collapse
Affiliation(s)
- Lea Lorenz
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Barbara Amann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Sieglinde Hirmer
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), 80939 Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, 82152 Martinsried, Germany
| |
Collapse
|
8
|
Degroote RL, Deeg CA. Immunological Insights in Equine Recurrent Uveitis. Front Immunol 2021; 11:609855. [PMID: 33488614 PMCID: PMC7821741 DOI: 10.3389/fimmu.2020.609855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/05/2022] Open
Abstract
Horses worldwide suffer from equine recurrent uveitis (ERU), an organ-specific, immune-mediated disease with painful, remitting-relapsing inflammatory attacks alternating with periods of quiescence, which ultimately leads to blindness. In course of disease, both eyes can eventually be affected and since blind horses pose a threat to themselves and their surroundings, these animals have to be killed. Therefore, this disease is highly relevant for veterinary medicine. Additionally, ERU shows strong clinical and pathological resemblance to autoimmune uveitis in man. The exact cause for the onset of ERU is unclear to date. T cells are believed to be the main effector cells in this disease, as they overcome the blood retinal barrier to invade the eye, an organ physiologically devoid of peripheral immune cells. These cells cause severe intraocular inflammation, especially in their primary target, the retina. With every inflammatory episode, retinal degeneration increases until eyesight is completely lost. In ERU, T cells show an activated phenotype, with enhanced deformability and migration ability, which is reflected in the composition of their proteome and downstream interaction pathways even in quiescent stage of disease. Besides the dysregulation of adaptive immune cells, emerging evidence suggests that cells of the innate immune system may also directly contribute to ERU pathogenesis. As investigations in both the target organ and the periphery have rapidly evolved in recent years, giving new insights on pathogenesis-associated processes on cellular and molecular level, this review summarizes latest developments in ERU research.
Collapse
Affiliation(s)
- Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
9
|
Deviant proteome profile of equine granulocytes associates to latent activation status in organ specific autoimmune disease. J Proteomics 2020; 230:103989. [PMID: 32977044 DOI: 10.1016/j.jprot.2020.103989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/26/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Equine recurrent uveitis (ERU) is a spontaneous, remitting-relapsing autoimmune disease driven by the adaptive immune system. Although T cells are described as the main effector cells in pathogenesis, granulocytes have also emerged as possible disease mediators. To explore the role of these innate immune cells, we investigated the whole cell proteome of granulocytes from equine recurrent uveitis cases and healthy controls. Among the 2362 proteins identified by mass spectrometry, we found 96 proteins with significantly changed abundance between groups (p < 0.05, fold change >1.2), representing 4.1% of total granulocyte proteome. Within these differential identifications, calgranulin B, a protein associated with pathogenesis in other autoimmune diseases, showed highest abundance in equine recurrent uveitis (18 fold). For a better interpretation of the results from our hypothesis-generating approach, we added a threshold for biological significance (ratio ERU/controls >2: 36 proteins) to the proteins with increased abundance in equine recurrent uveitis and analyzed their allocation to the subsets within the Immune System superpathway. The 36 differentially abundant proteins predominantly associated to RAF/MAP kinase cascade, MHC-I-mediated antigen presentation and neutrophil degranulation, suggesting a latently activated phenotype of these innate immune cells in disease. Raw data are available via ProteomeXchange with identifier PXD013648. SIGNIFICANCE: Our study provides new insights into the protein repertoire of primary equine granulocytes and identifies protein abundance changes associated to equine recurrent uveitis (ERU), an organ specific, spontaneously occurring autoimmune disease. We show that granulocyte proteins with increased abundance in ERU strongly associate to RAF/MAP kinase signaling, MHC-I antigen presentation and neutrophil degranulation, pointing to a more activated state of these cells in ERU cases. Since cells were obtained in quiescent stage of disease, latent activation of granulocytes underlines the role of these innate immune cells in ERU. These findings are highly relevant for veterinary medicine, further establishing the importance of granulocytes in this T cell-driven autoimmune disease. Moreover, they have translational quality for autoimmune uveitis in man, due to strong similarity in disease occurrence, progression and pathogenesis.
Collapse
|
10
|
|
11
|
Wiedemann C, Amann B, Degroote RL, Witte T, Deeg CA. Aberrant Migratory Behavior of Immune Cells in Recurrent Autoimmune Uveitis in Horses. Front Cell Dev Biol 2020; 8:101. [PMID: 32211402 PMCID: PMC7076317 DOI: 10.3389/fcell.2020.00101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/07/2020] [Indexed: 11/17/2022] Open
Abstract
The participating signals and structures that enable primary immune cells migrating within dense tissues are not completely revealed until now. Especially in autoimmune diseases, mostly unknown mechanisms facilitate autoreactive immune cells to migrate to endogenous tissues, infiltrating and harming organ-specific structures. In order to gain deeper insights into the migratory behavior of primary autoreactive immune cells, we examined peripheral blood-derived lymphocytes (PBLs) of horses with equine recurrent uveitis (ERU), a spontaneous animal model for autoimmune uveitis in humans. In this study, we used a three-dimensional collagen I hydrogel matrix and monitored live-cell migration of primary lymphocytes as a reaction to different chemoattractants such as fetal calf serum (FCS), cytokines interleukin-4 (IL-4), and interferon-γ (IFN-γ), and a specific uveitis autoantigen, cellular retinaldehyde binding protein (CRALBP). Through these experiments, we uncovered distinct differences between PBLs from ERU cases and PBLs from healthy animals, with significantly higher cell motility, cell speed, and straightness during migration of PBLs from ERU horses. Furthermore, we emphasized the significance of expression levels and cellular localization of septin 7, a membrane-interacting protein with decreased abundance in PBLs of autoimmune cases. To underline the importance of septin 7 expression changes and the possible contribution to migratory behavior in autoreactive immune cells, we used forchlorfenuron (FCF) as a reversible inhibitor of septin structures. FCF-treated cells showed more directed migration through dense tissue and revealed aberrant septin 7 and F-actin structures along with different protein distribution and translocalization of the latter, uncovered by immunochemistry. Hence, we propose that septin 7 and interacting molecules play a pivotal role in the organization and regulation of cell shaping and migration. With our findings, we contribute to gaining deeper insights into the migratory behavior and septin 7-dependent cytoskeletal reorganization of immune cells in organ-specific autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Wiedemann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Amann
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Roxane L Degroote
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Tanja Witte
- Faculty of Veterinary Medicine, Equine Hospital, LMU Munich, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| |
Collapse
|
12
|
Sandmeyer LS, Kingsley NB, Walder C, Archer S, Leis ML, Bellone RR, Bauer BS. Risk factors for equine recurrent uveitis in a population of Appaloosa horses in western Canada. Vet Ophthalmol 2020; 23:515-525. [PMID: 32086865 DOI: 10.1111/vop.12749] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To characterize clinical manifestations, measure frequency, and evaluate risk factors for equine recurrent uveitis (ERU) in Appaloosa horses in western Canada. ANIMALS 145 Appaloosa horses. PROCEDURES Ophthalmic examinations were completed and eyes were classified as having no or mild clinical signs, or moderate, or severe damage from ERU. Clinical signs, age, sex, base coat color, and pattern were recorded. Whole blood and/or mane hair follicles were collected for DNA extraction, and all horses were tested for the leopard complex (LP) spotting pattern allele. Pedigree analysis was completed on affected and unaffected horses, and coefficients of coancestry (CC) and inbreeding (COI) were determined. RESULTS Equine recurrent uveitis was confirmed in 20 (14%) horses. The mean age of affected horses was 12.3 years (±5.3; range 3-25). Age was a significant risk factor for ERU diagnosis (ORyear = 1.15) and classification (ORyear = 1.19). The fewspot coat pattern was significantly associated with increased risk for ERU compared to horses that were minimally patterned or true solids. The LP/LP genotype was at a significantly greater risk for ERU compared to lp/lp (OR = 19.4) and LP/lp (OR = 6.37). Classification of ERU was greater in the LP/LP genotype compared to LP/lp. Affected horses had an average CC of 0.066, and there was a significant difference in the distribution of CC for affected horses versus the control group (P = .021). One affected horse was the sire or grandsire of nine other affected. CONCLUSIONS Age, coat pattern, and genetics are major risk factors for the diagnosis and classification of ERU in the Appaloosa.
Collapse
Affiliation(s)
- Lynne S Sandmeyer
- Small Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Sask, Canada
| | - Nicole B Kingsley
- Equine Research Unit, University of California Davis Veterinary Genetics Laboratory, Davis, CA, USA
| | - Cheryl Walder
- Large Animal Clinical Sciences, University of Saskatchewan College of Veterinary Medicine, Saskatoon, Sask, Canada
| | | | - Marina L Leis
- Small Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Sask, Canada
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory and the Department of Population Health and Reproduction, University of California-Davis, Davis, CA, USA
| | - Bianca S Bauer
- Small Animal Clinical Sciences, University of Saskatchewan, Saskatoon, Sask, Canada
| |
Collapse
|
13
|
Epps SJ, Coplin N, Luthert PJ, Dick AD, Coupland SE, Nicholson LB. Features of ectopic lymphoid-like structures in human uveitis. Exp Eye Res 2019; 191:107901. [PMID: 31877281 PMCID: PMC7029346 DOI: 10.1016/j.exer.2019.107901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/27/2019] [Accepted: 12/20/2019] [Indexed: 01/04/2023]
Abstract
Persistent non-infectious uveitis has a significant morbidity, but the extent to which this is accompanied by inflammation driven remodelling of the tissue is unclear. To address this question, we studied a series of samples selected from two ocular tissue repositories and identified 15 samples with focal infiltration. Eleven of fifteen contained lymphocytes, both B cells (CD20 positive) and T cells (CD3 positive). In 20% of the samples there was evidence of ectopic lymphoid like structures with focal aggregations of B cells and T cells, segregated into anatomically different adjacent zones. To investigate inflammation in the tissue, an analysis of 520 immune relevant transcripts was carried out and 24 genes were differentially upregulated, compared with control tissue. Two of these (CD14 and fibronectin) were increased in ocular inflammation compared to control immune tissue (tonsil). We demonstrate that in a significant minority of patients, chronic persistent uveitis leads to dysregulation of ocular immune surveillance, characterized by the development of areas of local ectopic lymphoid like structures, which may be a target for therapeutic intervention directed at antibody producing cells. Active inflammation continues in cases of persistent uveitis. Some patients develop ectopic lymphoid-like structure. In these cases targeting B cells may be beneficial.
Collapse
Affiliation(s)
- Simon J Epps
- School of Clinical Sciences, University of Bristol, UK.
| | - Natalie Coplin
- Institute of Translational Medicine, University of Liverpool, UK.
| | | | - Andrew D Dick
- School of Clinical Sciences, University of Bristol, UK; UCL-Institute of Ophthalmology, UCL, UK; School of Cellular and Molecular Medicine, University of Bristol, UK.
| | - Sarah E Coupland
- Institute of Translational Medicine, University of Liverpool, UK; Liverpool Clinical Laboratories, Royal Liverpool University Hospital, Liverpool, UK.
| | - Lindsay B Nicholson
- School of Clinical Sciences, University of Bristol, UK; School of Cellular and Molecular Medicine, University of Bristol, UK.
| |
Collapse
|
14
|
Saldinger LK, Nelson SG, Bellone RR, Lassaline M, Mack M, Walker NJ, Borjesson DL. Horses with equine recurrent uveitis have an activated CD4+ T-cell phenotype that can be modulated by mesenchymal stem cells in vitro. Vet Ophthalmol 2019; 23:160-170. [PMID: 31441218 PMCID: PMC6980227 DOI: 10.1111/vop.12704] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/28/2019] [Accepted: 07/21/2019] [Indexed: 12/16/2022]
Abstract
Equine recurrent uveitis (ERU) is an immune‐mediated disease causing repeated or persistent inflammatory episodes which can lead to blindness. Currently, there is no cure for horses with this disease. Mesenchymal stem cells (MSCs) are effective at reducing immune cell activation in vitro in many species, making them a potential therapeutic option for ERU. The objectives of this study were to define the lymphocyte phenotype of horses with ERU and to determine how MSCs alter T‐cell phenotype in vitro. Whole blood was taken from 7 horses with ERU and 10 healthy horses and peripheral blood mononuclear cells were isolated. The markers CD21, CD3, CD4, and CD8 were used to identify lymphocyte subsets while CD25, CD62L, Foxp3, IFNγ, and IL10 were used to identify T‐cell phenotype. Adipose‐derived MSCs were expanded, irradiated (to control proliferation), and incubated with CD4+ T‐cells from healthy horses, after which lymphocytes were collected and analyzed via flow cytometry. The percentages of T‐cells and B‐cells in horses with ERU were similar to normal horses. However, CD4+ T‐cells from horses with ERU expressed higher amounts of IFNγ indicating a pro‐inflammatory Th1 phenotype. When co‐incubated with MSCs, activated CD4+ T‐cells reduced expression of CD25, CD62L, Foxp3, and IFNγ. MSCs had a lesser ability to decrease activation when cell‐cell contact or prostaglandin signaling was blocked. MSCs continue to show promise as a treatment for ERU as they decreased the CD4+ T‐cell activation phenotype through a combination of cell‐cell contact and prostaglandin signaling.
Collapse
Affiliation(s)
- Laurel K Saldinger
- Department of Pathology, Microbiology and Immunology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, California
| | - Seldy G Nelson
- Department of Pathology, Microbiology and Immunology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, California
| | - Rebecca R Bellone
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California
| | - Mary Lassaline
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Maura Mack
- Department of Population Health and Reproduction, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, California
| | - Naomi J Walker
- Department of Pathology, Microbiology and Immunology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, California
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, Veterinary Institute for Regenerative Cures, School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
15
|
Gugjoo MB, Amarpal, Makhdoomi DM, Sharma GT. Equine Mesenchymal Stem Cells: Properties, Sources, Characterization, and Potential Therapeutic Applications. J Equine Vet Sci 2018; 72:16-27. [PMID: 30929778 DOI: 10.1016/j.jevs.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 09/06/2018] [Accepted: 10/05/2018] [Indexed: 02/07/2023]
Abstract
Properties like sustained multiplication and self-renewal, and homing and multilineage differentiation to undertake repair of the damaged tissues make stem cells the lifeline for any living system. Therefore, stem cell therapy is regarded to carry immense therapeutic potential. Though the dearth of understanding about the basic biological properties and pathways involved in therapeutic benefits currently limit the application of stem cells in humans as well as animals, there are innumerable reports that suggest clinical benefits of stem cell therapy in equine. Among various stem cell sources, currently adult mesenchymal stem cells (MSCs) are preferred for therapeutic application in horse owing to their easy availability, capacity to modulate inflammation, and promote healing. Also the cells carry very limited teratogenic risk compared to the pluripotent stem cells. Mesenchymal stem cells were earlier considered mainly for musculoskeletal tissues, but now may also be utilized in other diverse clinical problems in horse, and the results may be extrapolated even for human medicine. The current review highlights biological properties, sources, mechanisms, and potential therapeutic applications of stem cells in equine practice.
Collapse
Affiliation(s)
- Mudasir Bashir Gugjoo
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India.
| | - Amarpal
- Division of Surgery, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| | - Dil Mohammad Makhdoomi
- Division of Surgery, Faculty of Veterinary Sciences and Animal Husbandry, Shuhama, SKUAST-Kashmir, Srinagar, J&K, India
| | - Gutulla Taru Sharma
- Division of Physiology and Climatology, Indian Veterinary Research Institute-Izatnagar, Bareilly, UP, India
| |
Collapse
|
16
|
Sauvage AC, Monclin SJ, Elansary M, Hansen P, Grauwels MF. Detection of intraocular Leptospira spp. by real-time polymerase chain reaction in horses with recurrent uveitis in Belgium. Equine Vet J 2018; 51:299-303. [PMID: 30144314 DOI: 10.1111/evj.13012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 08/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Equine recurrent uveitis (ERU) has been associated with Leptospira spp. infection. No information exists concerning the prevalence of Leptospira-associated ERU in Belgium and about the sensitivity of detection of Leptospira in different ocular media. OBJECTIVES To establish the prevalence of intraocular Leptospira spp. in ERU-affected and healthy eyes of horses examined at the Equine Clinic of the University of Liège by real-time PCR and to compare the results of the aqueous and vitreous humour of the same eye. STUDY DESIGN Cross-sectional. METHODS Sixty-six eyes from 59 client-owned horses with a diagnosis of equine recurrent uveitis (ERU-group) were studied from May 2015 to December 2017. Fifty healthy eyes from 28 euthanised horses for unrelated reasons examined during the same period were included in the control group. Intraocular fluids (aqueous and/or vitreous humours) from ERU-affected eyes were sampled and analysed by real-time PCR for Leptospira spp. Aqueous and vitreous humours from the control group were processed in the same way. RESULTS Both groups were comparable regarding age, sex, eye sampled (OS/OD), humours sampled (aqueous/vitreous humour) but not regarding breeds, with an over-representation of Warmbloods and Appaloosas in the ERU-group. The prevalence of Leptospira spp. was 30.3% (20/66 eyes) in the ERU-group. Leptospira spp. DNA was identified in 11 aqueous and 17 vitreous humours with eight horses testing positive in both humours, nine horses testing positive for vitreous humour alone and third horses for aqueous humour alone. The phi-correlation between aqueous and vitreous humour Leptospira-PCR results is 0.47 suggesting a low association. All the control eyes were negative. MAIN LIMITATIONS The diagnostic method selected for this study (lipL32 qPCR) did not allow identification of the serovars. CONCLUSIONS Leptospirosis is a potential cause of ERU in Belgium. Testing both intraocular media is advised whenever possible. The Summary is available in Spanish - see Supporting Information.
Collapse
Affiliation(s)
- A C Sauvage
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, University of Liège, Liège, Belgium
| | - S J Monclin
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, University of Liège, Liège, Belgium
| | - M Elansary
- Unit of Animal Genomics, GIGA-R and College of Veterinary Medicine, University of Liège, Liège, Belgium
| | - P Hansen
- Laboratory Synlab Veterinary, Liège, Belgium
| | - M F Grauwels
- Department of Clinical Sciences, Companion and Equine Animals, Ophthalmology, University of Liège, Liège, Belgium
| |
Collapse
|
17
|
Interaction of septin 7 and DOCK8 in equine lymphocytes reveals novel insights into signaling pathways associated with autoimmunity. Sci Rep 2018; 8:12332. [PMID: 30120291 PMCID: PMC6098150 DOI: 10.1038/s41598-018-30753-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/22/2018] [Indexed: 01/21/2023] Open
Abstract
The GTP-binding protein septin 7 is involved in various cellular processes, including cytoskeleton organization, migration and the regulation of cell shape. Septin 7 function in lymphocytes, however, is poorly characterized. Since the intracellular signaling role of septin 7 is dependent on its interaction network, interaction proteomics was applied to attain novel knowledge about septin 7 function in hematopoietic cells. Our previous finding of decreased septin 7 expression in blood-derived lymphocytes in ERU, a spontaneous animal model for autoimmune uveitis in man, extended the role of septin 7 to a potential key player in autoimmunity. Here, we revealed novel insights into septin 7 function by identification of DOCK8 as an interaction partner in primary blood-derived lymphocytes. Since DOCK8 is associated with important immune functions, our finding of significantly decreased DOCK8 expression and altered DOCK8 interaction network in ERU might explain changes in immune response and shows the contribution of DOCK8 in pathomechanisms of spontaneous autoimmune diseases. Moreover, our analyses revealed insights in DOCK8 function, by identifying the signal transducer ILK as a DOCK8 interactor in lymphocytes. Our finding of the enhanced enrichment of ILK in ERU cases indicates a deviant influence of DOCK8 on inter- and intracellular signaling in autoimmune disease.
Collapse
|
18
|
Malalana F, Blundell RJ, Pinchbeck GL, Mcgowan CM. The role of Leptospira spp. in horses affected with recurrent uveitis in the UK. Equine Vet J 2017; 49:706-709. [PMID: 28321895 PMCID: PMC5655720 DOI: 10.1111/evj.12683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 03/14/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Equine recurrent uveitis (ERU) is a common cause of ocular pain and blindness in horses. Leptospira spp. have been commonly implicated in the pathophysiology of ERU in mainland Europe and the USA. No recent studies have been carried out in the UK, but Leptospira is reported not to be a major factor in the aetiology of ERU in the UK. OBJECTIVES To establish the prevalence of Leptospira-associated ERU in the UK and to identify the serovars involved in these cases; to compare serum vs. aqueous humour antibody levels in cases and controls in order to confirm the diagnosis of Leptospira-associated ERU, and to assess the usefulness of serology alone as a confirmatory test for Leptospira-associated ERU in the UK. STUDY DESIGN Case-control study. METHODS Eyes enucleated for clinical reasons in ERU-affected horses were collected. Blood and aqueous humour were obtained to determine antibody levels against a variety of Leptospira serovars and C-values (aqueous humour value/serum value) were calculated. In addition, eyes, blood and aqueous humour were obtained from control cases for comparison. Histopathology was performed in all eyes to confirm uveitis in each case. Differences in seroprevalences between ERU and control cases and between Leptospira- and non-Leptospira-associated ERU cases were calculated. RESULTS A total of 30 ERU and 43 control eyes were analysed. Of the ERU eyes, only two had a C-value of >4 (prevalence of Leptospira-associated uveitis: 6.7%). Serovars hardjo and javanica were detected. There was no difference in seroprevalence between horses with uveitis and control cases (65.5% and 41.9%, respectively; P = 0.11) or between Leptospira- and non-Leptospira-associated uveitis cases (100% and 63.0%, respectively; P = 0.52). MAIN LIMITATIONS The study was limited by low case numbers. Eyes were presented at different stages of disease. The only test used to detect Leptospira was the microscopic agglutination test. CONCLUSIONS Leptospira-associated ERU is uncommon in the UK. Serology alone may not help to definitively diagnose Leptospira-associated uveitis in this country.
Collapse
Affiliation(s)
- F. Malalana
- School of Veterinary Science, University of LiverpoolNestonUK
| | - R. J. Blundell
- School of Veterinary Science, University of LiverpoolNestonUK
| | - G. L. Pinchbeck
- Institute of Infection and Global HealthSchool of Veterinary Science, University of LiverpoolNestonUK
| | - C. M. Mcgowan
- Institute of Ageing and Chronic DiseaseSchool of Veterinary Science, University of LiverpoolNestonUK
| |
Collapse
|
19
|
Hauck SM, Lepper MF, Hertl M, Sekundo W, Deeg CA. Proteome Dynamics in Biobanked Horse Peripheral Blood Derived Lymphocytes (PBL) with Induced Autoimmune Uveitis. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/23/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich; Research Center for Environmental Health (GmbH); Neuherberg Germany
| | - Marlen F. Lepper
- Research Unit Protein Science, Helmholtz Center Munich; Research Center for Environmental Health (GmbH); Neuherberg Germany
| | - Michael Hertl
- Department of Allergy and Dermatology; Philipps University of Marburg; Marburg Germany
| | - Walter Sekundo
- Department of Ophthalmology; Philipps University of Marburg; Marburg Germany
| | - Cornelia A. Deeg
- Experimental Ophthalmology; Philipps University of Marburg; Marburg Germany
- Chair for Animal Physiology, Department of Veterinary Sciences; LMU Munich; Munich Germany
| |
Collapse
|
20
|
Formin like 1 expression is increased on CD4+ T lymphocytes in spontaneous autoimmune uveitis. J Proteomics 2017; 154:102-108. [DOI: 10.1016/j.jprot.2016.12.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/22/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
|
21
|
Dry eye disease and uveitis: A closer look at immune mechanisms in animal models of two ocular autoimmune diseases. Autoimmun Rev 2016; 15:1181-1192. [DOI: 10.1016/j.autrev.2016.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/08/2016] [Indexed: 12/13/2022]
|
22
|
Deeg CA, Amann B, Lutz K, Hirmer S, Lutterberg K, Kremmer E, Hauck SM. Aquaporin 11, a regulator of water efflux at retinal Müller glial cell surface decreases concomitant with immune-mediated gliosis. J Neuroinflammation 2016; 13:89. [PMID: 27107718 PMCID: PMC4842293 DOI: 10.1186/s12974-016-0554-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Background Müller glial cells are important regulators of physiological function of retina. In a model disease of retinal inflammation and spontaneous recurrent uveitis in horses (ERU), we could show that retinal Müller glial cells significantly change potassium and water channel protein expression during autoimmune pathogenesis. The most significantly changed channel protein in neuroinflammatory ERU was aquaporin 11 (AQP11). Aquaporins (AQP, 13 members) are important regulators of water and small solute transport through membranes. AQP11 is an unorthodox member of this family and was assigned to a third group of AQPs because of its difference in amino acid sequence (conserved sequence is only 11 %) and especially its largely unknown function. Methods In order to gain insight into the distribution, localization, and function of AQP11 in the retina, we first developed a novel monoclonal antibody for AQP11 enabling quantification, localization, and functional studies. Results In the horse retina, AQP11 was exclusively expressed at Müller glial cell membranes. In uveitic condition, AQP11 disappeared from gliotic Müller cells concomitant with glutamine synthase. Since function of AQP11 is still under debate, we assessed the impact of AQP11 channel on cell volume regulation of primary Müller glial cells under different osmotic conditions. We conclude a concomitant role for AQP11 with AQP4 in water efflux from these glial cells, which is disturbed in ERU. This could probably contribute to swelling and subsequent severe complication of retinal edema through impaired intracellular fluid regulation. Conclusions Therefore, AQP11 is important for physiological Müller glia function and the expression pattern and function of this water channel seems to have distinct functions in central nervous system. The significant reduction in neuroinflammation points to a crucial role in pathogenesis of autoimmune uveitis.
Collapse
Affiliation(s)
- Cornelia A Deeg
- Experimental Ophthalmology, Philipps University of Marburg, Baldingerstrasse, 35033, Marburg, Germany. .,Department of Veterinary Sciences, Institute of Animal Physiology, Ludwig-Maximilians University, Veterinärstr. 13, 80539, München, Germany.
| | - Barbara Amann
- Department of Veterinary Sciences, Institute of Animal Physiology, Ludwig-Maximilians University, Veterinärstr. 13, 80539, München, Germany
| | - Konstantin Lutz
- Department of Veterinary Sciences, Institute of Animal Physiology, Ludwig-Maximilians University, Veterinärstr. 13, 80539, München, Germany
| | - Sieglinde Hirmer
- Department of Veterinary Sciences, Institute of Animal Physiology, Ludwig-Maximilians University, Veterinärstr. 13, 80539, München, Germany
| | - Karina Lutterberg
- Department of Veterinary Sciences, Institute of Animal Physiology, Ludwig-Maximilians University, Veterinärstr. 13, 80539, München, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Institute for Molecular Immunology, Marchioninistraße 25, 81377, München, Germany
| | - Stefanie M Hauck
- Department of Protein Science, Helmholtz Zentrum München-German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
23
|
Allbaugh RA. Equine recurrent uveitis: A review of clinical assessment and management. EQUINE VET EDUC 2016. [DOI: 10.1111/eve.12548] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- R. A. Allbaugh
- Department of Veterinary Clinical Sciences; Iowa State University College of Veterinary Medicine; Ames USA
| |
Collapse
|
24
|
Kielczewski JL, Horai R, Jittayasothorn Y, Chan CC, Caspi RR. Tertiary Lymphoid Tissue Forms in Retinas of Mice with Spontaneous Autoimmune Uveitis and Has Consequences on Visual Function. THE JOURNAL OF IMMUNOLOGY 2015; 196:1013-25. [PMID: 26712943 DOI: 10.4049/jimmunol.1501570] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/21/2015] [Indexed: 12/19/2022]
Abstract
During chronic inflammation, tertiary lymphoid tissue (TLT) can form within an inflamed organ, including the CNS. However, little is known about TLT formation in the neuroretina. In a novel spontaneous autoimmune mouse model of uveitis (R161H), we identified well-organized lymphoid aggregates in the retina and examined them for TLT characteristics. Presence of immune cells, tissue-specific markers, and gene expression patterns typically associated with germinal centers and T follicular helper cells were examined using immunohistochemistry and gene analysis of laser capture microdissected retina. Our data revealed the retinal lymphoid structures contained CD4(+) T cells and B cells in well-defined zonal areas that expressed classic germinal center markers, peanut lectin (agglutinin) and GL-7. Gene expression analysis showed upregulation of T follicular helper cell markers, most notably CXCR5 and its ligand CXCL13, and immunohistochemical analysis confirmed CXCR5 expression, typically associated with CD4(+) T follicular helper cells. Highly organized stromal cell networks, a hallmark of organized lymphoid tissue, were also present. Positive staining for phospho-Zap70 in retina-specific T cells indicated CD4(+) T cells were being activated within these lymphoid structures. CD138(+)/B220(+) plasma cells were detected, suggesting the retinal lymphoid aggregates give rise to functional germinal centers, which produce Abs. Interestingly, eyes with lymphoid aggregates exhibited lower inflammatory scores by fundus examination and a slower initial rate of loss of visual function by electroretinography, compared with eyes without these structures. Our findings suggest that the lymphoid aggregates in the retina of R161H mice represent organized TLT, which impact the course of chronic uveitis.
Collapse
Affiliation(s)
- Jennifer L Kielczewski
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Reiko Horai
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Yingyos Jittayasothorn
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chi-Chao Chan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rachel R Caspi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
25
|
Witkowski L, Cywinska A, Paschalis-Trela K, Crisman M, Kita J. Multiple etiologies of equine recurrent uveitis--A natural model for human autoimmune uveitis: A brief review. Comp Immunol Microbiol Infect Dis 2015; 44:14-20. [PMID: 26851589 DOI: 10.1016/j.cimid.2015.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/12/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022]
Abstract
Equine recurrent uveitis (ERU) has various etiologies, with Leptospira infection and genetic predisposition being the leading risk factors. Regardless of etiology, expression of ocular proteins associated with maintenance of the blood-ocular barrier is impaired in ERU. The recurring-remitting cycle of ERU repeatedly disrupts the blood-ocular barrier, allowing the previously immune-privileged ocular environment to become the site of a progressive local autoimmune pathology that ultimately results in tissue destruction and vision loss. The immune-mediated process involves humoral and cellular mechanisms. Intraocular antibodies either produced in the eye or that leak through the blood-ocular barrier, are often present at higher levels than in serum and react with antigens in ocular tissue of horses with ERU. Ocular infiltration of auto-aggressive lymphocytes occurs with each uveitis episode and is the most crucial contributor to inflammation and eye damage. Recurring uveitis episodes may be initiated when epitopes of an ocular antigen become visible to the immune system (intramolecular spreading) or another autoantigen (intermolecular spreading), resulting in a new inflammatory reaction.
Collapse
Affiliation(s)
- Lucjan Witkowski
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
| | - Anna Cywinska
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Katarzyna Paschalis-Trela
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Mark Crisman
- Department of Large Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Jerzy Kita
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
26
|
Gerding JC, Gilger BC. Prognosis and impact of equine recurrent uveitis. Equine Vet J 2015; 48:290-8. [PMID: 25891653 DOI: 10.1111/evj.12451] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
REASONS FOR PERFORMING STUDY Equine recurrent uveitis (ERU) is a leading cause of vision loss in horses. OBJECTIVES To assess the prognosis and impact of ERU on affected horses and their owners by evaluating the signalment, treatment and outcome (including the loss of use, vision assessment and economic loss). STUDY DESIGN Retrospective impact study. METHODS Medical records of horses presenting to the North Carolina State University Veterinary Health Complex (NCSU-VHC) with ERU between 1999 and 2014 were reviewed. Signalment, clinical signs, ophthalmic examination findings, treatments and outcomes were evaluated. Owner questionnaires were completed regarding vision, job/role, monetary value, diagnostic and treatment costs, concurrent illness and outcomes. RESULTS Records of 224 horses (338 eyes) with ERU were reviewed. There was an overrepresentation of Appaloosas (54; 24.1%), Hanoverians (11; 4.9%) and other Warmbloods (13; 5.8%). Ninety-six eyes (28.4%) were diagnosed as blind and 38 eyes (11.2%) with glaucoma on initial evaluation. Leptospirosis titres of serum and/or aqueous humour were obtained in 88 horses and were positive in 40 horses (45.5%), with L. pomona being the most frequently isolated serovar. Globe loss at the NCSU-VHC occurred in 41 ERU eyes (12.1% of total). Owner questionnaires were evaluated in 194 horses (86.6%) and 91 horses (46.9%) were reported blind in the affected eye(s). Fifty-seven horses (29.4%) did not return to their previous role, while 61 (31.4%) performed at a reduced level. Equine recurrent uveitis decreased the monetary value of 164 horses. Twenty-nine horses (14.9%) were euthanised and 37 (19.1%) underwent change in ownership as a direct result of ERU. CONCLUSIONS The impact of ERU is attributed to the high frequency of blindness, globe loss and loss of function. Euthanasia and change of ownership are common sequelae to the progressive nature of ERU. These factors, along with financial costs of the disease, have a significant impact on affected horses and their owners.
Collapse
Affiliation(s)
- J C Gerding
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, USA
| | - B C Gilger
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, USA
| |
Collapse
|
27
|
Abstract
CD4+ T cells are key players in immunology and disease pathology, including relapsing autoimmune uveitis. Equine recurrent uveitis is the only spontaneous animal model for this disease in man. Knowledge about the CD4+ cell proteome is crucial for studies on possible changes in proteome expression of CD4+ effector cells in disease. For this purpose, we generated a reference dataset of the equine CD4+ cell proteome by sorting equine CD4+ lymphocytes followed by analysis of whole cell lysate as well as membrane protein fraction using mass spectrometry.
Collapse
|
28
|
Uhl P, Szober C, Amann B, Alge-Priglinger C, Ueffing M, Hauck S, Deeg C. In situ cell surface proteomics reveals differentially expressed membrane proteins in retinal pigment epithelial cells during autoimmune uveitis. J Proteomics 2014; 109:50-62. [DOI: 10.1016/j.jprot.2014.06.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022]
|
29
|
Degroote RL, Hauck SM, Amann B, Hirmer S, Ueffing M, Deeg CA. Unraveling the equine lymphocyte proteome: differential septin 7 expression associates with immune cells in equine recurrent uveitis. PLoS One 2014; 9:e91684. [PMID: 24614191 PMCID: PMC3951111 DOI: 10.1371/journal.pone.0091684] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022] Open
Abstract
Equine recurrent uveitis is a spontaneous, lymphocyte-driven autoimmune disease. It affects horses worldwide and presents with painful remitting-relapsing inflammatory attacks of inner eye structures eventually leading to blindness. Since lymphocytes are the key players in equine recurrent uveitis, we were interested in potential changes of their protein repertoire which may be involved in disease pathogenesis. To create a reference for differential proteome analysis, we first unraveled the equine lymphocyte proteome by two-dimensional sodium dodecyl sulfate - polyacrylamide gel electrophoresis and subsequently identified 352 protein spots. Next, we compared lymphocytes from ERU cases and healthy horses with a two-dimensional fluorescence difference in gel electrophoresis approach. With this technique, we identified seven differentially expressed proteins between conditions. One of the significantly lower expressed candidates, septin 7, plays a role in regulation of cell shape, motility and migration. Further analyses revealed T cells as the main cell type with decreased septin 7 abundance in equine recurrent uveitis. These findings point to a possible pathogenetic role of septin 7 in this sight-threatening disease.
Collapse
Affiliation(s)
- Roxane L. Degroote
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Sieglinde Hirmer
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
| | - Marius Ueffing
- Research Unit Protein Sciences, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Center for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig Maximilians University Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
30
|
De Schauwer C, Van de Walle GR, Van Soom A, Meyer E. Mesenchymal stem cell therapy in horses: useful beyond orthopedic injuries? Vet Q 2013; 33:234-41. [DOI: 10.1080/01652176.2013.800250] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
31
|
Degroote RL, Hauck SM, Treutlein G, Amann B, Fröhlich KJH, Kremmer E, Merl J, Stangassinger M, Ueffing M, Deeg CA. Expression Changes and Novel Interaction Partners of Talin 1 in Effector Cells of Autoimmune Uveitis. J Proteome Res 2013; 12:5812-9. [DOI: 10.1021/pr400837f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Stefanie M. Hauck
- Research
Unit Protein Sciences, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | | | | | | | - Elisabeth Kremmer
- Institute
of Molecular Immunology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Marchioninistraße 25, D-81377 Munich, Germany
| | - Juliane Merl
- Research
Unit Protein Sciences, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
| | | | - Marius Ueffing
- Research
Unit Protein Sciences, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstr. 1, D-85764 Neuherberg, Germany
- Center
for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls Universitaet of Tuebingen, Roentgenweg 11, D-72076 Tuebingen, Germany
| | | |
Collapse
|
32
|
Kulbrock M, Distl O, Ohnesorge B. A Review of Candidate Genes for Development of Equine Recurrent Uveitis. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2013.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Verma A, Stevenson B. Leptospiral uveitis - there is more to it than meets the eye! Zoonoses Public Health 2013; 59 Suppl 2:132-41. [PMID: 22958257 DOI: 10.1111/j.1863-2378.2011.01445.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Leptospirosis, caused by pathogenic species of genus Leptospira, is a highly prevalent zoonotic disease throughout many parts of the world, and an important emerging disease within the United States. Uveitis is a common complication of systemic infection in humans. A similar condition in horses is characterized by recurrent bouts of inflammation. In this article, we review advances in our understanding of leptospiral uveitis and its pathogenic mechanisms.
Collapse
Affiliation(s)
- A Verma
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
34
|
Kulbrock M, Lehner S, Metzger J, Ohnesorge B, Distl O. A genome-wide association study identifies risk loci to equine recurrent uveitis in German warmblood horses. PLoS One 2013; 8:e71619. [PMID: 23977091 PMCID: PMC3743750 DOI: 10.1371/journal.pone.0071619] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 07/01/2013] [Indexed: 11/18/2022] Open
Abstract
Equine recurrent uveitis (ERU) is a common eye disease affecting up to 3-15% of the horse population. A genome-wide association study (GWAS) using the Illumina equine SNP50 bead chip was performed to identify loci conferring risk to ERU. The sample included a total of 144 German warmblood horses. A GWAS showed a significant single nucleotide polymorphism (SNP) on horse chromosome (ECA) 20 at 49.3 Mb, with IL-17A and IL-17F being the closest genes. This locus explained a fraction of 23% of the phenotypic variance for ERU. A GWAS taking into account the severity of ERU, revealed a SNP on ECA18 nearby to the crystalline gene cluster CRYGA-CRYGF. For both genomic regions on ECA18 and 20, significantly associated haplotypes containing the genome-wide significant SNPs could be demonstrated. In conclusion, our results are indicative for a genetic component regulating the possible critical role of IL-17A and IL-17F in the pathogenesis of ERU. The associated SNP on ECA18 may be indicative for cataract formation in the course of ERU.
Collapse
Affiliation(s)
- Maike Kulbrock
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Stefanie Lehner
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Julia Metzger
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Bernhard Ohnesorge
- Clinic for Horses, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ottmar Distl
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
35
|
Gilger BC, Abarca E, Salmon JH. Selection of Appropriate Animal Models in Ocular Research: Ocular Anatomy and Physiology of Common Animal Models. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2013. [DOI: 10.1007/7653_2013_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
36
|
Swadzba ME, Hauck SM, Naim HY, Amann B, Deeg CA. Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis. PLoS One 2012; 7:e50929. [PMID: 23236410 PMCID: PMC3517615 DOI: 10.1371/journal.pone.0050929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/26/2012] [Indexed: 12/11/2022] Open
Abstract
Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology.
Collapse
Affiliation(s)
- Margarete E. Swadzba
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians University, München, Germany
| | - Stefanie M. Hauck
- Research Unit for Protein Science, Helmholtz Zentrum München–German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Hassan Y. Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Barbara Amann
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians University, München, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians University, München, Germany
- * E-mail:
| |
Collapse
|
37
|
Szober CM, Hauck SM, Euler KN, Fröhlich KJH, Alge-Priglinger C, Ueffing M, Deeg CA. Profound re-organization of cell surface proteome in equine retinal pigment epithelial cells in response to in vitro culturing. Int J Mol Sci 2012. [PMID: 23203049 PMCID: PMC3509565 DOI: 10.3390/ijms131114053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to characterize the cell surface proteome of native compared to cultured equine retinal pigment epithelium (RPE) cells. The RPE plays an essential role in visual function and represents the outer blood-retinal barrier. We are investigating immunopathomechanisms of equine recurrent uveitis, an autoimmune inflammatory disease in horses leading to breakdown of the outer blood-retinal barrier and influx of autoreactive T-cells into affected horses’ vitrei. Cell surface proteins of native and cultured RPE cells from eye-healthy horses were captured by biotinylation, analyzed by high resolution mass spectrometry coupled to liquid chromatography (LC MS/MS), and the most interesting candidates were validated by PCR, immunoblotting and immunocytochemistry. A total of 112 proteins were identified, of which 84% were cell surface membrane proteins. Twenty-three of these proteins were concurrently expressed by both cell states, 28 proteins exclusively by native RPE cells. Among the latter were two RPE markers with highly specialized RPE functions: cellular retinaldehyde-binding protein (CRALBP) and retinal pigment epithelium-specific protein 65kDa (RPE65). Furthermore, 61 proteins were only expressed by cultured RPE cells and absent in native cells. As we believe that initiating events, leading to the breakdown of the outer blood-retinal barrier, take place at the cell surface of RPE cells as a particularly exposed barrier structure, this differential characterization of cell surface proteomes of native and cultured equine RPE cells is a prerequisite for future studies.
Collapse
Affiliation(s)
- Christoph M. Szober
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany; E-Mails: (S.M.H.); (M.U.)
| | - Kerstin N. Euler
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
| | - Kristina J. H. Fröhlich
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
| | - Claudia Alge-Priglinger
- Department of Ophthalmology, Ludwig-Maximilians-University, Mathildenstrasse 8, D-80336 Munich, Germany; E-Mail:
| | - Marius Ueffing
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, D-85764 Neuherberg, Germany; E-Mails: (S.M.H.); (M.U.)
- Centre of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Röntgenweg 11, D-72076 Tübingen, Germany
| | - Cornelia A. Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, D-80539 Munich, Germany; E-Mails: (C.M.S.); (K.N.E.); (K.J.H.F.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +49-89-21801630; Fax: +49-89-21802554
| |
Collapse
|
38
|
Altered expression of talin 1 in peripheral immune cells points to a significant role of the innate immune system in spontaneous autoimmune uveitis. J Proteomics 2012; 75:4536-44. [DOI: 10.1016/j.jprot.2012.01.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 11/21/2022]
|
39
|
Zipplies JK, Hauck SM, Eberhardt C, Hirmer S, Amann B, Stangassinger M, Ueffing M, Deeg CA. Miscellaneous vitreous-derived IgM antibodies target numerous retinal proteins in equine recurrent uveitis. Vet Ophthalmol 2012; 15 Suppl 2:57-64. [PMID: 22432720 DOI: 10.1111/j.1463-5224.2012.01010.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE In equine recurrent uveitis (ERU), immune reactions are directed toward known antigens like S-antigen, interphotoreceptor retinoid-binding protein, and cellular retinalaldehyde-binding protein, and anti-retinal antibodies were detected in vitreous samples. The aim of this study was the investigation of intraocular immunoglobulin M (IgM) reactivities to retinal proteome. PROCEDURES Retina was separated by one- and two-dimensional gel electrophoresis and blotted semidry on PVDF membranes. To identify intraocular IgM antibody responses to retinal tissue, blots were incubated with vitreous samples of ERU-diseased horses (n = 50) and healthy controls (n = 30), followed by an HRP-labeled secondary antibody specific for equine IgM. Noticeable 2D western blot signals were aligned on a 2D gel of retinal proteome, excised, and subsequently identified by tandem mass spectrometry. RESULTS Interestingly, frequent and very miscellaneous IgM response patterns to the retinal proteome in 68% of ERU vitreous samples were detected. Binding of IgM antibodies was localized at 17 different molecular weights. The most frequently detected signal, in 21 of the 50 samples, was located at 49 kDa. Comparing the samples interindividually between one and up to nine different signals in one sample could be observed. All healthy vitreous samples were devoid of IgM antibodies. Analysis of targeted spots with mass spectrometry led to the clear identification of 11 different proteins (corresponding to 16 different spots). One candidate could not be discovered so far. CONCLUSION The considerable IgM response to retinal proteins demonstrates an ongoing immune response, which might contribute to the remitting relapsing character of ERU. Novel identified target proteins point to a diverse response pattern of individual ERU cases.
Collapse
Affiliation(s)
- Johanna K Zipplies
- Department of Veterinary Sciences, Institute of Animal Physiology, Ludwig-Maximilians University, Veterinärstr 13, D-80539 München, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Deeg CA, Eberhardt C, Hofmaier F, Amann B, Hauck SM. Osteopontin and fibronectin levels are decreased in vitreous of autoimmune uveitis and retinal expression of both proteins indicates ECM re-modeling. PLoS One 2011; 6:e27674. [PMID: 22194789 PMCID: PMC3237414 DOI: 10.1371/journal.pone.0027674] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/21/2011] [Indexed: 12/19/2022] Open
Abstract
Autoimmune uveitis is an intraocular inflammation that arises through autoreactive T-cells attacking the inner eye, eventually leading to blindness. However, the contributing molecular pathomechanisms within the affected tissues remain as yet elusive. The extracellular matrix (ECM) is a highly dynamic structure that varies tremendously and influences the encompassing tissue. In order to assess ECM re-modeling in autoimmune uveitis, we investigated the expression of ECM molecules fibronectin and osteopontin in vitreous and retina samples. This was carried out in the only spontaneous animal model for human autoimmue uveitis, namely equine recurrent uveitis (ERU) that resembles the human disease in clinical as well as in immunopathological aspects. ERU is a naturally occurring autoimmune disease in horses that develops frequently and has already proved its value to study disease-related pathomechanisms. Western blot analysis of fibronectin and osteopontin in healthy and uveitic vitreous revealed significant reduction of both proteins in uveitis. Immunohistochemical expression of fibronectin in healthy retinas was restricted to the inner limiting membrane abutting vimentin positive Müller cell endfeet, while in uveitic sections, a disintegration of the ILM was observed changing the fibronectin expression to a dispersed pattern extending toward the vitreous. Retinal expression of osteopontin in control tissue was found in a characteristic Müller cell pattern illustrated by co-localization with vimentin. In uveitic retinas, the immunoreactivity of osteopontin in gliotic Müller cells was almost absent. The ability of Müller cells to express fibronectin and osteopontin was additionally shown by immunocytochemistry of primary cultured equine Müller cells and the equine Müller cell line eqMC-7. In conclusion, severe ECM re-modeling in autoimmune uveitis reported here, might affect the adhesive function of fibronectin and thus the anchoring of Müller cell endfeet to the ILM. Furthermore, the absence of osteopontin in gliotic Müller cells might represent reduced neuroprotection, an osteopontin attribute that is intensively discussed.
Collapse
Affiliation(s)
- Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians University, München, Germany.
| | | | | | | | | |
Collapse
|
41
|
Regan DP, Aarnio MC, Davis WS, Carmichael KP, Vandenplas ML, Lauderdale JD, Moore PA. Characterization of cytokines associated with Th17 cells in the eyes of horses with recurrent uveitis. Vet Ophthalmol 2011; 15:145-52. [PMID: 22051225 DOI: 10.1111/j.1463-5224.2011.00951.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Equine recurrent uveitis (ERU) is a spontaneous disease that is the most common cause of blindness in horses, affecting up to 15% of the horse population. Th17 cells are a major cell population driving the pathogenesis in several mouse models of autoimmune inflammation, including experimental autoimmune uveitis. The purpose of this study is to investigate the role a Th17 cell-mediated response plays in the pathogenesis of ERU. PROCEDURE Banked, Davidson's-fixed equine globes histopathologically diagnosed with ERU (n = 7) were compared immunohistochemically with healthy control globes (n = 7). Immunohistochemical staining was performed using a pan-Leptospira antibody and antibodies against IL-6, IL-17, and IL-23. Additionally, immunostaining was performed for T-cell (CD3) and B-cell (CD79α) markers. Specificity of immunoreactivity was confirmed by western blot analysis. RESULTS Immunohistochemical staining was positive for IL-6, IL-17, and IL-23 within the cytoplasm of nonpigmented ciliary epithelial cells and mononuclear inflammatory cells infiltrating the iris, and ciliary body of ERU horses (n = 7) but negative in controls (n = 7). ERU-affected eyes were CD3 positive (n = 7) and CD79α negative (n = 7). Staining for Leptospira was negative in all ERU and control globes. CONCLUSIONS Strong immunoreactivity for IL-6, IL-17, and IL-23, in conjunction with the fact that T lymphocytes are the predominating inflammatory cells present in ERU, suggests that IL-17-secreting helper T-cells play a role in the pathogenesis of ERU. These findings suggest that horses with ERU may serve as a naturally occurring animal model for autoimmune uveitis.
Collapse
Affiliation(s)
- Daniel P Regan
- Department of Small Animal Medicine and Surgery, The University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
|
43
|
Zipplies JK, Kirschfink M, Amann B, Hauck SM, Stangassinger M, Deeg CA. Complement factor B expression profile in a spontaneous uveitis model. Immunobiology 2010; 215:949-55. [DOI: 10.1016/j.imbio.2010.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
44
|
Gilger BC, Wilkie DA, Clode AB, McMullen RJ, Utter ME, Komaromy AM, Brooks DE, Salmon JH. Long-term outcome after implantation of a suprachoroidal cyclosporine drug delivery device in horses with recurrent uveitis. Vet Ophthalmol 2010; 13:294-300. [DOI: 10.1111/j.1463-5224.2010.00807.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Verma A, Kumar P, Babb K, Timoney JF, Stevenson B. Cross-reactivity of antibodies against leptospiral recurrent uveitis-associated proteins A and B (LruA and LruB) with eye proteins. PLoS Negl Trop Dis 2010; 4:e778. [PMID: 20689825 PMCID: PMC2914785 DOI: 10.1371/journal.pntd.0000778] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 06/30/2010] [Indexed: 11/19/2022] Open
Abstract
Infection by Leptospira interrogans has been causally associated with human and equine uveitis. Studies in our laboratories have demonstrated that leptospiral lipoprotein LruA and LruB are expressed in the eyes of uveitic horses, and that antibodies directed against LruA and LruB react with equine lenticular and retinal extracts, respectively. These reactivities were investigated further by performing immunofluorescent assays on lenticular and retinal tissue sections. Incubation of lens tissue sections with LruA-antiserum and retinal sections with LruB-antiserum resulted in positive fluorescence. By employing two-dimensional gel analyses followed by immunoblotting and mass spectrometry, lens proteins cross-reacting with LruA antiserum were identified to be alpha-crystallin B and vimentin. Similarly, mass spectrometric analyses identified beta-crystallin B2 as the retinal protein cross-reacting with LruB-antiserum. Purified recombinant human alpha-crystallin B and vimentin were recognized by LruA-directed antiserum, but not by control pre-immune serum. Recombinant beta-crystallin B2 was likewise recognized by LruB-directed antiserum, but not by pre-immune serum. Moreover, uveitic eye fluids contained significantly higher levels of antiibodies that recognized alpha-crystallin B, beta-crystallin B2 and vimentin than did normal eye fluids. Our results indicate that LruA and LruB share immuno-relevant epitopes with eye proteins, suggesting that cross-reactive antibody interactions with eye antigens may contribute to immunopathogenesis of Leptospira-associated recurrent uveitis.
Collapse
Affiliation(s)
- Ashutosh Verma
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| | | | | | | | | |
Collapse
|
46
|
Deeg CA. A proteomic approach for studying the pathogenesis of spontaneous equine recurrent uveitis (ERU). Vet Immunol Immunopathol 2009; 128:132-6. [DOI: 10.1016/j.vetimm.2008.10.302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Abstract
Equine recurrent uveitis (ERU) is a disease with high prevalence and relevance for the equine population, since it results in blindness. Over the last decade, important advancements have been made in our understanding of the underlying immune responses in this disease. ERU is mediated by an autoaggressive Th1 response directed against several retinal proteins. Interphotoreceptor-retinoid binding protein (IRBP) and cellular retinaldehyde-binding protein (CRALBP) are capable to induce ERU-like disease in experimental horses, with the unique possibility to activate relapses in a well-defined manner. Further, proteomic evidence now suggests that retinal Mueller glial cells (RMG) may play a fatal role in uveitic disease progression by directly triggering inflammation processes through the expression and secretion of interferon-gamma. Ongoing relapses in blind eyes can be associated with stable expression of the major autoantigens in ERU retinas. This review briefly summarizes the most significant developments in uveitis immune response research.
Collapse
Affiliation(s)
- Cornelia A Deeg
- Institute of Animal Physiology, LMU Munich, Munich, Germany.
| |
Collapse
|
48
|
Douglas LC, Yi NY, Davis JL, Salmon JH, Gilger BC. Ocular toxicity and distribution of subconjunctival and intravitreal rapamycin in horses. J Vet Pharmacol Ther 2009; 31:511-6. [PMID: 19000272 DOI: 10.1111/j.1365-2885.2008.00986.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vitro photosensitivity of rapamycin (RAPA) and ocular toxicity and distribution of intravitreal and subconjunctival RAPA was evaluated in normal horses. RAPA (2.5 mg, 5 mg, and 10 mg) was placed in 10 mL of PBS and maintained in a water bath at 37 degrees C, kept in the dark or subjected to room light, and sampled for up to 3 months for RAPA levels. Six normal adult horses received either 5 mg (n = 2) or 10 mg (n = 2) of RAPA intravitreally or 10 mg (n = 2) subconjunctivally. Ophthalmic exams and electroretinography (ERG) were performed prior to injection and on days 1, 7, 14, and 21 post-injection. Eyes were enucleated and samples were collected for RAPA concentrations and histopathology. No difference in light vs. dark RAPA concentrations was observed, suggesting a lack of RAPA phototoxicity. No evidence of ocular toxicity was noted on ophthalmic examination or histopathology. RAPA was not detected intraocularly 7 days post-injection in eyes receiving subconjunctival RAPA, but was detected in the vitreous at 21 days post-injection. Drug could be detected in both the aqueous and vitreous humor after intravitreal injection. Further study is needed to determine the efficacy of intravitreal RAPA.
Collapse
Affiliation(s)
- L C Douglas
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | | | | | | | | |
Collapse
|
49
|
Gilger BC, Salmon JH, Yi NY, Barden CA, Chandler HL, Wendt JA, Colitz CMH. Role of bacteria in the pathogenesis of recurrent uveitis in horses from the southeastern United States. Am J Vet Res 2008; 69:1329-35. [DOI: 10.2460/ajvr.69.10.1329] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Alpha-tocopherol protects against oxidative damage to lipids of the rod outer segments of the equine retina. Vet J 2008; 182:463-8. [PMID: 18829353 DOI: 10.1016/j.tvjl.2008.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/30/2008] [Accepted: 08/13/2008] [Indexed: 01/12/2023]
Abstract
Oxidative stress is a possible risk factor for eye diseases. Lipid peroxidation is one of the major events induced by oxidative stress and is particularly active in polyunsaturated fatty acid (PUFA)-rich biomembranes. This work evaluated endogenous lipid antioxidants, in vitro non-enzymatic lipid peroxidation of rod outer segment membranes (ROS), the fatty acid composition during oxidative damage of total lipids from equine retina and ROS, and the protective action of alpha-tocopherol (alpha-Toc). The major lipid soluble antioxidant was alpha-Toc followed by retinoids and carotenoids. The retina contained a high percentage of PUFAs, mainly docosahexaenoic acid (22:6n-3) and arachidonic acid (20:4n-6). Lipid peroxidation of the equine ROS, induced by Fe(2+)-ascorbate, was monitored using chemiluminescence (CL) with or without pre-treatment with alpha-Toc. With alpha-Toc pre-treatment, CL values were significantly decreased. The most abundant fatty acid was 22:6n-3. After 3h incubation, 95% of total PUFAs were destroyed by peroxidation, whereas in alpha-Toc pre-treated ROS the percentage was significantly decreased. The results show that the retina has an endogenous lipid soluble antioxidant system. ROS were highly sensitive to oxidative damage, since their fatty acid composition was markedly modified during the lipid peroxidation process. The protective role of alpha-Toc as an antioxidant was evident and it could be used in the treatment of equine ocular diseases in which free radicals are involved.
Collapse
|